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Abstract

In a world of interconnected devices, app-based ecosystems enable a seamless user experience
across devices. Although convenient for users, this expanded ecosystem also exacerbates security
and privacy threats by exposing users’ sensitive data to a broader context. This research looks
into multi-platform apps and addresses the question of whether information flows can be detected

across different app platforms and how to do it efficiently.

To answer this question, we first instantiate the problem in the wearable ecosystem by analysing
platform-specific abstractions and modes of interaction. We identify limitations of current ap-
proaches to detect sensitive data transmitted across Mobile-Wear channels and develop a custom
static analysis framework that augments the capabilities of taint tracking, enabling inter-device
analysis of applications. Our framework enables the detection of information flows that otherwise
would remain undetected. Second, we study information flows in the Android TV ecosystem
and identify the differences with the mobile ecosystem. In particular, we analyse the behaviour
of TV apps in terms of sensitive data collection and communication with other devices using a

pipeline of static and dynamic analysis experiments

Analysing these two platforms provided us with valuable lessons to think about arbitrary ecosys-
tems. One common task, for any platform, is generating taint specification for information flow
analysis. Therefore, we propose a framework that models the semantics of API methods using
Natural Language Processing techniques and software documentation instead of a code base
approach. Our framework allows security analysts to detect security-sensitive methods auto-
matically and is robust against software evolution. Thus, our framework is an excellent option

for generating taint specifications for arbitrary app platforms.

This investigation contributes to the community by studying two overlooked ecosystems and
provides the means to analyse arbitrary app ecosystems. Our methodology is based on a dual-
channel perspective: Program Analysis and Natural Language Processing. We use these com-
plementary techniques to better understand Android platforms’ security and privacy risks, and

we take one step further towards safer ecosystems.
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1 Introduction

This chapter contains the problem statement, the motivations for this thesis, our contributions,

and the published works, including the open-source tools we provide to the community.

The rapid development of smartphones and Internet of Things (IoT) devices enables an app-
based ecosystem where users can interact with the digital world from any device. For instance,
wearable devices can now run apps on appliances with large computing, storage, and networking
capabilities. Similarly, Smart TV vendors have expanded their user base due to the popularity

of streaming services, affordable prices, and enhanced user experience [1].

A key feature of these devices is that they are interconnected and provide a usable interface
to interact with smart devices and cloud-based apps. For instance, users can make payments
or monitor their health with gadgets seamlessly from any device such as smartphones, smart-
watches or personal assistants. Furthermore, users can control devices in their smart homes
using proximity protocols or sending remote commands over the Internet [2-4]. In general,
smart devices are in a rich environment where they can interact with other devices. A 2022
survey [5] reported that US households have an average of 22 connected devices, highlighting

the increasing prevalence and integration of smart technology into our daily lives.

Interconnected ecosystems offer a myriad of additional functionalities and enhanced user ex-
perience. On the other hand, these improvements also introduce vulnerabilities and poten-
tial privacy violations. Several studies have exposed vulnerabilities in smartwatches and their
ecosystem [6-9], including their Bluetooth connectivity [8,10] and privacy breaches [11,12]. Pre-
vious works reported vulnerabilities and data leakage in IoT devices, including Smart TVs and
Chromecast devices [2,4,13,14], while another line of research focused on detecting vulnerabil-

ities and attacks on smart home platforms [2-4,15,16].

Many companies rely on analytics and advertising as part of their business model. Application
developers embed third-party libraries (TPL) in their apps for these purposes. TPLs are tightly
integrated with the host app and share the same execution context. This architecture exposes
sensitive data to third parties. Several works analysed privacy implications in mobile apps [17-
21] and the tracking and advertising ecosystem [17,18,22-24]. The mobile platform does not
stand alone with privacy problems. The TV vendor Vizio paid a large fine for collecting viewing
data on 11 million consumers without their knowledge or consent [25]. While other works
reported several vulnerabilities on Smart TVs [2,13,14,26,27], including personal data leaks in
Roku and Fire TV [28,29].

The problems raised above demonstrate the prevalence of security and privacy problems in app-
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Introduction

based ecosystems. Moreover, studies have shown that people are concerned about the security
of smart devices and privacy expectations of their personal data [5,12,30]. With this context in
mind, this thesis looks at multi-platform apps and how sensitive information is used. Specifically,

we look into information flows across multiple apps from different platforms.

Each platform consists of different devices designed to provide a custom user experience and
deployed in different environments. For instance, wearable devices are designed to provide a
wrist experience focusing on critical tasks and short interactions. In contrast, smartphones are
designed for a complete experience and prolonged interactions. Different devices and execution
environments make the analysis of each platform cumbersome. However, apps are the most
common way to interact with interconnected ecosystems, and we capitalise on this scenario.
Thus, we choose to study apps customised for each platform to simplify the analyses instead of
relying on complex testing environments. Note that we study third-party applications that can
be downloaded from the official or alternative stores, but software from IoT /medical devices are

outside the scope of this thesis.

Our decision to target custom apps leads to the problem of choosing a target platform. Android,
Apple, and Amazon are among the most popular vendors that offer numerous smart devices.
We choose Android as the target platform for multiple reasons: 1) Android’s open-source nature
facilitates the analysis of the Android framework and apps. 2) Its availability across devices,
i.e., phones, TVs, watches and cars. 3) Its high integration across devices facilitates consumer
adoption, amplifying the affected user base. 4) Its predominance in the mobile environment.
Android is the most popular OS, with over 3 billion active devices worldwide. 5) The Android
research community is very active and has laid the groundwork for other researchers to study

more specific problems.

1.1 The Problem

Apps across platforms generally implement similar core abstractions while including specific
features. We are interested in understanding if current information flow techniques generalise
to capture these specific features and the limitations arising from platform constraints. We are
also interested in uncovering platform-specific problems, which might not necessarily be related
to information flows but have an impact on our ability to understand threats to users’ privacy.

Thus, we study security and privacy threats in arbitrary Android platforms targeting their apps.

Over the years, Android has evolved to support a wide range of platforms to provide a multi-
device experience for its users. While smartphones are still the most popular device, the market is
constantly diversifying with additional devices, e.g., Smart Cars. Google maintains a customised
Operating System (OS) version for each Android platform considering hardware limitations and
user experience. This diversification compels developers to create or adapt their apps for each
platform. In this thesis, we refer to a platform as a specific instance of one ecosystem. For

instance, the Android TV platform is the Android instance of the Smart TV ecosystem.

Figure 1.1 shows multiple versions of a hypothetical Android app. The figure shows this app’s

14
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multiple versions: wearable, TV, mobile and car. The app’s main function is the same across
all platforms. However, significant differences arise when looking at their technical details. For
instance, mobile and wearable apps can interact in close proximity using platform-specific APIs,
while the TV app receives inputs from a remote control. These platform-specific capabilities
suggest that threats vary across platforms. Therefore, the methods for identifying these threats
also differ. As app developers must adapt or create apps from scratch for new platforms, re-
searchers may need to do the same with their framework or testing environment. We highlight
the importance of a better understanding of these differences and current techniques’ limitations

to model app behaviour across platforms.

:
D‘/\ V

\\\ > )

Figure 1.1: Multi-platform app example

The Android research community has made a great effort to study Android apps to confront
potential vulnerabilities and threats to the growing ecosystem [31]. These works use static
analysis [32-37,37-44] and dynamic analysis [15,45-49] to uncover privacy violations and vul-
nerabilities. However, most of these works focus on mobile apps only, and threats on other
platforms are overlooked. In this thesis, we seek to fill this gap by expanding the scope from
the mobile ecosystem to an ecosystem of interconnected devices focusing on Android apps. It is
important to mention that our research effort centres around studying these ecosystems from a
static analysis perspective, even though we complement our evaluation with dynamic analysis

in some cases. We present the Research Questions and describe our methodology below.

1.2 Research Questions and Contributions

Our research aims to improve the security and privacy of Android apps across different platforms.
While most research efforts have been devoted towards mobile apps, less attention is given to
apps for other smart devices and how they interact with their mobile counterparts. This thesis
focuses on making existing analyses aware of the differences between apps across platforms. With
this in mind, we propose the following research questions, and we associate these questions with

specific chapters, contributions, published works, and open-source tools.

RQ1. Can sensitive information flows be detected in arbitrary app platforms?
This thesis centres around answering this question. To address the question above, we first
examine the similarities and differences between multiple Android platforms. Then, we

present two case studies where we analyse abstractions and interactions that are platform-

15



Introduction

RQ2.

RQ3.

specific. In particular, we study sensitive information flows in Wear OS and Android TV
apps and compare them with the mobile platform when possible. We seek to identify the
limitations of state-of-the-art frameworks to detect sensitive information flows in arbitrary

platforms and propose solutions to fill the gaps.

Do other platforms present problems unseen in the mobile platforms?

This question attempts to uncover problems that still need to be revealed to the community.
Assume that it is possible to detect information flows in arbitrary platforms. What other
problems are we missing because of the lack of attention to platforms such as Wear OS
and Android TV? In this thesis, we examine these platforms to uncover problems related
to modes of interaction, permissions, third-party libraries, and metadata. We aim to
contribute to a much better understanding of app-based ecosystems and the divergences

from Android mobile.

Is it possible to automate the analysis of arbitrary platforms?

This question focuses on the practicalities of analysing arbitrary app ecosystems. Assume
again that it is possible to detect information flows in arbitrary platforms. What are the
difficulties that security analysts face when analysing different platforms? In this thesis,
we explore the idea of automating the generation of taint specifications from software
documentation. Automation aims to scale the analysis of real-world apps and reduce the

burden of manual analysis of apps, the Android Framework and Google libraries.

If existing techniques are enough to detect information flows in arbitrary apps, then the answer

to RQ1 is yes, and we only need to focus on platform-specific problems (RQ2) and automating

the evaluation of multi-platform apps (RQ3). However, we show that existing techniques lack the

capabilities to capture abstraction from all the platforms, preventing the detection of sensitive

information flows in many scenarios. The figure 1.2 illustrates our methodology to address these

questions. Our approach consists of two phases: Platforms evaluation and Generalisation.

