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Emotions and Dynamic Assemblages: A Study of Automated Social
Security UsingQualitative Longitudinal Research
MORGAN CURRIE, University of Edinburgh, UK
LENA PODOLETZ, University of Edinburgh, UK

In this paper we argue that qualitative longitudinal research (QLLR) is a
crucial research method for studying automated decision-making (ADM)
systems as complex, dynamic digital assemblages. QLLR provides invaluable
insight into the lived experiences of users as data subjects of ADMs as well
as into the broader digital assemblage in which these systems operate. To
demonstrate the utility of this method, we draw on an ongoing, empiri-
cal study examining Universal Credit (UC), an automated social security
payment used in the United Kingdom. UC is digital-by-default and uses a
dynamic, means-testing payment system to determine the monthly amount
of claim people are entitled to.

We first provide a brief overview of the key epistemological challenges of
studying ADMs before situating our study in relation to existing qualitative
analyses of ADMs and their users, as well as qualitative longitudinal research.
We highlight that, thus far, QLLR has been severely under-utilized in studying
ADM systems. After a brief description of our study, aims and methodology,
we present our findings illustrated through empirical cases that demonstrate
the potential of QLLR in this area.

Overall, we argue that QLLR provides a unique opportunity to gather in-
formation on ADMs, both over time and in real time. Capturing information
real-time allows for more granular accounts and provides an opportunity for
gathering in situ data on emotions and attitudes of users and data subjects.
The ability to record qualitative data over time has the potential to capture
dynamic trajectories, including the fluctuations and uncertainties compris-
ing users’ lived experiences. Through the personal accounts of data subjects,
QLLR also gives researchers insight into how the emotional dimensions
of users’ interactions with ADMs shapes their actions responding to these
systems.
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1 INTRODUCTION
In 2018 a report by the United Nations’ Rapporteur on extreme
poverty and human rights sounded an alarm on the global rise of au-
tomated decision-making systems (ADMS) in government services
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and daily life [4]. ADMS, which may deploy simpler rule-based algo-
rithms making if-then decisions or more complex data mining and
machine learning processes, can now be found in policing, social
security and child services. The UN report voiced concern about
the powerful capacities of these systems to socially sort citizens and
structure their behavior while largely escaping public scrutiny and
democratic oversight.
Many studies have similarly raised critical questions around

ADMS in both public and private sectors [82]. ADMS that use statis-
tical data mining can sort people into categories based on consumer
preferences or unwanted behavior that can be problematically gen-
eralized across certain populations [6]. Further, ADMS can nudge or
steer people towards predefined behaviors or preferences, and, as a
result, these systems may guide, delimit or foreclose users’ choices
or options without their knowledge [36]. Literature has also focused
on howADMS threaten to weaken the discretion of humans or enact
decisions without any human involvement or oversight [78]. Finally,
scholars have written about the opaqueness of ADMS and that they
can pose a challenge to individuals’ or collective due process rights
to query their decisions – to know what information they store, the
steps leading to decisions made and their accuracy and legality in
terms of unlawful discrimination [22]. ADMS ultimately raise ques-
tions about governance, particularly when interrogating them may
be challenged by intellectual property claims and confidentiality
clauses.
In addition to concerns around surveillance, agency, discretion,

and governance [77], there are epistemological challenges that schol-
ars often face when studying ADMS [31] [37] [28]. In the private
sector, recommendation engines on social media and search engines
are often tightly guarded by trade secrets. In the public sector, con-
troversial systems such as predictive policing and welfare fraud may
be difficult to access as governments protect public authority or are
wary of citizens gaming these tools [76]. Scholars have subsequently
introduced innovative methods for studying ADMS, including those
that interrogate the more technical dimensions of underlying data
[11] [51], or through interviews with users about their knowledge
and experience of engaging with ADMS.
In this paper we present our experience using qualitative lon-

gitudinal research (QLLR) to understand an ADMS through users
who interact with it over an extended time period. QLLR provides
invaluable insight into the lived experiences of users of ADMS as
well as into the broader digital assemblage in which these systems
operate. To demonstrate the utility of this method, we draw on
an ongoing, empirical study examining Universal Credit (UC), an
automated social security payment used in the United Kingdom. UC
uses a dynamic, means-testing payment calculation to determine
the monthly amount of claim people are entitled to. In this study
we use serial interviews plus phone texts as prompts for solicit-
ing feedback from users. We argue that QLLR provides a unique
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opportunity to gather information on ADMS, both over time and
in situ. Capturing information over time allows for more granular
accounts of dynamic trajectories. Through the personal accounts of
users reacting in situ, QLLR also gives researchers insight into the
emotional dimensions of users’ interactions with ADMS.

