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Abstract
Large multi-speaker datasets for TTS typically contain diverse
speakers, recording conditions, styles and quality of data. Al-
though one might generally presume that more data is better, in
this paper we show that a model trained on a carefully-chosen
subset of speakers from LibriTTS provides significantly better
quality synthetic speech than a model trained on a larger set.
We propose an unsupervised methodology to find this subset by
clustering per-speaker acoustic representations.
Index Terms: speech synthesis, data, clustering, speaker repre-
sentation, sequence-to-sequence models, multi-speaker

1. Introduction
State-of-the-art Text-to-Speech (TTS) synthesis models have
achieved near human quality, especially for intelligibility, by
leveraging advances in deep learning which usually require
training on very large datasets to perform well. These very
large speech datasets frequently contain “found data”, e.g. data
of varying recording quality that was not elicited with the pur-
pose of training TTS systems. However, found data can be very
inconsistent in terms of sample quality, recording condition,
speaker variety, and speaking style, among other factors [1].

Although in machine learning – and deep learning in par-
ticular – it is considered a general rule that more training data
usually improves model performance, the spurious features of
found data can significantly affect the training and final quality
of TTS models [1]. Earlier TTS frameworks, notably statis-
tical parametric speech synthesis (SPSS), have benefited from
efforts to understand the interaction of the data characteristics
with the training of the models [2]. However, for TTS frame-
works based on neural networks, there is not yet enough work
to explain how the latest sequence-to-sequence (S2S) architec-
tures interact with particular data qualities and quantities.

Data selection is one tool for understanding this interaction.
Diversity of speakers is one of the most important factors of
variation in the data, and the easiest way to obtain more data is
by combining speakers. While it is widely believed that inherent
characteristics of some speakers are better or worse for TTS
models [3], we don’t yet have a clear understanding of what
these characteristics are. Moreover, when we are dealing with
large datasets, manual curation of the raw data is not feasible,
making automated approaches essential.

Our goal is to train a TTS model from a large found
database (here, LibriTTS [4]) that leads to the most natural
synthetic speech, having no particular target speaker identity
in mind. We describe a new unsupervised speaker selection
method based on clustering per-speaker acoustic representa-
tions. We use this to identify a subset of speakers for training
and show that this subset leads to significant improvements in
quality compared to training our S2S TTS model using the en-
tire dataset.

2. Related Work
Data selection techniques have been widely explored in TTS
research. In general, there are two approaches: 1) extracting
acoustic features from the speech signal for statistical analysis
of diverse aspects of speech such as pitch or speech rate [5],
hypo- and hyper-articulation [6], mel cepstral distortion [1]; 2)
measuring data quality in terms of alignment errors [7], pho-
netic coverage [1] or noise [4]. Although most of these methods
use per-utterance statistics, [2] showed that data selection at the
speaker level outperforms utterance-level selection. Their ap-
proach ranks speakers into three groups (high, medium, low) us-
ing extracted acoustic values and automatic transcription word
error rates (WER). Models trained on the speaker group with
the lowest WER resulted in higher intelligibility than models
trained on the lowest WER utterances.

It is not clear if those improvements came from select-
ing speakers with overall high quality or from finding a sub-
set that is homogeneous. [8] experimented with several criteria
to group similar speakers in order to train average speaker mod-
els for Hidden Markov Model-based TTS (HMM-TTS). Group-
ing speakers by listeners’ judgements of perceived similarity
outperformed any signal-based criteria. [9] obtained positive
results for methods finding homogeneous subsets of speakers,
with the aim of training multi-language HMM-TTS. The two-
step approach merges models based on gender, age and smok-
ing habits, then uses 6 utterances per speaker to perform hierar-
chical agglomerative clustering of speakers, by comparing dis-
tances between Gaussian Mixture Models trained on the data.

Most speaker selection methods are extrinsic and therefore
should also be useful for the latest TTS S2S models trained
on large multi-speaker corpora. In recent work, [10] aimed to
find the smallest amount of multi-speaker data needed in ad-
dition to the limited data from a single target speaker. They
showed that small multi-speaker datasets can outperform larger
speaker-dependent datasets, where most of the improvements
come from learning more stable models.

3. Data Preparation
LibriTTS1 [4] is a large multi-speaker dataset, recently released
by Google, created from the LibriSpeech dataset for the pur-
pose of training TTS models. LibriSpeech comprises audio-
books read and recorded by non-professional speakers, gener-
ally in sub-optimal recording conditions. We worked with the
two “clean” training subsets defined by LibriTTS that contain
a total of 245 hours of speech from 1 151 speakers. We first
applied the two pre-processing stages detailed in the next two
subsections.

