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The Forward-Backward Envelope for Sampling

with the Overdamped Langevin Algorithm

Armin Eftekhari Luis Vargas Konstantinos Zygalakis∗

January 25, 2022

Abstract

In this paper, we analyse a proximal method based on the idea of
forward-backward splitting for sampling from distributions with densi-
ties that are not necessarily smooth. In particular, we study the non-
asymptotic properties of the Euler-Maruyama discretization of the Langevin
equation, where the forward-backward envelope is used to deal with the
non-smooth part of the dynamics. An advantage of this envelope, when
compared to widely-used Moreu-Yoshida one and the MYULA algorithm,
is that it maintains the MAP estimator of the original non-smooth distri-
bution. We also study a number of numerical experiments that support
our theoretical findings.

1 Introduction

The problem of calculating expectations with respect to a probability distribu-
tion p in Rd is ubiquitous throughout applied mathematics, statistics, molecular
dynamics, statistical physics and other fields. In practice, often d is large, which
renders deterministic techniques, such as quadrature methods, computationally
intractable. In contrast, probabilistic methods do not suffer from the curse of
dimensionality and are often the method of choice when the dimension d is
large. In particular, Markov chain Monte Carlo (MCMC) methods are based on
the construction of a Markov chain in Rm with m ≥ d, for which the invariant
distribution (or its suitable marginal) coincides with the target distribution p [1].

Often, such Markov chains are based on the discretization of stochastic dif-
ferential equations (SDEs). One such SDE, which is also the focus of this paper,
is the (overdamped) Langevin equation

dXt = −∇f(Xt) dt+
√
2 dWt, (1)

∗The authors are ordered alphabetically. AE is with the Department of Mathematics and
Mathematical Statistics, Umea University. LV and KZ are with the the School of Mathematics,
University of Edinburgh, and the Maxwell Institute for Mathematical Sciences.
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where {Wt}t is the standard d-dimensional Brownian motion and ∇f denotes
the gradient of a continuously-differentiable function f : Rd → R. Under mild
assumptions on f , the dynamics of (1) are ergodic with respect to the distribu-
tion p ∝ e−f . In particular, p is the invariant distribution of (1) [2].

The discretization of (1), however, requires special care, since the resulting
discrete Markov chain might not be ergodic [3]. In addition, even if ergodic,
the resulting discrete Markov chain often has a different invariant distribution
than p, known as the numerical invariant distribution p̂. The study of the
asymptotic error between the numerical invariant distribution p̂ and the target
distribution p has received considerable attention recently [4, 5]. In particu-
lar, [4] investigated the effect of discretization on the convergence of the ergodic
averages, and [5] presented general order conditions to ensure that the numerical
invariant distribution accurately approximates the target distribution.

Another active line of research quantifies the nonasymptotic error between
the numerical invariant distribution p̂ and the target distribution p. In partic-
ular, when p is a smooth and strongly log-concave distribution, [6] established
non-asymptotic bounds in total variation distance for the Euler-Maruyama dis-
cretization of (1), commonly known as the unadjusted Langevin algorithm
(ULA). These results have also been extended to the Wasserstein distance W2 in
[7, 8, 9, 10, 11], to name a few. Typically, these works study the number of iter-
ations that the numerical integrator would require to achieve a desired accuracy,
when applied to a target distribution p with a known condition number.

In fact, the above strong log-concavity of p can be substantially relaxed. In
particular, using a variant of the reflection coupling, the recent work [12] derived
non-asymptotic bounds for the ULA in the Wasserstein distance W1, when p is
strictly log-concave outside of a ball in Rd. Similar results for the Wasserstein
distance W2 have also been presented in [13].

Within the class of log-concave distributions, a significant challenge for the
Langevin diffusion in (1) arises when the target distribution p is not smooth
and/or has a compact (convex) support in Rd. One approach to address this
challenge is to replace the non-smooth distribution p with a smooth proxy ob-
tained via the so-called Moreu-Yoshida (MY) envelope. This new smooth den-
sity remains log-concave and, hence, amenable to the non-asymptotic results
discussed earlier. When the support of p is also compact, proximal Monte Carlo
methods have been explored in [14, 15, 16]. It is also worth noting that [17]
pursued a different approach for sampling from compactly-supported densities
that does not involve the MY envelope.

A potential drawback of the above approach is that the MY envelope often
does not maintain the maximum a posteriori (MAP) estimator. That is, the
above approach alters the location at which the new (smooth) density reaches
its maximum. This is a well-known issue in the context of (non-smooth) convex
optimization and is often resolved by appealing to the proximal gradient method.
The latter can be understood as the Euler discretization of the so-called forward-
backward (FB) envelope [18].
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Contributions. This work explores and analyzes the use of the FB envelope
for sampling from non-smooth and compactly-supported log-concave distribu-
tions. In analogy with the Langevin proximal Monte Carlo, we replace the
non-smooth density with a smooth proxy obtained via the FB envelope. In
particular, this proxy is strongly log-concave over long distances.

Crucially, the new proxy also maintains the MAP estimator , under cer-
tain assumptions. However, this improvement comes at the cost of requiring
additional smoothness for the smooth part of the density. Lastly, the strong
convexity of the new proxy over long distances allows us to utilise the work
of [12] to obtain non-asymptotic guarantees for our method in the Wasserstein
distance W1.

In addition to investigating the use of FB envelope in sampling, this work
has the following contributions:

• It introduces a general theoretical framework for sampling from non-
smooth densities by introducing the notion of admissible envelopes. MY
and FB envelopes are both instances of admissible envelopes.

• It proposes a new Langevin algorithm to sample from non-smooth den-
sities, dubbed EULA, which generalizes MYULA. EULA can work with
any admissible envelope (e.g., MY or FB) and can handle a family of
increasingly more accurate envelopes rather than a fixed envelope.

Organization. The rest of the paper is organised as follows. Section 2 formal-
izes the problem of sampling from a non-smooth and compactly-supported log-
concave distribution. As a proxy for this non-smooth distribution, its (smooth)
Moreau-Yosida (MY) envelope is reviewed in Section 3. This section also ex-
plains the main limitation of MY envelope, i.e., its inaccurate MAP estimation.
In Section 4, we introduce the forward-backward (FB) envelope which overcomes
the key shortcoming of the MY envelope.

Section 5 introduces and analyses EULA, an extension of the popular ULA
for sampling from a non-smooth distribution. EULA can be adapted to various
envelopes. In particular, MYULA from [14] is a special case of EULA for the
MY envelope. Section 6 proves the iteration complexity of EULA and Section 7
presents a few numerical examples to support the theory developed here.

2 Statement of the Problem

Consider a compact convex set K ⊂ Rd. For a pair of functions f : Rd → R

and g : Rd → R, our objective in this work is to sample from the probability
distribution

p(x) :=





e−f(x)−g(x)
∫
K
e−f(z)−g(z) dz

x ∈ K

0 x /∈ K,
(2)
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whenever the ratio above is well-defined. In order to sample from p, we only
have access to the gradient of f and the proximal operator for g, to be defined
later. Our assumptions on K, f , g are detailed below.

Assumption 2.1. We make the following assumptions:

(i) For radii R ≥ r > 0, assume that K ⊂ Rd is a compact convex body that
satisfies B(0, r) ⊂ K ⊂ B(0, R). Here, B(0, r) is the Euclidean ball of
radius r centered at the origin.

(ii) Assume also that f : Rd → R is a convex function that is three-times
continuously differentiable.

(iii) Assume lastly that g : Rd → (−∞,∞] is a proper closed convex function.
Moreover, we assume that g is continuous.1

A few important remarks about Assumption 2.1 are in order. First, in
the special case when f is a convex quadratic [20], the assumption of thrice-
differentiability above is trivially met and some of the developments below
are simplified. However, our more general setup here necessitates the thrice-
differentiability above and results below in more involved technical derivations.

Second, instead of the two functions f, g, it will be more convenient to work
with two new functions f, g, without any loss of generality. More specifically,
consider a convex function f that coincides with f on the set K, has a compact
support and a continuously differentiable Hessian.

For this function f , the compactness of K and smoothness of f in Assump-
tion 2.1 together imply that f,∇f,∇2f are all Lipschitz-continuous functions.
To summarize, for the function f described above, there exist nonnegative con-
stants λ0, λ1, λ2, λ3 such that

f(x) = 0, if ‖x‖2 ≥ λ0, (3a)

|f(x)− f(y)| ≤ λ1‖x− y‖2, x, y ∈ R
d, (3b)

‖∇f(x)−∇f(y)‖2 ≤ λ2‖x− y‖2, x, y ∈ R
d, (3c)

‖∇2f(x)−∇2f(y)‖ ≤ λ3‖x− y‖2, x, y ∈ R
d. (3d)

Let us also define the proper closed convex function

g := g + 1K, (4)

where 1K is the indicator function for the set K. That is, 1K(x) = 0 if x ∈
K and 1K(x) = ∞ if x /∈ K. The compactness of K and continuity of ḡ in
Assumption 2.1 together imply that g is finite, when its domain is limited to
the set K. Outside of the set K, g is infinite. To summarize, the new function
g is lower semi-continuous and also satisfies

max
x∈K

|g(x)| < ∞, g(x) = ∞, if x /∈ K. (5)

1In Assumption 2.1(ii), the requirement that g is a proper closed convex function implies
that g is lower semi-continuous, but not necessarily continuous [19]. The latter stronger
requirement of continuity for g is needed in this work.
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We can now revisit (2) and, using the new functions f, g, we rewrite the defini-
tion of p as

p(x) :=
e−F (x)

∫
Rd e−F (z) dz

, x ∈ R
d, (6a)

F (x) := f(x) + g(x) + 1K(x) = f(x) + g(x), x ∈ R
d. (6b)

Above, F is often referred to as the potential associated with p. The last
identity above holds by construction. Indeed, on the set K, the functions f and
f coincide. Likewise, on the set K, the functions g and g coincide. On the other
hand, outside of the set K, both sides of the last equality above are infinite.

In view of (6b), we will often use f and f interchangeably throughout this
work, depending on the context. Likewise, we will use g and g interchangeably.
Note also that the integral in the denominator above is finite by Assumption
2.1. When there is no confusion, we will overload our notation and use p to also
denote the probability measure associated with the law p.

Since g is not differentiable, F in (6b) is itself non-differentiable. In turn, this
means that one cannot use gradient based algorithms such as ULA to sample
from p ∝ e−F [10]. One way to deal with this issue is to replace F with a
smooth function Fγ , which we will refer to as an envelope, to which we can then
apply ULA. It is reasonable to require this envelope Fγ to fulfill the following
admissibility assumptions.

Definition 2.2 (Admissible envelopes). For γ0 > 0, the functions {Fγ :
R

d → [−∞,∞] : γ ∈ (0, γ0)} are admissible envelopes of F if

(i) There exists a function F 0 : Rd → [−∞,∞] such that e−F 0

is integrable,
and Fγ dominates F 0. That is,

∫

Rd

e−F 0(z) dz < ∞, Fγ(x) ≥ F 0(x), x ∈ R
d, γ ∈ (0, γ0).