In the following literature review, we cover the challenges schol-
ars have confronted while studying ADMS, how scholars have stud-
ied users of ADMS to overcome these challenges, and the value and
drawbacks of longitudinal research.

2 EPISTEMOLOGICAL CHALLENGES OF STUDYING
ADMS

Several scholars have addressed the difficulties of studying opaque
computational processes. Private companies make opacity a part of
their business model to protect intellectual property and keep com-
petitive advantage, and coding and engineering processes often go
undocumented or are simply not available to the public [37]. Public
access itself does not address whether lay people can understand
the complex technical components comprising ADMS [20]. The
opacity of some ADMS may even be a matter of design intention:
programmers set out to hide the seams of systems so that users can
use them functionally without spending much effort to understand
complicated underlying processes [31].
The complex, heterogenous nature of ADMS as part of larger

social and technical systems make them difficult to delimit both
conceptually and as an object of study [5]. ADMS and algorithmic
systems are dynamic, unstable and contextual in their performance,
socially bounded and often serve a range of uses and users [17] [64].
Teams of engineers and UX designers oversee ADMS, and they are
also shaped by internal institutional policies, external standards,
social norms, laws and the feedback loop of user interaction. For
this reason, Kitchin [37] argues that studying such systems at a
single point in time may result in very narrow understandings of
their possibilities: one instance of an ADMS’ performance cannot
be extrapolated to comprise all possible instances, so studies should
engage with such system over time and across various scenarios. In
the context of machine learning in public sector decision-making,
Veale et al [75] likewise recommend that ADMS be studied “in vivo,
in the messy, socio-technical contexts” (p.10) in which they exist.
ADMS are even hard to pin down disciplinarily. Critical algorithm
studies has asked how scholars in the humanities and social science
view their object of study as non-technical experts and how they
understand their objects of study differently from engineers and
designers [64].

A slate of research approaches addresses some of these challenges,
particularly around system opacity. To bring greater transparency
to these systems, scholars draw on techniques such as algorithmic
audits [11] [51], documentation, impact assessments and reverse
engineering (changing data inputs to see differences in outputs) [63].
An interest within HCI communities is to expose users to underlying
processes through explainable AI techniques (XAI) to put them up
to critical scrutiny and public debate [1]. These approaches can shed
light on the underlying datasets and models of ADMS and their
disparate and possibly unjust impacts across populations. Studies

are also exploring whether more transparency by design can lead
to greater public trust of these systems [38].
From the social sciences we find qualitative studies that seek

greater understanding by focusing on engineers and designers [35]
[64] and on the people who deploy ADMS; many are concerned
with how these systems affect the discretion of those, such as public
servants, who enact them [61] [79]. Social scientists have also set out
to capture public attitudes towards ADMS and general awareness
and understandings of how particular ADMS work [50]. Studies
have asked if public data literacy and feelings of trust might increase
public acceptance or shape ideas about the governance of ADMS
[66] [44].
Another area of scholarship studies users and data subjects of

ADMS. We go through this subset of research next by focusing on
qualitative studies that set out to understand ADMS through their
users.

3 QUALITATIVE STUDIES OF ADMS AND THEIR USERS
Qualitative research provides insight on the experiential aspects of
life, along with “the sensations, atmospheres and narratives of real
life”, as opposed to quantitative methods, which focus on generating
“precise, objective and generalizable findings” [45](p.ix). Qualitative
research emphasizes “the depth of understanding and the deeper
meanings of human experience” while producing more tentative
findings [62] (p.627). For the purposes of this study, researching
ADMS qualitatively through the experiences of their users can give
unique insights into how they work. Users’ interactions are likely
to elicit unexpected system behaviors shedding light on their op-
erations, and studying users can provide insight into the power
dynamics of ADMS as users contest their decisions (if they can) or
play any role in governance or design [2] [65]. Excavating the expe-
riences, emotions and misconceptions of user communities can also
helpfully inform the design of ADMS to make them more sensitive
to user needs.
Many qualitative user studies of ADMS rely on interviews with

users about their awareness – whether they realize a decision was
automated or not – and how accurately they understand ADMS
processes [31]. In a study of users of instant loan platforms in India,
Ramesh et al [60] used interviews to ask people about their expe-
rience with instant loan apps and their notions of justice around
relatively easy borrowing. Studies have asked how Airbnb hosts
experience algorithmic evaluation [33], how Uber and Lyft drivers’
feel about the algorithmic management of ridesharing platforms
[42], and whether Instagram influencers’ believe shadowbanning
takes place [13]. Interviews have also been part of experimental
studies probing how people feel towards a range of commercial
applications using ADMS, focusing on their concerns related to
perceptions of justice [7] [41]. Qualitative studies have also used
digital methods to scour and analyze online data, such as Twitter
or Instagram posts, to understand user expectations towards social
media feeds and shadowbanning [16] [67].
Qualitative studies of ADMS users have deployed interviews

