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Abstract. We construct the first four-round non-malleable commitment scheme based solely on the
black-box use of one-to-one one-way functions. Prior to our work, all non-malleable commitment
schemes based on black-box use of polynomial-time cryptographic primitives require more than 16
rounds of interaction.
A key tool for our construction is a proof system that satisfies a new definition of security that we call
non-malleable zero-knowledge with respect to commitments. In a nutshell, such a proof system can be
safely run in parallel with a (potentially interactive) commitment scheme. We provide an instantiation
of this tool using the MPC-in-the-Head approach in combination with BMR.

1 Introduction

Starting from the pioneering work of Dolev et al. [DDN91], a long line of works has focused on
constructing new non-malleable commitment schemes with improved characteristics, both in terms
of efficiency and assumptions. Given the strong connection of non-malleable commitments with
secure multi-party computation [Yao82, BMR90], improvements in the area of non-malleable com-
mitments have a big impact on the multi-party computation (MPC) landscape. In particular, recent
developments on the round complexity of non-malleable commitments led to the first round-optimal
MPC protocols in the plain model [COSV17b, HHPV18, BGJ+18, CCG+20].

The round complexity of commitment schemes based on polynomial-time hardness assumptions
in the stand-alone setting is nowadays well understood. Non-interactive commitments can be con-
structed assuming the existence of 1-to-1 one-way functions (OWFs) [GL89] and 2-round com-
mitments can be constructed assuming the existence of OWFs only. Moreover, non-interactive
commitments do not exist if one relies on the black-box use of OWFs only [MP12]. Recently many
progress have been made also for the case of non-malleable (NM) commitments4. Indeed, the long
sequence of very exciting positive results [Bar02, PR03, PR05b, PR05a, PR08b, PR08a, LPV08,
PW10, Wee10, LP11, LP15, Goy11, GLOV12, GRRV14a, COSV17a, COSV16] led to the work of
Khurana [Khu17] in which the authors showed how to obtain a 3-round (which is optimal for the
case of polynomial-time assumptions [Pas13]) non-malleable commitment scheme based on specific
number-theoretic assumptions, and to [GR19] where the authors proposed a round optimal scheme
based on one-to-one OWFs.

Black-box (BB) constructions. While these recent results show round-optimal constructions, they
make non-black-box use of cryptography. Constant round BB schemes are known [Wee10, LP11,
Goy11, GLOV12], but their round complexity is far to optimal. More specifically, Goyal et al.

4 In this paper we will consider only NM commitments w.r.t. commitments. For the case of NM w.r.t. decommitments
see [PR05b, PR08b, OPV09, CVZ10, DMRV13, GKS16].



[GLOV12] give a black-box NM commitment protocol only based on the existence of one-way func-
tions, but this construction requires more than 16 rounds. In another work, Goyal et al. [GRRV14a]
mention that combining their protocol with ideas from [GLOV12] could lead to a 6-round protocol,
but no explicit construction or proof intuition was given. Therefore the following question remained
open.

Does it exist a non-malleable commitment scheme that makes black-box use of standard
polynomial-time cryptographic primitives where the commitment phase consists of less than
16 rounds?

In this work, we provide a positive answer, by proposing a 4-round non-malleable commitment
scheme that only makes black-box use of one-to-one one-way functions. Whether it is possible to
achieve the same result in three rounds remains a fascinating open question.

1.1 Our Contributions

The state-of-the-art in constructing non-malleable commitments based on minimal assumptions
shows a significant gap in the round complexity of black-box and non-black-box protocols. In this
work, we almost close this gap by describing the first 4-round non-malleable commitment that
makes black-box use of the underlying primitives and is based on the almost minimal assumption
of injective one-way functions.5 In particular, we prove the following theorem.

Theorem (Informal). Assuming one-to-one OWFs, there exists a 4-round non-malleable com-
mitment scheme that makes black-box use of the OWFs.

Our 4-round non-malleable commitment crucially relies on a novel 3-round public-coin proof
system that is zero-knowledge against honest verifiers (HVZK), and such that the statement to be
proven can be specified in the last round (delayed-input property). In particular, our protocol enjoys
adaptive-soundness and adaptive-HVZK [HV16, CPS+16, CPV20]. These properties guarantee that
HVZK and soundness hold even against an adversary that decides the statement to be proven (and
the witness for the HVZK case) adaptively on the first two rounds of the protocol. A protocol
that satisfies such properties and that also makes black-box use of the underlying cryptographic
primitives is proposed in [HV16]. What makes our scheme different is that it also enjoys a special
form of non-malleability that we call non-malleable HVZK with respect to commitment (NMZKC).

In a nutshell, this notion allows us to safely compose the proof system in parallel with any type
of commitment scheme. In more detail, we consider the following setting. There is a man-in-the-
middle (MiM) adversary that interacts (acting as the verifier) with an honest prover of a proof
system ΠAI (where AI stands for adaptive-input). In the right session instead, the MiM acts as
the sender for a (potentially interactive) commitment scheme Πcom, with an honest receiver. The
notion of NMZKC guarantees that the distribution of the messages committed by the MiM in the
right session is independent of whether the messages of ΠAI are generated honestly (i.e., using the
witness for some NP statement x), or are computed using the simulator.
We believe that this tool and notion can be of independent interest. Indeed, NMZKC proof

systems might be used in place of rewind secure schemes. A rewind secure proof system guarantees

5 Our BB 4-round non-malleable commitment scheme satisfies the notion of standalone (or one-one) non-malleability.
Obtaining a concurrent (or many-many) BB non-malleable commitment scheme in just 4 rounds, or less, still
remains an open question.
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that the zero-knowledge property holds even if an adversarial verifier is allowed to rewind the prover
a bounded number of times (this can be seen as a mild form of resettability). The reason why the
notion of rewind security has gained a lot of attention recently is exactly that it simplifies the
composition of proof systems with other primitives. For example, it simplifies the composition of a
proof system with extractable commitments. The high-level idea is that in the security proof it is
possible to extract from the commitment without harming the zero-knowledge property of the proof
system. Hence, it is possible to check whether the distribution of the committed messages changes
depending on whether the messages of the proof system are simulated or are generated honestly. This
proof technique has been exploited in many recent works [CCG+20, GR19, CRSW22]. And, more
interestingly, it was used also to construct the first one-one non-malleable commitment [GRRV14b]6.
As we will discuss in the technical overview, we will replace the rewind secure proof system proposed
in [GRRV14b] (that inherently makes non-black-box use of the underlying primitives) with our
NMZKC proof system.
We believe that NMZKC in some scenarios can replace the use of rewind secure primitives, and

this might be particularly helpful given that our protocol is completely black-box in the use of the
underlying cryptographic primitives. In summary, we prove the following theorem.

Theorem (Informal). Assuming one-to-one OWFs, then there exists a 3-round delayed-input
public-coin adaptive-input proof system that also is NMZKC and it makes black-box use of the
OWFs.

2 Overview of Techniques

We first describe how to construct the main tool required for our construction, which is a commit-
and-prove proof system that satisfies the definition of non-malleable HVZK with respect to commit-
ment. Then we show how to use this tool to construct our four-round non-malleable commitment
protocol.

2.1 Our NMZKC Protocol and New Commitment Schemes

We start this section by recalling how to turn an MPC protocol into a proof system for any NP-
relation Rel following the MPC-in-the-head approach of [IKOS07]. Let ΠMPC be an n-party MPC
protocol that is secure against up to t semi-honest corruptions. First, the prover secret-shares the
witness w using an additive secret-sharing, while f will be a verification function that outputs 1 iff
w is a valid witness, i.e., f(x,w1, . . . , wn) = 1 ⇐⇒ (x,w1 ⊕ · · · ⊕ wn) ∈ Rel. Then, it simulates all
n parties running the protocol locally and sends the verifier commitments to each parties’ views.
Later, the verifier randomly chooses t of the parties’ commitments to be opened, and checks that
the committed messages are consistent with an honest execution of the MPC protocol according to
the opened views. Since only t parties are opened, the verifier learns nothing about the secret input
w, while the random choice of the opened parties ensures that enough views have been computed
honestly, ensuring soundness.7

6 In Section 9 we propose a comparison between the approach based on rewind-secure primitives of [GRRV14b]
and the one we propose in this work. In particular, we explain why and how we can rely on a simpler underlying
weak-non-malleable commitment scheme compared to the one used in [GRRV14b].

7 This sketch protocol gives a noticeable probability of cheating to the prover, typically the soundness of the protocol
can be easily amplified via parallel repetition.
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Unfortunately, this scheme is inherently non-delayed input since the prover needs both state-
ment and witness to generate the views that must be committed in the first round. To overcome
this limitation, we consider a specific class of two-phase MPC protocols. In particular, we require
protocols with an input-independent offline phase, where the parties only produce correlated ran-
domness that will be used to speed up the second phase. In the second phase (the online phase)
the input is required and used to compute the output of the function. We denote such protocols by
ΠMPC := (Πoff

MPC, Π
on
MPC), where the two algorithms Πoff

MPC and Πon
MPC denote respectively the offline

and the online phase of ΠMPC.
Equipped with such an MPC protocol, we can modify the approach of [IKOS07] as follows. The

prover only simulates Πoff
MPC, and commits to the individual views. Then the verifier, as described

before, selects a random subset of parties to be opened. After receiving the challenge, the prover
opens the requested commitments and additionally runs Πon

MPC to obtain the entire views of the
parties requested by the verifier. At the end of this process, the verifier holds complete views for
all the parties it requested and can check their consistency as previously described.
Intuitively, (non-adaptive input) HVZK comes again from the hiding of the commitments and the

(semi-honest) security of the MPC protocol. However, it is clear that this approach fails completely
against malicious provers. Indeed, they might easily generate online messages in a malicious way
for all the parties the verifier did not ask to open. Note that in this case, ΠMPC is secure against
t corrupted parties, but the adversary might generate ill-formed online messages for the remaining
n− t. To work around this problem, we require ΠMPC to enjoy a stronger notion of security that we
call robustness. In a nutshell, this notion requires that, when the offline phase of ΠMPC has been
honestly computed, then it is always possible to check if a message received during the online phase
has been honestly generated or not. In this way, robustness allows to prove soundness also w.r.t. a
malicious prover that specifies the inputs in the last round (i.e. adaptive-input soundness).
The above approach guarantees that the protocol enjoys delayed-input completeness and adaptive-

input soundness. However, it is not clear how to argue that the protocol is adaptive-input HVZK
given that ΠMPC is only semi-honest secure. The reason is that we would like to rely on the security
of the underlying MPC protocol thus committing to simulated views in the first round. However, to
simulate these views the MPC simulator needs to know the input of the corrupted parties. We recall
that such input consists of a share of the witness (which is easy to simulate) and the theorem to be
proven. This is problematic since the adaptive-input HVZK simulator needs to generate the first
round without knowing the theorem, hence, we cannot run the MPC simulator of the underlying
protocol.
To circumvent this issue, we make use of a special type of commitment scheme, that we call

ambiguous commitment8. Compared to a standard commitment scheme, they have two modes of
operation: binding and equivocal. If the commitment is computed using the binding mode then the
commitment is binding, otherwise, it can be equivocated to any message the sender wants.

Using ambiguous commitments, we modify our protocol as follows. The prover generates the
views of ΠMPC as before, but it creates a 2-out-of-2 secret sharing of each of these views and
commits to them using the ambiguous commitment scheme in biding mode (i.e., two commitments
per view are generated). Then, the verifier challenges the prover asking to open a random subset of
views as before. In addition, for each of the opened views, the verifier asks to see the randomness
used to generate one of the two commitments and rejects if it notices that a commitment has not
been computed using the binding procedure. The rest of the protocol proceeds as before.

8 Such commitments are sometimes called equivocal or trapdoor commitments
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The adaptive-input HVZK simulator, which we recall needs to generate the first round without
knowing the theorem, works as follows. On input the challenge it can compute one commitment
in equivocal mode (the one for which the simulator will not need to disclose its randomness),
and one in binding mode. The binding commitments simply contain a random string. The set of
commitments computed in the described way constitutes the first round.
Upon receiving the theorem, the adaptive-input HVZK simulator runs the MPC simulator of

ΠMPC. At this point, the simulator computes the xor of the i-th view with the random string
committed in the i-th binding commitment and opens the equivocal commitment to the obtained
value.

The soundness still holds because, intuitively, the verifier performs a cut-and-choose to make
sure that the commitments are all computed in binding mode. Clearly, an adversary has still a
non-negligible probability of cheating, but by repeating the protocol we obtain a sound protocol.

Non-Malleable HVZK with respect to Commitment. So far we have only argued that our protocol,
that we denote with ΠAI, is adaptive HVZK and adaptive sound. We also want to argue that
our protocol is non-malleable HVZK with respect to commitment. We recall that in this security
notion, there is a MiM adversary that on the left session acts as the adversary for the adaptive
HVZK security game, and in the right session it acts as the sender for a commitment scheme.
In more detail, the adversary picks a challenge and sends it to the left session (that acts as a
challenger for the experiment). The challenger tosses a coin b, and if b = 0 then it computes the
first round of ΠAI using the honest prover procedure, otherwise it computes it using the adaptive
HVZK simulator. The adversary now picks a statement x and a witness w and sends those to the
challenger. If b = 0, the challenger runs the honest prover of ΠAI on input (x,w) to compute a
third-round message, if b = 1 instead the challenger runs the HVZK on input x (and the previous
state of the simulator), thus obtaining the third message. The challenger then sends this third
message to the MiM in the left session and stops.
While the MiM is acting as described in the left session, it concurrently sends a commitment

in the right session. We say that ΠAI is non-malleable HVZK with respect to commitment, if the
distribution of the messages committed on the right session by the MiM does not depend on b.

We prove that ΠAI is non-malleable HVZK with respect to any extractable commitment Πcom.
The idea is to use an adversary to the NMZKC property to construct an adversary for the adaptive-
HVZK property. That is, we let the MiM to interact with the adaptive HVZK challenger while at
the same time we run the extractor of the commitment scheme to check how the distribution of
the committed messages changes. Unfortunately, this simple idea has a major flaw. The rewinds
made by the extractor of the commitment might also rewind the challenger of the HVZK security
game. Indeed in each rewind made by the extractor, the MiM could send a new theorem-witness
pair, and ask for a new third round of ΠAI.

To prove that ΠAI can cope with such an adversarial behavior, we exploit how our HVZK simula-
tor works. We note that once the challenge is known, then the simulator knows what commitments
will be opened to honestly and what commitments will be equivocated. If an adversary during the
rewinds samples new theorem-witness, we simply need to run multiple times the simulator of the
underlying MPC protocol and equivocate the commitments accordingly. Hence, we can reduce the
adversary that wins in the non-malleable HVZK with respect to commitment experiment to an
adversary that either breaks the security of our commitment or the security of the underlying MPC
protocol.
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Σ-Commitment. In this work, we also consider a class of three-round public commitment schemes
that we call Σ-commitment. A Σ-commitment is hiding against honest receiver (HRH), and in
addition, it is extractable. To realize a Σ-commitment Σ = (SΣ ,RΣ), we use the approach of Goyal
et al. [GLOV12], which makes use of an information-theoretic verifiable secret sharing protocolΠvss.
The protocol works as follows. To commit to a message w, the sender SΣ runs “in its head” the
sharing phase of Πvss, with input a message m. Then the sender commits to the views (obtained
by the execution of sharing phase of Πvss) of each player separately using a statistical binding
commitment scheme Πcom. The receiver, upon receiving these commitments, samples a random set
I ⊂ [n], with |I| ≤ t, and sends it to the sender. Finally, the sender replies by decommitting the
views corresponding to the challenge I.

The property of HRH comes from the fact that, if the challenge I is known in advance, then we
can commit to a random message and simulate the openings of the commitment. We can prove that
a simulated transcript is indistinguishable from the transcript generated by an honest committed
with input m via a simple reduction to the security of the statistically binding commitments.

Putting together Σ and ΠAI to realize a commit-and-prove protocol Π. We use Σ and ΠAI to realize
a black-box commit-and-prove protocol, which will be the main building block we use to construct
our non-malleable commitment scheme. Our commit-and-prove protocol Π works as follows. The
prover commits λ-times to the witness w running Σ and proving, using ΠAI, that each committed
message w satisfies some relation Rel9. The statement to be proven can be postponed to the last
round since ΠAI is delayed-input complete.
To make sure that the same message is committed in all these executions, we use a technique

proposed by Khurana et al. in [KOS18]. Namely, in each execution of Σ, instead of committing
to w, we commit to w||r, for some random value r. Then, we use the protocol ΠAI to prove that
a = w + rα, where α is chosen as part of the challenge, and a is sent in the third round from the
prover.
As argued in [KOS18], since r is global across all the executions, if w ̸= w′ then w+rα ̸= w′+rα

with overwhelming probability due to the Schwartz-Zippel lemma. Therefore, if the committed
messages are different across the (multiple) executions, then the statement proven by ΠAI must be
false, and the soundness of ΠAI guarantees that the verifier rejects. The adaptive-input SHVZK
follows from the adaptive-input SHVZK of ΠAI and the HRH property of Σ.

Concrete instantiation for robust MPC. As we mentioned, one of the main tool we rely on is a
robust MPC protocol. We recall that a robust MPC protocol allows the prover to initially commit
only to the offline views, which are input-independent, and only in the last round to “complete the
proof” with the online views. The robustness property guarantees that the commitments generated
in the first round univocally specify the actual MPC evaluation so that the online steps only
consist of an input-distribution phase and deterministic computations. In this way, even if the
prover already knows which views are going to be opened, it cannot force the evaluation to output
1 unless Rel(x,w) = 1, except with negligible probability.

Although robustness seems a very strong requirement, we show that a minor modification of the
standard BMR protocols leads to an efficient robust MPC scheme. We recall that BMR [BMR90] is

9 ΠAI works for any type of secret sharing scheme, and in our caseΠAI is parametrized by the reconstruction algorithm
of the verifiable secret sharing Πvss (i.e., the prover of ΠAI expects to receive n views generated using the sharing
algorithm of Πvss). We note that given that Πvss is information-theoretic, then ΠAI still makes black-box use of the
underlying cryptographic primitives.
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a two-phase protocol consisting of an input-independent phase, also called garbling , and an online
evaluation. In the garbling step, all parties P1, . . . , Pn involved in the protocol generate a sharing of
the garbled circuit according to some fixed secret sharing scheme ⟨·⟩ with t-privacy. As in any other
garbled-circuit based scheme, to garble a Boolean circuit each wire is assigned two random keys
kw,0,kw,1 encoding, respectively, the 0-value and 1-value. The goal of the process is to generate
four ciphertexts for each gate according to the gate function, such that each output-wire key is
encrypted according to all combinations of input-wire keys which evaluate to that output wire
key. During the online evaluation, these encrypted truth tables, are revealed to all parties so to
allow local evaluation of the circuit. Intuitively, it is clear that upon collecting all the input keys,
parties can start evaluating the circuit. At this point, this evaluation is completely deterministic
and does not require any interaction. For this reason, assuming that the garbling phase is correctly
generated and the input-keys corresponding to the input-wires of the circuit are correct, namely
they correspond to the keys generated in the offline phase, the online views generated by each party
correspond to a correct evaluation of the garbled circuit and cannot lead to an incorrect result.
In the next sections, we will recall the basics of BMR-style protocols and explain the robustness
property in more detail.