(ii) Fγ converges pointwise to F , i.e., limγ→0 Fγ(x) = F (x) for every x ∈ Rd.

(iii) Fγ is λγ-smooth, i.e., there exists a constant λγ ≥ 0 such that

‖∇Fγ(x) −∇Fγ(y)‖2 ≤ λγ‖x− y‖2, x, y ∈ R
d, γ ∈ (0, γ0).

If {Fγ : γ ∈ (0, γ0)} are admissible envelopes of F , we can define the corre-
sponding probability densities

pγ(x) :=
e−Fγ(x)

∫
Rd e−Fγ(z) dz

, x ∈ R
d, γ ∈ (0, γ0). (7)

Remark 2.3. In the definition above, the property (i) implies that pγ can be
normalized. This observation, combined with the property (ii), imply after an
application of the dominated convergence theorem that

lim
γ→0

pγ(x) = p(x), x ∈ R
d.

5



where the probability measures p and pγ are defined in (6a) and (7), respectively.
That is, pγ converges weakly to p in the limit of γ → 0. (For completeness, the
proof of this claim is included in the appendix.) In other words, we can use pγ

as a proxy for p, provided that γ is sufficiently small. Finally, as we will see
shortly, the property (iii) guarantees the convergence of the ULA to an invariant
distribution close to pγ, provided that the step size of the ULA is small.

3 Moreau-Yosida Envelope and Its Limitation

For γ > 0, let us define

FMY
γ (x) := f(x) + gγ(x), x ∈ R

d, (MY)

where

gγ(x) := min
z∈Rd

{
g(z) +

1

2γ
‖x− z‖22

}
(8)

is the Moreau-Yosida (MY) envelope of g. Somewhat inaccurately, we will also
refer to FMY

γ as the MY envelope of F , to distinguish FMY
γ from its newer

alternatives. It is well-known that gγ is γ−1-smooth and that gγ converges
pointwise to g in the limit of γ → 0. These facts enable us to establish the
admissibility of MY envelopes, as detailed below. All proofs are deferred to the
appendices. We note that the result below closely relates to [16, Proposition 1].

Proposition 3.1 (Admissibility of MY envelopes). Suppose that Assump-
tion 2.1 is fulfilled. Then {FMY

γ : γ > 0} are admissible envelopes of F in (6b).

In particular, ∇FMY
γ is (λ2 + γ−1)-Lipschitz continuous, and given by the ex-

pression

∇FMY
γ (x) = ∇f(x) +

x− Pγg(x)

γ
∈ ∇f(x) + ∂g(Pγg(x)),

Pγg(x) := argmin
z∈Rd

{
g(z) +

1

2γ
‖x− z‖22

}
. (9)

Above, λ2 was defined in (3c), Pγg : Rd → Rd is the proximal operator associated
with the function γg, and ∂g(z) is the subifferential of g at z [21].

Remark 3.2 (Connection to Nesterov’s smoothing technique). Al-
ternatively, we can also view the MY envelope through the lens of Nesterov’s
smoothing technique [22]. More specifically, if Assumption 2.1 is fulfilled, one
can invoke a standard minimax theorem to verify that

gγ(x) = max
z∈Rd

{
〈x, z〉 − g∗(z)− γ

2
‖z‖22

}
, x ∈ R

d,

where g∗ is the Fenchel conjugate of g. The right-hand side above plays a key
role in Nesterov’s technique for minimizing the non-smooth function F in (6a).
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In view of the admissibility of FMY
γ by Proposition 3.1, applying ULA to

the new potential FMY
γ leads to a well-defined algorithm, see Remark 2.3. In

addition, if γ is sufficiently small, pMY
γ ∝ e−FMY

γ would be close to the target dis-
tribution p by Remark 2.3. This technique is known as MYULA [14]. However,
a limitation of the MY envelope is that the minimizers of FMY

γ are not neces-

sarily the same as the minimizers of F . In turn, the MAP estimator of pMY
γ ,

denoted by xMY
γ , might not coincide with the MAP estimator of p, except in

the limit of γ → 0. That is

lim
γ→0

Fγ(x
MY
γ ) = min

x
F (x).

This observation is particularly problematic because, as we will see later, very
small values of γ are often avoided in practice due to numerical stability issues.
In view of this discussion, our objective is to replace the MY envelope with a
new envelope that has the same minimizers as F for all sufficiently small γ, and
not just in the limit of γ → 0.

4 Forward-Backward Envelope

In this section, we will study an envelope that addresses the limitations of the
MY envelope. More specifically, for γ > 0, let us recall from [18] that the
forward-backward (FB) envelope of the function F in (6b) is defined as

FFB
γ (x) := f(x)− γ

2
‖∇f(x)‖22 + gγ(x− γ∇f(x)), x ∈ R

d, (FB)

where gγ was defined in (8). A number of useful properties of FFB
γ are col-

lected below for the convenience of the reader [18]. Recall that Pγg denotes the
proximal operator associated with the function γg in (9).

Proposition 4.1 (Properties of the FB envelope). Suppose that Assump-
tion 2.1 is fulfilled. For γ ∈ (0, 1/λ2) and every x ∈ R

d, it holds that

(i) F (Pγg(x − γ∇f(x)) ≤ FFB
γ (x) ≤ F (x), which relates the function F to

its FB envelope.

(ii) FMY
γ

1−γλ2

(x) ≤ FFB
γ (x) ≤ FMY

γ (x), which relates the MY and FB envelopes

of the function F .

(iii) FFB
γ is continuously differentiable and its gradient is given by

∇FFB
γ (x) = γ−1(I − γ∇2f(x))(x − Pγg(x− γ∇f(x))).

(iv) argminFFB
γ = argminF , i.e., the function F and its FB envelope have

the same minimizers.
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In view of Proposition 4.1(iv), a remarkable property of the FB envelope is

that the modes of pFBγ ∝ e−FFB
γ coincide with the modes of the target measure

p ∝ e−F , for all sufficiently small γ, rather than only in the limit of γ → 0.
Indeed, very small values of γ are often avoided in practice due to numerical
stability issues. This observation signifies the advantage of the FB envelope
over the MY envelope. Recall that the modes of the MY envelope coincide with
those of p only in the limit of γ → 0, see Section 3.

As a side note, let us remark that the proximal gradient descent algorithm
for minimizing the (non-smooth) function F coincides with the gradient descent
(with variable metric) for minimizing the (smooth) function FFB

γ , whenever γ
is sufficiently small [18]. It is also easy to use Proposition 4.1 to check the
admissibility of the FB envelopes, as summarized below.

Proposition 4.2 (Admissibility of FB envelopes). Suppose that Assump-
tion 2.1 is fulfilled. Then {FFB

γ : γ ∈ (0, γFB)} are admissible envelopes of F
in (6b), where

γFB :=
1

2λ2 + 2λ3(λ0 +R)
. (10)

Moreover, it holds that

∥∥∇FFB
γ (x)−∇FFB

γ (y)
∥∥
2
≤ λFB

γ ‖x− y‖2, x, y ∈ R
d, (11a)

〈x− y,∇FFB
γ (x)−∇FFB

γ (y)〉 ≥ µFB
γ ‖x− y‖22, ‖x− y‖2 ≥ ρFBγ , (11b)

where

λFB
γ := γ−1 + 2λ2 + λ3(λ0 +R), µFB

γ := λ2 + λ3(λ0 +R),

ρFBγ :=
2R

1− 2γ(λ2 + λ3(λ0 +R)))
.

The equation (11) provides valuable information about the landscape of the
FB envelope of F , which we now summarize: (11a) means that FFB

γ is a λFB
γ -

smooth function. The smoothness of FFB
γ in (FB) is not surprising since both f

and gγ are smooth functions. (Recall that gγ is the MY envelope of g, which is
known to be γ−1-smooth.)

Moreover, even though FFB
γ is not necessarily a strongly convex function,

(11b) implies that FFB
γ behaves like a strongly convex function over long dis-

tances. As detailed in the proof, (11b) holds essentially because the MY envelope
of the indicator function 1K is the function 1

2γ dist(·,K)2. The latter function

grows quadratically faraway from the origin. Here, dist(·,K) is the distance to
the set K.

It is worth noting that a similar result to Proposition 4.2 is implicit in [14].
That is, the MY envelope FMY

γ also satisfies (11), albeit with different constants.
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Remark 4.3 (Convergence in the Wasserstein metric). Recall from
Remark 2.3 that pFBγ converges weakly to p in the limit of γ → 0. This weak
convergence implies convergence in the Wasserstein metric by [23, Lemma 2.6]:

lim
γ→0

W1(p
FB
γ , p) = 0. (12)

We recall that, for two probability measures q1 and q2 that satisfy Ex∼q1‖x‖2 <
∞ and Ey∼q2‖y‖2 < ∞, their 1-Wasserstein or Kantorovich distance [24] is
defined as

W1(q1, q2) := inf
x∼q1
y∼q2

E‖x− y‖2. (13)

With some abuse of notation, throughout this work, we will occasionally replace
the probability measures with the corresponding probability distributions or ran-
dom variables.

A non-asymptotic version of Remark 4.3 is presented below, which bounds
the Wasserstein distance between the two probability measures pFBγ and p. In
effect, the result below is an analogue of [14, Proposition 5] for the MY envelope.
The key ingredient of their result is the Steiner’s formula for the volume of the
set K+B(0, t) = {x : dist(x,K) ≤ t} for every t ≥ 0. The previous sum is in the
Minkowski sense. Essentially, our proof strategy is to use Proposition 4.1(ii) to
relate the FB and MY envelopes and then invoke [14, Proposition 5].

Theorem 4.4 (Wassenstein distance between pFBγ and p). Suppose that

Assumption 2.1 is fulfilled. For γ ∈ (0, γFB), it holds that

W1(p
FB
γ , p) ≤ c1 +

c2RI1(γ) + c2I2(γ) + c3I2(γ/(1− γλ2))

vol(K) + I1(γ)
+ c4R

=: c5
FB(γ), (14)

where

c1 :=
e2maxx∈K g(x)−γλ2 minz f(z)

∫
K ‖x‖2e−(1−γλ2)f(x) dx

∫
e−f(x)−dist(x,K)2

2γ dx

− eγλ2 minz f(z)−2maxx∈K g(x)
∫
K
‖x‖2e−f(x) dx

∫
e
−(1−γλ2)f(x)−

dist(x,K)2

2γ/(1−γλ2) dx
,

c2 := emaxx f(x)−minx f(x),

c3 := emaxx f(x)−minx f(x)+2maxx∈K g(x),

c4 := emaxx∈K g(x)−minx∈K g(x) − eminx∈K g(x)−maxx∈K g(x),

I1(γ) :=

d−1∑

i=0

voli(K) · (2πγ) d−i
2 ,

9



I2(γ) :=
d−1∑

i=0

voli(K) · (2πγ) d−i
2

(√
γ(d− i+ 3) +R

)
. (15)

Above, voli(K) is the i-th intrinsic volume of K, see [25]. In particular, the d-th
volume of K coincides with the standard volume of K, i.e., vold(K) = vol(K).
Moreover, to keep the notation light, above we have suppressed the dependence
of c1 to cFB5 on K, f, g, γ.