alongside creative methods, such as design prompts, to explore how
well people understand online recommender algorithms. Eslami et
al interviewed people about their comprehension of the Facebook
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News Feed’s curation algorithm, asking how satisfied they are by it
and their folk theories of how it works [24] [23] [59]. Another study
by this research team asked how people understood the Yelp review
filtering algorithm and their attitudes towards it once the algorithm
became clearer from a design prompt [25]. Alvarado et al [5] intro-
duced sensitizing activities, which they define as hands-on exercises
to “sensitize participants to the existence of these algorithmic sys-
tems” to elicit design suggestions. Studies have used workshops
inspired by participatory methods to understand the concerns of
affected communities navigating the child social security system
[10] [68].
We identify two features of these studies that shape the kind

of data that can be collected. One is that the majority of these
studies capture a snapshot of users’ experiences or memories at
one point in time. Another feature is that many of these studies
ask users to respond to prompts created by the researchers – for
instance, by exposing algorithms at work or responding to design
scenarios – rather than capturing user experience from in situ, real-
life interactions that are not internal to the study.

In the next section we look at how QLLR studies can collect data
by capturing trajectories of user experience and in situ reactions to
ADMs encountered in users’ everyday life.

4 QUALITATIVE LONGITUDINAL STUDIES
Longitudinal can mean a variety of different time frames depending
on the aim of the research, with a common minimal design being
two interviews conducted with each participant at two separate
points in time (also often called a panel study) [12] [48]. The focus
of QLLR is to track participants’ real time trajectories [18] [52] and
trace change over time [56]. QLLR can facilitate trust and confidence
with participants [48] [32] [43] and gives participants the freedom
to retell their stories over the course of the study, however they
think communicates their situation best [58]. QLLR can capture how
dynamics unfold “at each research contact change, and the effects
of change” may be “explored with participants” [73].
QLLR has a long tradition in fields such as anthropology, crim-

inology, psychology, health studies, education and youth studies
[32]. According to Thomson [71], this approach gained the atten-
tion of social scientists on a wider scale in the mid-2000s, aligning
with the ‘temporal turn’ in research interests, particularly in the
English-speaking world. In the last two decades the method has seen
advances in particular areas, including social security and social
policy research. People often interact with social services over a
long period of time, so scholars in these areas find QLLR highly
beneficial because of its ability to capture the dynamic, changing re-
lationship between an individual and these services [15] [43]. QLLR
studies have examined recipients of social benefits [55] [19], lone
parent families [58] [48], homelessness [80] [15], welfare condition-
alities [47] [18] and punitive welfare sanctions [81]. Griffiths et al
[30] traced couples as they interact with Universal Credit over a
three-year period. Griffiths offers one of the few published academic
accounts reporting on the effects of UC automation, drawing on
this longitudinal research [29].

A small number of scholars have used QLLR to study ADMS. User
experience (UX) researchers of smart home heating technologies

have used serial user interviews [40]. Ziewitz et al [83] traced peo-
ple being scored by an automated credit scoring system through
monthly diaries, diary-interviews and fieldnotes over the course of a
year. Scholars have also applied ethnographic methods to offer richly
detailed analyses of ADMS [34] in the context of automated social
security [26], fairness of hiring systems [74], video surveillance [53]
and predictive policing [9].
We argue that the advantages of QLLR can illuminate the com-

plex, unfolding features and relationships comprising opaque digital
assemblages. ADMS are dynamic, and QLLR can capture how these
changes affect users’ interactions with these systems and their im-
pacts on users’ lives. Longitudinal methods do not need to rely solely
on participants’ recollections of past events but can generate data
near real-time, when memories and emotions are reactive and fresh.
Additionally, this method enables participants to reflect on events
they may have spoken about, then share additional information to
retell their story. QLLR also facilitates trust between the partici-
pants and researchers, which can lead to more in-depth information
and provide researchers with more context to interpret data with.
Finally, QLLR enables researchers to iterate data collection by ask-
ing follow-up questions or gathering data on additional questions
that may have come to light during or after the initial stage of data
collection, or even changing the research design if necessary. QLLR
researchers can share with the participants how their story is pre-
sented in research outputs and give them an option to reflect on
it and share their thoughts and comments. Moreover, this method
allows researchers to reflect on their research and their role dur-
ing the research process to make changes accordingly. We argue
that the dual nature of QLLR, bringing together the advantages of
qualitative and longitudinal methods, can prove to be an invaluable
addition to the pool of methods researchers use to study automated
decision making.