Platforms evaluation Generalisation

Information Flow

Wear 0S (Chap 3,4) Static analysis specification for
arbitrary platforms
(Chap 6)
. . Natural
Android TV (Chap 3,5) S dyn'amlc Language
analysis :
Processing

Figure 1.2: Thesis methodology
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In the first phase, we evaluate two Android platforms (Wear OS and Android TV). First, we
present structural components of the Android framework and Google Play Service libraries.
Then, we use static and dynamic analysis techniques to study the structure of Android apps,
sensitive APIs modes of interaction, and information flows potentially leaking sensitive data
within and across platforms. We evaluate our approach using custom benchmarks and large
data sets of real-world apps. This phase covers the RQ1 and RQ2.

In the second phase, we use the lessons learned from these evaluations to propose methods to
automate critical parts of the security evaluation of multi-platform apps (RQ3). In particular,
we design and implement a framework that uses Large Language Models [50] to automatically
generate information flow specifications for arbitrary Android platforms. These specifications
are then used as input for information flow analysis frameworks. This approach produces precise

specifications without the need to study the platform architecture or available APIs.

Our work leads to practical ways to examine multi-platform apps. In our experience, scanning
apps from new platforms involves a lot of manual work. Therefore, we design and develop solu-
tions that scale to analyse real-world apps from arbitrary platforms. During this investigation,

we encounter many challenges that we outline below!.

Custom Analysis per Platform. Android apps are developed considering the resources
available on each specific platform. These resources refer to API methods, libraries, permis-
sions, and third-party libraries. Therefore, apps from different platforms differ despite using the
same programming language and architecture. This makes existing static and dynamic analysis

frameworks, developed for mobile apps, not well suited for other platforms in many cases.

Software Evolution. The Android framework rapidly evolves to keep up with new hardware,
functionalities and user experience. Android has 33 API levels and 13 major versions as of
January 2023. New classes and methods are introduced and removed on each release. Developers
and researchers must cope with these changes to keep their work relevant. It has been shown that
both have problems keeping the same pace [51-53]. Considering the constant API changes, one
challenge is generating security specifications for information flow analysis for different platforms

and releases.

Closed Components. Android is an open-source OS, but not all building blocks are open-
source. For instance, Android apps heavily rely on Google libraries (more than 30) to provide
services such as maps and payment [23,52,54]. These proprietary libraries reduce static analysis

coverage as a big chunk of the code is unavailable.

Lack of app benchmarks. While there are multiple mobile app benchmarks to test static
analysis frameworks [32, 35], other platforms lack similar benchmarks making it difficult to

evaluate different tools.

This study aims to answer the Research Questions considering the challenges stated above.

!Challenges specific to information flows in Android apps are described in Section 2.3.3
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Overall, the main contributions of this thesis are summarised as follows:

e Platform characterisation. We first identify the similarities and differences of multi-
platform Android apps. With this information, we detect common threats and problems
that are platform-specific (RQ1, RQ2).

e Wear OS platform analysis. We study information flows generated by the interaction
of mobile and wearable apps. For this, we develop a static analysis framework, WearFlow,
that enables the analysis of sensitive information flows transmitted through Mobile-Wear
channels (RQ1, RQ2). We show that WearFlow detects information flows bypassed by
current approaches and scales to detect privacy violations in real-world apps, including

obfuscated apps.

e Benchmark suite for Wear OS. We develop the first app benchmark WearBench to
analyse mobile and wearable apps interactions. The benchmark consists of 15 pair of
Mobile-Wear Android apps that contains all APIs that can be used to share information
between mobile app and the wearable companion apps (RQ2). We evaluate WearFlow

using WearBench apps.

e Android TV platform analysis. We present a deep analysis of the Android TV ecosys-
tem using a dataset of more 4.5K TV apps. We seek to detect privacy violations and
identify platform-specific problems (RQ1, RQ2). For this, we study information flows us-
ing a pipeline of static analyses complemented with traffic analysis experiments. We found
a prevalence of static identifiers for tracking purposes despite this not being the recommen-
dation, limiting the effectiveness of Google’s privacy policies. Moreover, we found many

bad development practices, some of which are specific to the Android TV ecosystem.

e Automatic security specifications from software documentation. We propose
a novel approach to generate taint specification for static information flow analysis of
Android apps for arbitrary platforms (RQ3). DocFlow is a framework that models the
semantics of API methods using their documentation to detect sensitive methods and
assigns them semantic labels. Security analyst can use our framework to reduce the manual
effort of analysing code and documentation to generate security specifications. DocFlow
achieves better performance than baseline approaches and does not require access to app or
framework code, instead it relies on publicly available documentation and state-of-the-art

Natural Language Processing techniques.

1.3 Thesis Overview

Chapter 2 introduces the background information required to follow the rest of the thesis. In
particular, we describe the Android architecture, app components, and security model. Then,
we focus on the program analysis techniques we use in this thesis. Finally, we provide the

preliminaries to understand distributed word representation in Natural Language Processing.
Chapter 3 describes the different Android platforms and introduces the Google Play Services
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architecture. These libraries will be used to model Mobile-Wear communications and generate
security specifications for arbitrary platforms. Additionally, we analyse similarities of Wear OS
Android TV apps with mobile apps and their differences. This chapter serves as a prelude to
answer questions RQ1 and RQ2 and to understand the threats for wearable and TV apps.

Chapter 4 examines the Mobile-Wear interaction and presents WearFlow, our static analysis tool
to detect sensitive information flows across mobile and wearable apps. We describe WearFlow
internals, including its module to deobfuscate APKs, the new app benchmark WearBench to
analyse mobile-wear communications, and our experiments using a real-world apps dataset.

This chapter exposes the limitation of current approaches to deal with wearable apps (RQ1).

Chapter 5 presents the analysis of the Android TV ecosystem. Here, we analyse TV apps in
terms of sensitive data collection, communication capabilities, and the prevalence of tracking
and advertising libraries. Additionally, this chapter also compares popular TV apps with their
mobile counterpart and show that some problems are unique of the TV ecosystem. This chapter

uncovers problems that are specific to the TV ecosystem (RQ2).

Chapter 6 presents DocFlow, a framework that uses NLP to capture API methods semantics
directly from the documentation. DocFlow can be used to detect sensitive methods, classify
methods into semantic categories, and it is able to find semantic-similar methods across Android
versions. DocFlow can be used to generate taint analysis specifications and extract semantic

properties from software documentation for arbitrary platforms (RQ3).

Last, chapter 6 concludes this thesis by discussing our results and portraying the key findings
in the Android ecosystem. Table 1.1 shows the mapping of each Research Question with their
corresponding chapters. Chapters 1*, 2* and 7* correspond to the introduction, background,

and conclusions.

‘ Chapters
Research Questions | 1* 2* 3 4 5 6 7*
RQ1 X X
RQ2 X X
RQ3 X

Table 1.1: Chapters and Research Questions

1.4 Published works and Artefacts

This thesis is based on three papers which are the product of my work with the guidance of my
supervisors Jorge Blasco, Santanu Dash, the collaboration of Guillermo Suarez-Tangil and others
who provided valuable input and feedback. They are properly acknowledged at the beginning

of the thesis. All the experiments were conducted by myself.

1. Tileria, M., Blasco, J. and Suarez-Tangil, G., 2020. WearFlow: Expanding Information
Flow Analysis To Companion Apps in Wear OS. In 23rd International Symposium on
Research in Attacks, Intrusions and Defenses (RAID 2020) (pp. 63-75). The content of
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this paper is discussed in chapter 3, and chapter 4 in more details (Related to RQ1 and
RQ2).

. Tileria, M. and Blasco, J., 2022. Watch Over Your TV: A Security and Privacy Analysis of

the Android TV Ecosystem. Proceedings on Privacy Enhancing Technologies, 3, pp.692-
710. The content of this paper is discussed in chapter 3, and chapter 5. Correspond to
the Research Questions RQ1 and RQ2.

DocFlow: Extracting Taint Specifications from Software Documentation. Manuscript un-
der revision. This work is discussed in chapter 6, and relates to the Research Question
RQS3.

Finally, we make available the tools, benchmark, and dataset we used in this research, so that

the community can benefit for further analysis or reproduce our experiments. These can be

downloaded from the repositories listed below.

1.

WearFlow repository (RQ1,RQ2). https://gitlab.com/s3lab-rhul/android/wearflow

. WearBench repository (RQ1,RQ2). https://gitlab.com/s3lab-rhul/wearbench

Android TV repository (RQ1,RQ2). https://gitlab.com/s3lab-rhul/watch-over-

your-tv-paper

DocFlow repository (RQ3). https://gitlab.com/s3lab-rhul/android/docflow

My research was supported by the EPSRC and the UK government as part of the Centre for
Doctoral Training in Cyber Security at Royal Holloway, University of London (EP/P009301/1).
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2 Background

This chapter contains the background information to support the remaining chapters of this
thesis. We start by dissecting the Android architecture and application components. Then, we
describe the program analysis techniques we use to analyse Android apps. Finally, we give the

basics to understand distributed representation of documents in Natural Language Processing.

Android has been expanding its platform since 2008 from a mobile OS to a myriad of platforms
such as Wear OS, Android Auto, Android of Things', and Android TV which compose the An-
droid ecosystem. We describe these platforms in the next chapter, including the commonalities
and differences across platforms, and focus this chapter on applications and their representation.
Overall, apps provide an interface to the digital world for each Android platform, and we study
them to understand how threats in the mobile platform portrait in other platforms. Next, we
describe the Android architecture and app structure. With this background information, we
aim to expose the scope of this thesis and present the fundamentals to understand its main

contributions, particularly those of chapters 4, 5, and 6.