As a sanity check, consider the special case of g = 1K, where 1K is the
indicator function for the set K. Then we can use (15) to verify that c1 and I1(γ)
and I2(γ) and I2(γ/(1 − γλ2)) all vanish when we send γ → 0. Consequently,
both the left- and right-hand sides of (14) vanish if we send γ → 0. When
g = 1K, then Theorem 4.4 is precisely the analogue of [14, Proposition 5]. Their
work, however, does not cover the case of g 6= 1K.

In our result, when g 6= 1K and γ → 0, the right-hand side of (14) converges
to the nonzero value

(
e2maxx∈K g(x) − e−2maxx∈K g(x)

) ∫
K ‖x‖2e−f(x) dx∫

e−f(x) dx

+

(
emaxx∈K g(x)

eminx∈K g(x)
− eminx∈K g(x)

emaxx∈K g(x)

)
,

unlike the left-hand side of (14), which converges to zero by (12). Improving (14)
in the case g 6= 1K appears to require highly restrictive assumptions on g which
we wish to avoid here. Moreover, in practice, very small values of γ are often
avoided due to numerical stability issues. In this sense, improving (14) for very
small values of γ might have limited practical value.

To summarize this section, the FB envelopes {FFB
γ : γ ∈ (0, γ0,FB)} are

admissible and we can use them as a differentiable proxy for the non-smooth
function F in (6b). Crucially, the FB envelope addresses the key limitation

of the MY envelope, i.e., the modes of pFBγ ∝ e−FFB
γ coincide with the modes

p ∝ e−F , for all sufficiently small γ, rather than only in the limit of γ → 0.

5 EULA:
Envelope Unadjusted Langevin Algorithm

We have so far introduced two smooth envelopes for the non-smooth function F
in (6b), namely, the MY envelope FMY

γ in (MY) and the FB envelope FFB
γ

in (FB). We also described in Section 4 the advantage of the FB envelope over
the MY envelope. To keep our discussion general, below we consider admissible
envelopes {Fγ : γ ∈ (0, γ0)} for the target function F in (6b), see Definition 2.2.
Our discussion below can be specialized to either of the envelopes by setting
Fγ = FMY

γ or Fγ = FFB
γ .

For the time being, let us fix γ ∈ (0, γ0). Unlike F , note that ∇Fγ exists
and is Lipschitz continuous by Definition 2.2(iii). We can now use the ULA [10]
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to sample from pγ ∝ e−Fγ , as a proxy for the target measure p ∝ e−F . The
k-th iteration of the resulting algorithm is

xk+1 = xk − h∇Fγ(xk) +
√
2hζk+1, (16)

where h is the step size and ζk+1 ∈ Rd is a standard Gaussian random vec-
tor, independent of {ζi}i≤k. In particular, if we choose Fγ = FMY

γ , then (16)
coincides with the MYULA from [14].

Under standard assumptions, to be reviewed later, the Markov chain {xk}k≥0

in (16) has a unique invariant probability measure, which we denote by p̂γ,h.
There are two sources of error that contribute to the difference between p̂γ,h

and the target measure p in (6a), which we list below:

1. First, note that (16) is only intended to sample from pγ , as a proxy for
the target distribution p. That is, the first source of error is the difference
between the two probability measures pγ and p.

2. Second, the step size h is known to contribute to the difference between the
two probability measures p̂γ,h and pγ , see [10]. This bias vanishes only in the
limit of h → 0.

In fact, instead of (16), we study here a slightly more general algorithm that
allows γ and h to vary. More specifically, for a nonincreasing sequence {γk}k≥0

and step sizes {hk}k≥0, the k-th iteration of this more general algorithm is

xk+1 = xk − hk∇Fγk
(xk) +

√
2hkζk+1, (EULA)

where ζk+1inR
d is a standard Gaussian random vector independent of {ζi}i≤k.

(EULA) stands for Envelope Unadjusted Langevin Algorithm.
In particular, if we set γk = γ in (EULA) for every k ≥ 0, then we re-

trieve (16). Alternatively, if {γk}k≥0 is a decreasing sequence, then Fγk
be-

comes an increasingly better approximation of the target potential function F
as k increases, see Definition 2.2(ii). That is, (EULA) uses increasingly better
approximations of the potential function F as k increases.

We next present the iteration complexity of the (EULA) for admissible en-
velopes {Fγ : γ ∈ (0, γ0)}, where admissibility was defined in Definition 2.2.
The result below can be specialized to both MY and FB envelopes by setting
Fγ = FMY

γ or Fγ = FFB
γ , respectively.

Theorem 5.1 (Iteration complexity of (EULA)). For γ0 > 0, consider
admissible envelopes {Fγ : γ ∈ (0, γ0)} of F in (6b), see Definition 2.2. For
µγ > 0 and ργ ≥ 0, we additionally assume that Fγ satisfies the inequality

〈x− y,∇Fγ(x) −∇Fγ(y)〉 ≥ µγ‖x− y‖22, ‖x− y‖2 ≥ ργ , γ ∈ (0, γ0).
(17)

Consider two sequences {γk}k≥0 ⊂ (0, γ0) and {hk}k≥0 ⊂ R+. For the algorithm
(EULA), let qk denote the law of xk for every integer k ≥ 0. That is, xk ∼ qk

11



for every k ≥ 0. Then the W1 distance between qk and the target measure
p ∝ e−F in (6a) is bounded by

W1(qk, p) ≤ ec6c7
k−1∏

i=0

(1− c8hi) ·W1(q0, pγ0) + ec6c7
k−1∑

i=0

αi

k−1∏

j=i+1

(1− c8hj)

+W1(pγk
, p), (18)

for every k ≥ 0, provided that

γk ∈ (0, γ0), hk ≤ 1

λγk

min

(
1

6
,
µγk

λγk

,
λγk

ρ2γk

3
,

c20
970λγk

ρ2γk

)
, k ≥ 0.

Above, c0 ≥ 0.007 is a universal constant specified in [12, Equation (6.6)].
Moreover,

c6 := (1 + hkλγk
)ργk

≤ 7ργk
/6, c7 := 7λγk

ργk
/c0,

c8 := min

(
µγk

2
,
245

24c0
(λγk

ργk
)2
)
e−

49
6c0

λγk
ρ2
γk ,

αk := λγk

√
h3
kd ·

(√
hkλγk

+
√
2
)
+W1(pγk

, p) +W1(pγk+1
, p), k ≥ 0.

Note that, when ργ = 0, then (17) requires Fγ to be µγ-strongly convex for
every γ ∈ (0, γ0). This can happen, for example, when f itself is a strongly
convex function. A particularly important special case of Theorem 5.1 is when
we choose the FB envelope, and use a fixed γ and step size h.

Corollary 5.2 (Iteration complexity of (EULA) for FB envelope).
Suppose that Assumption 2.1 is fulfilled. For the algorithm (EULA), suppose
that γk = γ ∈ (0, γFB) and Fγk

= FFB
γ and hk = h > 0 for every integer k ≥ 0,

see (FB) and (10). In (EULA), also let qk denote the law of xk for every k ≥ 0.
That is, xk ∼ qk for every integer k ≥ 0. Then the W1 distance between qk and
the target measure p ∝ e−F in (6a) is bounded by

W1(qk, p) ≤ ec
FB
6 cFB

7 (1− cFB8 h)k ·W1(q0, pγ) +
αFBec

FB
6 cFB

7

cFB8 h
+ cFB5 , (19)

for every k ≥ 0, provided that

γ ∈ (0, γ0), h ≤ 1

λFB
γ

min

(
1

6
,
µFB
γ

λFB
γ

,
λFB
γ (ρFBγ )2

3
,

c20
970λFB

γ (ρFBγ )2

)
. (20)

Above, c0 ≥ 0.007 is a universal constant specified in [12, Equation (6.6)].
Moreover,

cFB6 := (1 + hλFB
γ )ρFBγ ≤ 7ρFBγ /6, cFB7 := 7λFB

γ ρFBγ /c0,

12



cFB8 := min

(
µFB
γ

2
,
245

24c0
(λFB

γ ρFBγ )2

)
e−

49
6c0

λFB
γ (ρFB

γ )2 ,

αFB := λFB
γ

√
h3d ·

(√
hλFB

γ +
√
2
)
+ 2cFB5 .

The remaining quantities were defined in Propositions 4.2 and 4.4.

We remark that Corollary 5.2 for the FB envelope is the analogue of [14,
Proposition 7] for the MY envelope. However, note that [14, Proposition 7]
requires f to be strongly convex whereas we merely assume f to be convex, see
Assumption 2.1.

6 Proof of Theorem 5.1

(Iteration Complexity of EULA)

To begin, we let Qk denote the Markov transition kernel associated with the
Markov chain {xk}k≥0. This transition kernel is specified as

Qk(x, ·) := Normal(x− hk∇Fγk
(x), 2hkId), x ∈ R

d, (21)

where Normal(a,B) is the Gaussian probability measure with mean a ∈ Rd and
covariance matrix B ∈ Rd×d. Above, note that Qk depends on both hk and γk.
We also let qk denote the law of xk, i.e., xk ∼ qk. Using the standard notation,
we can now write that

qk+1 = qkQk, k ≥ 0. (22)

To be precise, (22) is equivalent to

qk+1(dy) =

∫
qk(dx)Qk(x, dy), y ∈ R

d, k ≥ 0. (23)

Recall that pγk+1
serves as a proxy for the target probability measure p. The W1

distance between qk+1 and pγk
can be bounded as

W1(qk+1, pγk
) = W1(qkQk, pγk

) (see (22))

≤ W1(qγk
Qk, pγk

Qk) +W1(pγk
Qk, pγk

), (24)

where the second line follows from the triangle inequality. We separately control
each W1 distance in the last line above. For the first distance, we plan to invoke
Theorem 2.12 from [12], reviewed below for the convenience of the reader. It
is worth noting that a similar result to the one below appears in [13, Corollary
2.4].

Proposition 6.1 ([12], Theorem 2.12). Let

c6 := (1 + hkλγk
)ργk

≤ 7ργk
/6, c7 := 7λγk

ργk
/c0,

θ(r) :=

∫ r

0

e−c7 min(s,r1) ds, Θ(x, y) := θ(‖x− y‖2),

13



c8 := min

(
µγk

2
,
245

24c0
(λγk

ργk
)2
)
e−

49
6c0

λγk
ρ2
γk ,

hk ≤ 1

λγk

min

(
1

6
,
µγk

λγk

,
λγk

ρ2γk

3
,

c20
970λγk

ρ2γk

)
,

where c0 ≥ 0.007 is a universal constant specified in [12, Equation (6.6)]. Then
it holds that

WΘ(qkQk, pγk
Qk) ≤ (1 − c8hk) ·WΘ(qk, pγk

), (25)

where WΘ is defined similar to (13) but the ℓ2-norm is replaced with Θ. Above,
to keep the notation light, we have suppressed the dependence of c6 and c7 and
c8 on K, f, g, hk. Moreover, the two metrics WΘ and W1 are related as

e−c6c7W1 ≤ WΘ ≤ W1. (26)

For the second W1 distance in the last line of (24), the following result is
standard, see appendix for the proof.