5 CONTEXT: UNIVERSAL CREDIT IN THE UK
Administered by the Department for Work and Pensions (DWP),
Universal Credit is the UK’s largest social security payment. DWP
introduced UC in 2012, and it is set to replace some of the previous
benefits by 2024. The DWP terms UC ‘digital-by-default’ [27] since
recipients apply for and receive payments through an online account.
The account also acts as the primary mode of communication with
DWP staff (though people unable to maintain the online account
can opt to interact solely by phone). UC is a means-tested and
conditional benefit; to qualify, some claimants must work or look
for work for a certain number of hours per week, based on their
capability to work and certain life circumstances, such as having
dependents.
This study focuses on an essential automated decision-making

feature of UC: its dynamic payment algorithm. UC uses automation
to determine the amount of money claimants receive each month,
based on calculating data points collected during a prior monthly
assessment period. The monthly assessment period is a personalized
unit of time based on the day a person applied for the benefit – for
instance, if a person applies on February 15th, their assessment
period will be from the 15th of a given month until the 14th of the
next month. Claimants’ start with a ‘minimum standard allowance’
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based on their age and relationship status (either single or living
with a partner) and other factors such as disability or number of de-
pendents. Payments will then be adjusted negatively depending on
monthly earnings and deductions. Deductions include repayments
for advance claims the claimant may have been granted in the past,
past overpayments from UC and third-party deductions made at the
request of a creditor, including rent arrears, utility arrears, Council
tax bill arrears, child support maintenance and fines by UC.
For those working, the adjustments to UC based on monthly

earnings happen automatically through a data exchange with the
HMRC’s (HM Revenue and Customs) Real Time Information (RTI)
system. Employers report their employees’ earnings using payroll
software to RTI for tax purposes, and DWP accesses this stream of
data daily. A report by Human Rights Watch [72] uses the metaphor
of a camera to describe how RTI affects the UC monthly assessment
period:

If the RTI system is a camera, the assessment period
functions like a timer that tells it when to take a photo.
The resulting snapshot is the earnings data that Univer-
sal Credit’s algorithm uses to calculate an individual’s
benefit payment for that month.

UC considers all income that is reported to HMRC or self-reported by
the claimant to UC during each monthly assessment period, and the
UC payment decreases accordingly. After the monthly assessment
of earnings, most claimants in the UK receive their payment once a
month. In Scotland, people can choose to receive their monthly pay
in two, approximately bi-weekly instalments.
One goal of UC’s month-to-month calculation, based on actual

earnings, is to eliminate some of the problems claimants faced with
UK’s legacy social security systems. A previous benefit, Working
Tax Credits, had based claimants’ monthly payment on an average
of earnings from the past year as reported to HMRC, and this aver-
age could over- or under-estimated the benefit owed if a claimants’
earnings changed. The discrepancies in reported versus actual earn-
ings led claimants into debt to DWP if their earnings fell and rose
but their tax credit payment stayed the same. UC aims to eliminate
over- or under-payments to claimants – and falling into arrears to
DWP – and reduce the burden on claimants to report changes in
earnings [49].
DWP publishes very little documentation about UC’s perfor-

mance data, “despite the evidence that the Universal Credit team
have built up a modern analytics capability where real-time data
would be the expectation” [57] (p.70). Likewise, it does not publish
any public domain data about its digital services, with the exception
of blog and a smattering of one-off research projects [3] nor about
their source code [57]. While DWP has consulted the researchers of
this project and asked us for updates on our findings in the form
of reports, they did not agree to formal interviews about how the
system works. Conducting research that can account for the experi-
ences of people who claim Universal Credit is particularly crucial
given DWP’s lack of transparency about how they study and under-
stand the user experience. As will be shown later through the use
of screenshots, our research gained insight into the interaction be-
tween claimants and social security agents, a largely unseen aspect
of social security.

In the following sections, we demonstrate how QLLR methods
focused on users of ADMS can be a powerful approach to collect
data about systems, such as UC, that are highly complex and pose
problems of access.

6 METHODS
The data presented in this paper is from an ongoing qualitative, lon-
gitudinal panel study conducted as part of a larger project exploring
the lived experiences of recipients of UC.