2.2 4-Round Non-Malleable Commitment Πnmc

We are finally ready to describe how our non-malleable commitment scheme works. Our starting
point is the 3-round public-coin commitment scheme of Goyal et al. [GRRV14a]. This commitment
scheme, which we denote with Πwnmc, is non-malleable against adversaries that never commit to ⊥
(i.e., the adversary always generates well-formed commitments). In [GRRV14b] to lift the security
of such a commitment and build a fully non-malleable commitment scheme, the authors run, in
parallel with Πwnmc, a zero-knowledge proof.
As noted in [GRRV14b, COSV17a], a standard ZK proof does not suffice since the commitment

and the zero-knowledge proof might not be composed in parallel. As such, and as we have already
anticipated, in [GRRV14a] the authors rely on a ZK proof that is rewind-secure. We also note that
the statement to be proven by the ZK is fully-formed only in the last round (sinceΠwnmc consists of 3
rounds.) This inherently requires the ZK protocol to be delayed-input. To the best of our knowledge,
the only protocols that satisfy all these properties are that proposed in [GR19, GRRV14b], which,
unfortunately, make non-black-box use of the underlying primitives. In [COSV17a], the authors
propose a ZK proof that can be composed in parallel with the weak-non-malleable commitment of
Goyal et al., but this approach requires non-black-box access to the commitment scheme.
The idea is to use our commit-and-prove protocol Π, and argue that it can be safely composed

in parallel with Πwnmc due to the property of NMZKC. In particular, in the security proof, we can
switch from using the honest prover procedure of Π to the simulated one while making sure that
the adversary cannot change what he is committing. Unfortunately, Π is only honest-verifier zero-
knowledge, and here we need a zero-knowledge proof that is secure against any type of adversaries.
To lift the security of our protocol, we rely on the FLS-trick [FLS90] (with some modifications).

More concretely, we construct a 4-round zero-knowledge protocol as follows. The verifier generates
two commitments of two random strings, ŝ0 and ŝ1 in the first round and sends two openings in
the third round. In parallel, the verifier provides a witness indistinguishable (WI) proof, ΠcomWI,
which guarantees that at least one of the two commitments is binding. In [KOS18], the authors
show how to obtain this protocol in a black-box-way. The prover instead uses a 3-round public-coin
WI to prove that either the commitment Πwnmc is well-formed or that it committed to ŝb, for some

7



b ∈ {0, 1}. Since the receiver discloses ŝ0, ŝ1 only in the last round, the sender has no way to commit
(already in the second round), to either of these two values. As such, the (potentially corrupted)
sender, can complete an accepting WI proof only by proving that the non-malleable commitment
is well-formed. For more detail, we refer to the technical part of the paper.

3 Preliminaries

Here we recall some preliminaries that will be useful in the rest of the paper. Let λ denote the
security parameter and negl(λ) any function which tends to zero faster that λ−c, for any constant
c. We write [n] to denote the set {1, . . . , n}. We use the abbreviation ppt to denote probabilistic
polynomial-time.
Let S and R two interactive algorithms, we denote by ⟨S(x),R(y)⟩(z) the distribution of R’s

output after an interaction with S on common input z and private inputs x and y. A transcript of
⟨S(x),R(y)⟩(z) consists of all the messages exchanged during an interaction between R and S.

3.1 Commitment Schemes

A commitment scheme Πcom = (S,R) is a two-phase protocol between two ppt interactive algo-
rithms, a sender S and a receiver R. In the first phase, called commit phase, S on input a message
m interacts with R. Let com be the transcript of this interaction. In the second phase, called decom-
mitment phase, the sender S reveals m′ and R accepts the value committed to be m′ if and only if
S proves that m = m′. Typically, a commitment scheme satisfies two main properties: informally,
the binding property ensures that S cannot open the commitment in two different ways; the hiding
property guarantees that the commit phase does not reveal any information about the message m.
We refer the reader to [Gol06] for more details.

3.2 Extractable Commitments

Informally, a commitment scheme is said to be extractable if there exists a ppt extractor that
can extract the committed value with guaranteed correctness of extraction. In particular, if the
commitment is maliciously generated, then the extractor must output ⊥, while if the commitment
is honestly computed, then the extractor must output the correct value.

Definition 1 (Extractable commitment). Consider any statistically binding, computationally
hiding commitment scheme ΠcomExt = (S,R). Let τ = Trans(S(m, rs),R(rr)) denote a commitment
transcript with committer input m, committer randomness rs and receiver randomness rr, and let
Dec(τ,m, rs) denote the algorithm that on input a commitment transcript τ , committer message m
and randomness rs outputs 1 or 0 to denote whether or not the decommitment was accepted. Then
ΠcomExt = (S,R) is said to be extractable if there exists an expected ppt oracle algorithm E (the
extractor), such that for any ppt cheating committer S⋆ the following holds. Let Trans(S⋆,R(rr))
denote a (potentially maliciously generated) transcript of the interaction between S⋆ and R. Then
ES

⋆(
Trans(S⋆,R(rr))

)
, with oracle access to S⋆, outputs m such that, over the randomness of E

and of sampling Trans(S⋆,R(rr)),

Pr[(∃m̃ ̸= m, r̃s) : Dec(τ, m̃, r̃s) = 1] = negl(λ).
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Definition 2 (k-Extractable Commitments). An extractable commitment satisfying Defini-
tion 1 is said to be k-extractable if there exists a polynomial p(·) such that the extractor E
with (k − 1) queries to S⋆ outputs (m, rs) such that over the randomness of E and of sampling
Trans(S⋆,R(rr)):

Pr[∃rs : Dec(τ,m, rs) = 1] ≥ p(λ).

3.3 Non-Malleable Commitments

Here we follow the same notation of Goyal et al. [GRRV14a]. Let Π = (S,R) be a statistically
binding commitment scheme and let λ be the security parameter. Consider a man-in-the-middle
(MiM) adversary A that is participating in two interactions called the left and the right interaction.
In the left interaction A is the receiver and interacts with an honest committer S, whereas in the
right interaction A is the committer and interacts with an honest receiver R.

We compare between a MiM execution and a simulated execution.
In the MiM execution the adversary A, with auxiliary information z, is simultaneously participat-

ing in a left and right session. In the left sessions, the MiM adversary A interacts with S receiving
commitments to values mi, i ∈ [poly(λ)], using identities tgi of its choice. In the right session, A
interacts with R attempting to commit to related values m̃i again using identities of its choice t̃gi.
If any of the right commitments is invalid, or undefined, its value is set to ⊥. For any i such that
tgi = tgj , for some j, set m̃i = ⊥ (i.e., any commitment where the adversary uses the same identity

of the honest sender is considered invalid). Let mimA,mΠ (z) denote a random variable that describes
the values m̃i and the view of A, in the above experiment.

In the simulated execution, an efficient simulator Sim directly interacts with R. Let simSim
Π (1λ, z)

denote the random variable describing the values m̃i committed by A, and the output view of Sim;
whenever the view contains in the right session the same identity of any of the identities of the left
session, then m is set to ⊥.
In all the paper we denote by δ̃ a value associated with the right session (where the adversary
A plays with a receiver) where δ is the corresponding value in the left session. For example, the
sender commits to v in the left session while A commits to ṽ in the right session.

Definition 3 (Non-Malleable (NM) commitment scheme [GRRV14a]). A commitment
scheme is NM with respect to commitment if, for every ppt MiM adversary A, there exists a
ppt simulator Sim such that for all m ∈ {0, 1}poly(λ) the following ensembles are computationally
indistinguishable:

{mimA,mΠ (z)}z∈{0,1}⋆ ≈ {simS
Π(1

λ, z)}z∈{0,1}⋆ .

In this work, we also consider a weaker class of MiM adversaries called synchronizing adversaries.
A synchronizing adversary is one that sends its message for every round before obtaining the honest
party’s message for the next round.

3.4 Σ-Commitments

We now give the definition of Σ-commitment. This notion is reminiscent of the notion of Σ-
protocols.

Definition 4. A Σ-commitment ΠΣ = ((SΣ ,RΣ),DecΣ) is a commitment scheme where: 1)
The commitment phase consists of three rounds and it is public-coin, 2) The decommitment phase
is non-interactive, and 3) It satisfies the following properties.
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– Correctness. Let m be the message the sender SΣ uses during the commitment phase. If
both SΣ and RΣ follow the protocol, then the receiver always accepts the commitment as valid.
Moreover, if the sender follows the protocol during the decommitment procedure DecΣ then the
receiver accepts m as the committed message.

– Honest Receiver Hiding (HRH). For any message m ∈ {0, 1}ℓ, there exists a polynomial-
time simulator Sim, which on input a random c (sampled from the space of all the possible RΣ’s
messages), outputs an accepting commitment transcript of the form (a, c, z) that is computa-
tionally indistinguishable from the transcript generated by the honest sender and receiver when
the receiver uses m as its input (note that Sim needs to generate the transcript without knowing
m).

– t-Special Binding. From any set of t accepting transcripts {a, ci, zi}i∈[t], with ci ̸= cj for all
i, j ∈ [t], for the commitment phase it is possible to extract the message m in polynomial-time,
where m is the only possible message that the (potentially corrupted) sender can decommit to.

3.5 Ambiguous Commitment Scheme

Here we formalise the definition of ambiguous commitments. Loosely speaking, they allow to over-
come the binding property and “decommit ambiguosly” to any value. Compared to standard com-
mitment schemes, we have two additional algorithms Comeq and Eq. The first one takes as input
some randomness r and the length ℓ of messages, and outputs a “fake” commitment ĉom that is
not associated to any message; for any message m ∈ {0, 1}ℓ, Eq on input the same randomness r
used in Comeq generates a decommitment associated with m and ĉom.

Definition 5. An ambiguous commitment scheme Πcom is defined by four algorithms (Com,Dec,Comeq,Eq)
with the following syntax.

– The algorithm (com, dec)← Com(m;R) takes as inputs a message m ∈ {0, 1}ℓ and randomness

R
$←− {0, 1}λ and outputs a commitment com and an opening value dec.

– The algorithm ĉom ← Comeq(1ℓ; r) takes as input a random coin r
$←− {0, 1}λ and outputs a

commitment ĉom.

– The algorithm d̂ec← Eq(ĉom, r,m) takes as inputs ĉom, the same randomness r used to generate
ĉom and any message m ∈ {0, 1}ℓ, and outputs an opening value d̂ec.

– The algorithm Dec(com,m, dec) = b takes inputs com,m, dec and outputs a bit b ∈ {0, 1}. In
particular, b = 1 if dec is a valid opening of the commitment, and b = 0 otherwise.

Notice that we require that when the commitments are honestly generated following the proce-
dure Com, then they satisfy the standard hiding and binding properties. Formally, the algorithms
satisfy the following properties.

(Perfect) Correctness: For every m ∈ {0, 1}ℓ and R ∈ {0, 1}λ,

Pr[Dec(com,m, dec) = 1 : (com, dec)← Com(m;R)] = 1.

Note this property holds for every (com, dec)← Com(m;R) and also for every (ĉom, d̂ec) such
that ĉom← Comeq(1ℓ; r) and dec← Eq(ĉom, r,m).
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Binding: For every honestly generated commitment com using procedure Com and randomness
R ∈ {0, 1}λ and every ppt adversary A with auxiliary information z, there exists a negligible
function negl such that:

Pr

[
Dec(com,m1, dec1) = 1 and Dec(com,m2, dec2) = 1 and m1 ̸= m2

: com,m1,m2, dec1, dec2 ← A(R,m, z)}

]
≤ negl(λ)

Trapdoorness: For any ppt adversary A there exists a negligible function negl such that:∣∣∣Pr[ExpComA,TC(1λ, z) = 1]− Pr[ExpTrapdoorA,TC(1
λ, z) = 1]

∣∣∣ ≤ negl(λ),

where ExpComA,TC(1
λ, z) and ExpTrapdoorA,TC(1

λ, z) are the experiments defined in Figure 110.

ExpComA,TC(1
λ, z):

1. On input 1λ and z, A outputs (aux,m).

2. R
$←− {0, 1}λ, (com, dec)← Com(m;R).

3. A on input (com, dec, z, aux) outputs a bit b and this
is the output of the experiment.

ExpTrapdoorA,TC(1
λ, z):

1. On input 1λ and z, A outputs (aux,m)

2. r
$←− {0, 1}λ, ĉom ← Comeq(1ℓ; r) and d̂ec ←

Eq(ĉom, r,m).
3. A on input (ĉom, d̂ec, z, aux) outputs a bit b and this

is the output of the experiment.

Fig. 1: Trapdoor experiments

We do not include in our definition the hiding property since this is trivially implied by trapdor-
ness.

3.6 Instantiation of Ambiguous Commitment Scheme

Let CNI = (NiCom,NiDec) be a non-interactive statistically binding commitment scheme, we can
construct an ambiguous commitment scheme as follows [KOS18].

- Com: On input m ∈ {0, 1}ℓ,
1. Let mi be the i-th bit of m. For each i ∈ [ℓ], compute

(com0i , dec
0
i )

$←− NiCom(mi, R) and (com1i , dec
1
i )

$←− NiCom(mi, R),

sample di
$←− {0, 1} and set dec⋆i = decdii .

2. Set com = {combi}i∈[n],b∈{0,1} and dec = {dec⋆i }i∈[n].
- Dec: On input (com,m, dec),

1. Parse com as {combi}i∈[n],b∈{0,1} and dec as {dec⋆i }i∈[n].
2. If, for all i ∈ [ℓ], exists di ∈ {0, 1} such that NiDec(comdii ,mi, dec

⋆
i ) = 1 then return 1, else

return 0.
- Comeq: On input 1λ and randomness R, use R as the follows.

1. For each i ∈ [ℓ], sample a random bit di and compute

(com0i , dec
0
i )

$←− NiCom(di, R) and (com1i , dec
1
i )

$←− NiCom(1− di, R).

2. Return {combi}i∈[n],b∈{0,1}.
10 We assume wlog that A is stateful.
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- Eq: On input (com,m,R),
1. Use the same randomnessR used in Comeq to recompute Comeq and obtain {combi , decbi}i∈[ℓ],bi∈{0,1}

and {di}i∈[λ].
2. For each i ∈ [ℓ], if mi = di then set dec⋆i ← dec0i , else set dec⋆i ← dec1i .
3. Return dec = {dec⋆i }i∈[n].

Theorem 1. The protocol described above is an ambiguous commitment scheme.

3.7 One-of-Two Binding Commitments

We propose a formal definition of the one-of-two binding commitments proposed by Khurana et
al. in [KOS18]. A one-of-two binding commitment is a three-round interactive protocol ΠcomWI

executed between a prover PcomWI and a verifier VcomWI. Informally, it works as follows: the prover
generates two commitments in the first round, and sends their opening third round; in parallel,
the prover performs a WI proof that guarantees that at least one of the two commitments is
binding. Moreover, the prover can equivocate the non-binding commitment to any value he likes.
In [KOS18] the authors propose a one-of-two binding commitment scheme that makes black-box use
of one-to-one OWFs. We propose a formal definition of the properties held by a one-of-two binding
commitment scheme. We assume the prover and verifier algorithms are stateful in the following
definitions.

Definition 6 (One-of-Two Binding Commitments). A commitment is one-of-two binding if
the following properties hold.
Correctness.

– The prover PcomWI on input 1λ, the message mb ∈ {0, 1}λ, and a bit b returns πcomWI
1 .

– The verifier on input 1λ and πcomWI
1 samples a random πcomWI

2
$←− {0, 1}λ and returns it.

– The prover on input πcomWI
2 and a message m1−b ∈ {0, 1}λ computes πcomWI

3 and returns
(πcomWI

3 ,m0,m1)

– The verifier on input (πcomWI
1 , πcomWI

2 , πcomWI
3 ,m0,m1) returns d ∈ {0, 1}, where d = 1 denotes

that the verifier accepts, and 0 that he rejects.

Binding. For any ppt adversary A, we have that the following holds. Let τ = (πcomWI
1 , πcomWI

2 )
be the first two rounds generated during the execution of ΠcomWI by an honest receiver VcomWI and
the stateful adversarial prover A(1λ). We have that

Pr[(πcomWI
3 ,m0,m1, π

comWI
3 ,m0,m1)← A(1λ)| VcomWI(τ, π

comWI
3 ,m0,m1) = 1 ∧

VcomWI(τ, π
comWI
3 ,m0,m1) = 1 ∧ m0 ̸= m0 and m1 ̸= m1] = negl(λ)

Equivocability. For any adversary A and any m0,m1 ∈ {0, 1}λ we have that
∣∣Pr[b′ = b] − 1

2

∣∣ ≤
negl(λ) in the following game.
ExpEqA,Π(1λ, b,m0,m1) :

1. The challenger sends πcomWI
1 ← PcomWI(1

λ,mb, b) to A.
2. A sends πcomWI

2 to the challenger

3. The challenger sends πcomWI
3 ← PcomWI(π

comWI
2 ,m1−b) to A.

4. The adversary A outputs a bit b′.
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3.8 Proof Systems

Definition 7 (Soundness). A pair of ppt interactive algorithms Π = (P,V) constitute a sound
system for an NP-language L that is associated with the relation Rel, if the following conditions
hold:

- Completeness: For every x ∈ L and w such that Rel(x,w) = 1, it holds that V accepts the
proof with probability 1.

- Soundness: For every ppt algorithm P⋆ there exists a negligible function negl such that for
every x /∈ L and every auxiliary input z:

Pr [⟨P⋆(z),V⟩(x) = 1] ≤ negl(|x|).