2.1 Android Architecture

Android is an open-source operating system (OS) initially designed for mobile devices but later
expanded to other smart platforms. The Android Open Source Project (AOSP) repository
contains the OS source code, information to create Android variants, and API documentation.
Over time, Android decoupled many critical system components in closed-source libraries and a
system-level APK known as Google Play Services. The Android system architecture is divided

into multiple layers. Figure 2.1 shows an overview of the Android system architecture.

e The Application Framework, also known as the Java API Layer, contains the Java APIs
that provide access to the building blocks to create Android apps. This layer simplifies the
development and facilitates the reuse of system components and services. Our Android

TV and Wear OS analyses focus on the Application Framework.

e The Binder Inter-Process Communication (Binder IPC) is a mechanism that allows the
interaction between the Application Framework with the System Services layer. Binder
provides a high-level abstraction on top of traditional OS services that facilitates binding

resources from one execution environment to another.

e The System Services layer is the bridge between the functionalities exposed by the

Java APIs and the underlying hardware. These services include window management,

! Android of Things was deprecated in 2019 and shut down on January 2022
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APPLICATION FRAMEWORK

BINDER IPC

System Server:
Search Engine, Activity
Manager, Window Manager,

Media Server:
Audio, camera, Media
Player, others

others
HARDWARE ABSTRACTION LAYER
| CameraMAL | | AudioHAL | | Graphics HAL | | OtherHALs |

Camera Driver ‘ ‘ Audio Driver | ‘ Display Drivers ‘ ‘ Other Drivers

Figure 2.1: Android system architecture.

notifications, searching, and media services.

e Hardware abstraction layer (HAL) defines a standard interface for hardware vendors
to integrate their hardware with Android. This layer enables Android to be transparent

to different driver implementations.

e The Linux kernel is a version of the Linux kernel with custom additions such as the
memory killer, power management service, the Binder IPC driver, and other features

essential for embedded platforms.

2.1.1 Android Apps

An Android app is a software that run on a device that supports the Android OS. These apps
are developed for specific purposes such as email, contact management, games, and others. As
we observed in Figure 1.1, apps can be adapted to specific platforms. Developers usually publish
their apps on well-known markets such as the Play Store [55], where the users can download the

version compatible with their smart devices.

Android apps are developed mainly using Java, Kotlin, and native code (C/C++) to a lesser
extent. The final code is compiled into Dalvik Executable (DEX) format. DEX files are opti-
mised for performance and packaged into compressed APK files that contain the app’s compiled
code and resources required to run the application. The Android app Bundle is a publishing
format that aims to reduce space in the user’s device by separating device-dependent parts. The

bundle format is gradually replacing the APK format, which is still the preferred publishing
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format in alternative markets. While the Bundle format optimises the shipping and installation
process, users still install APK files in their devices. Therefore, we dissect the APK format
below. Figure 2.2 shows the structure of APK files.

' ™
APK file
M A
' ™
. ——  META-INF |
D AndroidManifest.xml . J
e ™
S Res |
A A
D resources.arsc
' ™y
I Assets ‘
k. A
D Classes.dex
' ™y
Lib |
b iy

Figure 2.2: APK structure.

The Android Manifest is a configuration file that contains general information about the
application. For instance, it contains the list of permissions, components, package name, version,
and required hardware, among other information. The META-INF folder is essentially a

manifest of metadata information, including the developer certificate.

DEX files contain Java/Kotlin compiled code into DEX format, the proprietary Google format
for DVM. The Lib folder stores all the native libraries for different architectures such as x86_64,
ARMvS, and ARMv7. Since Android supports different architectures, the presence of a sub-
folder indicates the support for that platform. For instance, the arm64-v7a indicates support
for ARMY7 binaries.

The Assets directory contains raw resources (videos, document templates, JavaScript code, or
HTML files) required at running time. The Res directory stores resources linked at compile
time and stored in the file resources.arsc. This file links the resources in the Res directory to
the code in the .DEX files.

Android Runtime. Android applications require a runtime environment to be executed. The
Dalvik Virtual Machine (DVM) was the first Android runtime. DVM uses a Just-in-Time (JIT)
compiler to convert compiled java programs into .dex and .odex files (optimised dex). Dalvik

uses a register-based architecture instead of the stack-based architecture used by the Java Virtual
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Machine. ART (Android Runtime) is the new runtime for newer versions (default from Android
6). ART uses a mix of Ahead-of-Time and JIT compilation with improved memory allocation
and garbage collection. For this runtime, .dex files are converted to the Executable and Linkable
Format (ELF) using the dex2oat tool. ART and Dalvik are compatible runtimes environments.

Both execute Dalvik bytecode, so apps developed for Dalvik can be executed by ART.

2.1.2 App Components

There are four component types: Activities, Services, Broadcast Receivers, and Content Providers.

Each component has a distinct purpose, and these are briefly outline below.

e Activities represent a single screen with a user interface, such as writing an email or
watching a video. Activities are independent units, although they can work together to

present a continuous user experience.

e Services allow apps to keep running in the background to perform long tasks or wait for
remote processes. Examples include data synchronization tasks at night or playing music

with the app running in the background.

¢ Broadcast Receivers listen to events outside of a regular user flow. This allows apps to
respond to system-wide events such as network disconnection or low battery. Broadcast
Receivers can listen to events generated by other apps and usually acts as a gateway to
other component types, e.g., the component receives a system broadcast and pass the

control flow to an activity.

e Content Providers are components that offer a persistent storage abstraction. Other

apps can access data stored in Content Providers if they hold the corresponding permission.

Android apps differ from traditional Java programs in several ways. First, apps do not have
a main method or unique entry point. The OS can start one app by invoking any component
declared in the Android Manifest file. Second, each component has a lifecycle defined by the
Android Framework. This lifecycle indicates the default program flow, e.g., Figure 2.3 shows
the lifecycle for an Activity. Lifecycle methods are called by either the operating system or
framework code depending on the events and the user interaction. Developers can override the
lifecycle methods to customise a component flow or define new callbacks to handle user inter-
actions, e.g., callbacks to capture click events. These asynchronous events present a challenge
when constructing the control flow abstraction because events can appear in arbitrary order.

We describe how static analysis tools deal with this problem in Section 2.3.3.

Inter-Component Communication (ICC). Android communication mechanism allows the
interaction and data exchange between components. This interaction is achieved by sending
Intents or using Unified Resource Identifiers (URIs) to access data (e.g., Content Providers).
Intents are asynchronous messages managed by the Binder IPC. Intent Filters are specifications
declared in the AndroidManifest that define the capabilities of each component, e.g., the types

of messages a component can receive. ICC can occur in the context of one app or across different
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Figure 2.3: Activity lifecycle (adapted from [56])

apps (Inter-App Communication). Additionally, apps can use inter-device communication APIs
to connect with other apps on different devices. Some examples include traditional sockets,
Bluetooth, and other proximity communication protocols. As we are interested in studying

information flows across platforms, we expand on this topic in chapters 3, 4, and 5.

2.2 Apps Security Model

The Android platform has around 3 billion active devices [57]. Securing such an extensive app
ecosystem requires industry-leading security features and considering all parties involved. These
parties are the Android OS, apps developers, and final users. We give a brief description of them
and then focus on the features that are more relevant to our thesis: sandboxing, permission and

certificates.
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The Android OS security model is built on top of the security elements offered by the Linux
kernel. Each layer (Figure 2.1) adds security features to protect its resources. For app developers,
Android offers many security features such as security updates through Google Play Services,
testing tools, app integrity protection through certificates, and flexible security controls. The
final users control the permission requests and have multiple authentication options available.

Android also provides security programs and blogs for developers and users.

Sandboxing. Android apps are designed to be secure by default. Each app runs on a sandbox
that isolates the app’s resources from other apps on the same device. The OS assigns a unique
user ID (UID) to each app and sets up a kernel-level sandbox (process and file system) to
achieve isolation. Figure 2.4 shows an example of two Android apps isolated through the kernel
sandboxing mechanism. In this example, data written by the Spotify app can only be accessed
by this app. Other apps, such as Slack, need to request explicit permission to access Spotify
resources. Android apps can leak sensitive data by exposing private information outside the
sandbox. In the next section, we describe how apps interact with the system through Android
and Google Play Services APIs. Section 2.3 describes the technique to track data flows that

enter and leave the app’s context (sandbox).

Spotify sandbox Slack sandbox

Communication
UID 10 between UID 20

applications
through the
kernel

IPC
UID 10 resources Linux Kernel

Figure 2.4: Application sandboxing mechanism. Applications can only communicate via IPC
(Inter-process communication) through the kernel. Direct communication is not allowed.

Permissions. Android permission mechanism controls access rights to shared resources. These
resources are not limited to hardware or features (camera, network access) but also refer to
sensitive data such as device identifiers and serial numbers. Apps need to request permission
to access shared resources that are located outside their sandbox. For instance, the camera
is an external resource protected by the permission android.permission.CAMERA. Similarly,
the permission android.permission.LOCATION protects access to location services. Figure 2.5

shows a permission request example.
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B

Allow APP to access photos,
media, and files on your
device?

Allow

Deny

Figure 2.5: Permission request example

There are broadly three permission levels: normal, signature, and dangerous. Normal per-
missions protect low-risk resources. Signature permissions are for applications with the same
certificate. The Android system automatically grants normal and signature permissions at in-
stall time (install-time permission). Dangerous permissions protect the most sensitive resources
and are granted /revoked by the user at runtime since Android version 6.0. Users can also revoke
install-time permissions at running time in newer Android versions. In addition to these three
permission levels, third-party apps can define custom permissions to protect or share their re-
sources with other apps. All permission types are declared in the app’s Manifest file. Developers
must specify a definition for new custom permission, e.g., name and protection level. We discuss
the permission model of Wear OS application in Chapter 4 and analyse TV app permissions in

a large-scale study in Chapter 5.

App certificates. Android uses a code signing mechanism to ensure that developers consent
to actions on their apps [58]. This mechanism prevents malicious apps from injecting/removing
code into other apps. Thus, all developers must sign their apps before publishing them in
the Play Store. The code signing process generates the UID that the OS uses to create the
sandbox for each app (Figure 2.4). Therefore, if a developer uses the same certificate for two
or more apps, these apps are allowed to run in the same sandbox. Certificates contain a pair of
private/public keys and other metadata that provide information about the private key owner.
We use certificate information (fingerprints and metadata) when analysing the Android TV
ecosystem (Chapter 4). One important factor to consider is that Android certificates are self-

signed. We discuss the implications of trusting self-signed certificates in the same chapter.

2.2.1 Android APIs and Sensitive Data

Android apps are tightly coupled with the runtime environment. This means that apps do not

contain the necessary code to run as standalone programs, and they rely on the Application
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Framework to access the resources from the lower layers through Java APIs. Thus, the devel-
opment is heavily based on the API pattern where developers invoke API methods and receive
return values, all without requiring the implementation details from the source code. Addi-
tional components are normally available via Google Play Services libraries (details explained
in Chapter 3). These bundle libraries expose stub methods which are implemented in the pro-
prietary app Google Play Services (same name as the library) and work in the same way as the
Android Application Framework. We leverage this implementation pattern to generate static

taint analysis specifications based on the documentation of these APIs (Chapter 6).