1http://www.openslr.org/60/



3.1. Amount of Data Filter

As described in the original LibriTTS paper [4], the amount
of data per speaker in the corpus is highly unbalanced, with
a median of just 15 minutes. Our method computes a per-
speaker representation of their characteristics, so we only re-
tained speakers with at least 20 minutes of data in order to ob-
tain a robust representation. Furthermore, for the purposes of
our experiments, we desired relatively balanced data so that no
single speaker dominates the data (and thus skews results), so
also discarded speakers with more than 30 minutes. This re-
sulted in 120 speakers, each with 20-30 minutes of speech, re-
sulting in 64.3 hours of speech at this stage of data preparation.

3.2. Outlier Removal

In the early stages of prototyping our clustering method, we
noticed that results were highly affected by outlier speakers,
i.e., those with a very different acoustic representation to other
speakers. We found that their audio recordings had a bandwidth
substantially lower than half the sampling rate (the Nyquist fre-
quency), suggesting that they were made on a device with a
digitally-limited bandwidth (e.g., certain USB headsets), or had
at some unknown stage in their history been upsampled. To
identify and remove speakers with any such data, we used long-
term spectral analysis, resulting in a final dataset of 88 speakers
amounting to 33.8 hours of the 64.3 hours from above.

4. Finding Subsets of Speakers

Our goal is to find a subset of speakers for training a TTS model
that leads to the highest quality synthetic speech. The proposed
method consists of two parts. First, we extract a feature vector
from the speech signal of each utterance, average them within
speakers, and obtain per-speaker representations. Second, we
perform unsupervised clustering of those speaker representa-
tions. The data from all speakers within a cluster is combined
into a training set for a TTS model. Thus we train multiple
cluster-dependent models. There are many possible options for
the feature vectors; we explored three, described in Section 4.1.
The complete method is summarised in Figure 1.

Figure 1: An overview of the complete method

4.1. Acoustic Speaker Representations

4.1.1. Speaker Identity X-Vectors

Speaker vectors aim to maximize variance between speakers,
while minimizing within-speaker variability such as recording
session and speaker mood. We chose this representation as
a starting point condition: it should represent differences and
similarities between speakers but perhaps not fully capture as-
pects of recording quality. We extracted utterance-level speaker
x-vectors from LibriTTS data using a pre-trained2 speaker x-
vector model [11] and the Kaldi framework [12]. This pre-
trained model uses a time-delay neural network (TDNN) and
was originally trained using VoxCeleb 1 & 2 corpora, on which
it obtains an EER of 3.1% and minDCF(0.01) of 0.33 for
speaker ID. For LibriTTS, we obtained an EER of 10.23%
and minDCF(p-target=0.01) of 0.68. This indicates that our x-
vectors are reasonable, despite potential data mismatch between
VoxCeleb and LibriTTS. The 512-dim utterance-level x-vectors
were averaged within speakers to obtain per-speaker Speaker
Identity representations.

4.1.2. Device Quality X-Vectors

The idea of using x-vectors to model device quality, rather than
speaker identity, was first introduced in [13]. They were later
shown to be useful for automatically predicting naturalness of
synthetic speech [3]. We hypothesized that this type of speech
representation might be able to capture differences in record-
ing quality. We extracted device quality x-vectors using a pre-
processing script3 originally intended for naturalness predic-
tion. We trained a TDNN x-vector extractor on the Physical Ac-
cess (PA) simulated dataset from the ASV Spoofing Challenge
2019 [14], a dataset created to facilitate research on counter-
measures for replay spoofing attacks. The training labels, rather
than speaker labels, represented the quality of the replay device
(perfect, high, low, or ‘not replayed’). The quality of the de-
vice depends on the bandwidth captured, its lower bound, and
its linear/non-linear power difference. The 512-dim utterance-
level device quality x-vectors were averaged within speakers to
obtain per-speaker Device Quality representations.

4.1.3. Deep Spectrum Vectors

The previous two representations are derived from supervised
techniques aiming to capture only speaker identity, or only
recording quality, respectively. An interesting alternative to
these would be a problem-agnostic representation. One such
representation is the Deep Spectrum4, which is derived from
the activations of a specific layer in a very deep image CNN
[15, 16]. In our work, they come from layer fc2 in a VGG-19
model that was pre-trained on a variety of non-speech images.
The spectrogram of each utterance is scaled down to a fixed
227×227 image and passed forward through the network to ob-
tain a Deep Spectrum vector of 4096-dims. These were aver-
aged within speakers to obtain per-speaker Deep Spectrum rep-
resentations. We hypothesize that the Deep Spectrum captures
noise-like artifacts at varying times and frequencies in the spec-
trogram, which are lost or deliberately discarded by the other
representations.