We recall that a proof system Π = (P,V) for an NP-language L, enjoys delayed-input com-
pleteness if P needs x and w only to compute the last round and V needs x only to compute the
output. Before that, P and V run having as input only the size of x. The notion of delayed-input
completeness was formally defined in [CPS+16].
For a protocol that enjoys delayed-input completeness, we consider also the notion of adaptive-

input proof system. That is, the soundness holds against a stronger adversary P⋆ that can choose
the statement to be proven in the last round of the interaction with V.
An interactive protocol Π = (P,V) is public coin if, at every round, V simply tosses a predeter-

mined number of coins (i.e., a random challenge) and sends the outcome to the prover. Moreover
we say that the transcript τ of an execution b = ⟨P(w),V⟩(x) is accepting if b = 1.
A 3-round protocol Π = (P,V) for a relation Rel is an interactive protocol between a prover
P and a verifier V on common input x and private input w of P such that Rel(x,w) = 1. More
precisely, a 3-round protocol Π = (P,V) works as follow:

– P, on input a security parameter λ, x and w, computes the first message π1 with an auxiliary
information aux, and sends π1 to V.

– V sends a random challenge π2 to P.
– Upon receiving π2, P on input π2 and aux computes and sends π3 to V.

At the end of the protocol, V decides to accept or reject based on the messages that they have seen
(i.e., x, π1, π2, π3). We usually denote the message π2 sent by V as a challenge.
We recall the following definitions.

Definition 8 (Special Honest Verifier Zero-knowledge (SHVZK)). A 3-round protocol Π =
(P,V) as defined above, is special honest-verifier zero-knowledge (SHVZK) if there exists a ppt
algorithm Sim that for any x ∈ L, where L is an NP-language, security parameter λ and any
challenge π2 works as follow: (π1, π3)← Sim(1λ, x, π2). Furthermore, the distribution of the output
of Sim is computationally indistinguishable from the distribution of a transcript obtained when V
sends π2 as challenge and P runs on common input x and any w such that Rel(x,w) = 1.

Definition 9 (Adaptive-input SHVZK). A delayed-input 3-round protocol Π = (P,V) for
relation Rel satisfies adaptive-input special honest-verifier zero-knowledge (AI-SHVZK) if there ex-
ists a ppt simulator Sim = (Sim0,Sim1) such that for all ppt adversaries A and for all challenges
π2 there is a negligible function negl for which

∣∣Pr[b′ = b]− 1
2

∣∣ ≤ negl(λ) in the following game.

ExpAISHVZKA,Π(1λ, b, π2) :

13



1. The challenger sends π1 to A, where:
– If b = 0, (π1, aux)← P(1λ, 1m), with m = |x|
– Else, if b = 1, (π1, aux)← Sim0(1

λ, 1m, π2)

2. A sends (x,w) to the challenger.

– If (x,w) ∈ Rel, the challenger sends π3 to A, where:
- If b = 0, π3 ← P(x,w, aux, aux, π2)
- Else, if b = 1, π3 ← Sim1(x, aux)

– Else, the challenger sends π3 = ⊥ to A
3. The adversary A outputs a bit b′.

3.9 Commit-and-Prove

Definition 10 (Commit-and-Prove Proof of Knowledge). We propose a revisit of the defini-
tion proposed in [KOS18]. A commit-and-prove proof of knowledge (P(m, |x|),V(|x|)) is an interac-
tive protocol between a prover P and verifier V. It consists of two phases, a commit phase-and-reveal
phase.

- In the commit phase, P interacts with V to commit to a message m. It also proves that the
message m satisfies some relation Rel, in other words it proves that Rel(x,m) = 1, for same
public statement x (that can be adaptively chosen by P in the last round of the commitment
phase). Prover and verifier also store the (private) randomness used to generate the protocol
messages denoted respectively by stateP and stateV . At the end of the commitment phase, V
outputs 0 or 1, where 1 denotes that V accepted the commit phase. We denote by τ the transcript
obtained during the commitment phase: τ ← CommitProve⟨P(|x|,m),V(|x|)⟩, where τ contains
the statement x proven by the prover.

- Later, in the reveal phase, parties P and V possibly engage in another decommit phase, which
we denote by Decommit⟨τ,P(m, stateP),V(stateV)⟩, at the end of which V outputs ⊥ or m̃ ∈
{0, 1}ℓ.

We require the protocol to satisfy the following conditions.

Completeness. If P and V honestly follow the protocol, then the probability that V accepts the
proof is 1.

Proof of Knowledge.11 There exists a ppt oracle algorithm E that given oracle access to
a corrupted ppt prover P⋆ that provides an accepting transcript τ ← CommitProve⟨P⋆,V(|x|)⟩
with some non-negligible probability p(λ) outputs m̃ ̸= ⊥ with non-negligible probability q(|x|)
(and returns always m̃ = ⊥ with probability 1 − q(λ)) such that the following properties are
satisfied:

1. Rel(x, m̃) = 1.

2. Pr [m← Decommit⟨τ,P⋆,V(stateV)⟩ ∧ m ̸= m̃] ≤ negl(λ).

11 Our notion differs from PoK notions introduced in previous works as it requires the existence of a ppt extractor
(instead of an expected ppt one), and it requires the extractor to be successful only with a non-negligible probability.
We consider this weaker version of PoK because this is sufficient to prove the security of our non-malleable
commitment scheme.
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3.10 MPC Definitions

Definition 11 (Correctness). We say that a protocol Π = (P1, . . . , Pn) realizes a deterministic
n-party functionality f(x,w1, . . . , wn) with perfect (resp. statistical) correctness if for all inputs
(x,w1, . . . , wn) the probability that the output outi of some party Pi is different from the output of
f is 0 (resp. negligible), where the probability is over the independent choices of the random tapes
r1, . . . , rn.

Definition 12 (tp-Privacy). Let 1 ≤ tp < n, we say that the protocol Π = (P1, . . . , Pn) realizes f
with perfect tp-privacy if for any input (x,w1, . . . , wn) and for all A ⊆ [n], where |A| ≤ tp, there
exists a ppt simulator Sim such that, Sim(A, x, {wi}i∈A, fA(x,w1, . . . , wn)) is identically distributed
to the joint view viewA(x,w1, . . . , wn) = {viewi}i∈A of parties in A.
We will speak about statistical (resp. computational) tp-privacy if the two distributions viewA(x,w1, . . . , wn)
and Sim(A, x, {wi}i∈A, fA(x,w1, . . . , wn)) are statistically (resp. computationally) indistinguishable.

We will need the following definitions from [IKOS07].

Definition 13 (Consistent views). We say that a pair of views viewi, viewj, i, j ∈ [n], computed
w.r.t. the randomness ri, rj, are consistent (with respect to the protocol Π and some public input
x) if the outgoing messages implicit in viewi, are identical to the incoming messages reported in
viewj and vice versa.

Lemma 1 (Local vs. global consistency). Let Π be an n-party protocol as above and x be a
public input. Let view1, . . . viewn be an n-tuple of (possibly incorrect) views. Then all pairs of views
viewi, viewj are consistent with respect to Π and x if and only if there exists an honest execution of
Π with public input x (and some choice of private inputs wi and random tapes ri) in which viewi

is the view generated using the code of Pi using randomness ri for every i ∈ [n].

3.11 Verifiable Secret Sharing (VSS)

A verifiable secret sharing (VSS) scheme [CGMA85] is a two-phase protocol carried out among n+1
parties. In the first step, a special party, also referred to as the dealer , shares a secret among all the
other n parties, referred to as share-holders, at most t of whom may be corrupt; in the second step,
parties reconstruct the secret. While in standard secret-sharing schemes the dealer is assumed to
be honest, in VSS schemes also the dealer can be corrupt. Loosely speaking, if the dealer is honest,
then no information about the dealer’s secret is revealed to the t corrupt parties by the end of the
sharing phase; moreover, by the end of the sharing phase even a dishonest dealer is committed to
some value that will be recovered by the honest parties in the reconstruction phase. Furthermore,
if the dealer is honest then this committed value must be identical to the dealer’s initial input.

Definition 14 (Verifiable Secret Sharing [CGMA85, CLP20]). An (n + 1, t)-perfectly se-
cure Verifiable Secret Sharing (VSS) scheme Πσ consists of a pair of protocols (Share,Recon) that
implement respectively the sharing and reconstruction phases as follows.

- Sharing Phase (Share). Party Pn+1 (the dealer) runs on input a secret s and randomness
rn+1, while any other party Pi, i ∈ [n], runs on input a randomness ri. During this phase
parties can send (both private and broadcast) messages in multiple rounds. We will indicate
with viewi the view that Pi obtains at the end of sharing phase, and with (view1, . . . , viewn) =
Share(s, r1, . . . , rn, rn+1) the process described above.
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- Reconstruction Phase (Recon). Each shareholder sends its view viewi, i ∈ [n], of the sharing
phase to each other party, and on input the views of all parties (that might include corrupt or
empty views) each party outputs a reconstruction of the secret s. All computations performed by
honest parties are efficient.

The following security properties hold even if an unbounded adversary corrupts up to t parties
(hence, t parties can deviate from the above procedures).

Commitment. If the dealer is dishonest then one of the following two cases happen: 1) during
the sharing phase honest parties disqualify the dealer, therefore they output a special value ⊥
and will refuse to run the reconstruction phase; 2) during the sharing phase honest parties do
not disqualify the dealer, therefore such a phase determines a unique value s∗, that belongs to
the set of possible legal values that does not include ⊥, which will be reconstructed by the honest
parties during the reconstruction phase.

Secrecy. If the dealer is honest, then the adversary’s view during the sharing phase reveals no
information about s. More formally, the adversary’s view is identically distributed under all
different values of s.

Perfect Correctness. If the dealer is honest throughout the protocols then each honest party will
output the shared secret s at the end of protocol Recon with probability 1.

Assuming a broadcast channel, perfectly-secure (n + 1, ⌊n/4⌋)-VSS scheme are implemented in
[GIKR01].

4 Non-Malleable HVZK with respect to Commitment

In this section, we introduce the new notion of non-malleable HVZK with respect to commitment
(NMZKC). Let Π = (P,V) be a proof system, and Πcom be a (potentially interactive) commit-
ment scheme. We consider a scenario where a man-in-the-middle adversary A interacts in the left
session with the prover of Π (hence, A acts as the verifier for Π), and in the right session A
acts as the sender for Πcom against an honest receiver. the formal definition of NMZKC follows,
and we refer to the introductory section of the paper for an informal discussion about this defi-
nition. Let (Sim0, Sim1) be the adaptive-input HVZK simulator for Π, we define the experiment
ExpZKA,Π,Πcom

(1λ, b, c).

ExpZKA,Π,Πcom
(1λ, b, c) : In the right session, interact with A as the receiver of Πcom. In the left

session, act as follows.

1. Set π2 ← c and send π1 to A, where:
– If b = 0, (π1, aux)

$←− P(1λ, 1m), with m = |x|
– If b = 1, (π1, aux)

$←− Sim0(1
λ, 1m, π2)

2. Upon receiving (x,w) from A in the left session do the following

– If (x,w) ∈ Rel, the experiment sends π3 to A in the left session where:

- If b = 0, π3 ← P(x,w, aux, π2)

- Else, if b = 1, π3 $←− Sim1(x, aux)

– Else, the experiment sets π3 ← ⊥
3. Set the output of the experiment as the output of A and its view.
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Definition 15 (NMZKC). Let Πcom be a commitment scheme. We say that an adaptive-input
HVZK proof system Π, with challenge space C, is a non-malleable HVZK with respect to commit-
ment for Πcom if there exists a ppt simulator Sim = (Sim0,Sim1) such that, for all ppt adversary
A, the following two distributions are indistinghuishable:

{ExpZKA,Π,Πcom
(1λ, 0, c),m0}λ∈N,c∈C

{ExpZKA,Π,Πcom
(1λ, 1, c),m1}λ∈N,c∈C ,

where ExpZKA,Π,Πcom
(1λ, b, c) is the experiment described above and mb, with b ← {0, 1}, is the

message committed in the right session of ExpZKA,Π,Πcom
(1λ, b, c) by A.

We note that non-malleable HVZK with respect to commitment property is parallel composable
w.r.t. multiple left sessions. The proof would follow via standard hybrid arguments. We also consider
a weaker notion of NMZKC, in which the adversary needs to pick the witness at the on-set of the
experiment (but the statement is fully adaptive on the first round). We refer to this notion as
adaptive-theorem NMZKC.

5 Robust Security for MPC

In this work, we consider MPC protocols Π = Πoff,on = (P1, . . . , Pn), among n parties P1, . . . , Pn,
that are composed of two sub-protocols Πoff = (P1, . . . , Pn) and Πon = (P1, . . . , Pn), where the
execution Πoff does not require parties’ private inputs, namely Πoff is input independent. If each
party Pi, for i ∈ [n], runs Π honestly, then the execution of Π is called an honest execution. A view
viewi of a party Pi is composed by its private input wi, randomness ri, and transcript τi, where
τi is given by the set of messages received and sent by party Pi during the execution of the MPC
protocol Π. We denote the view of the offline and of the online phase for a party Pi with viewoff

i

and viewon
i respectively.

In the rest of the paper, we consider MPC protocols where all parties share a public input x,
and each party Pi additionally holds a local private input wi and random tape ri. We consider pro-
tocols Πoff,on which securely realize an n-party functionality f . The output y = f(x,w1, . . . , wn)
can be computed from any viewi = (viewoff

i , viewon
i ), i.e., y = Πoff,on

f (viewi) = outi, for each i ∈ [n] .

Looking ahead, in our delayed-input protocol the prover, while committed to viewoff
1 , . . . , viewoff

n ,
is allowed to generate the online views viewon

1 , . . . , viewon
n only when it received (x,w), and after it

is given any eventual random inputs and the set of k parties/views it will need to open. This means
that a malicious prover P might arbitrarily create inconsistent views viewon

i1 , . . . , view
on
in−k

that will
not be opened, easily making all outputs to be incorrect without being caught. For this reason we
need an underlying MPC protocol with strong security requirements and introduce the following
definition of robustness.

Despite the name, this notion is different from the definition of robustness that was given in
[IKOS07] to generalize the definition of correctness in case of malicious adversaries.
Roughly, an MPC protocol Π = Πoff,on is said to be robust if, given two subsets A,H ⊂ [n], with
|H| = n−|A|, and a correct execution of Πoff, the output outj of some Pj , with j ∈ A, obtained by
running the protocol on input (x, (wi)i∈A, (wi)i∈H) and using some arbitrary randomness r′j , is not

⊥ then outj = y, where y = Πoff,on
f (viewi), ∀i ∈ H. Note that our definition specifically assumes
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an MPC protocol Πon,off in the pre-processing model with a correctly executed Πoff and requires
that every unbounded adversary A cannot make the parties in A output a result inconsistent with
the views of honest parties. The formal definition of robustness follows.

Definition 16 (Robustness). Let Πoff,on = (P1, . . . , Pn) be as above. Let A ⊂ [n] and H =

[n]−A. Let us denote by view the view {viewi = (viewoff
i , viewon

i )}i∈H , {ṽiewi = (ṽiew
off

i , ṽiew
on

i )}i∈A,
such that:

– ṽiew
off

i and ṽiew
on

i are the views generated by running the code of Pi for Π
off and Πon on input

(x,wi), respectively, with some arbitrary randomness r′i ∈ {0, 1}λ, for each i ∈ A;
– viewoff

i is the view generated running the code of party Pi for Π
off with some arbitrary random-

ness r′i ∈ {0, 1}λ, for each i ∈ H;
– viewon

i ∈ {0, 1}∗, for each i ∈ H.

We say that Πoff,on realizes a deterministic n-party functionality f(x,w1, . . . , wn) with robustness
if for any A and H, such that H = {i1, . . . , in−t} and A = {j1, . . . , jt}, the following holds: if, for
each jk ∈ A, party Pjk , on input randomness rjk and (x,wjk), outputs outjk = F ̸=⊥ with respect
to the view view, then F = fA(x,wi1 , . . . , win−t), for some wi1 , . . . , win−t with {i1, . . . , in−t} = H,
where fA is the function evaluated on n inputs where the inputs in positions A = {j1, . . . , jt} are
wj1 , . . . , wjt.

Intuitively, the above definition says that as long as Πoff is correct (concretely this can be achieved
instantiating Πoff with a malicious secure protocol) and the online phase Πon is a deterministic
function of the offline phase, then Π is robust. Notice the definition of robustness is independent
of the number of corruptions supported by Π and it can be achieved both with an honest and
dishonest majority. In Section 10, we show a concrete instantiation of a robust MPC protocol.

6 Our Delayed-Input MPC-in-the-Head Protocol ΠAI = (PAI,VAI)

Let L be an NP-language and Rel be the corresponding NP-relation. Let f be an (n+1)-argument
function, with n > 2, corresponding to Rel, i.e., f(x,w1, . . . , wn) = Rel(x,w1 ⊕ · · · ⊕ wn). Our
protocol, ΠAI = (PAI,VAI), for the NP-relation Rel makes use of the following tools:

- A tp-private MPC protocol Πoff,on = (P1, . . . , Pn) that realizes f with robustness (Definition
16).

- An ambiguous commitment scheme Πcom = (Com,Dec,Comeq,Eq) as in Definition 5.

A complete description of ΠAI = (PAI,VAI) for the NP-relation Rel can be found in Figure 2. At
a high level, given an MPC protocol Πoff,on, as specified above, PAI starts by emulating Πoff in its
head. In particular, it generates n views viewoff

i , i ∈ [n], corresponding to the n virtual parties and
separately commits to these views using an ambiguous commitment scheme Πcom. This is done by
sampling c random values {viewoff

(i,j)}j∈[c], for each i ∈ [n], such that viewoff
i =

⊕
j∈[c] view

off
i,j , and

computing {(com(i,j), dec(i,j)) ← Com(viewoff
(i,j);R(i,j))}j∈[c]. Notice here c ≥ 2 is a small integer.

This will allow the verifier to check that the commitments are correctly generated and Πoff is
honestly executed; moreover, it will be crucial to prove adaptive-input SHVZK, as we will see later.
The prover sends the first message π1, given by the concatenation of all the commitments, to V

which replies with the challenge π2, i.e., a set of random indices I = {i1, . . . , ik} ⊂ [n] with k ≤ tp,
and one index qij ∈ [c] for each i ∈ I.
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Common inputs: At the beginning of the third round both PAI and VAI gets x, while the parameters k, c, n (which
are small constants) and k < tp are specified when the protocol starts.
Private input: At the beginning of the third round PAI gets a random n-out-of-n secret sharing of the witness
w = w1 ⊕ · · · ⊕ wn.

Round 1. PAI computes the following steps.
1. Run Πoff “in its head” (by choosing uniform random coins ri for each party) to generate the transcript of

each party Pi. Let view
off
i denote the view of Pi in the execution of Πoff.