One of the main goals of this thesis is to understand how sensitive data is collected across
different platforms. Thus, we first look at how apps access sensitive data in Android. The
sandboxing mechanism prevents apps from accessing shared resources. A shared resource is
an abstraction from the Java API layer that provides access to system services. As we mentioned
above, app developers rely on API calls to the Java Framework to access such resources (e.g.,

location, device identifiers, sensors).

We are interested in data flows that interact with resources outside the app’s context, not data
flows that simply remain within the boundaries. Consider the code snippet in Listing 2.1 that
provides an example of Java APIs’ mode of interaction. This example shows a code read-
ing the last known location and then exposing it to other parties through file-system and
network-connection APIs. The method getLastKnownLocation() in line 2 reads data from
the LocationManager. The LocationManager class is a shared resource that provides access
the system location services. In line 7, the method writeFile writes the location to the file

system, and the method post (line 10) writes the location to an HTTP resource.

public void onCreate(Url url, String filePath){

location = LocationManager.getLastKnownLocation() // source
//some code

FileOutputStream file = new FileOutputStream ( “file name”)
file.writeFile (filePath ,location). //sink 1

HttpURLConnection connection = new HttpURLConnection (url)

connection.post(url, location) //sink 2

}

Listing 2.1: Code reading sensitive data through Android API (sources) and exposing to

shared resources (sinks)

Informally, sources are methods that read sensitive data, and sinks are methods that might
leak or expose data. In our previous example, the method getLastKnownLocation is a source,
and the methods writeFile and post are sinks. Following the definition used by Rasthofer et
al. [51], sources are methods that read from a shared resource and return non-constant values

into the application code. Likewise, sinks are methods that write a non-constant value to a
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shared resource. Security practitioners often need to produce static analysis specifications that
include a list of sources and sinks. In particular, detecting potential interactions between apps
and shared resources requires identifying API methods that enable these interactions. We refer

to these methods as security-sensitive methods in this thesis.

The idea of what is sensitive depends on the context of the analysis. For instance, an analyst
might only be interested in detecting PII leaked through network requests. In our case, we are
interested in detecting potential data leaks, considering any Android device and the interaction
across many devices. Thus, we are interested in data flows across applications and not only data
leaks to untrusted /malicious parties. These applications might be from the same or a different

platform, e.g., mobile with wearable applications.

One important factor to consider when analysing security-sensitive methods is the evolution
of the Android ecosystem. Android receives constant updates to cope with new features and
hardware. There are 13 versions and 33 API levels, as of February 2023. While a new Android
version is associated with many features that are visible to users, API releases are related to
changes in the Android framework. Each release contains hundreds of thousands of methods.
Previous research shows evidence that app developers usually struggle to keep up with these
updates due to their volume [59,60]. On top of API levels, updates from 40 closed-source Google
Play Services libraries make the ecosystem even more complex. For instance, Figure 2.6 shows

the number of Google Play Services updates per year since 2015.

Mumber of updates

2015 2016 2017 2018 2019 2020 2021 2022
vear

Figure 2.6: Google Play Services updates until November 2022

With the ever-changing Android framework and Google libraries, collecting a comprehensive list

of security-sensitive methods becomes critical for analysis completeness. It has been shown that
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static analysis tools miss a large number of data leaks due to incomplete configurations [51,61].
In the code example above, if only the network sinks are included in the taint specification,
any leak through the file system will remain undetected. Moreover, apps tend to have more
sensitive data leaks with newer Android releases [60], augmenting the importance of complete
taint specifications. Therefore, it is desirable to automate this task due to the abundance of

Java APIs and Google libraries available.

Several approaches to detect sources and sinks have been proposed in the Android research com-
munity [51,62-65]. All these works rely on either program analysis or language specification to
find candidate methods from a large collection of methods. These techniques present limitations
when dealing with proprietary and obfuscated code, which raise the complexity of automated
code analysis [66]. In Chapter 6, we propose an alternative approach to detect sources and sinks

based on Android documentation and Natural Language Processing.

The following sections provide a comprehensive overview of the techniques used in this thesis.
We first look into Program Analysis techniques to track sensitive data and the challenges in
modelling Android apps. Then, we give a glimpse of contextual distributed representation in

NLP and how we use this technique to model Android documentation.

2.3 Analysis Techniques

Program Analysis encompasses the techniques to reason about a program’s properties automati-
cally. For instance, we can use these techniques to detect bugs, determine the state of the input,
or verify if a program complies with security /privacy requirements [15,31,41,67,68]. Program
analysis is divided into two categories: static and dynamic analysis. While static analysis allows
us to reason about program behaviour without running them, dynamic program analysis studies

actual program executions.

There are several trade-offs in static and dynamic program analysis. First, static analysers
are usually capable of examining the entire program code. Dynamic analysis often fails to
reach full coverage due to incomplete test cases, resources and time limitations [31]. However,
dynamic analysis shows evidence of actual executions, while static analysis only approximates
real program behaviour. This means that a static analyser can only indicate potential data leaks
which have to be confirmed either by manual inspection or dynamic analysis. One limitation
of dynamic analysis is that malicious applications can detect testing environments and evade
detection by hiding their behaviour [67,69]. The challenge in both cases is ensuring a sound

analysis that is useful in practice.

As apps have become widespread in everyday tasks, vulnerable and malicious apps pose a con-
siderable threat to final users and companies. Several static analysers have been developed by
the research community [32-37] and the industry [70,71] to uncover vulnerabilities, find bugs,
and detect potential data leaks. To name some examples, CHEX [72] is a tool to detect compo-
nent hijacking vulnerabilities by analysing flows from external interfaces. Androbugs [73] uses

a myriad of static analyses such as string analysis and program slicing to search vulnerabilities,
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bad development practices, and dangerous shell commands. Overall, static analysis frameworks

allow security practitioners to inspect thousands of apps without having to run them.

In this thesis, we rely mainly on static analysis to study information flows, with the exception
of chapter 5, where we use both approaches as complementary techniques for the Android TV
evaluation. Nevertheless, we briefly overview some dynamic analysis works before describing
the principles of static analysis, with a focus on information flows. Enck et at. proposed a
dynamic taint tracking approach for tracking sensitive data [46]. Their approach instruments
the Dalvik environment and it is transparent for third-party apps. Sun et al. developed a
similar framework for the new runtime environment (ART) [45]. Zhou et al. use a combination
of firmware analysis, network traffic interception, and black- box testing to understand the
interaction across IoT devices and mobile apps [15]. Other works stimulate apps to trigger and
detect specific behaviours [49], use security testing to find vulnerabilities and data leaks [74], or
analyse evasion techniques for dynamic analysis frameworks based on sensor data and virtual

machine properties [67].

Overall, the research community uses static and dynamic analyses to study Android apps. We
chose to evaluate different platforms using mainly static analysis to avoid the complex testing

environments (e.g., devices) required to study multi-platform apps.

2.3.1 Static Analysis

A static analysis tool parses a program code and transverse program paths to check some
property [75]. The input can take the form of source code, binary /byte code, or an intermediate
representation. We can use static analysis to determine the state of a program, such as variables,
pointers, definitions, and more. A data flow analysis examines a program to provide global
information about how specific data elements are manipulated, e.g., compute the set of possible
values at every program point [76]. A problem that is solved from the beginning of the program
to the end uses forward analysis. The opposite approach, backward analysis, solves the problem
from the last statement to the beginning. We use both techniques, e.g., forward analysis to
detect potential data leaks and backward analysis to find the set of statements that affect a
program point. A static analysis tool encounters the trade-off between being conservative and
aggressive while never misrepresenting the program being analysed [76]. That is to say; it is

desirable to detect all sensitive data flows but also keep the false positives as low as possible.

Analysis Sensitivity

Android apps are developed using Object-Oriented languages, which allow complex interactions
between objects and method calls. The sensitivity of the analysis determines the precision
of how these interactions are modelled [75]. The most common sensitivity levels for object-
oriented programs are flow, context, object and field sensitivity [31]. A flow-sensitive analysis
keeps track of the order of the statements, while a flow-insensitive approach does not consider
the order. Context-sensitivity indicates how call sites are modelled. This can refer to the

method call site or the object allocation site. A context-sensitive analysis is aware of a method
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calling context by computing separate information for different calls to the same method. In
contrast, a context-insensitive approach adds all possible call sites giving conservative results.
Similarly, an object-sensitive approach uses object instances to differentiate contexts, while an
object-insensitive approach does not distinguish between different instances of the same object.
Last, field-sensitive analyses model each field of each object as a different abstraction, whereas

a field-insensitive approach only models fields based on each object type.

2.3.2 Taint Analysis

Taint analysis is a data flow analysis that aims to find a connection between sources and sinks.
Section 2.2.1 defines sources as predefined methods that read non-constant values from shared
resources, and sinks as methods that write non-constant values to shared resources. As we are
interested in sensitive data flows, we further limit our analyses to sources that read private
data of interest, e.g., unique identifiers, location. Thus, we use taint analysis to determine

confidentiality properties in Android apps.

The code snippet in Listing 2.2 shows a similar version of the code leaking the location in
Listing 2.1. In this case, the location data is read in the OnCreate method, and propagated to
the sendData method in line 4, where it is leaked. We use this example to get the general idea
of taint analysis or taint tracking, and then we go through the details of the specific framework

we use.

public void onCreate (){
Data text = new Data()
text.sensitive = Location.getLastKnownLocation() //source
sendData (text)

}

public void sendData(Input data){
HTTP. post ( “www.analytics.com” ,data) //sink

Listing 2.2: Taint Analysis example

We first need to represent the input program using control flow abstractions. A Control flow
graph represents program statements in basic blocks and the flow among them. A Call graph
is a directed graph where the nodes represent methods, and the edges represent call chains.
The Inter-procedural Control Flow Graph (ICFG) combines the information from the Call
graph with the Control flow graph. Auxiliary abstraction might be constructed on top of these

structures.

Taint analysis uses a list of sources to taint variables that read sensitive data, e.g., the field
text.sensitive in line 3. After that, the analysis propagates taints using a system of equations
and control flow abstractions until a sink is reached, the taint is removed, or the propagation
cannot continue. In our example, the tracking propagates the tainted information flow through

the control flow abstraction from the method onCreate to sendData, and reaches the sink
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method post in line 8. The data structure and algorithms to track tainted data vary. The

following section provides the details of one popular solution, the IFDS framework [77].