Lemma 6.2 (Discretization error). It holds that

W1(pγk
Qk, pγk

) ≤ c9 := λγk

√
h3
kd ·

(√
hkλγk

+
√
2
)
. (27)

In fact, it is more common to write the left-hand side of (27) in terms of the
Markov transition kernel of the corresponding Langevin diffusion, as discussed
in the proof of Lemma 6.2. By combining Proposition 6.1 and Lemma 6.2, we
can now revisit (24) and write that

WΘ(qk+1, pγk
) ≤ WΘ(qkQk, pγk

Qk) +WΘ(pγk
Qk, pγk

) (see (24))

≤ (1 − c8hk)WΘ(qk, pγk
) +W1(pγk

Qk, pγk
) (see (26))

≤ (1 − c8hk)WΘ(qk, pγk
) + c9. (Lemma 6.2) (28)

Using the triangle inequality, it immediately follows that

WΘ(qk+1, pγk+1
)

≤ WΘ(qk+1, pγk
) +WΘ(pγk

, p) +WΘ(pγk+1
, p) (triangle inequality)

≤ (1− c8hk)WΘ(qk, pγk
) + c9 +WΘ(pγk

, p) +WΘ(pγk+1
, p) (see (28))

≤ (1− c8hk)WΘ(qk, pγk
) + c9 +W1(pγk

, p) +W1(pγk+1
, p) (see (26))

=: (1− c8hk)WΘ(qk, pγk
) + αk. (29)

By unwrapping (29), we find that

W1(qk, pγk
) ≤ ec6c7WΘ(qk, pγk

) (see (26))

≤ ec6c7
k−1∏

i=0

(1 − c8hi) ·WΘ(q0, pγ0)

14



+ ec6c7
k−1∑

i=0

αi

k−1∏

j=i+1

(1− c8hj) (see (29))

≤ ec6c7
k−1∏

i=0

(1 − c8hi) ·W1(q0, pγ0)

+ ec6c7
k−1∑

i=0

αi

k−1∏

j=i+1

(1− c8hj). (see (26)) (30)

Lastly, we can use (30) in order to bound the W1 distance at iteration k to the
target measure p as

W1(qk, p) ≤ W1(qk, pγk
) +W1(pγk

, p) (triangle inequality)

≤ ec6c7
k−1∏

i=0

(1− c8hi) ·W1(q0, pγ0)

+ ec6c7
k−1∑

i=0

αi

k−1∏

j=i+1

(1 − c8hj) +W1(pγk
, p), (31)

which completes the proof of Theorem 5.1.

7 Numerical experiments

A number of numerical experiments are presented below to support our theo-
retical contributions.

7.1 Truncated Gaussian

Our first numerical experiment deals with sampling from a truncated Gaussian
distribution, restricted to a box Kd ⊂ Rd. For this problem the potential
U : Rd → R is specified as

U(x) :=
1

2

〈
x,Σ−1x

〉
+ ιKd

(x). (32)

Here similarly to [14] the (i, j)th entry of the covariance matrix is given by

Σi,j :=
1

1 + |i− j| .

We now consider three scenarios, namely,

• d = 2 with K2 = [0.5]× [0, 1],

• d = 10 with K10 = [0, 5]× [0, 0.5]9

• d = 100 with K100 = [0, 5]× [0, 0.5]99.
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Figure 1: This figure compares the MY and FB envelopes for the two-dimensional

truncated Gaussian distribution p ∝ e
−U−1K2 specified in Section 7.1. The horizontal

lines in the left and right panels show, respectively, the expectation and variance of

the first coordinate, namely, Ep[x1] and varp[x1] = Ep[x
2

1] − (Ep[x1])
2. The blue and

red graphs in both panels show the estimated values of Ep[x1] and varp[x1], obtained

via MY and FB envelopes. That is, the graphs on the left correspond to EpMY
γ

[x1]

and EpFB
γ

[x1], for various values of γ. Similarly, the graphs on the right correspond to

varpMY
γ

[x1] and varpFB
γ

[x1], for various values of γ.

Using quadrature techniques, it is possible in the two-dimensional case (d =
2) to calculate exactly the mean and the covariance of the truncated Gaussian
distribution, as well as the corresponding approximations obtained via MY and
FB envelopes. More specifically, Figure 1 uses MATLAB’s integral2 command
to plot the following quantities for various values of γ:

EpMY
γ

[x1] :=

∫
x1e

−FMY
γ (x) dx∫

e−FMY
γ (x) dx

, varpMY
γ

[x1] :=

∫
x2
1e

−FMY
γ (x) dx∫

e−FMY
γ (x) dx

− (EpMY
γ

[x1])
2,

EpFB
γ
[x1] :=

∫
xe−FFB

γ (x) dx∫
e−FFB

γ (x) dx
, varpFB

γ
[x1] :=

∫
x2
1e

−FFB
γ (x) dx∫

e−FFB
γ (x) dx

− (EpFB
γ
[x1])

2.

The horizontal lines in Figure 1 show the ground truth values obtained by
MATLAB’s integral2 command, i.e.,

Ep[x1] :=

∫
x1e

−F (x) dx∫
e−F (x) dx

, varp[x1] :=

∫
x2
1e

−F (x) dx∫
e−F (x) dx

− (Ep[x1])
2.

For small values of the parameter γ, we observe in Figure 1 that the FB envelope
better approximates the mean of the first component than the MY envelope.
However, the FB envelope tends to overestimate the variance. This can be
understood by comparing the two envelopes since in the case of the MY envelope
the smoothing is more localized compared to the FB envelope.

Such explicit calculations are not tractable in higher dimensions, i.e., for d ∈
{10, 100}. Instead, we now generate 106 samples from the truncated Gaussian
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Figure 2: This figure shows the boxplots for the expectations of x1, x2, x3 for the
truncated Gaussian distribution in dimension 10 obtained by MYULA, FBULA, and
wHMC. The last approach serves as the ground truth.

distribution p by applying MYULA and FBULA. As our ground truth, we also
generate 105 samples from p with the wall HMC (wHMC) [26]. In all three
approaches, the initial 10% of the obtained samples are discarded as the burn-
in period. In terms of the parameters, we set γ = 0.05 and fix h = 0.005 for all
of our experiments.

The results are visualized in Figures 2 and 3. More specifically, Figure 2
corresponds to d = 10 and shows the estimates for Ep[xi] for i ∈ {1, 2, 3},
obtained by MYULA, FBULA, and wHMC. Similarly, Figure 3 corresponds to
d = 100. These figures indicate that, in all of these cases, FBULA is providing
a more accurate approximation of the expectation compared to MYULA.

7.2 Tomographic image reconstruction

We now study a tomographic image reconstruction problem. In this case the
true image is taken to the Shepp-Logan phantom test image of dimension d =
128× 128, in which we applied a Fourier operator F followed by a subsampling
operator A, reducing the observed pixels by approximately 85%. Finally, zero-
mean additive Gaussian noise ξ is added with standard deviation σ = 10−2 to
produce an incomplete observation y = AFx + ξ where y ∈ Cp. Note that
p < d. With regards to the prior, we use the total-variation norm with an
additional constraint for the size of the pixels. This leads to the following
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Figure 3: Boxplots for the expectations of x1, x2, x3 for the truncated Gaussian dis-

tribution in dimension 100, obtained by MYULA, FBULA, and wHMC. The last

approach serves as the ground truth.

posterior distribution:

π(x) ∝ exp
[
−‖y −AFx‖2/2σ2 − βTV(x)− 1[0,1]d(x)

]
, (33)

with β = 100. Above, 1[0,1]d is the convex indicator function on the unit cube, as
the pixel values for this experiment are scaled to the range [0, 1]. Following (4)
and (6b), we have that f(x) = ‖y−AFx‖2/2σ2 and g(x) = βTV(x)+1[0,1]d(x).

Figure 4(a) shows the Shepp-Logan phantom tomography test image for this
experiment and Figure 4(b) shows the amplitude of the (noisy) Fourier coeffi-
cients collected in the observation vector y (in logarithmic scale). In this figure,
black regions represent unobserved pixels.

We have set γ = 1/5Lf where Lf = 1/σ2 = 104 for both MYULA and
FBULA. Figure 5(a) shows the evolution of the values of log π(x) from (33) of
both MYULA and FBULA with the step-size h = 1/(Lf + 1/γ) = 1.67× 10−5.
We observe that both methods converge at a similar rate. However, Figure 5(b)
shows the evolution of the mean-squared error (MSE) between the ergodic mean
of the samples and the true image x. Here, it can be seen FBULA reaches a
better MSE level compared to MYULA. We have also included in Figure 5(c),(d)
the posterior mean estimated by both MYULA and FBULA.
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Figure 4: Tomography experiment: (a) True image x of dimension d = 128×128.
(b) Incomplete and noisy observation y, amplitude of Fourier coefficients in
logarithmic scale.
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A Proof of Proposition 3.1

To establish the admissibility of the MY envelopes, we verify the conditions
in Definition 2.2. We begin by verifying that Definition 2.2(iii) is met. Recall
that the MY envelope is continuously-differentiable [27, Theorem 2.26], and its
gradient is given by

∇FMY
γ (x) = ∇f(x) +

x− Pγg(x)

γ
, x ∈ R

d, (A.1)

where

Pγg : x → argmin
z∈Rd

{
g(z) +

1

2γ
‖x− z‖22

}
(A.2)

is the proximal operator associated with the function γg. Above, note that the
minimizer is unique and the map Pγg is thus well-defined. Recall also that we
can use the Moreau decomposition [28] to write that

x = Pγg(x) + Pγg∗(·/γ)(x), x ∈ R
d, (A.3)

where g∗ is the Fenchel conjugate of g. Using (A.3), we rewrite (A.1) as

∇FMY
γ (x) = ∇f(x) +

Pγg∗(·/γ)(x)

γ
, (A.4)
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which we will use next to compute the Lipschitz constant of ∇FMY
γ . For x, y ∈

Rd, note that

‖∇FMY
γ (x)−∇FMY

γ (y)‖2

≤ ‖∇f(x)−∇f(y)‖2 +
1

γ
‖Pγg∗(·/γ)(x)− Pγg∗(·/γ)(y)‖2 (see (A.4))

≤ λ2 +
1

γ
, ((3c) and non-expansiveness of the proximal operator) (A.5)

where the first line above uses the triangle inequality. We next verify that
Definition 2.2(ii) holds. In one direction, it is easy to see that gγ ≤ g for every
γ > 0. In the other direction, we fix x ∈ Rd and distinguish two cases:

1. When x ∈ K, let us fix an arbitrary ǫ > 0. Because g(x) < ∞ and
minz g(z) > −∞ by (5), there exists a sufficiently small γǫ > 0 such that the
following holds for every γ ≤ γǫ:

min
z∈Rd

{
g(z) +

ǫ2

2γ

}
> g(x). x ∈ K. (A.6)

We now use the above inequality as part of the following argument,

min
z∈Rd

{
g(z) +

1

2γ
‖x− z‖22 : ‖x− z‖ ≥ ǫ

}

≥ min
z

{
g(z) +

ǫ2

2γ

}

> g(x) (see (A.6))

≥ gγ(x) = min
z

{
g(z) +

1

2γ
‖x− z‖22

}
, (A.7)

which holds when x ∈ K and for every γ ≤ γǫ. In view of (A.2) and (A.7), we
conclude that ‖x− Pγg(x)‖2 ≤ ǫ, for every x ∈ K and every γ ≤ γǫ. Since the
choice of ǫ was arbitrary, we arrive at

lim
γ→0

‖x− Pγg(x)‖2 = 0, x ∈ K. (A.8)

It immediately follows that

lim inf
γ→0

gγ(x) − g(x)

= lim inf
γ→0

min
z

{
g(z) +

1

2γ
‖x− z‖22

}
− g(x) (see (MY))

= lim inf
γ→0

{
g(Pγg(x)) +

1

2γ
‖x− Pγg(x)‖22

}
− g(x) (see (A.2))

≥ lim inf
γ→0

g(Pγg(x)) − g(x)

23



≥ lim inf
z→x

g(z)− g(x) (see (A.8))

≥ 0, x ∈ K, (A.9)

where the last inequality follows from the fact that g is lower semi-continuous,
see above Equation (5). If we combine (A.9) with the earlier observation that
gγ ≤ g for every γ, we reach the conclusion that limγ→0 gγ(x) = g(x), pro-
vided that x ∈ K. Lastly, after recalling the definitions of F and FMY

γ in (6b)
and (MY), respectively, we arrive at

lim
γ→0

FMY
γ (x) = F (x), x ∈ K. (A.10)

2. When x /∈ K, note that g(x) = ∞ by (5). Note also that

gγ(x) = min
z

{
g(z) +

1

2γ
‖x− z‖22

}
(see (8))

= min

{
g(z) +

1

2γ
‖x− z‖22 : z ∈ K

}
(see (5))

≥ −max
z∈K

g(z) +
1

2γ
min
z∈K

‖x− z‖22

=: −max
z∈K

g(z) +
1

2γ
dist(x,K)2, (A.11)

where dist(x,K) is the Euclidean distance from x to the set K. The maximum
above is finite by (5). Above, by sending γ to zero, we immediately find that
limγ→0 gγ(x) = ∞ = g(x), provided that x /∈ K. Recalling the definition of F
and Fγ in (6b) and (MY), we conclude that

lim
γ→0

FMY
γ (x) = F (x) = ∞, x /∈ K. (A.12)

Together, (A.8) and (A.12) imply that limγ→0 Fγ(x) = F (x) for every x ∈ Rd.
Lastly, we now verify that Definition 2.2(i) is satisfied: Because, by Assump-

tion 2.2(i), K is enclosed inside a ball of radius R centered at the origin, it holds
that

dist(x,K) ≥ (‖x‖ −R)+, x ∈ R
d, (A.13)

where (a)+ := max(a, 0). When ‖x‖2 is sufficiently large, we can simplify (A.13).
In particular, (A.13) immediately implies that

dist(x,K) ≥ ‖x‖2/2, ‖x‖2 ≥ 2R. (A.14)

If ‖x‖2 ≥ 2R, then we can use the convexity of f by Assumption 2.1(ii), in order
to write that

FMY
γ (x) = f(x) + gγ(x) (see (MY))
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≥ f(0) + 〈x,∇f(0)〉+ gγ(x) (convexity of f)

≥ f(0) + 〈x,∇f(0)〉 −max
z∈K

g(z) +
1

2γ
dist(x,K)2 (see (A.11))

≥ f(0) + 〈x,∇f(0)〉 −max
z∈K

g(z) +
‖x‖22
8γ

, (see (A.14)) (A.15)

for ‖x‖2 ≥ 2R. We now set

F 0(x) :=

{
Fγ(x) ‖x‖2 ≤ 2R

f(0) + 〈x,∇f(0)〉 −maxz∈K g(z) +
‖x‖2

2

8γ ‖x‖2 ≥ 2R.
(A.16)

By its construction, note that F 0 satisfies
∫
e−F 0(x) dx < ∞ and F 0 ≥ Fγ ,

as required in Definition 2.2(i). The former claim is true because F 0(x) is

quadratic for large ‖x‖2 and e−F 0

thus decays rapidly faraway from the origin.
This completes the proof of Proposition 3.1.

B Proof of Proposition 4.2

To establish the admissibility of the FB envelopes, we verify the requirements
in Definition 2.2. We first verify that Definition 2.2(iii) holds. To begin, for
x ∈ Rd, let

x := x− γ∇f(x), Tγ(x) := Pγg(x), (B.17)

for short. Above, recall that Pγg is the proximal operator associated with the
function γg, see (9). We can then apply the Moreau decomposition [28] to write
that

x = Pγg(x) + Pγg∗(·/γ)(x), (B.18)

where g∗ is the Fenchel conjugate of g. For future reference, we record the
following observations:

‖Tγ(x)‖2 = ‖Pγg(x)‖2 ≤ R, (combine Assumption 2.1(i) and (A.11))
(B.19)

‖x− Tγ(x)‖2 ≤ ‖x‖2 + ‖Tγ(x)‖2 ≤ ‖x‖2 +R, (see (B.19)) (B.20)

‖x− y − (Tγ(x)− Tγ(y))‖2
= ‖x− y − (Pγg(x)− Pγg(y))‖2 (see (B.17))

= ‖γ(∇f(x)−∇f(y)) + (Pγg∗(·/γ)(x)− Pγg∗(·/γ)(x))‖2 (see (B.18))

≤ γ‖∇f(x)−∇f(y)‖2 +
∥∥Pγg∗(·/γ)(x)− Pγg∗(·/γ)(x)

∥∥
2

≤ γλ2‖x− y‖+ ‖x− y‖2 ((3c) and non-expansiveness of Pγg∗(·/γ))

≤ γλ2‖x− y‖2 + ‖x− y‖2 + γ‖∇f(x)−∇f(y)‖2 (see (B.17))

≤ (1 + 2γλ2)‖x− y‖, (see (3c)) (B.21)
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0 ≺ (1− γλ2)Id 4 Id − γ∇2f(x) 4 Id,

‖Id − γ∇2f(x)‖ ≤ 1. ((3c) and γ ∈ (0, 1/λ2)) (B.22)

Above, Id ∈ Rd×d is the identity matrix. Recall the expression for ∇FFB
γ from

Proposition 4.1(iii). We next establish that FFB
γ is smooth. Below, without loss

of generality, we can assume that ‖y‖2 ≤ λ0:

‖∇FFB
γ (x)−∇FFB

γ (x)‖2

=
1

γ
‖(Id − γ∇2f(x))(x − Tγ(x))− (Id − γ∇2f(y))(y − Tγ(y))‖2 (Proposition 4.1(iii))

≤ 1

γ

∥∥(Id − γ∇2f(x))(x − y − (Tγ(x)− Tγ(y))
∥∥
2
+
∥∥(∇2f(x)−∇2f(y))(y − Tγ(y))

∥∥
2

≤ 1 + 2γλ2

γ
‖x− y‖2 + λ3(‖y‖2 +R)‖x− y‖2 (see (3d) and (B.20)-(B.22))

≤ 1 + 2γλ2

γ
‖x− y‖2 + λ3(λ0 +R)‖x− y‖2 (‖y‖2 ≤ λ0 without loss of generality)

= (γ−1 + 2λ2 + λ3(λ0 +R))‖x− y‖2
=: λFB

γ ‖x− y‖2. (B.23)

Indeed, if both ‖x‖2 ≥ λ0 and ‖y‖2 ≥ λ0, then f(x) = f(y) = ‖∇f(x)‖2 =
‖∇f(y)‖2 = ‖∇2f(x)‖ = ‖∇2f(y)‖ = 0 by (3), and (B.23) still holds. This
observation justfies our earlier restriction to the case where ‖y‖2 ≤ λ0. Next,
we show the strong convexity of FFB

γ over long distances. Again, without loss
of generality, we assume below that ‖y‖2 ≤ λ0 and write that

〈x− y,∇FFB
γ (x)−∇FFB

γ (y)〉

=
1

γ

〈
x− y, (Id − γ∇2f(x))(x − Tγ(x))− (Id − γ∇2f(y))(y − Tγ(y))

〉

=
1

γ

〈
x− y, (Id − γ∇2f(x))(x − y − (Tγ(x) − Tγ(y)))

〉

−
〈
x− y, (∇2f(x)−∇2f(y))(y − Tγ(y))

〉

≥ 1

γ
〈x− y, (Id − γ∇2f(x))(x − y)〉 − ‖Id − γ∇2f(x)‖

γ
‖x− y‖2(‖Tγ(x)‖2 + ‖Tγ(y)‖2)

− ‖x− y‖2 · ‖∇2f(x)−∇2f(y)‖ · ‖y − Tγ(y)‖2

≥ 1− γλ2

γ
‖x− y‖22

− 2R

γ
‖x− y‖2 − λ3(λ0 +R)‖x− y‖22 (see (3d), (B.19), (B.20), (B.22))

=
1

γ
(1− γ(λ2 + λ3(λ0 +R)))‖x− y‖22 −

2R

γ
‖x− y‖2, (B.24)

where the second line uses Proposition 4.1(iii). When ‖x − y‖2 is sufficiently
large, the first term in the last line above dominates the second term. In par-
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ticular, it holds that

‖x− y‖2 ≥ ρFBγ :=
2R

1− 2γ(λ2 + λ3(λ0 +R)))

=⇒ 〈x− y,∇FFB
γ (x) −∇FFB

γ (y)〉 ≥ (λ2 + λ3(λ0 +R))‖x− y‖22. (B.25)

In words, FFB
γ behaves like a strongly convex function over long distances. It is

not difficult to verify that Definition 2.2(ii) is also valid for the FB envelopes:
To that end, one needs to combine Proposition 3.1 with the relation between
the MY and FB envelopes in Proposition 4.1(ii).

Lastly, we now verify that the requirement in Definition 2.2(i) is met for the
FB envelopes: Below, suppose that γ ∈ (0, 1/λ2). On the one hand, Proposi-
tion 4.1(ii) implies that

FFB
γ ≥ FMY

γ
1−γλ2

.