2https://kaldi-asr.org/models/m7
3https://github.com/rhoposit/MOS_Estimation
4https://github.com/DeepSpectrum/DeepSpectrum



4.2. Clustering

Each of the above acoustic representations was extracted for
each file in the dataset, then averaged across all files from the
same speaker to obtain per-speaker representations. For each
representation in turn, the speakers were clustered using scikit-
learn’s implementation of k-means [17].

A key design choice is how many clusters to obtain. We
certainly want a minimum of 3 clusters, to avoid a 2-way split
purely on gender. A larger number of clusters implies less data
per cluster, and – in practical terms – a less manageable number
of systems to build and compare. We ran the clustering mul-
tiple times with different random seeds and for 3 to 5 clusters.
We compared the results using the clustering performance eval-
uation metrics (Calinski-Harabasz Index and Silhouette Coeffi-
cient5) that the same library provides for when the ground truth
labels are not known and chose k=3.

Since we will be comparing TTS models each trained on the
data of a single cluster, reasonably equally-sized clusters are de-
sirable. For the Deep Spectrum and Device Quality features, the
resulting clusters came out balanced. For the Speaker Identity
vectors, across all runs with different random seeds, one of the
clusters was consistently larger, so we selected the run that gave
the best balance. Figure 2 shows the size of each cluster and the
overlap between speakers. There is no ordering to the clusters:
e.g., cluster 1 for Deep Spectrum has no relationship to cluster
1 for Device Quality.

Figure 2: Overlap of speakers between clusters. ”DS” are clus-
ters using Deep Spectrum features; ”ID”, Speaker Identity x-
vectors, and ”DQ”, Device Quality x-vectors. The number in
parentheses below each system indicates the size of the cluster,
while the squares show the number of speakers that overlap for
each pair of clusters.

5. System Descriptions
5.1. Architecture

Figure 1 shows that we trained one model for each cluster of
each representation, plus a baseline model using all the data.
All models used the Ophelia6 version of Deep Convolutional

5https://scikit-learn.org/
stable/modules/clustering.html#
clustering-performance-evaluation

6https://github.com/CSTR-Edinburgh/ophelia

TTS (DCTTS) [18], an S2S architecture using only convolu-
tional layers. This architecture was selected for its fast speed of
training compared to, e.g., Tacotron 2 [19]. Since our speaker
subset selection method is extrinsic to the model, we expect our
findings to generalise to other architectures.

DCTTS has two main components: (1) the Text2Mel (T2M)
model maps a phoneme sequence to an 80-band mel-scale spec-
trogram at a low time resolution of 20 frames per second; it
comprises a text encoder, an audio encoder, an audio decoder
and an attention module; (2) the Spectrogram Super Resolu-
tion Network (SSRN) upsamples that mel-scale spectrogram to
a 1025-band linear spectrogram at 80 frames per second. Wave-
form generation was performed using the Griffin-Lim algorithm
[20]. All models were trained with phonemic transcriptions pro-
duced from the input text by Festival [21] using the CMU lex-
icon. All T2M models were multi-speaker, we provide speaker
code embeddings to every layer of T2M. We used the same
SSRN model for all systems, trained on the whole dataset with-
out speaker information.

5.2. Cluster-dependent TTS Systems

We trained one system for each of the resulting 9 clusters of
speakers. The speaker representations used to form clusters of
speakers are not used by the TTS models. Figure 2 shows the
number of speakers used to train each of the models.

All the cluster-dependent models were trained for 1500
epochs. Although this means a different number of weight up-
dates per model (as the total number of samples differs) we ob-
served that the output of the models is stable even when ‘over-
trained’. For each speaker, one sentence (the same across all
systems) was randomly held out for the listening test.

5.3. Baseline TTS System

The baseline system was trained on the full dataset from all 88
speakers remaining after the data preparation in Section 3. To
ensure fair comparison with the above systems, it was trained
until perceived quality converged, which took 4000 epochs.

6. Evaluation
Recall that our goal is to achieve the best quality synthetic
speech. Since we have no particular target speaker in mind,
and to reduce the number of systems to be evaluated in the sub-
sequent listening test, we identified the best cluster-dependent
model per representation, through expert listening to random
sentences whilst varying the speaker code input to the T2M
model, identifying the most stable model. For Deep Spectrum
the best system was DS2, for Speaker Identity it was ID2 and
for Device Quality it was DQ1.