Open-source frameworks.

A survey by Li et al. identified 38 frameworks for data flow analysis [75]. From this list, two
independent studies [78,79] conclude that three frameworks stand out for their soundness and
performance: FlowDroid [32], Amandroid [33], and DroidSafe [34]. While no single tool provides
the best performance in all cases, FlowDroid gives a good accuracy/running-time trade-off while
being the only tool actively being updated. Therefore, we chose Flowdroid as a base tool to run
taint tracking for Android apps. Another factor influencing this decision is that FlowDroid is
built on top of Soot [80], a static analysis framework that we use for instrumentation, deobfus-
cation, and string analysis. Therefore, it is easier to integrate our frameworks with FlowDroid

than other tools.

Flowdroid is a flow, context, field, and object-sensitive taint tracking framework. FlowDroid
allows custom lists of sources and sinks and allows to specify shortcuts that model specific
Android APIs (taint-wrappers). The IccTA extension enables FlowDroid to propagate commu-
nications across components [35]. FlowDroid inherits all Soot limitations. For instance, Soot
might produce incomplete call graphs, particularly for new Java features [81]. However, the fact
that the FlowDroid and Soot communities are active and related development groups ensures

that problems can be treated in the future.

FlowDroid uses the Inter-procedural Distributive Subset Problem (IFDS) framework [77] to solve
the taint tracking problem. The IFDS is a general framework that reduces an inter-procedural
data flow problem, taint tracking in our case, to a graph reachability problem. We use the

following code snippets to describe the IFDS procedure.

public OnCreate () {

" public sendData(a,b){
X =

. leak (b)
y = read(Location) b
= a
y = sendData(x,y)
return b

leak (y)

Listing 2.4: Simplified code 2
Listing 2.3: Simplified code 1 1sting Simplified code

Consider the control flow graph of the methods (Figure 2.7) and then the ICFG of both meth-
ods. The IFDS further transforms the ICFG into the Supergraph of the program (Figure 2.8).
The Supergraph differs with a traditional ICFG in the following ways: 1) A method call is
represented by two nodes (in grey), call (c¢*) and return-site (r-s*). 2) Each method call
has three edges: A call-to-return-site edge (c-r-s*) to connect the call and return-site
nodes. A Call-to-start edge (c-t-s*) to connect the call node with the called method. A
Exit-to-return-site edge (e-t-r*) to connect the called method with the return-site node.

These extra nodes and edges propagate local information to the global state of the program.
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Figure 2.7: Control Flow graph of onCreate (left) and sendData (right)

The IFDS again transforms the Supergraph into a Exploded Supergraph using flow functions.
These functions indicate the rules to propagate incoming facts based on the current statement.
Figure 2.9 illustrates three traditional flow functions. The function id retains all incoming
flow facts. For instance, if a variable is tainted, this function propagates the taint (for a and
b). The node 0 represents a fact that holds unconditionally, usually the first statement of the
program. The function gen/kill generates new flow facts for a, and discards incoming facts
for b (e.g., a taint is added for a and removed for b). The last function is a combination of
the two previous functions. To generate the Expanded supergraph, each abstraction from the
Supergraph is turned into a node of the exploded Supergraph. Then, the data flow functions

are encoded as edges between the nodes representing facts at different program points.

Figure 2.10 shows the generated Exploded Supergraph. Let us use the first and second instruc-
tions to understand how the Exploded supergraph is constructed. The x = 1 assignment kills
any previous taint, represented by the missing arrow in x. In this domain, constant values are
not relevant. The y = read(location) instruction kills any incoming fact and taints the y
variable by adding an edge from the special variable ~ that represents the unconditional fact or
node 0. The procedure continues until every instruction is computed. Note that the local and

global facts are propagated back and forth through the edges connecting the special nodes.

This representation allows us to verify if a fact holds at different program points. Thus, the
problem of taint tracking is reduced to computing reachability relationships between nodes of the
Exploded supergraph. For instance, we can follow the tainted variable y and reach the instruction
that calls leak(b) in the method sendData, indicating a potential data leak. However, there is

no tainted value in the second call to the method leak(y) in the method onCreate.

FlowDroid uses an optimisation proposed by Naeem et al. where the exploded Supergraph is
created on demand [82], instead of creating the entire structure before calculating the connection
between sources and sinks. As consequence, the unconditional fact represents a source call,

instead of the standard first program statement.
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Figure 2.8: Supergraph constructed by the IFDS framework

Encoding a problem in the IFDS framework may result in precision loss due to aliasing. For
instance, when a tainted value is assigned to arrays or object fields, all the objects that point
to the same address in the heap must also be tainted to ensure completeness. Flowdroid runs a
backward alias analysis when tainted values are assigned to the heap to address this limitation.
Last, Flowdroid does not always terminate due to the undecidability of static analysis [83], even

when simplifications and assumptions are in place.

We conclude this section by describing how we use taint tracking. In Chapter 4, we study sensi-
tive information flows between mobile and wearable apps to detect data leaks. Our framework
models wearable APIs and includes string analysis, backward slicing, bytecode instrumenta-

tion, and de-obfuscation to handle different challenges. We embed FlowDroid in our framework

id gen/kill gen/kill/id
0 a b 0] a b 0] a b c
o o ( J [ ]
o [ )

Figure 2.9: Flow functions (reproduced from [77])
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Figure 2.10: Exploded Supergraph

WearFlow and build other analyses on top of Soot. In Chapter 5, we study sensitive data leaks
using several static analyses, including taint tracking with FlowDroid. We complement this with

dynamic analysis and traffic analysis to monitor TV app behaviour in Android TV.

2.3.3 Challenges of Modelling Android Apps

Study information flows in Android apps present some challenges due to their architecture

(Section 2.1). We briefly discuss some these challenges.

Code translation and Intermediate Representation (IR). Android applications are com-
piled into Java bytecode and then converted to Dalvik bytecode. Apps source code is usually
unavailable because our thesis targets third-party apps. Even if source code is available, using
an IR for static analysis has benefits: 1) The instruction sets are simpler and optimised for
analyses. 2) IR can abstract from concrete input languages. In this thesis, we use Soot [80] and

Androguard [84] to decompile apps and transform them into a convenient IR.

Soot is a static analysis framework that provides various functionalities, including the translation
of Java and Dalvik bytecode into IRs, and elemental static analyses (e.g., aliasing and constant

value propagation) that can be used to solve more complex problems. Soot uses Jimple as its
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default IR. Jimple is a register-based IR with only 15 instructions, highly optimised for code
analysis. For instance, it provides local variables, no nested instructions, and special variables for
the reference this and parameters. In contrast, Dalvik bytecode offers a richer instruction set,
with 237 opcodes, albeit optimised for running time. We use Jimple for APK instrumentation,

de-obfuscation and taint tracking in Chapter 4.

Androguard is a tool for reverse engineering Android apps that comes with its own IR. Andro-
guard lacks Soot code transformation capabilities, but it is more convenient for quick analyses,
such as classes, cross-references and Android Manifest. We use Androguard in Chapter 5 for
manual and automatic static analysis, and in Chapter 3 to study differences between apps across

different platforms.

Entry-points. Android apps do not have a main method, so there is no unique starting point. A
control flow abstraction could use any component in the Manifest as entry point. FlowDroid and
other frameworks [32,35] solve this issue by creating a main dummy method and then connecting
declared component to it. Other frameworks use domain knowledge and Android documentation
to model entry points [34,85,86], and others iterate over frameworks methods to generate the
call graph [72]. Similarly, callbacks and component lifecycle methods add complexity to the

construction of control flow abstraction. These are usually modelled individually.

Libraries and APIs Detection. Third-party libraries (TPL) are common in Android apps
as developers use them for different purposes, such as monetisation, tracking, social media, or
simple utilities. Even though they facilitate the development process, these libraries have been
shown to exacerbate security and privacy risks to their host apps [19,21,22]. Thus, studying TPL
is fundamental to security and privacy in Android platforms. To give one example, Reardon et
al. found that libraries such as Baidu and Salmonads used covert channels to collect sensitive
data [47]. We are interested in detecting abusive behaviours but also want to attribute such
behaviours to the app or library code. To do this, we first need to identify TPL and then

associate package names to libraries.

Several open-source tools exist to identify TPL, which offer different capabilities [19-22]. How-
ever, no single tool provides the best results. We chose LibScout [19], and LibRadar [20] for
this task. The former is a lightweight obfuscation-resilient library detection tool that generates
library profiles from binaries. The latter generates library profiles by analysing code features
from a large dataset of Android apps. LibScout reduces the false positive rate by profiling from
binaries, while LibRadar covers a broader range of libraries at the cost of neglecting the ground
truth. We also develop a custom approach to complement results from these off-the-shelf tools
for our evaluation in Chapter 5. Our custom approach allows us to detect libraries for which we

do not have a profile available.

Obfuscation. Obfuscation techniques are becoming increasingly popular across Android plat-
forms [40,66]. Benign developers tend to obfuscate their APKs to protect their code and optimise
resources. Malicious developers use obfuscation techniques to hinder scrutiny from automated

tools and security practitioners. Hammad et al. study the effects of obfuscation on Android
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apps and anti-malware products [42]. This work separates trivial from non-trivial obfuscation
techniques. The main difference is that trivial techniques do not modify the app bytecode and
focus on metadata and signatures (e.g., alignment or Manifest transformation). Non-trivial
techniques modify app bytecode and present a challenge to static analysers because it could
modify the signature of methods and hinder the detection of libraries. We list the most popular

non-trivial obfuscation techniques according to the aforementioned work.

e [dentifiers renaming. Aims to remove semantic information by replacing identifiers and
class names with meaningless text. Code written following good development practices
uses meaningful names to improve readability. A side effect is that these good practices
ease the job of reverse engineers and automated tools. This obfuscation technique strips

the semantics from the source or byte code.

e String encryption. Obfuscating strings literals seeks to remove their semantic information
from the code. Instead of using hard-coded strings, developers use cryptographic functions

or less sophisticated methods to encrypt string literals.

o Reflection is a Java feature that invokes classes and objects dynamically. While this is
a feature in the Java language and not an obfuscation technique, it allows a program to
manipulate internal properties of the app. Thus, reflection can be used to obfuscate the

invocation of sensitive methods, e.g., sources and sinks.

o Control flow manipulation. This technique seeks to modify the control flow graph of the
app by adding iterative or logical instruction. Additionally, it is possible to add method
calls that modify the original call graph.

e Junk code. This technique inserts instructions that do not affect the app execution but

modify the code signature and can fool static analysers.