Our panel study commenced in mid-2022 and is expected to run
until the end of 2023; this paper reports on data collected in the first
six-month period of the study from participants who were recruited
in 2022. The study applies two distinct methods of qualitative data
collection for each participant: 1. semi-structured interviews and
2. bi-weekly prompted updates sent over phone text asking about
participants’ interactions with UC.
We recruited twenty-six participants through local charities by

participating in their in-person events and by advertising the study
on their social media and mailing lists. Participants take part in
the study over six or twelve months and were interviewed at the
beginning of this period as well as after six months. Participants also
receive text message prompts from the researchers roughly every
two weeks asking for any updates on their interactions with UC.
Participants used different methods to convey information: sending
messages and sometimes screenshots of their interactions and UC
accounts. Five participants at some point phoned the researchers
to explain their situation rather than text. If asked for advice, re-
searchers pointed participants to their case managers, work coaches
and a local advice charity. The exception was a participant who
had significant financial troubles, and the researchers believed that
the participants’ children were at serious risk. On this occasion the
researchers recommended a specific financial aid the participant
could apply for.
We gave participants a £25 shopping voucher after their first

interview and a second one for a second interview at the six-month
period to reimburse them for their time. The first interviews with
each participant lasted for approximately forty-five minutes and
were conducted either online or in person at local charity offices,
cafés or at the University of Edinburgh. Follow up interviews lasted
15-30 minutes. The four participants whose quotes are used below
reviewed and consented to their quotations and the representation
of their stories.
Data collection for this study was not without challenges. Two

participants never responded to the prompts and were eventually
removed from the study. Twenty-one respondents provided us with
relevant data about their interactions with Universal Credit; the rest,
despite replying to prompts, either did not share any information
that was related to the study or did not experience any problems
with UC during the first six months.

We refer to our participants by pseudonyms. As some of our data
was based on text messages and screenshots from our participants,
quotes from these data sources often contain incorrect spelling or
grammar. In order to preserve the original voice of our participants,
we kept these as they were, unless changes were crucial for intelli-
gibility.

4



Emotions and Dynamic Assemblages FAccT ’23, June 12–15, 2023, Chicago, IL, USA

The results of our study cannot be interpreted without taking the
limitations of this study into consideration. Firstly, as is often the
case with qualitative research, our sample was not representative,
so the findings are not generalizable. Secondly, the language of the
interviews and data collection in general was English; therefore,
our study only includes participants who were able to speak in
English at least on a conversational level. Thirdly, our sample has a
high number of participants who identify as female, thus, the views
of male and non-binary participants are less pronounced in our
dataset.

Researchers received ethics approval for the study from the Uni-
versity of Edinburgh.

7 FINDINGS
Despite the growing body of creative, multi-method and ethno-
graphic approaches for studying ADMS, QLLR panel studies – trac-
ing a cohort of participants as they interact with systems over time
– remains vastly under-utilized. Here we focus on how this method
offers unique insights into UC through user accounts of two distinct
but related features of UC’s automated payment: the RTI-UC data
pipeline and the fixed monthly assessment period. In this section
we highlight the experiences of four participants to illustrate these
issues. Presenting data from a smaller number of participants allows
us to share their story in greater detail and showcase the value of
the in-depth information our method can provide. Additionally, we
demonstrate how our method was able to follow these participants’
stories over time and offer insight at different stages.

7.1 HMRC’s Real-Time Information (RTI) system
The RTI to UC data pipeline, as mentioned, entails the flow of data
from claimants’ employers to HMRC, where it becomes aggregated
in its Real Time Information system. Though the data is collected
for tax purposes, HMRC shares this data with UC daily, and UC uses
it to adjust claimants’ monthly UC payment.
As is the case with many vital infrastructures when they break

down [69], the pipeline became most visible to claimants when
errors were made at some point in these data exchange processes.
RTI error rates are endemic to the system. The UK’s National Audit
Office (NAO) reported in 2018 that UC is “sensitive to any change
in claimants’ monthly income” and “employers sometimes supply
information [to RTI] that is late or which contains errors”[54] (p.61).
NAO estimated that in 2017-18, UC made overpayments of 7.2 per-
cent and underpayments of 1.3 percent in part for this reason. [54]
A result of these errors are fluctuations in claimants’ pay, making it
difficult to budget and plan.
Participants’ accounts detail the steps they took to rectify these

errors. In some cases, claimants contacted their employer and UC
to report the error, but they then had little agency over the timing
of its correction. The only data seen as relevant by UC to rectifying
the pay calculation is the HMRC RTI data, not any evidence offered
by the claimant.
Gaja, a white Polish woman in her late 40s raising two children,

experienced an RTI error during the course of the study. In her first
interview in June 2022, she described her case as relatively simple,
telling us, “for me personally it works great,” even though working

at a charity as a case worker she had seen problems with the pay
calculation affecting her clients.
In October 2022 Gaja reported over a text that she had received

more payment from UC than anticipated and assumed her earnings
had not been reported to HMRC, resulting in larger-than-usual UC
entitlement; she wrote, “Something was not reported to [HMRC]
and I told them [UC] that my award is too high, but, they can’t do
anything about it, need to wait for hmrc information.”