2. For each i ∈ [n], choose c random values {viewoff
(i,j)}j∈[c] such that viewoff

i = viewoff
(i,1)⊕viewoff

(i,2), . . . ,⊕ viewoff
(i,c).

3. For each i ∈ [n], compute {(com(i,j), dec(i,j))← Com(viewoff
(i,j);R(i,j))}j∈[c].

4. Send {com(1,j), . . . , com(n,j)}j∈[c] to VAI.
Round 2. VAI chooses a random a subset of distinct indices I = {i1, . . . , ik} ⊂ [n], with |I| = k ≤ tp; and for each

index ij it chooses a random value qij ∈ [c].
VAI sends (I, qi1 , . . . , qik ) to PAI.

Round 3. Upon receiving (x, (w1⊕· · ·⊕wn)), where w = w1⊕· · ·⊕wn s.t. Rel(x,w) = 1, PAI computes the following
steps:
1. Simulate the behaviour of the party Pi while running Πon on input ri, x, wi.

For each ij ∈ I, let viewij be the view of Pij in the execution of Π which is composed of viewoff
ij and viewon

ij .
2. Let Cij = {1, . . . , c} \ {qij}. For each ij ∈ I, send to VAI the following:(
{(viewoff

(ij ,l)
, dec(ij ,l))}l∈Cij

, (viewoff
(ij ,qij )

, R(ij ,qij )
), viewon

ij

)
.

Verification step. VAI outputs 1 if and only if all the following checks pass.
1. For ij ∈ I check that

- Dec(com(ij ,l), view
off
(ij ,l)

, dec(ij ,l)) = 1, for all l ∈ Cij

- Com(viewoff
(ij ,qij )

;R(ij ,qij )
) = com(ij ,qij )

.

2. The output of Pij is ̸= ⊥, for each ij ∈ I.
3. The views viewi1 , . . . , viewik are consistent, where viewoff

ij =
⊕

l∈[c] view
off
(ij ,l)

Fig. 2: ΠAI = (PAI,VAI)

In the last round, both P and V receive the theorem x, while P also receives w. in the last round,
P first completes the emulation of the MPC protocol, producing all the online views viewon

i , i ∈ [n];
secondly, it sends viewon

i , i ∈ I, and opens the corresponding commitments in π1 as follows. The
commitments corresponding to the indices qij in π2 are opened in a “binding way”, by sending
viewoff

ij ,qij
and Rij ,qij

, ij ∈ I, and the remaining c− 1 commitments, for each ij ∈ I, are opened by

sending the opening information decij ,q, along with viewoff
ij ,q, for each q ∈ {1, . . . , c} \ qij .

Finally, the verifier checks all the commitments. It verifies that all the parties in I output 1
and that their views are consistent with each other. We finally note that our protocol can be
parameterized to work with any n-out-of-n secret sharing scheme. Moreover, it would remain black-
box in the use of the underlying cryptographic primitives as long the reconstruction phase of the
secret sharing scheme does make any calls to a cryptographic primitive. We prove the following
result.

Theorem 2. If Πoff,on is an MPC protocol that realizes f (which is described above) with tp-
privacy and robustness, and Πcom is an ambiguous commitment scheme, let ΠComExt be a 3-round
extractable commitment scheme with a polynomial time extractor Ext that is successful with non-
negligible probability, then ΠAI is a 3-round public-coin adaptive-input sound delayed-input protocol
(with constant soundness error) for the NP-relation Rel satisfying the property of non-malleable
HVZK with respect to commitment for ΠComExt.

Correctness follows by inspection.
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Adaptive-input soundness (Intuition). At a high level, we can see that soundness can be proved
using the robustness property of the MPC protocol Π and the security properties of Πcom. If all the
offline views are correctly generated, then robustness ensures that a malicious prover will always
get caught. Hence a malicious prover can succeed either if incorrect offline views are generated, or
if some of the commitments are not computed in binding mode. We can argue that the probability
of the adversary being caught in either of the two cases is noticeable.

Adaptive-input special honest-verifier zero-knowledge (Intuition). At a high level, the
simulator Sim = (Sim0

AI,Sim
1
AI) works as follows. Let the challenge be (I, qi1 , . . . , qik), and let Cij =

{1, . . . , c} \ {qij}. For each ij ∈ I, and each l ∈ Cij , Sim
0
AI computes a random value view(ij ,l).

Then Sim0
AI generates the following commitments. For each ij ̸∈ I and q ∈ [c] set com(ij ,q) as a

commitment of the the all-zero string; for each ij ∈ I compute the commitment com(ij ,qij ) in binding

mode, and for each l ∈ Cij compute com(ij ,l) in equivocal mode. These commitments constitute the

simulated message π1. In the second phase, when x is available, Sim1
AI uses the MPC simulator to

obtain (viewoff
i , viewon

i ), i ∈ [n]. For each ij ∈ I and for each l ∈ Cij compute viewoff
ij ,l

, such that

viewoff
ij ,qij

= viewoff
ij

⊕
l∈Cij

viewoff
ij ,l

. Finally, for each ij ∈ I, l ∈ Cij equivocate the commitment

comij ,l to viewoff
ij ,l

, and sends the openings of all the commitments to complete the third round. ⊓⊔

Lemma 2. Let ΠComExt be a 3-round extractable commitment scheme with a polynomial time ex-
tractor Ext, that extracts with non-negligible probability, then ΠAI is non-malleable HVZK with
respect to commitment for ΠComExt.

Proof. To prove Lemma 2 we proceeds via hybrid experiments.

H0: This hybrid corresponds to ExpZKA,Π,Πcom
(1λ, 0, I).H0, in the left session, on input the challenge

(i1, qi1), . . . , (ik, qik), ij ∈ I, computes the 1st round π1 of ΠAI using the honest procedure of
PAI and sends it to A.
Upon receiving x, w from A, the experiment computes the 3rd round π3 of ΠAI using the honest
procedure of PAI w.r.t. x,w and send π3 to A.
H0 acts as honest receiver in the right session.

H2: This hybrid is described as the previous one except for how the commitments are computed.
Formally, let I = {i1, . . . , ik} and Cij be the set of all indices in [c]− {qij}, for each j ∈ [k].
- Compute {viewoff

i,q }i∈[n],q∈[c] as in the honest prover procedure.
- For each i ̸∈ I and q ∈ [c], compute (com(i,q), dec(i,q)) ← Com(viewoff

ij ,q;R(i,q)). For each
ij ∈ I, compute
∗ (com(ij ,qij ), dec(i,qij ))← Com(viewoff

(ij ,qij )
;R(ij ,qij )

).

∗ For l ∈ Cij compute com(ij ,l) ← Comeq(1λ;R(ij ,l)).
This hybrid is indistinguishable from the previous one due to the trapdoor property of the am-
biguous commitment scheme. Moreover, the distribution of the message committed in ΠComExt

does not change due to Claim 1.
H2: This hybrid is described as the previous one except that, in the left session, the 1st round π1

of ΠAI is computed as Sim0
AI does. All the commitments that will not be opened in the third

round (we know the set of commitments since we know the challenge in advance by definition)
are the commitment of 0λ.
This hybrid is indistinguishable from the previous one due to the hiding property of the am-
biguous commitment scheme. Moreover, the distribution of the message committed in ΠComExt

does not change due to the hiding property of Πcom; the proof is similar to the one of Claim 2
below.
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H3: This hybrid is defined as the previous one except that, in the left session, the third round π3 of
ΠAI is computed using Sim1

AI w.r.t. theorem x specified by A. This hybrid is indistinguishable
from the previous one due to the tp-privacy of Πoff,on. Moreover, the distribution of the message
committed in ΠComExt does not change due to Claim 2.

Claim 1 Let p̄ be the probability that A changes the distribution of the committed messages between
H1 and H0, then p̄ < ν(λ) for some negligible function ν.

Proof. Suppose by contradiction that Claim 1 does not hold. Then it is possible to make a reduction
that contradicts the trapdoor property of Πcom. Let CH be the challenger for the trapdoor security
game for ambiguous commitments.
We can construct an adversary Atrap that interacts with A in the left and the right session

according to both H0 and H1 for all messages except for the way the commitments are computed.
For these messages the reduction acts as a proxy between A and CH in the left session. More
formally, the reduction Atrap proceeds as follows:

1. In the left session, on input the challenge (i1, qi1), . . . , (ik, qik), ij ∈ [k] and qij ∈ [c], compute
{viewoff

i,q }i∈[n],q∈[c] as in the honest prover procedure.
2. Let I = {i1, . . . , ik} and Cij be the set of all indices in [c]/qij , for each j ∈ [k]. Send to the

challenger CH messages {viewoff
i1,l

, . . . , viewoff
ik,l
}l∈Cij

obtaining {(com(ij ,l), dec(ij ,l))}ij∈I,l∈Cij
.

3. Compute π1 following H2 (and H1) using {com(ij ,l)}ij∈I,l∈Cij
.

4. Upon receiving x,w from the adversary A compute π3 following H2 (and H1) and using
{(com(ij ,l), dec(ij ,l))}ij∈I,l∈Cij

.

5. Finally, Ashvzk wants to extract from the right session the messages committed in ΠComExt using
the corresponding extractor Extcom to feed this message in the distinguisher for H1 and H0.
Therefore the reduction applies Extcom (w.l.o.g. we can assume that Extcom rewinds from the 3rd
to the 2nd round since we are in the plain-model and ΠComExt is 3-round). The only caveat is
that during the rewinds also the left session is rewinded and A could choose a new theorem
and witness x′, w′ for which it is expecting to obtain a new third round π3 of the left session.
This is not a problem since the MPC protocol Πoff,on is input independent so new views of the
online phase can be generated w.r.t. x′, w′ and the same offline views can be reused (i.e., the
same commitment openings).

6. The adversary runs the distinguisher for H0 and H1 (that exists by contradiction) on input the
view of A and the committed message, and output whatever such distinguisher outputs.

⊓⊔

Claim 2 Let p̄ be the probability that A changes the distribution of the committed messages between
H1 and H2, then p̄ < ν(λ) for some negligible function ν.

Proof. Suppose by contradiction that Claim 2 does not hold. Then it is possible to make a reduction
that contradicts the tp-privacy of Πoff,on. Let CH be the challenger for tp-privacy security game.
Then, we can construct an adversary Ampc that interacts with A in the left and the right session

according to both H2 and H1 for all messages except for the way the online and offline views of
Πoff,on are computed. For these messages, the reduction acts as a proxy between A and CH in the
left session. More formally, the reduction Ampc proceeds as follows:

1. In the left session, on input the challenge (i1, qi1), . . . , (ik, qik), ij ∈ [k] and qij ∈ [c], compute
π1 following H2 (and H1).
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2. Upon receiving x,w, send I = {i1, . . . , ik} and x,w to CH thus obtaining the views viewoff
i1 , . . . ,

viewoff
ik

, viewon
i1 , . . . , view

on
ik
.

3. Compute π3 following H2 (and H1) and using the views viewoff
i1 , . . . , viewoff

ik
, viewon

i1 , . . . , view
on
ik
.

4. Finally, Ampc wants to extract from the right session the messages committed in ΠComExt using
the corresponding extractor Extcom o feed this message in the distinguisher for H2 and H1.
Therefore the reduction applies Extcom (rewinding from the 3rd to the 2nd round). The only
caveat is that during the rewinds also the left session is rewinded and A could choose a new
theorem and witness x′, w′ for which it is expecting to obtain a new third round π3 of the left
session. This is not a problem since we can ask the challenger for a new set of views (that can
be either simulated or generated honestly) due to the fact that tp-privacy composes in parallel.
Moreover, the reduction can keep fixed the first round while opening to the new offline views
returned by the challenger due to the equivocality of the commitments.

Following the arguments of the previous proofs, if the extraction probability changes (i.e., the
probability of the adversary providing an accepting transcript) then we can already break the
tp-privacy property. If the extraction probability stays the same, the reduction can run the
distinguisher for H2 and H1 (that exists by contradiction) on input the view of A and the
extracted message, and return whatever the distinguisher outputs.

⊓⊔
We recall that the commitment scheme Πcom used in ΠAI can be instantiated with any NI statis-

tically binding scheme, which can be constructed from any one-to-one OWF. In addition, following
[IKOS07], when we say that our protocols make black-box use of Πoff,on, it simply means that they
are invoking the “next-message function” of each party. Therefore, when Πcom is implemented using
a black-box reduction to one-way functions, the protocol ΠAI only makes black-box use of one-way
functions. More formally,

Corollary 1. Assuming the existence of one-to-one one-way functions, there exists a 3-round
public-coin delayed-input protocol satisfying adaptive-input soundness (with constant soundness er-
ror), and adaptive-input SHVZK, which makes black-box use of 1-1 OWFs. Moreover, let ΠComExt

be a 3-round extractable commitment scheme with a polynomial time extractor, that extracts with
non-negligible probability, then there exists a 3-round public-coin delayed-input protocol that is non-
malleable HVZK with respect to commitment for ΠComExt against synchronizing adversaries that
makes black-box use of the 1-1 OWFs.

7 The Building Blocks of the 4-Round Black-Box Non-Malleable Commitment
Scheme

In this section we define the main building blocks necessary to define our 4-round non-malleable
commitment scheme.

7.1 Commitment from Verifiable Secret Sharing

We start by recalling some of the techniques introduced by Goyal et al. [GLOV12]. We show
that these techniques can be used to build a Σ-commitment (Definition 4) that we denote by
Π = ((SΣ ,RΣ),DecΣ) and formally describe it in Figure 3. The protocol makes use of the following
primitives:
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Common inputs: Both SΣ and RΣ get parameters t, n, k, where t, n are the parameters corresponding to the VSS
Πvss = (ΠShare, ΠRecon), and k ≤ t.
Private input: At the beginning SΣ gets a private message w.

Commitment procedure: (SΣ ,RΣ)

Round 1. SΣ proceeds as follows.

1. Run the sharing phase of Πvss “in its head” on input w to generate the views viewσ
j , for each j ∈ [n].

2. Compute (comσj , dec
σ
j )

$←− Com(viewσ
j ) for j ∈ [n].

3. Set
– decσ ← {decσj , viewσ

j }j∈[n]

– πσ
1 ← (comσ1 , . . . , com

σ
n)

4. Send πσ
1 to RΣ .

Round 2. RΣ executes the following steps.
1. Choose a random subset I ← {i1, . . . , ik} ⊂ [n] and send it to SΣ .

Round 3. SΣ computes the following steps:
1. Define and send πσ

3 = {viewσ
j , dec

σ
j }j∈I to RΣ .

2. Set comσ = (πσ
1 , π

σ
2 , π

σ
3 )

Verification step. RΣ accepts the commitment if and only if:

1. Dec(comσj , view
σ
j , dec

σ
j ) = 1 and the output of Pj in Πvss is not ⊥, for each j ∈ I.

2. The views viewσ
i1 , . . . , view

σ
ik

are consistent.

Decommitment procedure: DecΣ(comσ, w, decσ)
1. Parse decσ as {decσj , viewσ

j , wj}j∈[n].
2. Use {viewσ

j }j∈[n] as the inputs of ΠRecon thus obtaining w.
3. Check that for all j ∈ [n] it holds that Dec(comσj , view

σ
j , dec

σ
j ) = 1.

If the above conditions hold, RΣ outputs w, else it returns ⊥.

Fig. 3: Π = ((SΣ ,RΣ),DecΣ)

- An (n + 1, t)-VSS protocol Πvss = (ΠShare, ΠRecon) as defined in Definition 14. Concretely, the
protocol uses a VSS scheme with a deterministic reconstruction procedure, like the (n+1, ⌊n/4⌋)-
VSS scheme described by Gennaro et al. [GIKR01]

- A statistically binding commitment scheme Πcom = (Com,Dec).

The protocol works as follows. To commit to a message w, the sender SΣ runs “in its head”
the protocol ΠShare, which implements the sharing phase of Πvss, with input w. Then the sender
commits to the views viewj (obtained by the execution of ΠShare) of each Pj separately using a
statistical binding commitment scheme Πcom. The receiver, upon receiving these commitments,
samples a random set I ⊂ [n], with |I| ≤ t, and sends it to the sender. Finally, the sender replies
by decommitting the views corresponding to the challenge I. This concludes the commit phase.
We prove now the following theorem that we shall use in the next sections.

Theorem 3. Let Πvss be a perfectly secure (n+1, t)-VSS protocol satisfying Definition 14, with t =
k, t < 1

4n, and let Πcom be a statistically binding commitment scheme, then Π = ((SΣ ,RΣ),DecΣ)
(see Figure 3) is a Σ-commitment with

(
n
k

)
-special binding.

Proof. Correctness. It follows by inspections.
Honest Receiver Hiding. To prove this property we proceed trough a series of hybrids.

H0: This hybrid takes as input the challenge πσ
2 and w, and computes the first and the third round

of Π using the honest procedure of SΣ w.r.t. the message w.
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H1: This hybrid, on input the challenge πσ
2 and w, proceeds as follows.

Let I be the set of indices contained in πσ
2 :

– For each ij /∈ I, compute (comij , decij )← Com(0ℓ);

– For each ij ∈ I, (comij , decij )← Com(viewσ
ij ).

The rest of the hybrid is executed as H0, in particular the views {viewσ
ij}ij∈I are computed as

before. This hybrid is indistinguishable from the previous one due to the hiding property of the
commitment scheme.

H2: This hybrid is defined as the previous one except that the views {viewσ
ij}ij∈I of parties in I

are computed using the simulator of Πvss. This hybrid corresponds to the simulator Simσ for Π
and it is indistinguishable from H1 due to the secrecy property of Πvss.(

n
k

)
-Special Binding. It is easy to see that having a third round of the protocol for all the possible

challenges it allows the extraction of the committed in ppt.

7.2 Commit-and-Prove

In this section we construct a 3-round public-coin commit-and-prove protocol ΠCP = (PCP,VCP)
that allows proving the knowledge of a committed value w such that Rel(x,w) = 1, for some
statement x. The protocol ΠCP = (PCP,VCP) is fully described in Figure 4. It makes use of the
following tools:

- The Σ-commitment Σ = ((SΣ ,RΣ),DecΣ) defined in Figure 3, Section 7.1 with 28-special-
binding (from Theorem 3 this can be obtained by setting n = 8, k = 2).