Developers might combine these strategies to produce stronger obfuscated APKs. Dong et al.
present a large-scale investigation of common obfuscation techniques and their prevalence in
Android apps [66]. They found that string encryption and complex renaming policies are more
prevalent in malware. Reflection cases are mostly used to invoke hidden functions or backward
compatibility. WearFlow (Chapter 4) has a de-obfuscation module that uses type signatures and
abstract types to generate obfuscation-resilient signatures to detect security-sensitive methods.

We provide all the details in the corresponding chapter.

Incomplete Environments for Information Flows. Application developers use platform
features that can affect the accuracy of static analysers. For instance, obfuscation and Java
Reflection can hinder the detection of API methods. DroidRA [40] solves the Reflection problem
by reducing it to a composite constant propagation problem and instrumenting the APKs with
the reflective targets. Amnother problem is dynamic code updates. Poeplau et al. proposed a
static analysis approach based on program slicing [87] to detect dynamic code updates [88].
StaDynA [89] is a tool that uses static and dynamic analysis to resolve reflective calls and

dynamic code loading for incomplete environments. The tool complements the app’s call graph
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with the dynamic analysis results. Similarly, static analysis for multi-language applications is
more complex than single-language programs. Wei et al. proposed an efficient inter-language
model to propagate data flows across Java and native code [41]. JuCify [38] is a tool that first
generates the call graph by analysing Java bytecode and adds additional edges by analysing
native code. BabelView [90] and BridgeScope [91] are frameworks for propagating data flows
from Java to JavaScript code in WebViews. Even though this thesis does not focus on solving
these issues, our work can be used along these frameworks to provide a better understanding of

app behaviour.

Network Traffic Analysis. The preceding discussions are related to static analysis. While
most of our experiments analyse apps statically, we also run dynamic analysis experiments to
monitor TV apps’ network traffic in Chapter 5. Identifying sensitive information in Android
TV traffic presents some challenges. First, apps usually send encrypted traffic to the servers.
Second, some apps employ advanced techniques to protect the traffic, such as certificate pinning.
Last, sensitive data collection or abusive behaviours might only appear after a specific event.
For instance, trackers tend to increase their activity after the users have authenticated [29]. We

address all these problems in details in Chapter 5.

2.4 Software Documentation

Modern software projects come with documentation that provides information about the cor-
rect use of components, e.g., functions or APIs. Software documentation can take many forms.
For instance, API documentation, manual pages, and code comments serve the abovementioned
purpose. In this thesis, we focus our attention on API documentation, which helps developers
associate API methods’ semantics with the corresponding code. API documentation is expressed
in a natural language, while Android code is expressed in a programming language. The coop-
eration between these two channels forms a dual channel [92] view that provides an opportunity

to enhance the understanding of software components based on documentation.

APIs are a powerful mechanism that enables complex functionalities and the reuse of compo-
nents. However, use them properly is far from trivial. In this context, documentation has been
described as instrumental to the success of software that relies on APIs [53]. For instance,
representative names, perceptible relations between API types, and accurate descriptions are
fundamental for good API usability [93]. One such example is the Android platform, which is
intended to be used by millions of third-party developers and provide high-quality documenta-

tion.

2.4.1 Documentation in Android

App developers rely on Android, Google libraries, and third-party libraries documentation to
support their development effort. We focus on Android and Google libraries documentation,
even though the same principles apply to third-party libraries documentation (especially popular
libraries with a large user base). The Android architecture is designed for reusing components

accessed through their APIs (Section 2.2.1). Thus, its source code is accompanied by rich and
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detailed documentation. This makes Android API documentation a good candidate for using a

data-driven approach to infer semantic properties of the underlying implementation.

Android and Google libraries documentation is available in the source code as Javadoc or on the
developer’s website. A method documentation describes the purpose, the inputs and outputs,
and sometimes other considerations such as permissions or recommendations. Figure 2.11 shows
the documentation of the getLastKnownLocation method used in Listing 2.2. We show the
online documentation for reference, and we revisit this example in Chapter 6. This illustrative
example clearly shows that Android documentation is a great source for extracting syntactic

and semantic information about API methods.

getLastKnownLocation Added in AP level 1

0

public Location getlLastKnownLocation (String provider)

Gets the last known location from the given provider, or null if there is no last known location. The returned
location may be quite old in some circumstances, so the age of the location should always be checked.

This will never activate sensors to compute a new location, and will only ever return a cached location.

Parameters

provider String: a provider listed by getAl1Providers() This value cannot be null.
Returns

Location the last known location for the given provider, or null if not available

Figure 2.11: getLastKnowLocation method description

We argue that API documentation provides a rich source of information to understand the pur-
pose of methods and their relevance to security analysis. We take advantage of the semantic
information provided by Android documentation and propose an NLP framework to classify
Android methods using their documentation in Chapter 6. This section describes text repre-
sentation techniques in NLP, and we leave the details of our framework to the corresponding

chapter.

2.4.2 Text Representation in NLP

Text classification is a primary NLP task used for information retrieval, ranking, inferences,

sentiment analysis, and others [94,95]. Text classification aims to assign a label or category to
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an input text or document. The input text, expressed in natural language, has to be encoded to
feed a Machine Learning model. In other words, we first need to convert words into a numeric
representation. Sparse and dense vectors are two options for achieving this encoding. Next,
we describe the mainstream encoding techniques and their limitations using the two sentences

below.

s1 = This is sentence one

s2 = This is sentence one plus this new word

The one-hot encoding technique associates each token to a vector element, where categorical
features are represented in the index. The index consists of the vocabulary of the input text and

a positional integer. The index for our two sentences is shown below.
index = {sentence : 0, plus : 1,this : 2,one : 3,is : 4,new : 5,word : 6}

A sentence is represented by a sparse matrix (N % M) where N is the number of tokens and M is
the index’s size. Fach token from a sentence is represented by a vector where a token occurrence

is marked by a 1 in its corresponding index position.

The one-hot encoding representation of s1 and s2 is shown below.

[0 0100 0 0]
000O0T1O0TO0
10 00000

001 00O0OTO 0001 O0O0O0

000 01O0O0 01 00 O0O0O0

10 00 000 001 0O0O0O

000 0O0OT1TSPO 0001 0 0 1]

s1: This is sentence one s2: This is sentence one plus this new word

There are two problems with this representation. First, the size of the matrix increases as the
training corpus gets bigger. Second, the sparse matrix size is proportional to the length of the
input sentence. These problems have to be addressed because most classification models expect
inputs of the same size, either by encoding characters instead of words or by making the size of

the representation fixed, albeit losing information [96].

There are some alternatives to one-hot encoding which address these problems. For instance, a
count-vectoriser represents sentences based on word frequencies instead of occurrence (each
word is represented by its frequency). With this, a sentence is mapped into a single vector, e.g.,
s2 = [1,1,2,1,1,1,1]. This technique optimises the vector size at the cost of losing ordering
information. Other alternatives, such as Tf-ids and n-gram vectorisers, modify the frequency
formula or the number of consecutive words that form a token, e.g., 2-gram uses 2 words to
form a token. Overall, traditional NLP encoding techniques lack the capability of modelling the
order of words and their semantic efficiently [97]. While these techniques might be useful in

some scenarios, they are ineffective for tasks that require understanding the context of sentences
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[96,97]. Moreover, there is no similarity measure to compare words or sentence semantics

directly [98]. For instance, the words “car” and “automobile” are statistically orthogonal.

Recent advances in NLP enable the training of Deep Learning models using large corpus with
the aim of capturing the semantics of words. Hinton et al. were the first to propose the word
embedding technique that generates distributed representation of words by mapping text to high
dimensional vectors [99]. This representation aims to capture the word semantics in vectors of
real numbers. That is, the meaning is “distributed” across multiple components instead of local

representation where each element represents exactly one component [98].

Word2Vec, proposed by Mikolov et al. in 2013, was a ground-breaking model that produced
state-of-the-art performance at low computational cost [97,100]. Word2Vec algorithms train
a 2-layer neural network on large corpus of unlabelled data (e.g. a Wikipedia dump) using a
Masked Language Model task. The objective for this task is to predict a word giving its context.
Figure 2.12 depicts the two Word2Vec training modes: In the CBOW model, the objective is
to predict a target word using context words within a window (w). In the Skip-gram model,

the objective is to produce context words given the target word.

INPUT PROJECTION OUTPUT INPUT PROJECTION  OUTPUT

W(t-2) J w(t—2)
w(t-1) w(t-1)
\SUM /

w(t) — \

/ > w(t)
w(t+1) Y wit+1)
W(t+2) J w(t+2)

cBOW Skip-gram

Figure 2.12: Word2Vec CBOW (Continuous bag-of-word) and Skip-gram models (adapted
from [97])

Word2Vec fails to produce contextualised embedding for the same word in different contexts.
For instance, the word bank can have different meanings depending on the context (e.g., finan-
cial institution or the land alongside a river) To address this problem, Devlin et al. proposed
a deep bidirectional network BERT (Bidirectional Encoder Representations from Transform-
ers) [101] that is pre-trained using unlabelled data and then fine-tuned with multiple supervised
tasks. For the pre-training phase, BERT uses the BookCorpus (800M words) and English
Wikipedia (2500M words) as the corpus, and two unsupervised tasks: masked language (similar
to Word2Vec) and next sentence prediction. The BERT transfer learning approach enables the

reuse of expensive pre-trained networks with a much cheaper fine-tuning classification tasks.
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BERT improves previous general language representation that use unidirectional language mod-

els by using left and right context during training across all layers.