On the other hand, by Proposition 3.1, there exists F 0 ≤ FMY
γ

1−γλ2

such that e−F 0

is integrable. By combining the preceding two observations, we find that the
FB envelopes satisfy Definition 2.2(i) for every γ ∈ (0, 1/λ2). This completes
the proof of Proposition 4.2.

C Proof of Theorem 4.4

Let us define

q(x) :=
ef(x)−1K(x)

∫
z e

f(z)−1K(z) dz
, x ∈ R

d, (C.26)

where 1K is the indicator function on the set K. Note that the target distribu-
tion p in (6a) coincides with q in the special case where g = 1K. Let dist(x,K)
denote the distance from x to the set K. For γ > 0, we also define

1K,γ(x) :=
1

2γ
dist(x,K)2 =

1

2γ
min
z∈K

‖x− z‖22

= min
z∈Rd

{
1K(x) +

1

2γ
‖x− z‖22

}
, x ∈ R

d, (C.27)

to be the MY envelope of the indicator function on the set K. We denote the
corresponding probability distribution by

qγ(x) :=
ef(x)−1K,γ(x)

∫
z e

f(z)−1K,γ(z) dz
, x ∈ R

d. (C.28)

When γ is sufficiently small, we may intuitively regard qγ as a proxy for q. We
also recall our earlier notation for the convenience of the reader:

p(x) =
e−F (x)

∫
z e

−F (z) dz
, p

FB
γ (x) =

e−FFB
γ (x)

∫
z e

−FFB
γ (z) dz

, x ∈ R
d. (C.29)
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Above, the functions F and FFB
γ were defined in (6b) and (FB), respectively.

Our objective is to control the distanceW1(p
FB
γ , p). To begin, we use the triangle

inequality to write that

W1(p
FB
γ , p) ≤ W1(p

FB
γ , qγ) +W1(qγ , q) +W1(q, p). (C.30)

The following three lemmas each bounds one of the terms on the right-hand
side above.

Lemma C.1. It holds that

W1(p
FB
γ , qγ) ≤ c1 + c3

I2(γ/(1− γλ2)))

vol(K) + I1(γ)
, (C.31)

where

c1 :=
e2maxx∈K g(x)−γλ2 minz f(z)

∫
K ‖x‖2e−(1−γλ2)f(x) dx

∫
e−f(x)−dist(x,K)2

2γ dx

− eγλ2 minz f(z)−2maxx∈K g(x)
∫
K ‖x‖2e−f(x) dx

∫
e
−(1−γλ2)f(x)−

dist(x,K)2

2γ/(1−γλ2) dx
,

c3 := emaxx f(x)−minx f(x)+2maxx∈K g(x),

I1(γ) :=

d−1∑

i=0

voli(K) · (2πγ) d−i
2 ,

I2(γ) :=

d−1∑

i=0

voli(K) · (2πγ) d−i
2

(√
γ(d− i + 3) +R

)
=: I2(γ), (C.32)

where voli(K) is the i-th intrinsic volume of K [25]. In particular, the d-th
volume of K coincides with the standard volume of K, i.e., vold(K) = vol(K).

Lemma C.2. It holds that

W1(qγ , q) ≤ c2
RI1(γ) + I2(γ)

vol(K) + I1(γ)
, (C.33)

where c2 := emaxx f(x)−minx f(x).

Lemma C.3. It holds that

W1(q, p) ≤ c4R, (C.34)

where

c4 := emaxx∈K g(x)−minx∈K g(x) − eminx∈K g(x)−maxx∈K g(x). (C.35)

To keep the notation light, above we have suppressed the dependence of c1
to c4 on K, f, g. With Lemmas C.1-C.3 at hand, we revisit (C.30) and write
that

W1(p
FB
γ , p) ≤ c1 +

c2RI1(γ) + c2I2(γ) + c3I2(γ/(1− γλ2))

vol(K) + I1(γ)
+ c4R. (C.36)

This completes the proof of Proposition 4.4.
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D Proof of Lemma C.1

In order to upper bound the distance W1(qγ , p
FB
γ ), we will use the following

simple result which bounds the W1 distance under small perturbations.

Lemma D.1. For constants α ≥ β and β′ ≤ 1, consider two functions h1 :
Rd → R and h2 : Rd → R that are related as

β′ · h1(x) + β ≤ h2(x) ≤ h1(x) + α, x ∈ R
d, (D.37)

Then it holds that

W1

(
e−h1

∫
e−h1

,
e−h2

∫
e−h2

)

≤ eα−β
∫
‖x‖2e−β′h1(x) dx∫
e−h1(x) dx

− eβ−α
∫
‖x‖2e−h1(x) dx∫

e−β′h1(x) dx
. (D.38)

As a sanity check, note that the right-hand side of (D.38) is always nonneg-
ative because, by assumption, α ≥ β and β′ ≤ 1. Moreover, if we set α = β = 0
and β′ = 1, the right-hand side of (D.38) reduces to zero, as expected.

Let us now recall from (C.28) and (6a) that qγ ∝ e−f−1K,γ and pFBγ ∝ e−FFB
γ ,

respectively. Our plan is to invoke Lemma D.1 with the choice of h1 = f +1K,γ

and h2 = FFB
γ . In turn, this plan necessitates that we verify (D.37) for the

choice of h1 = f + 1K,γ and h2 = FFB
γ . We begin by relating the two functions

as

FFB
γ (x) ≤ FMY

γ (x) (Proposition 4.1(ii))

= f(x) + gγ(x) (see (MY))

= f(x) + min
z∈K

{
g(z) +

1

2γ
‖x− z‖22

}
(see (8))

≤ max
z∈K

g(z) + f(x) +
1

2γ
min
z∈K

‖x− z‖22
= max

z∈K
g(z) + f(x) + 1K,γ(x) (see (C.27)). (D.39)

Above, note that maxz∈K g(z) is finite by the construction of g, see (5). In the
other direction, we similarly write that

FFB
γ (x)

≥ FMY
γ

1−γλ2

(x) (Proposition 4.1(ii))

= f(x) + g γ
1−γλ2

(x)

= f(x) + min
z

{
g(z) +

1− γλ2

2γ
‖x− z‖22

}

≥ −max
z∈K

g(z) + f(x) +
1− γλ2

2γ
min
z∈K

‖x− z‖22
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= −max
z∈K

g(z) + γλ2f(x) + (1− γλ2)f(x) + (1− γλ2)1K,γ(x) (see (C.27))

≥ −max
z∈K

g(z) + γλ2 min
z

f(z) + (1− γλ2)f(x) + (1− γλ2)1K,γ(x). (D.40)

Above, minz f(z) is finite by the construction of f , see (3). To summarize, for
our choice of h1 = f + 1K,γ and h2 = FFB

γ , (D.37) is satisfied with

β′(f(x) + 1K,γ(x)) + β ≤ FFB
γ (x) ≤ f(x) + 1K,γ(x) + α, x ∈ R

d, (D.41)

α = max
z∈K

g(z), β = γλ2 min
z

f(z)−max
z∈K

g(z), β′ = 1− γλ2.

With (D.41) at hand, we can invoke Lemma D.1 to find that

W1(qγ , p
FB
γ ) = W1

(
e−f−1K,γ

∫
e−f−1K,γ

,
e−FFB

γ

∫
e−FFB

γ

)

≤ eα−β
∫
‖x‖2e−β′f(x)−β′1K,γ(x) dx∫
e−f(x)−1K,γ(x) dx

− eβ−α
∫
‖x‖2e−f(x)−1K,γ(x) dx∫

e−β′f(x)−β′1K,γ(x) dx

=
e2maxx∈K g(x)−γλ2 minz f(z)

∫
‖x‖2e−(1−γλ2)f(x)−

dist(x,K)2

2γ/(1−γλ2) dx
∫
e−f(x)−dist(x,K)2

2γ dx

− eγλ2 minz f(z)−2maxx∈K g(x)
∫
‖x‖2e−f(x)−

dist(x,K)2

2γ dx
∫
e
−(1−γλ2)f(x)−

dist(x,K)2

2γ/(1−γλ2) dx
, (D.42)

where the second line uses Lemma D.1 and the last line uses (C.27) and (D.41).
To complete the proof, we need the following result, which is proved in [14,
29] using the well-known Steiner’s formula from integral geometry [25]. For
completeness, a self-contained proof is given later.

Lemma D.2. It holds that

∫

Kc

e−
dist(x,K)2

2γ dx =

d−1∑

i=0

voli(K) · (2πγ) d−i
2 =: I1(γ), (D.43a)

∫

Rd

e−
dist(x,K)2

2γ dx =

d∑

i=0

voli(K) · (2πγ) d−i
2 = vol(K) + I1(γ), (D.43b)

∫

Kc

‖x‖2e−
dist(x,K)2

2γ dx

≤
d−1∑

i=0

voli(K) · (2πγ) d−i
2

(√
γ(d− i+ 3) +R

)
=: I2(γ), (D.43c)

where Kc = Rd\K is the complement of the set K and voli(K) is the i-th intrinsic
volume of K [25]. In particular, the d-th volume of K coincides with the standard
volume of K, i.e., vold(K) = vol(K).
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In particular, note that I1(γ) and I2(γ) both vanish in the limit of γ → 0, as
expected. To control the first fraction in the last line of (D.42), we use Lemma
D.2 to write that

∫
‖x‖2e−(1−γλ2)f(x)−

dist(x,K)2

2γ/(1−γλ2) dx
∫
e−f(x)−dist(x,K)2

2γ dx

=

∫
K
‖x‖2e−(1−γλ2)f(x) dx
∫
e−f(x)−dist(x,K)2

2γ dx
+

∫
Kc ‖x‖2e−(1−γλ2)f(x)−

dist(x,K)2

2γ/(1−γλ2) dx
∫
e−f(x)−dist(x,K)2

2γ dx

≤
∫
K ‖x‖2e−(1−γλ2)f(x) dx
∫
e−f(x)−

dist(x,K)2

2γ dx
+

e−(1−γλ2)minx f(z)

e−maxx f(z)
· I2(γ/(1− γλ2))

vol(K) + I1(γ)
, (D.44)

where the last line uses Lemma D.2. For the second fraction in the last line
of (D.42), we similarly use Lemma D.2 to write that

∫
‖x‖2e−f(x)−dist(x,K)2

2γ dx
∫
e
−(1−γλ2)f(x)−

dist(x,K)2

2γ/(1−γλ2) dx

=

∫
K
‖x‖2e−f(x) dx

∫
e
−(1−γλ2)f(x)−

dist(x,K)2

2γ/(1−γλ2) dx
+

∫
Kc ‖x‖2e−f(x)−dist(x,K)2

2γ dx
∫
e
−(1−γλ2)f(x)−

dist(x,K)2

2γ/(1−γλ2) dx

≥
∫
K
‖x‖2e−f(x) dx

∫
e
−(1−γλ2)f(x)−

dist(x,K)2

2γ/(1−γλ2) dx
. (D.45)

We can now use (D.44) and (D.45) to upper bound the W1 distance in (D.42)
as

W1(qγ , p
FB
γ ) ≤ e2maxx∈K g(x)−γλ2 minz f(z)

∫
K ‖x‖2e−(1−γλ2)f(x) dx

∫
e−f(x)−dist(x,K)2

2γ dx

− eγλ2 minz f(z)−2maxx∈K g(x)
∫
K
‖x‖2e−f(x) dx

∫
e
−(1−γλ2)f(x)−

dist(x,K)2

2γ/(1−γλ2) dx

+ emaxx f(x)−minx f(x)+2maxx∈K g(x) I2(γ/(1− γλ2)))

vol(K) + I1(γ)
, (D.46)

which completes the proof of Lemma C.1.