- The adaptive-input SHVZK ΠAI = (PAI,VAI) with adaptive-input soundness (and negligible
soundness error) for the NP-relation

RelAI = {(x, a, α, {views′i}i∈[λ]), ({ri, viewsi}i∈[λ]) : views′i ⊆ viewsi,

k = |views′i| < |viewsi| = n | ∀i ∈ [λ] wi = Recon(viewsi) ∧ Rel(x,wi) = 1 ∧ a = wi + riα},

where Recon is the reconstruction phase of an information-theoretic (9, 2)-VSS protocol Πvss.
We recall that to run ΠAI the prover needs statement and witness only in the third round. We
note that given that Πvss is information-theoretic, then ΠAI still makes black-box use of the
underlying cryptographic primitives.

Theorem 4. Let ΠComExt be a 3-round extractable commitment scheme, let ΠAI = (PAI,VAI) be
a 3-round public-coin, delayed-input complete, adaptive-input NMZKC for ΠComExt adaptive-input
soundness (with negligible soundness error) for the NP-relation RelAI, and Σ = ((SΣ ,RΣ),DecΣ)
(as defined in Figure 3) be a Σ-commitment with n = 8, k = 2, then ΠCP = (PCP,VCP) is a 3-round
public-coin adaptive-theorem NMZKC for ΠComExt, and it is a commit-and-prove protocol for the
NP-relation Rel.

Proof. Commit-and-prove. To prove this theorem we need to prove two facts. The first is that
if an adversarial sender provides an accepting transcript with some non-negligible probability p,
then there exists a valid opening for that transcript. The second property we need to prove is that
there exists a ppt extractor that returns a message m ̸= ⊥, that corresponds to the only massage
to which the commitment can be opened.
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Public input and parameters: Parameters k, n, t of Σ, with k = t, where n = 8 and t = k = 2. PCP and VCP gets
x in the third round.
Private input: At the beginning PCP gets w.

Round 1 PCP executes the following steps:
1. Sample r ← F.
2. For i ∈ [λ], do the following:

2.1. Execute SΣ on input (1λ, w||r), obtaining πσ
i,1 = {comσi,j}j∈[n], {decσi,j}j∈[n] and {viewσ

i,j}j∈[n].
2.2. Run PAI thus obtaining πi,1.

3. Define and send π1 = {πi,1, π
σ
i,1}i∈[λ] to VCP.

Round 2 VCP computes the following steps:
1. For i ∈ [λ], run VAI thus obtaining πi,2 and run RΣ thus obtaining πσ

i,2

2. Sample α← F.
3. Set π2 = ({πi,2}i∈[λ], {πσ

i,2}i∈[λ], α) and send it to PCP.
Round 3 PCP performs the following steps:

1. Compute a = w + rα and, for each i ∈ [λ], do as follows.
1.1. Compute the 3rd message πσ

i,3 of Σ executing SΣ on input πσ
i,2 (note that πσ

i,3 = {decσi,j , viewσ
i,j}j∈πσ

i,2
).

1.2. Define views′i ← {viewσ
i,j}j∈πσ

i,2
and viewsi ← {viewσ

i,j}j∈[n].

2. For each i ∈ [λ] Run PAI on input the pair statement-witness ((x, a, α, {views′c}i∈λ), {viewsc}c∈λ) and πi,2,
thus obtaining the third round πi,3.

3. Set π3 = ({πσ
i,3}i∈[λ], {πi,3}i∈[λ], a) and send π3 to VCP.

Verification step. On input x, outputs 1 if and only if, for each i ∈ [λ], the following holds:
1. RΣ accepts the commitment (πσ

i,1, π
σ
i,2, π

σ
i,3).

2. VAI accepts the proof (πi,1, πi,2, πi,3) for the statement (x, a, α, {views′c}i∈λ), where views
′
c is defined as before.

Decommitment procedure: On input an accepting transcript of the protocol, and on input all the decommitment
information for the λ commitments generated via Σ, return m, if and only if the majority of the Σ-commitments
are commitments of (m∥ · ).

Fig. 4: ΠCP = (PCP,VCP)

To prove the first claim, we need to argue that if a receiver accepts a proof, then the majority of
the Σ-commitments are well formed (this is due to how the opening procedure of ΠCP is defined).
We prove this as follows. Let us consider a single execution of a Σ-commitment (parametrized with
n = 8 and k = 2) against a corrupted sender. The best strategy for the adversarial prover to provide
an accepting transcript for a single execution of a Σ-commitment, while at the same time not being
detected, is to compute in an ill-formed way 2 views (note that the two views might be consistent
with each other, even if they are not consistent with the remaining 6 views). We denote this strategy
with best, and argue that this is the best strategy that an adversary could implement in order to
not get caught, while still computing an accepting transcript for a Σ-commitment that does not
have a valid opening. The probability of an adversary that completes an accepting transcript for a
Σ-commitment with some probability pσ of not getting caught using the strategy best is at most

pσ(
(n−2

2 )+1

(n2)
). Note that

(n−2
2 )+1

(n2)
≥ (n−i

2 )+(i2)
(n2)

for all n > 4, 2 ≤ y ≤ n− 2, where
(
n−i
2

)
+
(
i
2

)
denotes

the number of accepting transcripts for a Σ-commitment in the case where the adversary decides
to generate a set A of size (n− i) of views consistent with each other, and a set B of size i of views
(consistent with each other), where each view A is inconsistent with a view in B.12.
Note also that a strategy where the adversary computes only one view in an ill-formed way does

not represent an attack since, due to the commitment property of the VSS scheme that underlines

12 Observe that this holds since a verifier would reject any transcript in which one view from A and one view from
B is opened
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the Σ-commitment, it is still possible to reconstruct the message correctly even if one (or two views)
are ill-formed. Given that best is the best strategy for the adversary to compute a bad execution
of a Σ commitment while not getting caught (i.e., a Σ-commitment that commits to a value ⊥),
then we can claim that the probability of the adversary getting caught, when n = 8 and k = 2, is
at least (1− 4/7)pσ > 1/3pσ (where pσ is the probability of an adversary of providing an accepting
transcript for one execution of a Σ-commitment).
Going back to the PoK proof ΠCP. As we mentioned, the first thing we want to prove is that if

the adversarial sender provides an accepting transcript for ΠCP with non-negligible probability p,
then the majority of the Σ-commitments are computed correctly.

Suppose by contradiction that more than λ/3 commitments are ill-formed (i.e., at least two views
are inconsistent with each other). Without loss of generality, we can assume that the adversary
follows the strategy best to compute the ill-formed Σ commitments. In this case, the probability
that the receiver accepts the transcript of ΠCP is bounded by (1 − pσ/3)

λ/3 = ν(λ), which is a
contradiction since we have assumed that the receiver accepts with non-negligible probability p.
Hence, the number of ill-formed transcripts of Σ-commitment must be less than λ/3, as such we
can claim that the majority of the Σ-commitment are well-formed. In the rest of the proof we will
denote the set of all the well-formed Σ-commitments with S. We can now go to the second part
of the proof and show that all the well-formed Σ-commitment are commitments of the same value
and that we can extract this value in ppt.

We first recall that due to the commitment property of the VSS we can claim that there is no
set of honestly generated views {viewi, view

′
i}ij /∈{α,β} such that Recon(view1, . . . , viewn) = m and

Recon(view′1, . . . , view
′
n) = m′ where m ̸= m′ and viewα = view′α and viewβ = view′β. This, together

with the soundness of ΠAI guarantees that for each Σ-commitment transcript in S, the committed
value wi||ri is such that wiα + ri = a with overwhelming probability over α and (x,wi) ∈ Rel. By
Schwartz-Zippel lemma, this is possible only if there exists (w, r) such that wi = w and ri = r for
all Σi ∈ S. Hence, the majority of the Σ-commitment are well formed and contain the same value
w||r.
It remains to argue that we can extract such w in ppt against an adversary that provides an

accepting transcript with non-negligible probability p.
By definition, the Σ-commitment we use is 28-special binding. This means that there exists a

polynomial time algorithm, that on input all the possible accepting transcripts for a Σ-commitment,
returns the committed value. Our extractor works as follows. It acts as the honest receiver, and
upon receiving an accepting transcript, it rewinds the adversary exactly 28 times. If the extractor
manages to get all the possible accepting transcripts for one execution of a Σ-commitment, then the
extractor can run the special-binding extractor and returns what the extractor for special-binding
returns, else it returns ⊥.

This extractor is clearly ppt and it extracts the correct message. Moreover, given that it is
possible to extract all the possible accepting transcripts from a Σ-commitment only if it is well-
formed, from the argument above we can then claim that the extracted value is the correct one.
The only thing it remains to argue is that the extractor returns a value different from ⊥ with
non-negligible probability. The probability that the adversary provides 28-accepting transcripts in
each rewind performed by our simulator is p28. The probability that, for a random execution of a
Σ-commitment, every randomly sampled challenge contains a new challenge for the i-th execution
of the Σ-commitment is at leaset 1/n = 1/8. Hence, the probability that the extractor manages to
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collect all the possible accepting transcript for a random execution of a Σ-commitment is at least
(p/9)28, which represents a non-negligible value since p, by assumption, is non-negligible.
Adaptive-theorem NMZKC.
Let (Sim0

AI, Sim
1
AI) be the NMZKC of ofΠAI, and let Simσ be the simulator for the Σ-commitment.

Our simulator SimCP = (Sim0
CP, Sim

1
CP) works as follows.

Sim0
CP. On input challenge (α, π2) and the length of the theorem 1m, parse π2 as {πσ

i,2}i∈[λ], {πi,2}i∈[λ]
and compute the following steps:
1. For all i ∈ [λ]:
1.1. Run Simσ on input {πσ

i,2}i∈[λ] to generate πσ
i,1, π

σ
i,3.

1.2. Run Sim0
AI on input 1m and {πi,2}i∈[λ] to generate (πi,1, auxi).

2. Output {πi,1, πσ
i,1}i∈[λ].

Sim1
CP. On input the theorem x do the following steps.
1. Choose a at random.
2. For all i ∈ [λ], parse πσ

i,3 as {decσi,j , viewσ
i,j}j∈πσ

i,2
) and define views′i ← {viewσ

i,j}j∈πσ
i,2

3. For all i ∈ [λ] run Sim1
AI on input X = ((x, a, α, {views′i}i∈[λ]) and auxi thus obtaining the

third round πi,3.
4. Set π3 ← ({πσ

i,3}i∈[λ], {πi,3}i∈[λ], a) and output π3.

We will now briefly argue that our simulator satisfies the notion of adaptive-theorem non-
malleable HVZK with respect to commitment.

H0: This hybrid generates the transcript in the left session running the honest prover. In the right
session the hybrid interacts as honest receiver with the adversary A.

H1: This hybrid is identical to the previous one except that, in the left session, the transcript of
ΠAI is generated using the NMZKC simulator SimAI = (Sim0

AI, Sim
1
AI).

The indistinguishability between the two hybrid and the fact that the distribution of the mes-
sages committed on the right session using ΠComExt comes immediately from the NMZKC for
ΠComExt.

H2: This hybrid is identical to the previous one except that it runs Simσ to generate the transcript
of Σ.
The two hybrids are indistinguishable due to the (parallel composable) honest receiver hiding
of Σ. Moreover, we can prove that the distribution of the messages committed via ΠComExt does
not change as this would contradict the receiver hiding of Σ. Note that a reduction to the hiding
of Σ can be done since the rewinds made to extract the message committed in ΠComExt do not
rewind the challenger since the challenge and the witness that eventually the challenger needs
to commit to are fixed at the on-set of the experiment.

H3: The hybrid is identical to H2, but it changes the way the value a, sent in the third round, is
computed. In particular, a is chosen at random, instead of following the honest prover procedure.
These two hybrids are statistically indistinguishable due to the fact that a hides the witness w
information theoretically.

⊓⊔

Corollary 2. Let ΠComExt be a 3-round extractable commitment scheme and Rel be an NP-relation.
Assuming the existence of one-to-one one-way functions, there exists a 3-round public-coin adaptive-
theorem NMZKC for ΠComExt, a commit-and-prove protocol for the NP-relation Rel that makes
black-box use of the 1-1 OWFs.
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Public parameters: 1λ, ℓ, tags tg1, . . . , tgℓ and a large prime q s.t. q > 2tgi for all i. A default second round message
πσ
2 for Σ (i.e., πσ

2 = {1, 2, . . . , k}).
Private input: Swnmc gets m ∈ Fq.

Round 1 Swnmc computes the following steps:
1. Pick at random r1, . . . , rℓ and perform λ2 executions of SΣ on input (1λ,m||r1||, . . . , ||rℓ), thus obtaining

πσ
1 = {πσ

1,i}i∈[λ2] and decσ = {decσi }i∈[λ2]. Send π1
σ to Rwnmc.

Round 2 Rwnmc computes the following steps:
1. Pick at random challenge vector α⃗ = (α1, . . . , αℓ), where αi ∈ [2tgi ] ⊂ Fq.
2. Send α⃗ to Swnmc.

Round 3 Swnmc computes the following steps:
1. Compute the third message πσ

3 of Σ executing SΣ on input πσ
2 .

2. For all i ∈ [ℓ], compute ai ← riαi +m, set a⃗ = (a1, . . . , aℓ).
3. Send (πσ

3 , a⃗) to Rwnmc.
Decommitment procedure: On input an accepting transcript of the protocol, and on input all the decommitment

information for the λ commitments generated via Σ, return m, if and only if the majority of the Σ-commitments
are commitments of (m||r1||, . . . , ||rℓ), and for all i ∈ [ℓ] it holds that ai = riαi +m.

Fig. 5: Πwnmc = (Swnmc,Rwnmc)

Remark 1. To simplify the exposition of our non-malleable commitment scheme that internally uses
the commit-and-prove protocol we have just described, we will consider the messages of ΠCP as
divided into two parts: the messages related to the proof phase, and the messages related to the
commitment phase.

7.3 The 4-Round Non-Malleable Commitment Scheme of [GRRV14a]

The 4-round non-malleable commitment of Goyal et al. [GRRV14a] is composed of two parts: the
first one is a special public-coin Πwnmc commitment scheme, that enjoys a weak form of non-
malleability. Loosely speaking, Πwnmc is non-malleable as long as the MiM, acting as a sender, is
committing to a well-formed commitment. The second part is a zero-knowledge PoK that ensures
that Πwnmc is computed correctly. In Figure 5, we recall the protocol Πwnmc. This uses as an
underlying building block a non-interactive commitment that is statistically binding. We replace
this commitment with our interactive Σ-commitment Σ where the challenge is a default value
(i.e., this trivially makes the Σ-commitment non-interactive). Finally, we prove that, after this
modification, Πwnmc remains hiding.

Lemma 3. Let Σ be the Σ-commitment described in Figure 3, then Πwnmc = (Swnmc,Rwnmc)
described in Figure 5 enjoys the hiding property.

This follows from Theorem 3 a1, . . . , aℓ information theoretically hide the committed message.

8 Our 4-Round Black-Box Non-Malleable Commitment Scheme

Our 4-round non-malleable commitment Πnmc = ((Snmc,Rnmc),Decnmc) makes use of the following
tools.

- An ambiguous commitment scheme Πcom = (Com,Dec,Comeq,Eq) as described in Section 3.6.
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Common inputs: 1λ, Parameters. k, n, t of Σ, with k = t, where n = 8 and t = k = 2, ℓ = λ, the tags tg1, . . . , tgℓ
and a large prime q s.t. q > 2tgi for all i ∈ [ℓ]. m, as described above.
Private input: At the beginning Snmc gets m ∈ Fq.

Round 1. Rnmc picks two random strings ŝ0, ŝ1, and a random bit b and runs PcomWI on input (1λ, ŝb, b) thus
obtaining πcomWI

1 and sends it to Snmc.
Round 2. Snmc executes the following steps:

1. Compute the 1st round of Πwnmc: Pick ℓ random strings r1, . . . , rℓ and for i ∈ [λ], do the following:
1.1. Execute SΣ on input (1λ, (m, r1, . . . , rℓ)), obtaining πσ

i,1 = {comσi,j}j∈[n], {decσi,j}j∈[n] and {viewσ
i,j}j∈[n].

1.2. Run PAI on input 1λ thus obtaining πi,1.
2. Define π1 = {πi,1}i∈[λ] and πσ

1 = {πσ
i,1}i∈[λ].

3. For each i ∈ [λ] sample s0i
$←− {0, 1}λ

2

, set s1i ← πi,1 ⊕ s0i , pick Rb
i

$←− {0, 1}λ and compute (combi , dec
b
i )

$←−
Com(sb;R

b
i ) for each b ∈ {0, 1}.

4. Sample a random string β0
$←− {0, 1}λ.

5. For each i ∈ [λ] sample s0i
$←− {0, 1}λ

2

, set s1i ← β0 ⊕ s0i , pick R
b
i

$←− {0, 1}λ and compute (combi , dec
b
i )

$←−
Com(sb;R

b
i ) for each b ∈ {0, 1}.

6. Run the simulator for Πtr twice: Pick γ0
$←− {0, 1}m, and run Simtr on input (γ0, γ0, γ

2
0) thus obtaining

(aux, πtr
1 ). Pick γ0

$←− {0, 1}m, and run Simtr on input (γ0, γ0, γ
2
0) thus obtaining (aux, πtr

1 ).
7. Compute the second round πcomWI

2 of VcomWI.
8. Send (πσ

1 , π
tr
1 ,π

tr
1 , π

comWI
2 , {combi}b∈{0,1},i∈[λ]) to Snmc.

Round 3 Rnmc executes the following steps:
1. Compute the 2nd round of Πwnmc: Pick a random challenge vector α⃗ = (α, . . . , αℓ), where αi ∈ [2tgi ] ⊂ Fq.
2. Run the third round πcomWI

3 of PcomWI on input (πcomWI
2 , ŝ1).

3. Run VAI λ times thus obtaining π2 = {πi,2}i∈[λ].

4. Pick β1
$←− {0, 1}m, γ1

$←− {0, 1}m, γ1
$←− {0, 1}m and send (α⃗, πcomWI

3 , ŝ0, ŝ1, π2, α, β1, γ1, γ1) to Snmc.
Round 4. Snmc computes the following steps:

1. If VcomWI accepts the proof, (πcomWI
1 , πcomWI

2 , πcomWI
3 , ŝ0, ŝ1) continue, else abort.

2. Set πσ
2 = {πσ

i,2}i∈[λ] ← β0 ⊕ β1.
3. Compute the 3rd round of Πwnmc: For all i ∈ [ℓ], compute ai = riαi +m.
4. Define x = {ai, αi}i∈[ℓ] and set w = (m, r1, . . . , rℓ).
5. For each i ∈ [λ] compute the 3rd message πσ

i,3 of Σ executing SΣ on input πσ
i,2 (note that πσ

i,3 =
{decσi,j , viewσ

i,j}j∈πσ
i,2

), and define views′i ← {viewσ
i,j}j∈πσ

i,2
and viewsi ← {viewσ

i,j}j∈[n].