Gaja was not worried about budgeting but understood such mis-
takes could pose problems for others:

I’ve got far too much money that I need to return [to
UC], not really changing anything if you are aware of
the mistake, this could be a different story if I wouldn’t
understand how they work and spend all the money.

She pursued the matter with UC, then told us in early November,
“they [UC] are still waiting for my employer to send the report so
far no news.” By late November she was still waiting for an update
on the case.
When we interviewed Gaja a second time in January, she told

us that HMRC had finally reported the September earnings two
months later in December, and the overpayment from UC would
now be deducted automatically from her future UC payments. Her
employer told GaJa they had reported the earnings on time, so she
never received an explanation for the delay and assumed that the
mistake was due to her holding two jobs, and that HMRC had not
registered the wages for one. Gaja shared that she did not feel she
could affect or speed up the process:

I’ve informed universal credit that this will be amistake
in payment. But they didn’t ask me about my wage slip
or anything like that, they just said that it will clear
up when they clear up because they need to listen to
HMRC and not what I’m going to say.

Gaja told us she was satisfied with how the situation was resolved
and still much preferred UC, with its month-to-month calculations,
to the older system used by Tax Credits, based on retrospective
earnings data that so often led to overpayments and debt.
Another participant in our study expressed more distress when

she found an RTI error. Emily, who identifies as Black Caribbean
and white, is a single mother of two children in her late thirties. She
works as an administrator for a center that provides a safe place for
children to meet parents they do not live with. In her first interview
she was very unhappy with Universal Credit, highlighting that in
the approximately three years she had been receiving it, she never
felt supported and had received conflicting and wrong information
on her case from case workers and work coaches. She had also
encountered difficulties reclaiming childcare costs.

In mid-January 2023, Emily shared over a text that her employer
made an error reporting her salary in November 2022, and as a result
she received £300 less in her January payment than she was entitled
to. Emily wrote, “I know the whole system [. . . ] is an absolute sham-
bles. They are causing more hardship, it’s a horrible situation.” Emily
shared screenshots of her exchange with her UC case manager after
she reported the error in December. Her case manager told her that
they would not be able to take action until January – UC needed to
wait for confirmation from HMRC, which, in turn, needed a report
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Fig. 1. Screenshot of Emily’s interaction with her case manager

from Emily’s employer. At the end of December, she wrote to her
case manager: “There is surely another way to rectify this so that I
am not in financial crisis again. This is now adding to my mental
health as I am not sleeping worrying.” (See Fig. 1)

By mid-January Emily was distraught, texting us, “So I’m cur-
rently waiting for that dispute to be resolved as I am once again out
of pocket and struggling because of an error.”
When we checked in at the end of January, Emily let us know,

happily, that the error has been fixed thanks to her employer’s swift
response: “My employer were very helpful and contacted HMRC
at speed and UC put the difference into my account on Friday. [. . . ]
My work has been amazing, thankfully.”
Despite this, Emily had experienced difficulties during this two-

month period of uncertainty, writing, “Just frustrating [that] I had
to get an advance on my wage from my work to survive.”

7.2 Universal Credit’s monthly assessment period
In addition to RTI-related errors, UC’s dynamic monthly payment
presents another challenge for some working claimants. Noted pre-
viously by the Child Poverty Action Group [14] and Human Rights
Watch [72], a punitive discrepancy can occur when a claimant’s
monthly assessment period, which reflects the amount of earnings
a person receives within its time frame, is not in alignment with the
period of work covered by the earnings. For most claimants, partic-
ularly those paid monthly, the UC assessment period will not pose
problems. However, according to DWP’s own analysis, around 25
percent of claimants will find their benefits reduced because they are
paid every two or four weeks. People who are not paid monthly but
rather every two or four weeks will encounter certain assessment
periods over the course of a year that capture two payments at once,
one at the beginning and one at the end of the period. For instance,
someone who receives their wage every four weeks will receive
two sets of wages in one assessment period, roughly once every
13 months, and may receive reduced or no UC payment following
this. DWP, well aware of this problem, calls these dual temporali-
ties “different earning patterns” in their guidance on their official
website. We detail what two users reveal about UC by interrogating
the effects of the fixed assessment period on their payment.
Fiona, a white Scottish woman, is a single mother in her late

thirties with two children. She works as a cleaner for a school that
pays her every four weeks. In her first interview she told us she was
experiencing significant difficulties understanding the UC payment
calculation and anticipating her monthly payment. At the beginning
of August – six weeks after her first interview – she reported that
she was trying to get information from UC, both through her online
account and the phone helpline, regarding her entitlement. Fiona
worried that, due to being paid every four weeks, she would not get
her entitlement in an upcoming month. She wrote to us via text, “I
tried phone uc to be told [to] write my worries and questions online,
so i have done this yesterday and waiting on response.” Knowing
far in advance whether she would get her entitlement especially
mattered as her children are “not entitled to school meals so [she
would] need to make sure [her] kids have lunch money”.