Still, BERT suffers from computational overheads when used to compare embeddings and clus-
tering. In this thesis, we use primarily Sentence-BERT [102], a modification of the original
BERT network that uses siamese and triplet network structure to produce sentence embeddings
that enable more efficient search and clustering operations. Figure 2.13 shows the Sentence-
BERT tuning architecture. In this figure, BERT is a multi-head attention network [103] (as
described above) that connects to a pooling layer to derive semantically meaningful fixed-size
vector embeddings (768 dimension by default). The network is then fine-tuned with several

tasks depending on the available data.

softmax

1

(u,v, Ju-v|) cosine-sim(u,v)

A LS

[-1.1]

u \% u \Y
A A A A
pooling pooling pooling pooling
A A A A
BERT BERT BERT BERT
sentence A sentence B sentence A sentence B

Figure 2.13: Fine tuning Sentence-BERT Classification (left) and Inference (right)
architectures

The best network architecture depends on the available data. In our evaluation (Chapter 6),
we use the Inference architecture to fine tune the network based on pairs of Android methods
and a corresponding similarity score using the Semantic Textual Similarity task. Reimers et
al. explored different metrics such as cosine similarity, euclidean distance, and dot product to
compare embeddings and conclude that all lead to similar results [102]. In our evaluation, we

use the cosine similarity metric defined by:

. -y
Cosine(x,y) = I

The idea of using NLP techniques to study apps has been used before to analyse app meta-
data [104,105], permissions [106, 107], reviews, and privacy policies [108-111]. Previous works
highlighted the importance of software documentation to extract semantic information about
programs [112,113]. However, little attention has been given to API documentation to detect
sensitive methods for security analysis, and current approaches rely on program analysis for this
task [51,62-65].
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Sentence-BERT architecture allows us to make inferences from Android API documentation
efficiently. In Chapter 6, we build a classifier that allow us to detect security-sensitive meth-
ods and run similarity queries in a corpus of Android API documentation. Our framework,
DocFlow, enables the generation of taint tracking specifications based on the semantics of An-
droid documentation. This semantics is modelled by Sentence-BERT and complemented by
other techniques that we explain in the corresponding chapter. To evaluate the classifiers, we

use the metrics defined by the following equations:

) TP+ TN Precias TP
ccuracy = recitsion = ——
Y= TPYTN+FP+ FN TP+ FP
TP 2% TP
Recall = *

- F1=
TP+ FN 2+«TP+ FP+FN

Consider a binary classifier that predicts if a method is a source or not-source (the example
can be extrapolated to a multiclass problem). Assume that the source class is the positive
and not-source the negative class. The correct predictions are the true positives (TP) and true
negatives (TN), while the incorrect predictions are the false positives (FP) and false negatives
(FN). Thus, the accuracy indicates the fraction of correct predictions. However, this metric
can be misleading, particularly for an imbalanced dataset [114]. The precision indicates the
proportion of correct positive predictions, and the recall indicates the proportion of positive
samples correctly detected. The fI-score is the harmonic mean of the precision and recall and

can balance the trade-off between both.

2.5 Chapter Summary

Android apps provide an interface with the digital world. These apps are mainly written in
Java/Kotlin, compiled to Dalvik bytecode and packed into APK files. Android apps rely on a
tightly coupled architecture with the Java framework, which offers access to lower layers. We
have described how apps use the Java Framework to access shared resources and the Android
security model. Sensitive methods (sources and sinks) allow apps to access and expose sensitive

data to other parties.

In this chapter, we have presented the techniques we use to study multi-platform apps in Android.
Our approach is based on a dual-channel perspective [92], where Natural Language Processing
and Program Analysis cooperate for software security analysis. We focus on information flow
analysis techniques, text representation and language models in NLP. We have described the
limitations and challenges of modelling Android apps with these techniques. Now we continue
by analysing structural differences and threats across Android platforms. The following chapters

present the contributions of this thesis and answer the research questions.
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In this chapter we study the commonalities and unique characteristic of Android apps across
platforms. This characterisation allows us to understand the different threats specific to each

platform and develop solutions to address the uniqueness of each Android platform.

Smart devices evolved from small devices with reduced computation and connection capabilities
to more advanced devices with enhanced capabilities, such as smartwatches, smart TVs, and
smart cars. Figure 3.1 illustrates a typical daily scenario where users interact with multiple
smart devices. To offer a perspective, the number of connected IoT devices is expected to reach
18 billion in 2022 [115]. Similarly, the Smart Home market is predicted to expand at a compound
annual growth rate of 27% from 2022 to 2030 [116]. Undoubtedly, interconnected ecosystems

are ubiquitous in everyday life.

android

Figure 3.1: Android platforms (Adapted from [117])

To better understand this scenario, Zhou et al. define three main interacting entities: cloud
services, smart devices, and applications [15]. Each of these entities plays a role in the security
and privacy of the ecosystem. This thesis focuses on applications and their interaction across
Android platforms. Note that our work targets applications that run on high-end Android
devices (e.g., smartphones and smart TVs) rather than small IoT gadgets. Thus, applications
for IoT or medical devices are outside the scope of this thesis. A separate line of research deals

with commodity IoT devices and their security and privacy implications [16,118-120].

Google aims to expand its vision of cooperating multi-device ecosystem where each device offers
an enhanced experience [117]. While smartphones are the most popular device, other devices

use a customised version of Android. For each platform, Google considers the execution context,
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the range of smart devices, and the user experience. We list some of these devices below.
e Tablet devices: Tablets are provisioned with the same Android version as smartphones.

e Smartwatches: Wear OS is a stripped version of Android optimised to run wearable apps

on Android smartwatches and designed for a wrist experience.

e Smart TVs: Android TV is a customised version of Android to support specialised TV

hardware, and it is designed to provide a TV experience.

e Smart Cars: Android Auto is a version that allows users to connect their phone to a vehicle

to display a customised app version on the vehicle console.

We chose to study Wear OS (Chapter 4) and Android TV (Chapter 5) apps as an initial ap-
proximation to analyse apps on arbitrary platforms. The contributions from these chapters
allow us to understand the limitations of current techniques to detect sensitive data flows in
arbitrary platforms. It is worth noting that these two platforms are more mature than others in
terms of years of development, adoption, and the number of apps. We use the experience gained
by analysing wearable and TV apps to propose a framework that can generate taint analysis

specifications for arbitrary platforms in Chapter 6.

The remaining sections describe the following topics: 1) Google Play Services, 2) Wear OS and
wearable apps, and 3) Android TV and TV apps. Although we leave Android Auto outside the

scope of this thesis, we discuss potential future work in Section 7.2.

3.1 Google Play Services

While Android is an open-source OS, most “stock” Android devices run proprietary software
from manufacturers (OEMs) and third parties [121]. To access the Google Play Store, Google
requires device manufacturers to include other core modules such as Google Mobile Services
(GMS). These services include Google apps (Maps, Youtube, etc.) and background services,

also known as Google Play Services.

To understand this architecture, we need to go back to the initial years of Android. The
Android ecosystem suffered a fragmentation problem as OEMs were unable to keep up with
Google updates [122]. In response to the security issues underlying the fragmentation problem,
Google moved the most critical components of Android to the Google Play Services bundle.
This library receives automated updates from the Play Store without involving OEMs or users.
Thus, Google Play Services is a fundamental part of all Android platforms, albeit largely ignored

by the research community.

Google Play Services has two core components: 1) a proprietary app that embeds the logic of the
different services offered by Google, and 2) a client library that provides an interface to those ser-
vices. Developers must include the client library in their apps when accessing Google-dependent

services, including those regarding Wear OS and some Android TV components. Figure 3.2
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shows how the Google Play Services app interacts with the client library using standard inter-

process communication (IPC) channels.

& ™
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services
& Client library A
. Client library B ) PC ] .
& Client library C
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|
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Figure 3.2: Google Play Services (GPS) architecture (extracted from [123])

Google provides more than 30 packages that allow developers to interface with all the Google
Play Services as of February 2023. Table 3.1 shows a subset of these libraries and the supported

devices for each library. The full list is available in the official documentation [123].

A Google Play Services API call is not different from other Android API from the developer’s
perspective. However, many Google Play Service APIs implement complex functionalities in the
native app. Consider the Listing 3.1, and the call to getLastLocation() in line 6. The code
immediately adds a callback to handle the result of this method instead of assigning the result
to a variable. The semantics of this operation is lost for a static analyser that inspects this
code. Therefore, a taint tracking analysis needs a model of this API call to properly propagate
taints that use this API and other Google Play Services APIs. In particular, the Mobile-Wear
communication uses the Data Layer APIs from Google Play Services that must be modelled for

a sound analysis. We describe this communication type in the following section.
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Library Name Supported Devices

Google Mobile Ads Phone, Tablet
Android Advertising ID Phone, Tablet, Android TV, Chrome OS
Google Sign-In for Android | Phone, Tablet, Android TV, Chrome Os

Google Awareness API Phone, Tablet, Android TV, Auto, Chrome OS, Wear OS
Google Cast API Phone, Tablet, Chrome OS

Google Fit API Phone, Tablet, Chrome OS, Wear OS

Fused Location Provider Phone, Tablet, Android TV, Auto, Chrome OS, Wear OS
Google Maps SDK Phone, Tablet, Android TV, Auto, ChromeOS, Wear OS
Nearby Platform API Phone, Tablet, Android TV, Auto

Google Pay API Phone, Tablet, Auto, Android Go, ChromeOS, Wear OS

Wearable Data Layer API | Phone, Tablet, Wear OS

Table 3.1: Subset of Google Play Services libraries

// Code required for requesting location permissions omitted for brevity.
FusedLocationProviderClient client =

LocationServices. getFusedLocationProviderClient (this);

// Get the last known location. In some rare situations, this can be null.
client . getLastLocation ().
.addOnSuccessListener (this , location —> {
if (location != null) {

// Logic to handle location object.

Listing 3.1: Google Play Service location API example

3.2 Wearable Platform

Wear OS is a stripped version of Android optimised to run wearable apps on Android smart-
watches. The capabilities of these smartwatches range depending on the hardware of the man-
ufacturer. Apart from main components such as screen and CPU, these devices incorporate an
array of sensors including accelerometers, heart-rate and pedometer among others. The Wear

OS provides an abstraction for apps to access those sensors.

Wear apps are similar to mobile apps, but their design and functionality is tailored for critical
tasks and a wrist experience. For instance, a fitness Wear OS app mostly focus on data gathering
while leaving the data analysis and more complex features that require more screenspace to the
mobile app. Wear OS offers complex interaction mechanism with the mobile counterpart. For
instance, Figure 3.3 shows a standalone payment app and media player app that allows play
media content across devices. Figure 3.4 shows a mobile clock app and its companion. These

apps can synchronise data using wearable libraries from Google Play Services.