6. For each i ∈ [λ] Run PAI on input the pair statement-witness ((x, {views′u}u∈λ), {viewsu}u∈λ) and πi,2, thus
obtaining the third round πi,3.

7. Set πσ
3 ← {πσ

i,3} and π3 ← {πi,3}i∈[λ].
8. Run Simtr on input (aux, ŝ0, ŝ1) thus obtaining πtr

3 . Run Simtr on input (aux, ŝ0, ŝ1) thus obtaining πtr
3

9. Set c ← γ0 ⊕ γ1 and let ci be the i-th bit of c with i ∈ [λ]. Analogously, c ← γ0 ⊕ γ1 and let ci be the i-th
bit of c with i ∈ [λ].

10. Send (πtr
2 = (γ2

0 , γ0, γ0), π
tr
2 = (γ2

0, γ0, γ0), π
tr
3 , π

σ
3 , π3, {scii , deccii }i∈[ℓ], {s1−ci

i , R1−ci
i }i∈[ℓ], {scii , dec

ci
i }i∈[ℓ],

{s1−ci
i , R

1−ci
i }i∈[ℓ]) to Rnmc.

Verification step. Set c← γ0 ⊕ γ1 and πσ
2 = {πσ

i,2}i∈[λ] = β0 ⊕ β1 and accept the commitment if and only if:
1. Vtr accepts the proofs for (πtr

1 , (γ0, γ0, γ
2
0), π

tr
3 ) with respect to the instance (ŝ0, ŝ1)

2. Vtr accepts the proofs for (πtr
1 , (γ0, γ0, γ

2
0), π

tr
3 ) with respect to the instance (ŝ0, ŝ1)

3. For each i ∈ [λ]
– Dec(comcii , scii , deccii ) = 1, Com(s1−ci

i ;R1−ci
1 ) = com

1−ci
i and πi,1 = s0i ⊕ s1i .

– Dec(comcii , scii , dec
ci
i ) = 1, Com(s1−ci

i ;R
1−ci
1 ) = com

1−ci
i and β0 = s0i ⊕ s1i .

– The transcript (πi,1, πi,2, πi,3) is accepting for VAI for the theorem (x, a, α, {views′i}i∈[λ]), where x and
views′i are defined as before.

– RΣ accepts the commitment (πσ
i,1, π

σ
i,2, π

σ
i,3).

Decommitment procedure Decnmc: This proceeds as follows.
1. Snmc sends the decommitment information for each of the λ executions of Σ for the message (m||r1||, . . . , ||rℓ):
{decσi,j}i∈[λ],j∈[n] and {viewσ

i,j}i∈[λ],j∈[n].
2. Rnmc checks majority of the decommitment information for Σ are valid w.r.t. the message (m||r1||, . . . , ||rℓ),

and accepts m as the decommitted message if (m||r1||, . . . , ||rℓ) is consistent with {ai, αi}i∈[ℓ].

Fig. 6: Πnmc = ((Snmc,Rnmc),Decnmc)
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- A 3-round public-coin delayed-input adaptive-theorem NMZKC (for a three-round extractable
commitment) commit-and-prove protocol for the relation Reltr = {((m0,m1), w) : m0 = w ∨
m1 = w}. We denote the NMZKC simulator with Simtr, and recall that the input of Simtr

requires only the challenge to compute the first round, where the challenge has the following
structure (α, π2), with π2 = ({πi,2}i∈[λ], {πσ

i,2}i∈[λ]), where {πi,2}i∈[λ] denotes λ challenges, one
for each execution of ΠAI, and {πσ

i,2}i∈[λ] represents the challenge for the λ executions of the
Σ-commitment parametrized with n = 8, k = 2. Without loss of generality, we assume that
m = |πi,2| = |{πσ

i,2}i∈[λ]| = |α|.
- The Σ-commitment Σ = ((SΣ ,RΣ),DecΣ) defined in Figure 3, Section 7.1 parametrized with
n = 8, k = 2.

- The adaptive-input SHVZK ΠAI = (PAI,VAI) with adaptive-input soundness (and negligible
soundness error) for the NP-relation

RelAI = {(x, {viewij}j∈[k]), (r, {viewi}j∈[n]) : 1 ≤ i1 < · · · < ik < n ∧
w = Recon({viewi}j∈[n]) ∧ Relcom(x,w) = 1}

where

Relcom =

{
x =

(
{ai, αi}i∈[ℓ])

w =
(
m, {ri}i∈[ℓ]

) ∀ i ∈ [ℓ] ai = m+ riαi

}
.

- A one-of-two binding commitment scheme ΠcomWI = (PcomWI,VcomWI) (Definition 6).

We explicitly require Πtr to be protocol constructed in Section 7.2 because in the security proof
we will exploit the structure of the protocol. More detail will follow.
We propose the formal description of our protocol in Figure 6, and prove the following.

Theorem 5. The protocol Πnmc = ((Snmc,Rnmc),Decnmc), described in Figure 6 is a 4-round non-
malleable commitment.

Proof. Binding. The binding property follows from the adaptive-input soundness of ΠCP and ΠAI,
and the binding property of the underlying Σ used to implement Πwnmc.
Non-Malleability. We denote by {mimAHm

i
(z)}z∈{0,1}λ the random variable describing the view

of the MiM A combined with the values that A commits in the right session in hybrid Hm
i (z).

As required by the definition, we need to show that the distribution of the messages committed
by the MiM (together with its view) when receiving an honestly generated commitment of m0 on
the left session and the distribution of the messages committed in the right session by the MiM
(together with its view) when computing on the left session an honestly generated commitment of
m1, are indistinguishable.

We proceed via hybrid experiments:

Hmb
1 : In this hybrid in the left session Snmc commits to mb, while in the right session Rnmc interacts
with A. In Claim 3 we prove that in Hmb

1 if A that provides an accepting transcript in the right
session, then he does not commit (unless with negligible probability), to m = ⊥. That is, if the
receiver accepts a transcript during the commitment phase, then such commitment admits a
valid opening.

Claim 3 Let p̄ be the probability that in the right session of Hmb
1 A successfully commits to a

message m̃ =⊥, then p̄ < ν(λ) for some negligible function ν, for any message mb ∈ {0, 1}λ.
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Proof. Let us assume by contradiction that Claim 3 does not hold, then in the right session A
commits to ⊥. Formally, this means that the adversary is not committing in the majority of
the Σ-commitments to the same message (m, r1, . . . , rℓ) = w. In particular, the adversary can
do that by 1) computing the majority of the executions of the Σ-commitments in an ill-formed
manner and 2) using different messages for different execution of the Σ-commitments.

We start by proving that if the adversary provides an accepting transcript for the non-malleable
commitment with some non-negligible probability p, then the majority of the Σ-commitments
are well formed. We have already argued in the PoK proof of Theorem 4, that if the challenge
πσ
2 = {πσ

i,2}i∈[λ] is randomly generated, then it must be that the majority of the Σ-commitments
are well formed. We note that in our protocol, πσ

2 is equal to β0 ⊕ β1, where β0 is committed
using using the ambiguous commitment (β0 is committed λ times).

This means that β0 ⊕ β1 is not fully under the control of the verifier (hence, under the control

of the PoK extractor) unless we can argue there exists j such that (combj , dec
b
j) ← Com(sb; ·).

That is at least one pair of ambiguous commitments used to commit to β0 such that both are
computed using the honest procedure. Assume by contradiction that such j does not exist,
then the only way the adversary has to provide an accepting transcript is by either guessing
the challenge γ1, and/or by equivocating γ0 accordingly to the value γ1 received by the honest
receiver.

Given that the probability that the first event happens is negligible (in particular, it is not
possible for the adversary to guess more than λ/3 bits13 of the challenge γ1), it must be that
the adversary provides an accepting transcript by programming γ0 accordingly to γ1. However,
if this happens, then, following the proof of Theorem 4, we can design an extractor that extracts
the value committed in one of the Σ-commitment of Πtr with non-negligible probability.

We now argue that the value extracted corresponds, with non-negligible probability, to either
the message ŝ0 or the message ŝ1 the verifier sends in the clear in the right session as part of
the third round of the one-of-two binding commitment scheme.

To argue this we can simply rely on the soundness of the protocol ΠAI that is run inside Πtr.
Indeed, note that the challenge for a single execution of Πtr corresponds to γ0.

We are now ready to conclude the first part of the claim’s proof, by showing how to use such
an adversary to break the hiding of the one-of-two binding commitment scheme, thus reaching
a contradiction. Let Extractor be the extractor we mentioned that returns either ŝ0 or ŝ1. The
reduction acts as the honest verifier would do, but it will act as a proxy for all the messages
related toΠcomWI between the adversary and the external challenger. The extractor could return
either ŝ0 or ŝ1. However, given that the first round of ΠcomWI can depend only on either of the
two messages, it must be that the extractor returns the value committed in the first round of
ΠcomWI. Hence, such an adversary would break the equivocability property of ΠcomWI.

We mentioned at the beginning of the proof, that the other way the adversary can commit
to an ill-formed (but accepting) commitment, is by committing to different values in different
execution of the Σ-commitment. Note that the soundness of ΠAI = (PAI,VAI) and the way
the values a1, . . . , aℓ are computed in the last round of the protocol should guarantee that
all the well-formed execution of the sigma-commitment commits to the same w. However, we
cannot trivially rely on the soundness of ΠAI, since the adversary might compute the first round
of ΠAI adaptively on the challenges (π2,i) it receives. The adversary could do that by relying

13 We adversary cannot guess more than a small fraction of λ bits, but for this proof it is sufficient to use this upper
bound.
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(again) on the equivocation property of the ambiguous commitment scheme Πcom. We can argue
that with non-negligible probability, at least on the executions of the ambiguous are computed
in a non-binding mode. This would allow us to use rely on the binding of ΠAI. Suppose by
contradiction that all the ambiguous commitments are computed in equivocal mode. The only
way the adversary has to compute an accepting transcript is by opening γ0 adaptively on γ1. In
particular, the adversary needs to do that for at least λ/2 bits of γ0 (otherwise the adversary
would be caught cheating with overwhelming probability). In this case, we can again rely on
the same argument as above since this adversary just corresponds to an adversary that provides
accepting transcripts for the protocol Πtr with respect to sufficiently many random challenges
(specified by γ0). Hence Extractor would again return the trapdoors.

Note in particular, that Extractor can detect whether A is performing a commitment of ⊥. We
note that if A is committing to a message m̃ ̸= ⊥, Extractor will not return the trapdoor. In this
case, we can run an additional extraction process that instead returns the message m̃ with non-
negligible probability. Such an extractor simply rewinds from the fourth to the second round
sending a fresh third round in the right session thus obtaining (ã1, . . . , ãℓ) from the main thread,
and (a′1, . . . , a

′
ℓ) from the rewinding thread. The extractor can then interpolate the points to get

the committed message m̃. We are now ready to claim the following. We denote with Extractor′,
the extractor that first runs Extractor to check whether A committed to ⊥ (i.e., it checks whether
Extractor returns a trapdoor), and if this is not the case, the extractor runs the procedure we
have just mentioned to extract the message committed by A. Due to the above, we can claim
the following.

Claim 4 If in Hmb
1 the adversary provides an accepting transcript with non-negligible proba-

bility, then there exists a ppt extractor Extractor′ that returns the committed message, if there
exists one, or it returns ⊥ if the commitment does not admit a valid opening.

Hmb
2 : This hybrid is identical to the previous one except that the trapdoor witness is extracted
and used in both the executions of Πtr. In more detail, A is rewound from the 3rd to the 2nd
round in the left session in order to obtain a second third round. Let ŝ10, ŝ

1
1 be the strings that A

sent in the third round before being rewound. Then, the hybrid computes the following steps:

a) The hybrid repeats the following until receives a new third round from A or nr(λ)-trials are
executed.

– Execute again the 2nd round of Πnmc sampling a new challenge for ΠcomWI, and com-
mitting to ŝ = ŝ10 using the honest prover procedure in both the executions of Πtr. Upon
receiving a 3rd round from A, let ŝ20, ŝ21 be the strings that she send. If ŝ20 = ŝ10 the hybrid
completes the left session as acting as described in Hmb

1 . If ŝ21 ̸= ŝ11 stop returning ⊥.
Otherwise, step b is computed.

b) The hybrid repeats the following until receives a new third round from A or nr(λ)-attempts
are executed.

– Execute again the 2nd round of Πnmc sampling a new challenge for ΠcomWI, and com-
mitting to ŝ = ŝ11 using the honest prover procedure in both the execution of Πtr. Upon
receiving a 3rd round from A the hybrid completes the left session as acting as described
in Hmb

1 .

c) If nr(λ)-trials are already executed stop and return ⊥.
Let p be the probability that A provides an accepting third round in the left session, following
the arguments of [KOS18] (that in turn are based on [GK96]) we can argue that our simulator
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succeeds with probability p− negl(λ) in extracting the message ŝ in expected polynomial time.
Moreover, due to the binding of ΠcomWI, we can claim that we have extracted the value com-
mitted in the first round by the adversary (which appears in the last round of ΠcomWI of all the
rewinding threads).
We now argue that if the adversary distinguishes between the two hybrids, then we can construct
an adversary that breaks the property of NMZKC of Πtr. We note that the reduction has to be
strictly polynomial time, while the extraction of ŝ takes a number of steps that are polynomial
in expectation. Therefore, we consider a truncated experiment in which we set the number of
attempts to extract ŝ to be (λ · pdis(λ) · nr(λ)). By an averaging argument, we can show that
the in the truncated experiments we manage to extract ŝ with non-negligible probability (we
recall that here by contradiction we are assuming that an adversary distinguishes between the
two hybrids with some non-negligible probability). Our reduction to the NMZKC property of
Πtr works as follows.
Left session. In the main thread, and during the rewinding threads, the reduction computes
the messages of the protocol as in Hmb

1 . If the extraction is not successful, then the reduction
returns a random bit, else it sends to the external challenger the second-rounds for the two
instantiations of Πtr, respectively, π

tr
2 = (γ0, γ0, γ

2
0) and πtr

2 = (γ0, γ0, γ
2
0), and the witness ŝ (we

recall that the NMZKC simulator of Πtr is adaptive only in the theorem, hence, the witness
needs to be specified at before the first round is computed). The reduction, upon receiving
πtr
1 and πtr

1 , acts exactly as in Hmb
1 to compute the remaining messages that constitute the

second round of the protocol. Upon receiving (ŝ0, ŝ1) the reduction forwards these two values
to the challenger (this pair represents the theorem for Πtr). Note that it must be that ŝ0 = ŝ or
ŝ1 = ŝ with the same probability both in Hmb

1 and Hmb
2 otherwise we can already distinguish

between whether the challenger is computing the messages of Πtr using the simulated or the
honest procedure. The reduction, upon receiving (πtr

3 , π
tr
3 ) from the challenger, computes the

fourth round as in Hmb
1 , except that it uses πtr

3 and πtr
3 to compute the fourth round of the right

session.
Right session. In the right session, the reduction acts as the honest receiver would do.
The output of the reduction corresponds to the output of the distinguisher for the two hybrid
experiments on input the view of A and to the message returned by Extractor′.
We recall that in Claim 3 we have proven that in the previous hybrid A does not commit to ⊥,
moreover, in Claim 4 we have proven that we can detect whether A is performing a commitment
of a valid message, and if that is the case, extract such a message by using Extractor′. We
recall that the definition of non-malleable HVZK with respect to commitment ensures that the
distribution of the messages committed via an extractable commitment that is run in parallel
with Πtr is independent of whether Πtr is computed using the honest prover procedure, or the
simulated procedure. The commitment that is run in parallel with Πtr simply corresponds to
the commitment computed by A on the right session. This commitment is extractable, indeed
we have argued that Extractor′ returns the message committed by A in the right session. Note
that if the challenger has computed the messages of Πtr using the honest prover procedure,
then the output of the reduction corresponds to the output of the adversary in Hmb

2 , else it
corresponds to the output of the adversary in Hmb

1 . The property of NMZKC guarantees that
the distribution of the committed message on the right session does not change. From the above
it follows that {mimA

H
mb
2

(z)}z∈{0,1}λ ≈ {mimA
H

mb
1

(z)}z∈{0,1}λ . Moreover, form the above and from

Claim 3 we have the following
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Claim 5 Let p̄ be the probability that in the right session of Hmb
2 A successfully commits to a

message m̃ =⊥, then p̄ < ν(λ) for some negligible function ν, for any message mb ∈ {0, 1}λ.

Hmb
3 : This hybrid is equal to the previous, with the exception that the ambiguous commitments for
which the receiver does not ask the randomness (that would allow to check whether a commit-
ment is computed using the trapdoor or the honest procedure) are computed using the equivocal
procedure. In particular, the hybrid selects random c, c, and computes comcii

′ ← Comeq(1ℓ; rcii ),

comcii
′ ← Comeq(1ℓ; rcii ) for all i ∈ [λ]. Upon receiving γ1, γ1, the hybrid computes γ1 ⊕ c = γ0,

γ1 ⊕ c = γ0, and computes an accepting transcripts (πtr
1 , (γ0, γ0, γ

2
0), π

tr
3 )) (π

tr
1 , (γ0, γ0, γ

2
0), π

tr
3 ))

for Πtr with respect to the challenge γ0 (reps. γ0). Note that we can do that since Πtr is com-
puted using the honest prover procedure, hence, we can compute an accepting transcript for
any possible challenge received by the MiM, while keeping fixed c and c. We now prove that
if the distribution of the committed message changes between the two hybrids we can make
a reduction to the equivocability property of ambiguous commitments. The reduction acts on
the left session exactly as Hmb

3 , with the exception that the for each i ∈ [λ], for a randomly

chosen bits ci and ci, the commitments comcii
′ and comcii

′
is generated by an external challenger.

Moreover, upon receiving γ1, γ1, the reduction computes c⊕ γ1 = γ0, c⊕ γ1 = γ0 and computes
accepting transcripts of Πtr, with respect to the challenge γ0 and γ0. Note that reduction can
do that since we extract a valid witness to execute Πtr using the honest prover procedure.