E Proof of Lemma D.1

Let us first recall Theorem 6.15 in [24], which can be used to link the W1 and
TV distances of two rapidly decaying distributions.

Theorem E.1. Any pair (r1, r2) of probability distributions satisfies

W1(r1, r2) ≤
∫

‖x‖2 · |r1(x) − r2(x)| dx. (E.47)
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We apply Theorem E.1 to bound the W1 distance of interest as

W1

(
e−h1

∫
e−h1

,
e−h2

∫
e−h2

)
≤
∫

Rd

‖x‖2
∣∣∣∣

e−h1(x)

∫
e−h1(z) dz

− e−h2(x)

∫
e−h2(z) dz

∣∣∣∣ dx. (E.48)

To bound the integral on the right-hand side above, we first use the assumed
relationship between h1 and h2 to write that

e−h1(x)

∫
e−h1(z) dz

− e−h2(x)

∫
e−h2(z) dz

≤ e−h1(x)

∫
e−h1(z) dz

− e−h1(x)−α

∫
e−β′h1(z)−β dz

(see (D.37))

=
e−h1(x)

∫
e−h1(z) dz

− e−h1(x)+β−α

∫
e−β′h1(z) dz

≥ 0. (E.49)

The last inequality above holds because, by assumption, α ≥ β and β′ ≤ 1. In
the other direction, we can again use the relation between h1 and h2 to write
that

e−h1(x)

∫
e−h1(z) dz

− e−h2(x)

∫
e−h2(z) dz

≥ e−h1(x)

∫
e−h1(z) dz

− e−β′h1(x)−β

∫
e−h1(z)−α dz

(see (D.37))

=
e−h1(x)

∫
e−h1(z) dz

− e−β′h1(x)+α−β

∫
e−h1(z) dz

≤ 0, (E.50)

where the last inequality above holds because, by assumption, α ≥ β and β′ ≤ 1.
By combining (E.49) and (E.50), we find that

‖x‖2 ·
∣∣∣∣

e−h1(x)

∫
e−h1(z) dz

− e−h2(x)

∫
e−h2(z) dz

∣∣∣∣

≤ ‖x‖2 max

(
e−β′h1(x)+α−β

∫
e−h1(z) dz

− e−h1(x)

∫
e−h1(z) dz

,
e−h1(x)

∫
e−h1(z) dz

− e−h1(x)+β−α

∫
e−β′h1(z) dz

)

≤ ‖x‖2
(
e−β′h1(x)+α−β

∫
e−h1(z) dz

− e−h1(x)+β−α

∫
e−β′h1(z) dz

)
, (E.51)

where the second line uses see (E.49) and (E.50), and the last line above uses
the inequality max(a, b) ≤ a + b for nonnegative scalars a, b. With (E.51) at
hand, we revisit (E.48) and conclude that

W1

(
e−h1

∫
e−h1

,
e−h2

∫
e−h2

)
≤ eα−β

∫
‖x‖2e−β′h1(x) dx∫
e−h1(z) dz

− eβ−α
∫
‖x‖2e−h1(x) dx∫
e−β′h1(z) dz

,

(E.52)

which completes the proof of Lemma D.1.

F Proof of Lemma D.2

Let ι(A) = 1 if the claim A is true and ι(A) = 0 otherwise. Using the fact that

e−
dist(x,K)2

2γ =
1

γ

∫ ∞

dist(x,K)

te−
t2

2γ dt, (F.53)

32



we can rewrite the left-hand side of (D.43b) as
∫

Rd

e−
dist(x,K)2

2γ dx =
1

γ

∫

Rd

∫ ∞

dist(x,K)

te−
t2

2γ dt dx

=
1

γ

∫

Rd

∫ ∞

0

ι(dist(x,K) ≤ t)te−
t2

2γ dt dx

=
1

γ

∫ ∞

0

(∫

Rd

ι(dist(x,K) ≤ t) dx

)
· te− t2

2γ dt

=
1

γ

∫ ∞

0

vol({x : dist(x,K) ≤ t}) · te− t2

2γ dt (F.54)

Note that {x : dist(x,K) ≤ t} is the tube of radius t around the set K. We can
represent this set more compactly as K + B(0, t), where the addition is in the
Minkowski sense. With this in mind, we rewrite the last line above as

∫

Rd

e−
dist(x,K)2

2γ dx =
1

γ

∫ ∞

0

vol(K + B(0, t)) · te− t2

2γ dt. (F.55)

We can now use the Steiner’s formula [25] to express the volume above as

vol(K + B(0, t)) =

d∑

i=0

tiκivold−i(K), (F.56)

where κi is the volume of the unit ball in Ri and voli(K) is the i-th intrinsic
volume of K [25]. In particular, the d-th intrinsic volume of K coincides with
its the standard volume, i.e., vold(K) = vol(K). Substituting the above identity
back into (F.55), we find that

∫

Rd

e−
dist(x,K)2

2γ dx

=
1

γ

d∑

i=0

κivold−i(K)

∫ ∞

0

ti+1e−
t2

2γ dt (see (F.55) and (F.56))

=
1

γ

d∑

i=0

π
i
2

Γ(1 + i/2)
vold−i(K) · γ(2γ) i

2Γ(1 + i/2) (κi = π
i
2 /Γ(1 + i/2))

=

d∑

i=0

vold−i(K)(2πγ)
i
2

=

d∑

i=0

voli(K)(2πγ)
d−i
2

= vold(K) +

d−1∑

i=0

voli(K)(2πγ)
d−i
2

= vol(K) +
d−1∑

i=0

voli(K)(2πγ)
d−i
2 (vold(K) = vol(K))
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=: vol(K) + I1(γ), (F.57)

which establishes (D.43b). Above, in the second line we used the identity

∫ ∞

0

tie−
t2

2γ dt = γ(2γ)
i−1
2 Γ

(
i+ 1

2

)
. (F.58)

To prove (D.43a), we write that

∫

Kc

e−
dist(x,K)2

2γ dx =

∫

Rd

e−
dist(x,K)2

2γ dx−
∫

K

e−
dist(x,K)2

2γ dx

= vol(K) + I1(γ)−
∫

K

dx

= I1(γ). (F.59)

To prove (D.43c), we use the fact that K ⊂ B(0, R) by Assumption 2.1(i), which
implies that

dist(x,K) ≥ ‖x‖2 −R. (F.60)

In turn, we use (F.60) to write that

∫

Kc

‖x‖2e−
dist(x,K)2

2γ dx

≤
∫

dist(x,K)>0

(dist(x,K) +R)e−
dist(x,K)2

2γ dx (see (F.60))

=

∫

dist(x,K)>0

(dist(x,K) +R)

(∫ ∞

dist(x,K)

t

γ
e−

t2

2γ dt

)
dx (see (F.53))

≤ 1

γ

∫

Rd

∫ ∞

0

ι(0 < dist(x,K) ≤ t)(dist(x,K) +R)te−
t2

2γ dt dx

≤ 1

γ

∫

Rd

∫ ∞

0

ι(0 < dist(x,K) ≤ t)(t+R)te−
t2

2γ dt dx

=
1

γ

∫ ∞

0

(∫

Rd

ι(0 < dist(x,K) ≤ t) dx

)
· (t+R)te−

t2

2γ dt

=
1

γ

∫ ∞

0

(vol(K + B(0, t))− vol(K)) · (t+R)te−
t2

2γ dt. (F.61)

We can again use the Steiner’s formula to calculate the volume of the tube of
radius t around K, which appears in the last line above. Substituting from
(F.56) into the last line above, we find that

∫

Kc

‖x‖2e−
dist(x,K)2

2γ dx

≤ 1

γ

∫ ∞

0

d∑

i=1

tiκivold−i(K) · (t+R)te−
t2

2γ dt ((F.56), (F.61), vold(K) = vol(K))
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=
1

γ

d∑

i=1

κivold−i(K)

∫ ∞

0

(ti+2 +Rti+1)e−
t2

2γ dt

=
d∑

i=1

κivold−i(K)

(
(2γ)

i+1
2 Γ

(
i+ 3

2

)
+R(2γ)

i
2Γ

(
i

2
+ 1

))
(see (F.58))

=

d∑

i=1

π
i
2

Γ(1 + i/2)
vold−i(K)

(
(2γ)

i+1
2 Γ

(
i+ 3

2

)
+R(2γ)

i
2Γ

(
i

2
+ 1

))
(κi = π

i
2 /Γ(1 + i/2))

=

d∑

i=1

vold−i(K)(2πγ)
i
2

(
√
2γ · Γ

(
i+3
2

)

Γ
(
i+2
2

) +R

)

≤
d∑

i=1

vold−i(K)(2πγ)
i
2

(
√
2γ ·

√
i + 3

2
+R

)
(Gautschi’s inequality)

=

d∑

i=1

vold−i(K)(2πγ)
i
2

(√
γ(i+ 3) +R

)

=

d−1∑

i=0

voli(K)(2πγ)
d−i
2

(√
γ(d− i+ 3) +R

)

=: I2(γ), (F.62)

which establishes (D.43c). This completes the proof of Lemma D.2.

G Proof of Lemma C.2

Recall from (C.26) that q ∝ e−f−1K , where 1K denotes the indicator function
on the set K. Recall also from (C.28) that qγ ∝ e−f−1K,γ , where 1K,γ(x) =
1
2γ dist(x,K)2 is the MY envelope of 1K, see (C.27). We will repeatedly use
these two distributions in the proof. To begin, let us invoke Theorem E.1 to
write that

W1(qγ , q) ≤
∫

‖x‖2 · |qγ(x) − q(x)| dx (Theorem E.1)

=

∫

K

‖x‖2 · |qγ(x) − q(x)| dx+

∫

Kc

‖x‖2 · |qγ(x)− q(x)| dx. (G.63)

For the first integral in the last line above, we use the fact that K ⊂ B(0, R) in
Assumption 2.1(i) and write that

∫

K

‖x‖2 · |qγ(x) − q(x)| dx

≤ R

∫

K

|qγ(x) − q(x)| dx (Assumption 2.1(i))

= R

∫

K

∣∣∣∣∣∣
e−f(x)

∫
Rd e

−f(z)−dist(z,K)2

2γ dz
− e−f(x)

∫
K
e−f(z) dz

∣∣∣∣∣∣
dx.
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= R

∫

K

e−f(x) dx

∣∣∣∣∣∣
1

∫
Rd e

−f(z)− dist(z,K)2

2γ dz
− 1∫

K e−f(z) dz

∣∣∣∣∣∣

= R

∫

K

e−f(x) dx


 1∫

K e−f(z) dz
− 1
∫
Rd e

−f(z)−dist(z,K)2

2γ dz


 , (G.64)

where the last line uses the fact that
∫

Rd

e−f(z)−dist(z,K)2

2γ dz ≥
∫

K

e−f(z)−dist(z,K)2

2γ dz =

∫

K

e−f(z) dz.