In the following listening test, we evaluated: (1) Copy Syn-
thesis by passing ground-truth 80-band mel-scale spectrograms
at a low time resolution of 20 frames per second (Section 5.1)
through SSRN followed by the Griffin-Lim algorithm, (2) Base-
line, (3) DS2, (4) ID2 and (5) DQ1.

To control for listeners’ preferences for some speakers over
others, the listening test used synthetic speech generated us-
ing the speaker codes of the 14 speakers in the intersection
of all the above systems, of the single held-out sentence men-
tioned earlier. We implemented a MUSHRA-like listening test.7

Copy Synthesis was provided as a reference sample, not to be
rated. Copy Synthesis was also included as the hidden refer-

7Listen to the samples at: https://pilarog.github.io/



ence, among the other four samples options in a random order,
presented to listeners for side-by-side rating. Listeners were in-
structed to rate each sample from 0 to 100 according to its qual-
ity given the reference, and in doing so also to find the hidden
reference and give it a score of 100.

The test was implemented in Qualtrics8 and participants
who self-identified as US citizens and native speakers of US
English were recruited via Prolific Academic9. Any participant
who scored any of the references lower than 50 was discarded
and replaced, other participants were retained, until we reached
a pre-set target of 20 retained participants.

7. Results
Results are shown in Figure 3. We tested the scores for normal-
ity with the Shapiro-Wilk test. As scores were not normally dis-
tributed, we compared their averages with the Wilcoxon signed-
rank test, and tested for statistical significance after Bonferroni
correction (alpha=0.05).

Figure 3: Horizontal lines show significant pairs. The p-value
given is for the system that is significantly better than base-
line. Inside each box, the solid line indicates the median and
the dashed line is the mean.

The best Deep Spectrum system, DS2, was significantly
better than baseline at p ≈ 0.007. The other two cluster-
dependent systems were significantly inferior to the baseline.

The results demonstrate speaker selection has the potential
to improve quality. Using data from 33 speakers selected us-
ing Deep Spectrum speaker representations proved to be signif-
icantly better than a baseline system using data from 88 speak-
ers, and better than a system trained on data from 43 speakers
selected using Speaker Identity representations, and one trained
on data from 29 speakers selected using Device Quality repre-
sentations.

8https://www.qualtrics.com/
9https://www.prolific.co/

8. Discussion
One explanation for the good result using the Deep Spectrum
representation is its ability to capture more speaker characteris-
tics and other information from the spectrogram than Speaker
Identity x-vectors. Specifically, we speculate it may capture
speaking rate and recording conditions.

Clustering using the Deep Spectrum representation is only
one way to identify speaker subsets, and was tested only on
one dataset. It is not clear how much the result depends on the
characteristics of the data, such as the nature and distribution of
outliers, which will differ from one dataset to another. However,
Deep Spectrum features are generic and not task-specific, which
suggests they should also work on other datasets.

We also trained other systems that we didn’t include in our
formal evaluation as they were evidently worse than the base-
line. These systems: random selection of 27 speakers (average
number of speakers in the cluster-dependent models) to control
for data size; single gender subsets; T2M models that encoded
the cluster label and distance from centroid instead of accept-
ing a speaker label; fine-tuning both the baseline model and the
cluster-dependent models to each of the speakers used in evalu-
ation. We chose k = 3 clusters, but found informally that k = 5
also appears to work well.

Evaluating the output of multi-speaker models, especially
when no particular target speaker or use case is in mind,
presents some challenges. It is more common to use multi-
speaker datasets to provide data additional to a limited quantity
of data from the desired target speaker; in that case, evaluation
can be for that target speaker only.

During the design of our evaluation we considered several
ways to compare our models to the baseline. We could have
compared speech generated for all the speakers that could be
produced from each and every cluster-dependent model against
speech generated by the baseline for the same speaker. How-
ever, this would be a costly evaluation. Instead, we limited the
evaluation to only our best models, thus limiting the number of
speakers generated. By using the same speakers across all mod-
els, we aimed to avoid two problems: 1) listeners’ preferences
for some speakers over others; 2) variations in quality from a
single model as the speaker is varied. These factors could be
important in other evaluations.

9. Conclusions and Future Work
We have demonstrated that training a system on a selected sub-
set of speakers improves synthetic speech quality compared to a
baseline trained with a larger dataset: more data was not better.

We proposed a simple unsupervised method to find this
speaker subset by clustering per-speaker representations, and
found that Deep Spectrum features worked well.

In future work, we would like to automate the only step
of the process that requires manual evaluation: finding the best
cluster-dependent model out of the k such models per speaker
representation. We also plan to replicate the experiments us-
ing another S2S architecture such as Tacotron 2, and to employ
other large multi-speaker datasets.
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