On the right session instead, the reduction simply runs Extractor′. We note that the rewinds
performed by Extractor′ do not perturb the reduction. We also observe that the extractor must
successfully extract the committed message since a failure in the extraction can already be used
to distinguish between the choice bit of the challenger of the ambiguous commitment. Note
that nothing prevents A to compute some of the ambiguous commitments using the equivocal
procedure in Hmb

3 , but during the rewinds, the adversary must open at least one of these
commitments always to the same value during the rewinds (exactly as we do on the left session
of the reduction and of Hmb

3 ). If the adversary does not do that, this makes the two hybrids
immediately distinguishable.

Now that we have argued that the probability of success of Extractor′ does not depend on
the choice bit of the challenger, we can run the distinguisher using as input the view of the
MiM involved in the reduction, and the message extracted via Extractor′. If the distinguisher
distinguishes with a non-negligible advantage, then we have constructed a valid adversary for
the ambiguous commitment. Indeed, it is easy to see that if the ambiguous commitments are
computed using the non-equivocal procedure, then the view of MiM corresponds to Hmb

2 , else
it corresponds to Hmb

3 .

Therefore {mimA
H

mb
3

(z)}z∈{0,1}λ ≈ {mimA
H

mb
2

(z)}z∈{0,1}λ .
From the above and from Claim 5, we have the following claim.

Claim 6 Let p̄ be the probability that in the right session of Hmb
3 A successfully commits to a

message m̃ =⊥, then p̄ < ν(λ) for some negligible function ν, for every message mb ∈ {0, 1}λ.

Hmb
4 : This hybrid is equal to the previous with the exception that, for each i ∈ [λ], the messages
πi,1, πi,3 are generated using the SHVZK simulator SimAI. If by contradiction the distribution of
the committed message changes in this hybrid, then we can make a reduction to the adaptive
SHVZK of ΠAI.
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To construct the reduction we distinguish between two types of schedules: synchronous schedule
and asynchronous. We focus on the synchronous schedule first. Let CHshvzk be the challenger
for the adaptive-input SHVZK of ΠAI.

Then, we can construct an adversary Ashvzk that interacts with A in the left and the right
session according to both Hmb

3 and Hmb
2 for all messages except for the messages of Πtr. For

these messages the reduction acts as a proxy between A and CHshvzk in the left session. More
formally, the reduction Ashvzk proceeds as follow:

Left session.

1. Upon receiving the 1st round from A, apply the trapdoor extraction procedure, thus ob-
taining the string ŝ (in this step the reduction truncates the running time as explained in
the previous reductions).

2. Obtained ŝ, in the left session act exactly as in Hmb
4 , but compute the messages related to

ΠAI as follows.

3. For each i ∈ [λ] let πσ
i,3 be the third round of Σ obtained by executing SΣ on input πσ

i,2 (note
that πσ

i,3 = {decσi,j , viewσ
i,j}j∈πσ

i,2
), define views′i ← {viewσ

i,j}j∈πσ
i,2

and viewsi ← {viewσ
i,j}j∈[n].

4. Define the pair statement-witness ((x, {views′u}u∈λ), {viewsu}u∈λ) and send it to CHshvzk

together with {πi,2}i∈[λ]
5. Upon receiving {πi,1, πi,3}i∈[λ] from CHshvzk, for each i ∈ [λ] equivocate the i-th ambiguous

commitment in the pair, to a share that reconstructs πi,1.

6. Complete the right execution exactly as in Hmb
4 but using the messages {πi,1, πi,3}i∈[λ] when

needed.

7. After the main thread is completed, for any rewind performed on the right session by
Extractor′ that requires completing a new transcript for ΠAI, the reduction acts exactly
as in Hmb

3 . In particular, all the messages for ΠAI are computed using the honest prover
procedure. That is, the ambiguous commitments are opened always to the same shares that
lead to the set of values {πi,1}i∈[λ] computed using the honest prover procedure of ΠAI (i.e.,
in the rewinding thread it is used always the same set of first rounds).

Right session.

Upon completion of the main thread run Extractor′. Upon receiving (m̃, r̃1, . . . , r̃ℓ) from the
extractor, checks whether the values (ã1, . . . , ãℓ) (α̃1, . . . , α̃ℓ) generated in the right session of
the main thread are consistent with (m̃, r̃1, . . . , r̃ℓ) and (α̃1, . . . , α̃ℓ), if this is the case then
return m̃, else return ⊥.
The reduction runs the distinguisher for the two hybrids on input in the view of the MiM and
the value extracted from Extractor′ and returns what the distinguisher returns.

We observe that during the extraction phase, the reduction in the left session acts exactly as
Hmb

3 , and we have proven that A in Hmb
3 commits correctly to a message m̃ ̸= ⊥. Hence, we can

check whether this message is consistent with the message committed in the main thread, where
the messages of ΠAI are computed by the external challenger. We note that if the probability
that this new extraction procedure fails differs between the two hybrids, then this already creates
a distinguishing advantage that can be used to break the security of ΠAI. Hence, we can claim
that the message extracted in our reduction is the correct one. This part of the proof ends with
the observation that if the challenger computes messages for ΠAI using the SHVZK, then the
view of the adversary corresponds to the one in Hmb

4 , otherwise, it corresponds to the view in
Hmb

3
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The proof for the asynchronous case follows similar (simpler) arguments given that the rewinds
performed by Extractor′ trivially do not affect the reduction. Therefore {mimA

H
mb
4

(z)}z∈{0,1}λ ≈
{mimA

H
mb
3

(z)}z∈{0,1}λ .
From the above and from Claim 6 we can claim the following

Claim 7 Let p̄ be the probability that in the right session of Hmb
4 A successfully commits to a

message m̃ =⊥, then p̄ < ν(λ) for some negligible function ν, for every message mb ∈ {0, 1}λ.

H5: This hybrid is acting as the previous with the difference that Πwnmc to commit to the message
m1−b, in particular, SΣ is executed w.r.t. the message (m1−b, r1, . . . , rℓ)||r) and ai ← riαi+m1−b.
Note that this hybrid corresponds to H

m1−b

4 .
Suppose by contradiction that H

m1−b

4 is distinguishable from H5, then there exists a distin-
guisher that breaks the security of Πwnmc. In the case the schedule is synchronous, then we can
simply rely on the weak-non-malleability of Πwnmc. We recall that weak-non-malleability guar-
antees that Πwnmc remains non-malleable as long as the MiM adversary provides a well-formed
transcript for Πwnmc. Given that we have proven that in Hmb

4 and in H
m1−b

4 A does not commit
to a message m̃ = ⊥, we can claim that {mimAH5

(z)}z∈{0,1}λ ≈ {mimA
H

mb
4

(z)}z∈{0,1}λ due to the

weak non-malleability of Πwnmc.
In the case of an asynchronous schedule, we can rely on the hiding of Πwnmc. The reduction
would act in the left session as a proxy between the challenger of the hiding game for Πwnmc

and A. After that the MiM completes its commitment, the reduction runs Extractor′ to extract
the message committed on the right session. The reduction now can input A’s view and the
extracted message to the distinguisher of the two hybrids, and returns whatever the distinguisher
returns.

The proof ends with the observation that

{mimA
H

m0
1

(z)}z∈{0,1}λ ,≈ · · · ≈ {mimA
H

m0
4

(z)}z∈{0,1}λ ≈ {mimAH5
(z)}z∈{0,1}λ = {mimA

H
m1
4

(z)}z∈{0,1}λ ≈ . . .

· · · ≈ {mimA
H

m1
1

(z)}z∈{0,1}λ .

⊓⊔

9 Comparison with Previous Non-Black-Box Approaches to Four-Round
Non-malleable Commitments.

As we argued, our main strategy to construct a non-malleable commitment scheme is to lift the
security of the weak non-malleable commitment scheme of [GRRV14b, Fig. 2] (that we also recall
in Figure 5), relying on a special notion of zero-knowledge that we call non-malleable HVZK with
respect to commitment. This notion guarantees that a sender of a commitment scheme does not
change the distribution of the committed messages depending on whether he receives an honestly
generated zero-knowledge proof or a simulated one. We construct a NMZKC for a specific class of
commitments, which includes the weak-non-malleable commitment scheme of [GRRV14b, Fig. 2].
Our approach is inspired by [GRRV14b], where the authors also lift the security of a weak-non-

malleable commitment scheme relying on zero-knowledge. However, our techniques significantly
depart from those of [GRRV14b]. In the next paragraphs, we highlight the main difference between
the two approaches and explain why we could use as one of the main building block the simple

36



weak-non-malleable commitment of [GRRV14b, Fig. 2], instead of a modified version, as the authors
of [GRRV14b] do.
The main technical challenge in designing non-malleable commitments with low round complex-

ity is due to arguing in the proof that the security of the primitives involved in the protocol is
maintained despite performing rewinds to extract the message committed by the MiM (on the
right session). One of the primitives involved in the scheme of Goyal et al. is a non-rewind secure
witness-indistinguishable proof denoted by Π. To cope with the rewinds performed by the extractor
in the proof (while still relying on the WI property of Π), Goyal et al. adopt the following approach.
The prover prepares n first rounds for the non-rewind secure WI protocol (denoted by Π). Upon
receiving one valid second round from the verifier, the prover picks one instance of Π at random
(let us say the i-th) and completes the proof providing an accepting third round only with respect
to the i-th instance. Let us denote the above protocol by Πrew.
Despite this protocol being rewind secure, Goyal et al. cannot use just one execution of Πrew,

which proves that either the committer has behaved honestly in the algebraic part of the com-
mitment or that the committer knows a trapdoor. Indeed, there is a simple adversarial strategy
for which the proof of [GRRV14b] would not work in this case. Intuitively, consider a MiM that
completes an execution on the right session only if it receives a proof for the j-th instance of Π,
and aborts in any other case (note that this MiM is non-aborting with non-negligible probability).
This MiM would make the reduction to the WI of Π fail. In particular, any rewind performed by
the extractor on the right session would make the MiM ask different second rounds for the same
execution of Π (or abort if on the left session a different instance of Π is completed). To solve this
problem Goyal et al. compute a secret sharing of the message and perform one execution of Πrew

for each of the shares. Now, even if the MiM applies the same strategy to one run of Πrew, it is safe
to allow the MiM to perform this rewind since the only thing that will be leaked is a share of the
message m (note that two accepting transcripts for the same execution of Π for two different second
rounds might completely leak the witness). In the formal proof, Goyal et al. need to rely on the fact
that the number of executions of Π that are not rewound (and consequently the number of shares
not leaked) is sufficient to protect the secrecy of the message m. This modification also requires
changing how the extractor works (e.g., by relying on the quadratic polynomials). Hence, to obtain
their non-malleable commitment scheme, the authors of [GRRV14b] rely on a more sophisticated
version of the weak-non-malleable commitment proposed in their work.
In our paper, we do not rely on any rewind secure primitive (which we replace with a proof system

non-malleable with respect to commitments), so we do not need to split the message into shares
and follow the strategy described above. We note that similarly to us, also [COSV17a] relies on the
simpler sub-scheme of [GRRV14b, Fig. 2] to obtain a 4-round concurrent non-malleable commitment
scheme. To summarize, the main difference between ours and the [GRRV14b] approach (that relies
on rewind secure primitive) is that our work is based on the observation that the rewinds are
performed in the reductions or during the simulation, and as such, the adversary does not have
clue that the rewinds are happening. Hence, relying on primitives that are rewind-secure (i.e., the
adversary can consciously make rewinds and collect the transcripts generated during the rewinds)
can be avoided for the application we consider in the paper.

37



10 Our Concrete Instantiation with BMR

In this section we give our instantiation of a robust MPC protocol according to Definition 16. Our
protocol ΠRobBMR is a BMR-style [BMR90] protocol: it consists of two main steps, a multiparty
garbling Πoff

RobBMR (Figure 7) and an online computation which we shortly describe.
We consider binary circuits Cf consisting of |Cf | gates, each of which has two input wires, u

and v, and one output wire w. We use g to indicate both the gate index and the gate function.
Let W be the set of all wires in the circuit, Win and Wout be the set of input and output wires,
respectively; we denote by Wini the set of input wires associated to party Pi.

We recall that any garbled-circuit based protocol is a two-phase protocol consisting in an input-
independent phase, also called garbling , and an online evaluation.

Garbling Pre-processing. In this phase all parties P1, . . . , Pn involved in the protocol generate
a sharing of the garbled circuit according to some fixed secret sharing scheme ⟨·⟩ with tp-privacy.
As in any other garbled-circuit based protocol, to garble a Boolean circuit each wire is assigned two
random keys kw,0,kw,1 encoding the 0-value and 1-value, respectively. The goal of the process is to
generate four ciphertexts for each gate according to the gate function, such that each output-wire
key is encrypted according to all combinations of input-wire keys which evaluate to that output
wire key.

More in particular, in multiparty garbling each party Pi samples two random keys ki
w,0 and ki

w,1

and a random wire mask λi
w ∈ {0, 1}, for each wire w ∈ W . Given wire masks λu, λv, λw and

wire keys {ki
u,α,k

i
v,β,k

i
w,0,k

i
w,1}(α,β)∈{0,1}2,i∈[n], parties generate a garbled gate corresponding to

the gate truth table, as follows. It consists of four rows, indexed by the values (α, β) ∈ {0, 1}2 on
the input wires, where every row contains n ciphertexts, each of which is encrypted under 2n keys
as follows:

⟨g̃jα,β⟩ = ⟨

(
n⊕

i=1

(Fki
u,α

(g∥β∥j)⊕ Fki
u,β

(g∥α∥j))

)
⊕ kj

w,0 ⊕ χg,α,β · (kj
w,0 ⊕ kj

w,1)⟩, (1)

where j ∈ [n], and it represents the j-th ciphertext on the (α, β)-row, χg,α,β = g(λu⊕α, λv⊕β)⊕λw

and F is a pseudo-random function (PRF).

Online Evaluation. During the online evaluation, these encrypted truth tables, along with the
circuit-output wire masks, are revealed to all parties so to allow local evaluation of the circuit.
More precisely, the two-round BMR online step proceeds as follows.

1. For every wire w, which is the circuit-input wire of party Pi, each party Pi broadcasts values
Λw = ρw ⊕ λw, for each w ∈Wini , where ρw is the actual input and λw the corresponding wire
mask.

2. In response, for every Λw received, each party Pj broadcasts their key ki
w,Λw

corresponding to
the publicly known value Λw.

Upon collecting all the keys and masked inputs, parties can start evaluating the circuit. At this
point, this does not require any interaction. Given a complete tuple of input keys (k1

u,Λu
, . . . ,kn

u,Λu
)

and (k1
v,Λv

, . . . ,kn
v,Λv

), it is possible to decrypt each gate, by computing all the PRFs, obtaining all

the corresponding output-wire keys (k1
w,Λw

, . . . ,kn
w,Λw

), for each w ∈W \Win.

Note that during this evaluation each party decrypts the entire row, requiring n2 PRF evaluations.
Once these output keys are obtained, every party Pi can check that the i-th key corresponds to
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one of its keys ki
w,0,k

i
w,1 generated in the garbling phase. This check allows: 1) To determine the

masked output value, i.e. if ki
w,ϵw = ki

w,0, Pi sets Λw = 0, and Λw = 1 otherwise; 2) To ensure
security against any static malicious adversary for the online evaluation, as it allows the honest
parties to detect malicious behaviour in case the output keys of a gate does not contain one of the
two keys generated in the preprocessing step for the output wire of that gate.

10.1 Our BMR-style instantiation

Protocol Πoff
RobBMR

Notation: Given a gate g, we denote by u (resp. v) its left (resp. right) input wire, and by w its output wire. Let
Wout,Win be the set of output and input wires, respectively, and Wini the set of input wires for party Pi. Let G be the
set of gates in C. Let F : {0, 1}κ × [|G|]× {0, 1} × [n]→ {0, 1}κ be a PRF.
Let ⟨·⟩ denote an arbitrary secret sharing, we will specialize it according to our needs, and ⟨·⟩i be the share corre-
sponding to party Pi.

Generate wire masks and keys: Passing through the wires of the circuit topologically, proceed as follows:
1. Each Pi samples a random λi

w ← {0, 1}, and call FCommit on input λi
w for each output-wire w ∈Wout.

2. Every Pi samples two keys ki
w,0 ← {0, 1}κ and ki

w,1 ← {0, 1}κ.
3. Each party Pi, i ∈ [n], calls FCommit on the circuit-input keys ki

w,0 and ki
w,1, for each w ∈ Wini , obtaining

commitments {σi,w,b}b∈{0,1}.
Garbling: For each gate g ∈ G, each j ∈ [n], and the four combinations of a, b ∈ {0, 1}2, the parties call FGarbling

to obtain shares of the j-th entry of the garbled gate g̃a,b such that

g̃a,b =
(
F
k
j
u,a

(g∥b∥j)⊕ F
k
j
v,b

(g∥a∥j)
)
⊕
(
kj
w,0 ⊕ ρj,a,b

)
where ρj,a,b = (kj

w,0 ⊕ kj
w,1) · χg,a,b and χg,α,β = g(λu ⊕ α, λv ⊕ β)⊕ λw.

Open garbling : On input (Open), parties reveal their garbled shares and, for every circuit-output wire w ∈Wout,
reveal λw to all the parties. Each party Pi broadcast commitments {σi,w,b}b∈{0,1}, for each w ∈Wini

Open committed keys: For each i ∈ [n] and w ∈ Wini , parties call FCommit on input commitments σi,w,b, where
b ∈ {0, 1}, obtaining the corresponding committed keys.

Fig. 7: BMR preprocessing

Here we describe our instantiation ΠRobBMR more concretely.
A complete description of our BMR pre-processing is given in Figure 7. It assumes access to

an ideal functionality FGarbling that provides the garbled gates shares to the relevant parties, and
a standard commitment functionality FCommit. The pre-processing can be concretely instantiated
either with an honest and dishonest majority, similarly to recent efficient black-box BMR pre-
processing protocols with active security. The main modification that we require, compared to other
BMR-style protocols, are committed circuit-input keys. This will be useful to prove robustness.
Here we prove that our BMR instantiation satisfies the properties required in Section 3.10.

Correctness and tp-privacy properties directly follows by proving the following proposition.

Proposition 1. Assuming the existence of one-way functions. Let f be an n-party functionality.
The protocol ΠRobBMR, described in Figure 8, UC-securely computes f in the presence of static
semi-honest adversary corrupting a set A of tp parties in the Foff

RobBMR-hybrid model.

Proof. We start by proving that Πon
RobBMR is perfectly correct. We know that the preprocessing is

perfectly correct. In the online phase, the only communication is the broadcasting by each party of
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The MPC Protocol - ΠRobBMR

Inputs: A circuit Cf computing the function f , which consists of XOR and AND gates. Let W be the set of all wires
in Cf , Wini be the set of input wires for party Pi, and Wout be the set of output wires. Each party Pi has private
input {wi}. Parties have a public input x.
Let F : {0, 1}κ × [|G|]× {0, 1} × [n]→ {0, 1}κ be a PRF.
The parties execute the following commands in sequence.