Throughout August, September andOctoberwe received frequent,
instant updates from Fiona on her interactions with different UC
case workers as she tried to understand when she would not receive
a UC payment. Fiona’s updates included screenshots of messages
she exchanged with case managers and phone calls elaborating her
worries and confusion. (See Fig. 2)
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Fig. 2. Screenshot of Fiona’s interaction with her case manager

At the end of September, Fiona shared that she still had not re-
ceived a definitive answer regarding the month she would not re-
ceive UC payment: “I don’t know if it will be november or december

or both i don’t get paid , it’s horrible.” In October she wrote, “the
system is hellish”.

She finally learned she would not receive UC payment in Novem-
ber from her UC statement that month, sent only a few days before
her payment would have been put in her bank account. She wrote
over text, “I’m not getting a november pay it’s come up £0 no one
told me.”

Throughout, she interacted with several different case managers.
In our second interview in mid-January 2023, she told us how frus-
trating and impersonal these interactions were: “Even [just] the
same person replying to me would be better than a half assed con-
versation.” She described her experience during the previous three
months, saying, “I keep emailing them and writing, ‘Good after-
noon, could someone help me understand the calculation behind
this madness?’.” She shared that she had borrowed money from her
son to “to keep [her] head above water until [she] get[s] paid.”
Conflicts between employers’ payment policies and the UC as-

sessment period can happen as people start new jobs or change
their working hours. Jennifer, a white Scottish woman, is a single
mother of two children in her early thirties who worked 16 hours a
week as a family support worker when we first interviewed her in
June 2022. Overall, Jennifer seemed content with UC, though she
had once experienced a mix-up with her wage-reporting that she
said had been quickly resolved.
In July she left her job due to mental health difficulties. UC re-

quired her to look for 25 hours of work to qualify for the benefit,
and by October she found a 16 hour-a-week contract serving school
dinners. She worried this change in employment would affect UC’s
automated payment since her new employer had not yet paid her
first wages for the month of October. In mid-October she sent a
text to say she feared she would receive no UC payment the fol-
lowing month: “If [my wage payment] doesn’t fall into the window
that [UC] create. 21 to 21st of each month I wont receive any uc
payment.” If she was paid for her October hours and November
hours in the same month, then her combined earnings could put her
over the threshold to qualify for UC, resulting in no UC payment in
November.

When we interviewed Jennifer again in January, she informed us
that, indeed, her employer’s late October pay had resulted in a “dip”
in UC – though her November payment “wasn’t zero, no, it just
wasn’t as high as what [she] thought”. She expressed her frustration
with UC’s rigid assessment period and how it accounts for when
you are paid according to HMRC, but not the period you actually
worked:

I’d waited a long time for my first wage so it looked
like they had paid me twice. [. . . ] They put it in the
same month so it looked like I got more which is a
really frustrating part of universal credit.

Jennifer also partly blamed herself for her changing circumstances;
she had quit the school dinner post in early December to take an-
other job in January as a pupil support assistant – a position she
was excited about and felt more qualified for – for 25 hours a week.
Reflecting on her two jobs Jennifer told us, “It is partly my fault, I
have leapt from job to job in such a short amount of time.”

7



FAccT ’23, June 12–15, 2023, Chicago, IL, USA Morgan Currie and Lena Podoletz

8 DISCUSSION
Drawing on these accounts, we argue that QLLR brings advantages
to user studies, and in this section, we focus on how it captures 1)
the unfolding, dynamic processes endemic to ADMS and 2) in situ,
affective dimensions of users’ encounters.