We continue to simplify the last line of (G.64) as

∫

K

‖x‖2 · |qγ(x) − q(x)| dx

= R


1−

∫
K e−f(x) dx

∫
Rd e

−f(x)−dist(x,K)2

2γ dx




= R ·
∫
Rd e

−f(x)−dist(x,K)2

2γ dz −
∫
K
e−f(x) dx

∫
Rd e

−f(x)−dist(x,K)2

2γ dx

= R ·
∫
Kc e

−f(x)−dist(x,K)2

2γ dx
∫
Rd e

−f(x)−dist(x,K)2

2γ dx

≤ Remaxx f(x)−minx f(x)

∫
Kc e

−dist(x,K)2

2γ dx
∫
Rd e

−
dist(x,K)2

2γ dx

=
Remaxx f(x)−minx f(x)I1(γ)

vol(K) + I1(γ)
. (Lemma D.2) (G.65)

For the second integral in the last line of (G.63), we can again use the definitions
of q and qγ to write that

∫

Kc

‖x‖2 · |qγ(x) − q(x)| dx

=

∫

Kc

‖x‖2 · qγ(x) dx

=

∫
Kc ‖x‖2e−f(x)−

dist(x,K)2

2γ dx
∫
Rd e

−f(x)−
dist(x,K)2

2γ dx

≤ emaxx f(x)−minx f(x)I2(γ)

vol(K) + I1(γ)
, (Lemma D.2) (G.66)
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where the first identity above uses the fact that q is supported on K. With
(G.65) and (G.66) at hand, we revisit (G.63) and write that

W1(qγ , q) ≤ emaxx f(x)−minx f(x)RI1(γ) + I2(γ)

vol(K) + I1(γ)
, (G.67)

where we used (G.63), (G.65), and (G.66). This completes the proof of Lemma C.2.

H Proof of Lemma C.3

Recall from (C.26) and (6a) that q ∝ e−f−1K and p ∝ e−F , respectively. The
function F was defined in (6b). In order to bound W1(q, p), our plan is to invoke
Lemma D.1 with h1 = f + 1K and h2 = F . As before, this means that we need
to verify (D.37) for the choice of h1 = f + 1K and h2 = FFB

γ . We begin by
relating these two functions together as

F (x) = f(x) + g(x) = f(x) + g(x) + 1K(x) (see (6b))

≤ max
z∈K

g(z) + f(x) + 1K(x). (H.68)

In the first line above, we used the fact that F and 1K both take infinity outside
of the set K. In the other direction, we write that

F (x) = f(x) + g(x) + 1K(x)

≥ min
z∈K

g(z) + f(x) + 1K(x). (H.69)

To summarize, for our choice of h1 = f + 1K and h2 = F , (D.37) is satisfied
with

β′(f(x) + 1K(x)) + β ≤ F (x) ≤ (f(x) + 1K(x)) + α, x ∈ R
d, (H.70)

α = max
z∈K

g(z), β = min
z∈K

g(z), β′ = 1.

We can now invoke Lemma D.1 to find that

W1(q, p) = W1

(
e−f−1K
∫
e−f−1K

,
e−F

∫
e−F

)

≤
(
emaxx∈K g(x)−minx∈K g(x) − eminx∈K g(x)−maxx∈K g(x)

)

·
∫
‖x‖2e−f(x)−1K(x) dx∫

e−f(x)−1K(x) dx
(Lemma D.1)

≤
(
emaxx∈K g(x)−minx∈K g(x) − eminx∈K g(x)−maxx∈K g(x)

)

· R
∫
e−f(x)−1K(x) dx∫
e−f(x)−1K(x) dx

(K ⊂ B(0, R))

=
(
emaxx∈K g(x)−minx∈K g(x) − eminx∈K g(x)−maxx∈K g(x)

)
R, (H.71)

where we used the fact that K ⊂ B(0, R) by Assumption 2.1(i) in the penulti-
mate line above. This completes the proof of Lemma C.3.
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I Proof of Lemma 6.2

Consider the stochastic differential equation

dxt = −∇Fγk
(xt) +

√
2 dBt, x0 ∼ pγk

, (I.72)

where {Bt}t≥0 is the standard Brownian motion. Above, note that the initial
probability measure is pγk

∝ e−Fγk . From Definition 2.2(iii), recall that Fγk
is

λγk
-smooth and is, moreover, coercive. To be concrete, the latter means that

Fγk
satisfies

lim
‖x‖2→∞

Fγk
(x) = ∞.

Therefore Theorem 3.4 in [23] ensures that pγk
∝ e−Fγk is the invariant proba-

bility measure of (I.72). In particular, because x0 ∼ pγk
in (I.72), it holds that

xt ∼ pγk
, t ≥ 0. (I.73)

Let {Pk}k≥0 denote the Markov transition kernel associated with the Markov
chain {xHk

}k≥0, where

Hk :=
k−1∑

i=1

hi (I.74)

is the elapsed time since initialization. Using this transition kernel, we can
rewrite (I.73) as

pγk
= pγk

Pk, k ≥ 0. (I.75)

Finally, we can write the quantity of interest on the left-hand side of (27) as

W1(pγk
Qk, pγk

) = W1(pγk
Qk, pγk

Pk). (see (I.75)) (I.76)

In the remainder of the proof, we will upper bound the right-hand side above,
which can be thought of as the discretization error associated with (I.72). To
begin, recall from (I.73) that xHk

∼ pγk
, and note that

x′ := xHk
− hk∇Fγk

(xHk
) +

√
2hkζk+1 ∼ pγk

Qk (see (21))

= xHk
−
∫ Hk+1

Hk

∇Fγk
(xHk

) dt+
√
2hkζk+1, (see (I.74)) (I.77)

by construction. The second line above uses the fact that Hk+1 − Hk = hk

by (I.74). Likewise, note that

xHk+1

= xHk
−
∫ Hk+1

Hk

∇Fγk
(xt) dt+

√
2

∫ Hk+1

Hk

dBt ∼ pγk
Pk

dist.
= xHk

−
∫ Hk+1

Hk

∇Fγk
(xt) dt+

√
2hkζk+1, (I.78)
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where the first line uses (I.72) and (I.75), and both sides of
dist.
= have the same dis-

tribution. Above, recall that ζk+1 ∼ normal(0, Id). In view of (I.77) and (I.78),
we revisit (I.76) and write that

W1(pγk
Qk, pγk

)

= W1(pγk
Qk, pγk

Pk) (see I.76)

≤ E‖x′ − xHk+1
‖2 (see (13), (I.77), (I.78))

= E

∥∥∥∥∥

∫ Hk+1

Hk

∇Fγk
(xt)−∇Fγk

(xHk
) dt

∥∥∥∥∥
2

(see (I.77), (I.78))

≤
∫ Hk+1

Hk

E‖Fγk
(xt)−∇Fγk

(xHk
)‖2 dt (Minkowski’s integral inequality)

≤ λγk

∫ Hk+1

Hk

E‖xt − xHk
‖2 dt, (Definition 2.2(iii)) (I.79)

where the last line above uses the fact that Fγk
is λγk

-smooth. To estimate the
expectation in the last line above, we write that

E‖xt − xHk
‖2

= E

∥∥∥∥
∫ t

Hk

dxs

∥∥∥∥
2

= E

∥∥∥∥−
∫ t

Hk

∇Fγk
(xs) ds+

√
2

∫ t

Hk

dBs

∥∥∥∥
2

(see (I.72))

≤ E

∥∥∥∥
∫ t

Hk

∇Fγk
(xs) ds

∥∥∥∥
2

+
√
2E

∥∥∥∥
∫ t

Hk

dBs

∥∥∥∥
2

(triangle inequality)

≤
∫ t

Hk

E‖∇Fγk
(xs)‖2 ds+

√
2E

∥∥∥∥
∫ t

Hk

dBs

∥∥∥∥
2

. (Minkowski’s inequality) (I.80)

To estimate the first expectation in the last line of (I.80), recall from the last
line of (I.79) that t ∈ [Hk, Hk+1) and then note that

∫ t

Hk

E‖∇Fγk
(xs)‖ ds

=

∫ t

Hk

Ex∼pγk
‖∇Fγk

(x)‖2 ds (see (I.73))

= (t−Hk)Ex∼pγk
‖∇Fγk

(x)‖2
≤ hkEx∼pγk

‖∇Fγk
(x)‖2 (see (I.74))

≤ hk

√
Ex∼pγk

‖∇Fγk
(x)‖22 (Jensen’s inequality)

= hk

√
Ex∼pγk

[∆Fγk
(x)] (integration by part and pγk

∼ e−Fγk )

≤ hk

√
λγk

d, (I.81)
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where the last line above follows from ∆Fγk
(x) = trace(∇2Fγk

(x)) and the fact
that Fγk

is λγk
-smooth by Definition 2.2(iii). To estimate the second expectation

in the last line of (I.80), note that

∫ t

Hk

dBs
dist.
=
√
t−Hkζk+1, ζk+1 ∼ normal(0, Id). (I.82)

The above observation enables us to bound the second expectation in the last
line of (I.80) as

E

∥∥∥∥
∫ t

Hk

dBs

∥∥∥∥
2

=
√
t−HkE‖ζk+1‖2 (see (I.82))

≤
√
t−Hk

√
E‖ζk+1‖22 (Jensen’s inequality)

=
√
(t−Hk)d (see (I.82))

≤
√
hkd. (see (I.74) and (I.79)) (I.83)

We now plug in the bounds in (I.81) and (I.83) back into (I.80) to obtain that

E‖xt − xHk
‖2 ≤

∫ t

Hk

E‖∇Fγk
(xs)‖2 ds+

√
2E

∥∥∥∥
∫ t

Hk

dBs

∥∥∥∥
2

(see (I.80))

≤
√
hkd

(√
hkλγk

+
√
2
)
. (see (I.81) and (I.83)) (I.84)

By substituting the above bound back into (I.79), we arrive at

W1(pγk
Qk, pγk

) ≤ λγk

∫ Hk+1

Hk

E‖xt − xHk
‖2 dt (see (I.79))

≤ λγk
(Hk+1 −Hk)

√
hkd ·

(√
hkλγk

+
√
2
)

(see (I.84))

= λγk
hk

√
hkd ·

(√
hkλγk

+
√
2
)

(see (I.74))

= λγk

√
h3
kd ·

(√
hkλγk

+
√
2
)
, (I.85)

which completes the proof of Lemma 6.2.
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