Preprocessing: This sub-task is performed as follows.
– Parties call the preprocessing functionality to obtain private keys, a garbled version g̃ of every gate g in C,

private wire masks, and commitments σi,w,b on the circuit-input keys, for each i ∈ [n].
Online Computation: This sub-task is performed as follows.

– For its input wires w ∈ Wini , party Pi computes Λw = ρw ⊕ λw, and broadcasts the public value Λw to all
parties.

– Each party Pj call the preprocessing functionality to open the committed keys ki
w,Λw

, for all wires w ∈
{Wini}i∈[n], corresponding to the public values Λw.

– Passing through the circuit topologically, the parties can now locally compute the following operations for
each gate g. Let the gates input wires be labelled u and v, and the output wire be labelled w. Let Λa and
Λb be the respective public values on the input wires.
- Each party computes, for all j ∈ [n]:

kj
w,Λc

= g̃jΛa,Λb
⊕

(
n⊕

i=1

Fki
u,Λa

(g∥Λb∥j)
n⊕

i=1

Fki
v,Λb

(g∥Λa∥j)

)

Otherwise, it proceeds.
- If ki

w,Λc
= ki

w,0 then Pi sets Λc = 0; if ki
w,Λc

= ki
w,1 then Pi sets Λc = 1.

1. The output of the gate is defined to be (k1
w,Λc

, . . . ,kn
w,c) and the public value Λc.

– At the end of the circuit evaluation, everyone obtains a public value Λw, for all w ∈ Wout. The parties can
then recover the actual outputs from yw = Λw ⊕ λw, where λw was obtained in the preprocessing stage.

Fig. 8: Robust BMR protocol

their masked input and the response containing the keys corresponding to the masked values. After
this, each party computes the output by locally un-garbling the tables from the preprocessing with
the keys that they received. Assuming that each party behaves honestly, this online phase fails to
be correct only if the un-garbling does.
However, the un-garbling only consists in removing deterministic pseudorandom masks from the

garbled values which are produced using the point-and-permute technique [PSSW09]. Assuming
that parties behave honestly in the broadcast and in the re-computation of these masks, this
will always be perfectly correct. Indeed, given public input values Λu = ρu ⊕ λu, Λv = ρv ⊕ λv

corresponding to the input wires u, v, parties will be able to “decrypt” a single ciphertext and
obtain the keys

kj
w,Λw

= kw,0 ⊕ (g(ρu, ρv)⊕ λw) · (kj
w,0 ⊕ kj

w,1), ∀j,

where Λw = g(ρu, ρv)⊕ λw, for each gate g. This therefore implies that the protocol Πoff
RobBMR has

perfect online correctness.

We now prove security of our protocol. Let A be a PPT adversary corrupting a subset of parties
A ⊂ [n] such that |A| = tp. We describe a PPT simulator S, with access to an ideal functionality
F that implements f , which simulates the adversary’s view. A key kw for wire w is denoted as an
active key if it is observed by the adversary upon evaluating the garbled circuit. The remaining
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hidden key is denoted as an inactive key. An active path is the set of all active keys that are observed
throughout the garbled circuit evaluation.
Denoting the set of honest parties by H, our simulator S is defined below.

The description of the simulation.

1. Initialization. Upon receiving the adversary’s input (1κ, A,xA) and output y, S samples
a i.i.d uniformly random tapes ri for each i ∈ A, incorporates A and internally emulates an
execution of the honest parties running Πon

RobBMR with the adversary A. When we say that S
chooses a value for some corrupted party, we mean that it samples the value from that party’s
random tape ri.

2. Preprocessing. S obtains the adversary’s input Cf which is a Boolean circuit that computes
f with a set of wires W and a set of G gates, and emulates Foff

RobBMR, as follows:

– For every input wire w ∈Wini the simulator chooses a random bit Λw ∈ {0, 1} and, for every
i ∈ H, an active key ki

w,Λw
. Additionally, it chooses a key ki

w,1−Λw
∈ {0, 1}κ, for every i ∈ A.

Generate the relative commitments for the input-wire keys, sampling random values for the
inactive keys of parties in H.

– For every w ∈ {Wini}i∈̄[n], S samples keys {ki
w,0,k

i
w,1}i∈A ∈ {0, 1}

2κ at random and chooses
a random Λw ∈ {0, 1}

The simulator continues the emulation of the garbling phase by computing an active path of
the garbled circuit that corresponds to the sequence of keys which will be observed by the
adversary. Importantly, S never samples the inactive keys ki

u,Λ̄u
, ki

v,Λ̄v
and ki

w,Λ̄w
for i ∈ Ā in

order to generate the garbled circuit.

3. Active path generation of logical gates. For every gate g with input wires I = {u, v}
and an output wire w, S samples a random Λw ∈ {0, 1} and honestly generates the entry in
row (Λu, Λv), where Λu (resp. Λv) is the public value associated to the left (resp. right) input
wire to g. Namely, the simulator computes

⟨g̃jΛw,Λw
⟩ = ⟨

(
n⊕

i=1

Fkiu,Λu
(g∥Λv, ∥j)⊕ Fkiv,Λv

(g∥Λu∥j)

)
⊕ kjw,Λw

⟩.

The remaining three rows are sampled uniformly at random from {0, 1}κ.
4. Setting the translation table. For every output wire w ∈ Wout returning the ith bit of

y, the simulator sets λw = Λw ⊕ yi. For all input wires w ∈ Wini that are associated with
the ith bit of xA (the adversary’s input), the simulator sets λw = Λw ⊕ xA,i. The simulator
forwards the adversary the λw value for every output wire w ∈ Wout and every circuit-input
wire w ∈ Wini associated with a corrupted party. It completes the emulation of Foff

RobBMR by
adding the complete garbled circuit to the view of each corrupted party.

5. Online computation. In the online computation the simulator adds to the view of every
corrupted party the public values {Λw}w∈Wini

that are associated with the honest parties’ input

wires Wini . The simulator adds the honest parties’ input keys {ki
w,Λw
}i∈Ā,w∈Wini

and correspond-

ing decommitment values to the view of each corrupted party.

This concludes the description of the simulation. Note that the difference between the simulated
and the real executions is regarding the way the garbled circuit is generated. More concretely, the
simulated garbled gates include a single row that is properly produced, whereas the remaining
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three rows are picked at random. Let HYB
Foff

RobBMR
ΠBMR,A,Z(1

κ, z) denote the output distribution of the

adversary A and honest parties in a real execution using ΠBMR with adversary A. Moreover, let
IDEALF ,S,Z(1

κ, z) denote the output distribution of S and the honest parties in an ideal execution.
We prove that the ideal and real executions are indistinguishable.

Lemma 4. The following two distributions are computationally indistinguishable:

– {HYB
Foff

RobBMR
ΠBMR,A,Z(1

κ, z)}κ∈N,z∈{0,1}∗
– {IDEALF ,S,Z(1

κ, z)}κ∈N,z∈{0,1}∗

Proof. We begin by defining a slightly modified simulated execution H̃YB, where the generation
of the garbled circuit is modified so that upon receiving the parties’ inputs {ρi}i∈[n] the simulator
S ′ first evaluates the circuit Cf , computing the actual bit ρw to be transferred via wire w for all
w ∈ W , where W is the set of wires of Cf . It then chooses wire mask shares and wire keys as
Foff
RobBMR. Finally, S ′ fixes the active key for each wire w ∈ W to be (k1w,ρw⊕λw

, . . . , knw,ρw⊕λw
).

The rest of this hybrid is identical to the simulation. This hybrid execution is needed in order to
construct a distinguisher for the PRF.
For completeness, we recall here the notion of pseudo-random function under multiple keys.

Definition 17 (PRF under multiple keys). Let F : {0, 1}κ × [|G|] × {0, 1} × [n] → {0, 1}κ be
an efficient, length preserving, keyed function. F is a pseudo-random function under multiple keys
if for all PT distinguisher D, there exists a negligible function negl such that:

|Pr[DFk̄(·)(1κ) = 1]− Pr[Df̄(·)(1κ) = 1] ≤ negl(κ),

where Fk̄ = Fk1 , . . . , Fkm(n) are pseudorandom function F keyed with polynomial number of ran-
domly chosen keys k1, . . . , km(n) and f̄ = f1, . . . , fm(n) are m(n) random functions from {0, 1}nmapto{0, 1}n.
The probability in both cases is taken over the randomness of D.

Let H̃YB
Foff

RobBMR
ΠBMR,A (1κ, z) denote the output distribution of the adversary A and honest parties in

this game. It is simple to verify that the adversary’s views in H̃YB and IDEAL are identical, as
in both cases the garbling of each gate includes just a single row that is correctly garbled.
Assume by contradiction the existence of an environment Z, an adversary A and a non-negligible

function p(·) such that∣∣Pr[Z(HYB
Foff

RobBMR
ΠBMR,A,Z(1

κ, z)) = 1]− Pr[Z(H̃YBΠBMR,A,Z(1
κ, z)) = 1]

∣∣ ≥ 1

p(κ)

for infinitely many κ’s where the probability is taken over the randomness of Z as well as the
randomness for choosing the Λ values and the keys. Then we construct a ppt distinguisher D for
PRF that distinguishes between an instance of the form(

F,
⊕
i∈H

Fki(g∥0∥j),
⊕
i∈H

Fk̄i(g∥0∥j),
⊕
i∈H

Fki(g∥1∥j),
⊕
i∈H

Fk̄i(g∥1∥j)

)

and five random elements, for some subset H of [n] of size n − tp (that corresponds to the set
of honest parties) with probability at least 1

p(κ)·|C| via a sequence of hybrid games {HYBℓ}ℓ∈[|C|],
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where |C| = number of logical gates in C. In more details, we define hybrid HYBℓ as a hybrid
execution with a simulator Sℓ that garbles the circuit as follows. The first ℓ gates in the topological
order are garbled as in the simulation whereas the remaining |C|− ℓ gates are garbled as in the real

execution. Note thatHYB0 is distributed as hybridHYB and thatHYB|C| is distributed as H̃YB.

Therefore, if HYB and H̃YB are distinguishable with probability 1
p(κ) then there exists τ ∈ [|C|]

such that hybrids HYBτ−1 and HYBτ are distinguishable with probability at least 1
p(κ)·|C| . Next,

we formally describe our reduction to PRF security. Upon receiving a tuple (F̃ , F̃0, F̃
′
0, F̃1, F̃

′
1) that

is distributed according to the first or the second distribution, a subset H of [n] that denotes the
set of honest parties, an index τ and the environment’s input z, distinguisher D internally invokes
Z and simulator S. In more details,

– D internally invokes Z that fixes the honest parties’ inputs ρ.
– D emulates the communication with the adversary (controlled by Z) in the initialization, pre-

processing and garbling steps as in the simulation with S.
– For each wire u, let ρu ∈ {0, 1} be the actual value on wire u. Note that these values, as well

as the output of the computation y, can be determined since D knows the actual input of all
parties to the circuit.

– For each wire u in the circuit and i ∈ A, D chooses a pair of keys ki
u,0,k

i
u,1 ∈ {0, 1}

κ, whereas for

all i ∈ H it samples a random key ki
u,Λu
∈ {0, 1}κ. D further fixes the public value Λu = λu⊕ρu.

– D then garbles the circuit as follows.
• For every gι with input wires u and v and output wire w, D continues as follows.

If ι < τ then D garbles gj exactly as in the simulation with S ′.
If ι = τ then D first honestly computes the (Λu, Λv)-th row by fixing

g̃jΛu,Λv
=

(
n⊕

i=1

Fku,Λu
(g∥Λv∥j)⊕ Fkv,Λv

(g∥Λu∥j)

)
⊕ kj

w,Λw
.

Next, D samples an inactive key ki
w,Λ̄w

for all i ∈ Ā and fixes the remaining three rows as
follows.

g̃j
Λu,Λ̄v

=

(
n⊕

i=1

Fki
u,Λu

(g∥Λ̄v∥j)⊕
(⊕

i∈A
Fkv,Λ̄v

(g∥Λu∥j)
)
⊕ F̃ ′Λu

)
⊕ kj

w,c,

where c = Λu · Λ̄v ⊕ Λw ⊕ ρw

g̃j
Λ̄u,Λv

=

(⊕
i∈A

Fku,Λ̄u
(g∥Λv∥j)⊕ F̃Λv ⊕

( n⊕
i=1

Fkv ,Λv(g∥Λ̄u∥j)
))
⊕ kj

w,c,

where c = Λ̄u · Λv ⊕ Λw ⊕ ρw

g̃j
Λ̄u,Λ̄v

=

(⊕
i∈A

Fku,Λ̄u
(g∥Λ̄v∥j)⊕ F̃Λ̄v

⊕
(⊕

i∈A
Fkv,Λ̄v

(g∥Λ̄u∥j)
)
⊕ F̃ ′Λ̄u

)
⊕ kj

w,c, where c = Λ̄u · Λ̄v ⊕ Λw ⊕ ρw.

Finally, if ι > τ then D garbles gι exactly as in hybrid HYB. For that, D needs to know both
active and inactive keys. It therefore chooses the inactive keys that are associated with the
input and output wires of this gate for i ∈ Ā, in order to be able to complete the garbling.
Recall that the circuit is with fan-out 1. Therefore the distinguisher can choose the inactive
key for the input wire of this gate (as it was not used as an input wire to gate gτ ).
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– This concludes the description of the reduction. D hands the adversary the complete description
of the garbled circuit and concludes the execution as in the simulation with S ′.

– D outputs whatever Z does.

Note first that if (F̃ , F̃0, F̃
′
0, F̃1, F̃

′
1) are truly uniform then the view generated by D is distributed

as in HYBτ . This is because only the active path is created as in the real execution, whereas the
remaining rows are sampled uniformly at random from the appropriate domain. On the other hand,
if this tuple is generated according to the following distribution(

F,
⊕
i∈H

Fki(g∥0∥j),
⊕
i∈H

Fk̄i(g∥0∥j),
⊕
i∈H

Fki(g∥1∥j),
⊕
i∈H

Fk̄i(g∥1∥j)

)

then this emulates game HYBτ−1, since each tuple element emulates an evaluation of the hash
values for the honest parties on the secret keys.
This completes the proof of the lemma and proposition

⊓⊔

Robustness. Let outoff1 , . . . , outoffn be the output provided by the ideal functionality Foff
RobBMR.

Assume that exists a party, say Pj , in an execution of Πon
RobBMR which outputs outj ̸= y, where

y = f(x,w1, . . . , wn) with (x,wi) be the input of party Pi, for each i ∈ [n].
For this to happen one of the following two events must occur:

1. The circuit must be incorrectly garbled so as to output an incorrect result;
2. The corrupted parties provide keys during the second broadcast such that these flip the output

bits of certain gates within the garbled circuit.

By assumption, event 1 does not happen since the output of Foff
RobBMR is assumed to be correct.

It is therefore event 2 that must occur.
Assume that the adversary controls party P1 and its keys k1

w,Λw
for input wires w ∈ Winj , for

j ∈ [n]. We recall that each honest party i ̸= 1 will compute the following for every j ∈ [n], and
gate g in the circuit:

g̃jΛu,Λv
⊕

(
n⊕

i=1

(
Fki

u,Λu
(g∥Λv∥j)⊕ Fki

v,Λv
(g∥Λu∥j)

))
. (2)

From this tuple, each party Pi then compares its attributed value ki
w,Λc

with {ki
w,0,k

i
w,1} (contained

in outoffi ) to set the public output value Λw. This is where a bit flip could happen. Assuming that
the offline phase is correct, in particular the gates are correctly garbled, the only point where the
adversary can cheat is when the parties broadcast the keys ki

w,Λw
corresponding to the masked input

Λw. Here the adversary can broadcast any value k̃1
w,Λw

(remember we are assuming P1 corrupt).
During the evaluation of one of the subsequent gates, the corrupt party has to manage to flip

the value Λw for (at least) one honest party. This implies that the two input keys provided to P1
have to create a flip for some Pj . In Equation (2), this means that:

g̃jΛu,Λv
⊕

(
n⊕

i=2

(
Fki

u,Λu
(g∥Λv∥j)⊕ Fki

v,Λv
(g∥Λu∥j)

))
⊕
(
Fk̃1

u,Λu
(g∥Λv∥j)⊕ Fk̃1

v,Λv
(g∥Λu∥j)

)
= kj

w,1−Λw
.
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Recall that

g̃jΛu,Λv
=

(
n⊕

i=1

(
Fki

u,Λu
(g∥Λu∥j)⊕ Fki

v,Λv
(g∥Λv∥j)

))
⊕ kj

w,Λw
,

so to successfully flip all the key corresponding to Pj we should have:(
Fk̃1

u,Λu
(g∥Λv∥j)⊕ Fk̃1

v,Λv
(g∥Λu∥j)

)
=(

Fk1
u,Λu

(g∥Λv∥j)⊕ Fk1
v,Λv

(g∥Λu∥j)
)
⊕ (kj

Λw
⊕ kj

1⊕Λw
), for some j ∈ [n].

This means that an unbounded adversary can break the robustness of the protocol, unless it is
committed to use the input-wire keys provided by Foff

RobBMR. For this reason we make sure, during the
preprocessing protocol, that each party commits to the input-wire keys, i.e. in the preprocessing each
Pi provides Com(i, w, 0,ki

w,0) and Com(i, w, 1,ki
w,1), where Com is a statistically biding commitment

[Nao90]. Since the pre-processing is correct, this is enough to guarantee robustness.. More formally,
we can prove the following.

Proposition 2. The protocol ΠRobBMR of Figure 8 is robust (in the sense of Definition 16).

Proof. Robustness requires that Πoff
RobBMR is honestly executed, in particular that all the keys and

the garbled circuit C̃f are correct and consistent, i.e. exists an evaluation procedure B such that
B(C̃f (x, R)) = Cf (x), where Cf is the circuit computing f . The fact that ΠRobBMR is robust follows
from the fact that given the material generated in Foff

RobBMR and the input step, which fixes the input
and corresponding keys, the online views generated by the parties are identical and cannot lead
to an incorrect result, i.e. the view generated by each Pi results in the unique active path that
corresponds to the evaluation of the garbled circuit which is deterministic. The only attempt an
adversary can make to break robustness is by broadcasting incorrect input keys kw,Λ, w ∈ Win,
therefore breaking the binding property of the commitment scheme.
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