8.1 Capturing ADMS as a process
Kitchin writes that “algorithms are rarely fixed in form and their
work in practice unfolds in multifarious ways”[37]. A longitudi-
nal approach captures just how multifarious and volatile UC’s au-
tomated payment algorithm is: not only did participants recount
unique experiences with it, but their individual encounters with UC
over the first six-month period proved highly dynamic. Claimants
such as Gaja, who had otherwise no trouble with the UC payment,
encountered problems after the study started. Through screenshots
shared with us, we could get a view of how users interacted with
their case managers, work coaches and employers to resolve er-
rors or seek information about upcoming payments, and we could
discuss with participants their reflections on these encounters.
This approach - capturing ADMS as a process - gave us insight

into problems around UC’s accountability. ADMS in the public
sector can be seen as “operating outside the scope of traditional
oversight and public accountability mechanisms” [10], which un-
derlines the need for innovative ways to examine these tools and
their consequences. Thanks to the temporal element of our method,
we gathered valuable insight on procedural technicalities of data
exchange between UC and the RTI and the difficulties users face
when they are subject to a mistake. This method allowed us to es-
tablish granular timelines for RTI error resolution that could be
difficult for participants to recount from memory. We found that
claimants face, on average, a two-month period of uncertainty and
vacillating pay until DWP redresses the issue. We also found that
even when claimants find the issue resolved they are not always
able to discover the origins of the error.
Longitudinal research also has the advantage of allowing the

study to be iterative and responsive to participants. Speaking to
participants for a second interview helped us bridge gaps found
during the first iteration of data analysis, particularly as we tried
to establish timelines around UC errors. We also built trust with
participants, which impacted the depth and detail of the information
received during data collection. Though we never requested them,
several participants, asmentioned, shared screenshots of their online
chats with DWP. This type of data is valuable because researchers
who do not qualify for UC cannot access the system directly – this
data gave us a unique window into how DWP addresses errors and
handles questions from claimants.

8.2 Emotions and ADMS
QLLR allows researchers to gather data as users react in near-real-
time and in situ to ADM systems, capturing the emotional dimen-
sions of users’ interactions. Such an approach goes well with the
theoretical lens of lived experience, a framework that sets out to
understand peoples’ subjective, embodied reactions to everyday
events and considers how a person’s identity – including their race,
gender, and class – shape these experiences and ways of knowing

the world[8][46][21][39]. As mentioned in the literature review, sev-
eral studies have asked users about their basic comprehension of
algorithmic systems, and some include questions about feelings of
fairness and justice [60]. More work is needed to capture the lived
experiences of users, including their emotional reactions as they
interact with ADMs.

In our study participants expressed a range of emotions towards
UC, from frustration and desperation to gratitude and relief. Their
emotions intensified in the face of an error or when confronting a
large change in UC pay due to circumstances out of their control –
at these points, participants spent a great deal of affective energy
on UC to sort out the error or anticipate for months when their UC
payment would dip or not arrive at all. Participants expressed real
fears of material scarcity affecting their children at these times. Our
study traced these trajectories of emotions, capturing as participants
first reacted with confusion and annoyance at a UC behavior or a
decision they did not understand, then relief if the issue is resolved,
or resignation, anger and helplessness if they could pursue the
matter no further.

Literature on lived experience is helpful for being attentive to how
subjectivity and emotions are situated in a person’s social context,
shedding light on its structural inequalities. In this regard, claimants
expressed how they at times felt powerless when questions about
payment went unanswered and unaddressed and because UC pri-
oritizes certain forms of evidence – such as HMRC data – over the
type claimants could supply. UC in this way shapes users’ sense
of self and agency as they interact with it. Stark [70] makes a di-
rect link between affect and the normative values shaping digital
technologies’ development and use. Affect, Stark argues, “infuse(s)
the norms and values of particular digital platforms. . . and/or shape
subjective and social reactions to particular technologies" (p.122). In
our study people reacted emotionally to their powerlessness when
they could not anticipate their entitlement. With UC’s unpredictable,
fluctuating monthly pay, we find a design that can inflict emotional,
as well as material, difficulties due to its unintelligibility.

9 CONCLUSIONS
As an automated social service, Universal Credit is notoriously diffi-
cult to study because of its complexity, dynamic responses to users’
heterogenous circumstances and the reluctance of DWP to engage
with researchers. Universal Credit also shares many features with
other ADMS when it comes to problems concerning accountability
and intelligibility to users. UC’s dynamism calls for novel methods,
and qualitative longitudinal research can serve as a capable tool
to contribute more holistic understanding. We used our empirical
study to demonstrate how QLLR captures granular information on
basic features of UC: the data exchange pipeline led by the Real-
Time Information system and the automated monthly assessment
period. Through screenshots we obtained a quasi-archive of events
that complemented the accounts of participants and revealed fea-
tures of the UC system otherwise opaque to researchers not on the
benefit. Lastly, by capturing emotions in situ and over time, we
gained insight into how users experience power imbalances due to
their lack of voice and the system’s unintelligibility at times. We
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invite researchers to build on this method in future studies of ADM
systems.
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