Wear OS adopts the same security model used to protect its mobile counterpart. Wearable
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Figure 3.3: Standalone wearable apps Figure 3.4: Mobile and wearable
companion app

Figure 3.5: Example of wearable and mobile apps (Adapted from documentation [124])

applications are sandboxed and installed with minimum permissions by default. Dangerous per-
missions are granted at run-time. Permissions still need to be declared on the app Manifest. The
only special consideration for Wear apps is the independent authorisation process as permissions
are not inherited from the mobile app. The wearable app must request permission to access
protected resources. These resources can be either in the smartwatch or in the smartphone (the
smartwatch can also access resources in the smartphone and vice-versa, provided users grant the

appropriate permissions).

3.2.1 Mobile vs Wearable Apps

We conducted a preliminary analysis to better understand the difference between mobile and
wearable apps. We aim to compare the wearable version with the mobile counterpart in terms of
size, permissions and third-party libraries. The permissions were extracted using Androguard,
and we used LibRadar and LibScout to detect third-party libraries. We download a small number

of wearable-enabled apps from the Play Store, selecting the most popular wearable apps.

Table 3.2 shows the package names and the difference between the versions. The results show
that mobile apps are larger in size and functionalities and provide more functionalities based
on permissions and libraries. 90% of Wear OS permissions are common to both platforms,
as expected. However, the remaining Wear OS permissions enable functionalities inherent in
smartwatches like wet-mode, watch-face control, and palm lock functionalities. In total, there
are 15 unique Wear OS and 41 mobile permissions. We found 52 third-party packages that are
unique to wearable apps and enable wear-specific features such as watch faces, complications,
and custom authentication APIs for smartwatches. Notably, there are cases where app versions
use different libraries for the same purpose. For instance, the wearable app iheartradio uses the
analytics libraries Comscore and play-services-analytics, but the mobile version uses AppsFlyer
and Firebase for the same purpose. This example shows that the same app can present different

behaviour across platform versions.

Although this preliminary study is not exhaustive, it demonstrates differences between apps
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Mobile Wear
Apps Size Permission Libraries Size Permission Libraries

(MB) (AOSP-TP) (MB) (AOSP/TP)
com.shazam.android 31 11-4 6 6.5 3-0 4
com.accuweather.android 130 10-6 22 7.5 3-1 6
com.amazon.mp3 76 23-30 49 67 6-0 14
com.callapp.contacts 47 46-14 55 4.2 4-1 6
com.clearchannel.iheartradio.controller 58 18-12 27 25 12-7 40
com.google.android.apps.maps 102 23-11 18 18 11-3 11
com.google.android.apps.walletnfcrel 17 18-5 23 5.3 10-6 8
com.microsoft.office.outlook 88 28-28 21 13 3-2 4
com.soundcloud.android 88 14-5 42 6.3 12-2 8
com.strava 72 19-15 15 20 11-7 8
com.todoist 43 9-7 19 7.5 10-7 4

Table 3.2: Popular Wear OS apps. Mobile and wearable comparison. The column Permission
shows the difference between Android (AOSP) and (TP) third-party declared permissions.

across these two platforms. Wearable apps offer functionalities that are not available in mobile
apps. This difference manifests in permissions and third-party libraries available only for Wear
OS applications. These differences give rise to threats that should be considered properly.
Moreover, the Mobile-Wear interactions result in new threats unknown in standalone settings

that we describe below.

3.2.2 Communication in Wearable Apps

Wear devices are equipped with network connectivity like Bluetooth, NFC, WiF1i, or even access
to cellular networks. Most watches require a phone pairing process via Bluetooth or WiFi. The
pairing process establishes a low-level channel that can be used by mobile apps to communicate
with a companion app in the smartwatch. Note, however, that wearable apps can run standalone
apps (i.e., no mobile app needed) from Wear OS 2.0. Figure 3.6 illustrates the interplay between
a mobile phone, a smartwatch and the network. Note that the Google Play Services app uses
the low-level channels (WiFi or Bluetooth), while the mobile and wearable apps call high-level

wearable APIs that abstract the complexity of the communication.

The Google Plat Services package com.google.android.gms.wearable gathers all the interfaces
exposed for wearable apps, including the APIs that enable the communication between mobile
and wearable apps. This package is commonly referred as the Data Layer API. We next describe
how Wear OS enable apps to communicate with each other, including how they communicate

with the mobile companion app.

3.2.3 Data Layer

The pata Layer API provides IPC capabilities to apps. This API consists of a set of data objects,

methods, and listeners that apps can rely on to send data using four types of abstraction:

1. Dataltem is a key-value structure that provides automatic synchronisation between devices
for payloads up to 100KB. The keys are string values, and the payload could be integers,
strings or other 16 data types. The Dataclient APIs offer support to send DataItems which
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Figure 3.6: Communication between a mobile app, its companion, Google Play Services
(GPS) and the network.

are uniquely identified by a path (string value) in the system.

2. Assets are objects that support large binaries like images or audio. Assets are encapsu-
lated into DataItems before being sent. The Data Layer takes care of transferring the data,

bandwidth administration, and caching the binaries.

3. Message are short bytes of text messages that can be used for controlling media players,
starting intents on the wearable from the mobile, or request /response communication. The
MessageClient Object provides the APIs to send this type of asynchronous messages. Each

message is also identified by a path in the same way as Dataltenms.

4. A cChannelClient offers an alternative set of API methods to send large files for media
formats like music and video (in streaming as well) which save disk space over Assets.

ChannelClient are also identified by a unique path.

The Wearable API also specify callbacks to listen for events that receive wearable data trans-
missions. Table 3.3 shows a summary of these objects and their corresponding callbacks. The
16 data types supported by Dataltems can be found in the API documentation [125]. The full

list contains a mix of Java types and Android-specific abstractions.

Data Type - Channel Channel Type Data Type Listeners

Messages - MessageClient Asynchronous/not-reliable  Bytes OnMessageReceived
Dataltems - DataClient Synchronous/reliable 16 types OnDataChanged
Assets - DataClient Synchronous/reliable Binaries OnDataChanged
Channel - ChannelClient Synchronous/reliable Files OnChannelOpened

Table 3.3: Map between the different data types and the available channels in the Data Layer
API.
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Data Layer Communication Flow

Once two devices are paired, the mobile and its companion apps can talk to each other through
the Data Layer as long as they are signed with the same certificate. This is a restriction introduced
for security reasons. Apps can use the Data Layer to open synchronous and asynchronous channels
over the wireless channel. Table 3.3 shows the channel type corresponding to each abstraction

of the Data Layer.

The MessageClient (asynchronous API) exposes the methods to put a message into a queue
without checking if the message ever reaches its destination. This abstraction encapsulates
the context of messages (destination and payload) into a single API invocation. Synchronous
channels (DataClient, ChannelClient) provide transparent item synchronization across all devices
connected to the network. These synchronous channels use many APIs to create the context of
one transmission (in contrast to asynchronous). From now on, we will use synchronous channels
to explain the operation of the Data Layer as these are more complex than asynchronous. This
operation mode is important to understand how our tool WearFlow (Chapter 4) improves the

tracking of mobile-wearable flows.

The context of one transmission consists of: the node identifier, channel type (see table 3.3 for
the options), channel path (string identifier), and the data that will be transferred. Listing 3.2
shows the code for a synchronous DataClient example. The node identifier is a string representing
a node in the Wear OS network (line 2). A channel path uses the identifier to generate a unique
address which identifies each open channel within a node (line4). Finally, the data is the payload

of the transmission (line 4).

public class MainActivity extends Activity {
private static final String COUNTKEY = “com.example.key”;
private DataClient dataClient;
private int payload = 0;

private void increaseCounter () {
// Create a data map and put payload in it
PutDataMapRequest putDataMapReq =
PutDataMapRequest . create (“/count”) ;
putDataMapReq . getDataMap () . putInt (COUNTKEY, payload++);
PutDataRequest putDataReq = putDataMapReq.asPutDataRequest () ;
// synchronise item
Task<Dataltem> putDataTask = dataClient.putDataltem (putDataReq) ;

Listing 3.2: Data Client API example

An app can create many channels of the same type to send different payloads to the companion
app. Developers often use path patterns to create a hierarchy that matches the project structure

to identify different channels. For instance, the path example.message.normal can be used
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to request a normal update, while the path example.message.urgent could indicate an urgent

request.

To initiate a Mobile-Wear communication, the sender app needs to create the context of the
channel through a sequence of APIs calls. Then, the Google Play Services app on the phone per-
forms the transmission, handling the encapsulation, serialisation, and retransmission (if needed).
In the smartwatch, Google Play Services receives the communication and processes the data be-
fore handing it over to the wearable app. The receiver app implements a listener that captures
events from Google Play Services. The listener could be defined in a background service or an

activity where the data is finally processed. We provide an extended example in Chapter 4.

3.3 Smart TV Platform

Android TV is the Android version for smart TVs. This OS version is heavily customised to
support specialise hardware and system functionalities such as codecs and wide screen render-
ing. Many of these operations are protected by Android TV permissions such as HDMI_CEC
and CONFIGURE_DISPLAY_COLOR_TRANSFORM. On the contrary, Android TV does not
support many features available in other platforms because it is designed for a different purpose.

Some of these features are touchscreen, telephony services, sensors, camera, among others.

TV apps offer an additional abstraction that enables the interaction with media content from the
Internet and Smart TV hardware. TV apps require custom configurations in the APK Manifest
to run on Android TV devices [126]: 1) The APK must not declare unsupported hardware such
as a touchscreen. 2) It must declare a launcher TV activity. 3) It can optionally declare support
of the Leanback library that provides user interface templates, paging, and other features that

are exclusively for Android TV.

TV apps possess the same structure as mobile apps and use the same languages and development
tools (described in the previous chapter). This allows developers to extend their mobile apps to
support Android TV or create a new TV app from scratch. The most important difference with
apps from other platforms resides in the user interaction. Users are expected to watch TV from
medium distances, the input is based on a directional pad and a select button, and specialised
hardware and codecs are used to render the application on Smart TVs. These specific features

create a custom execution environment, e.g., permissions, libraries, and Android APIs.

Smart TV users interact with the apps through the home screen. The home screen (Figure 3.7)
is the Android TV’s main interface that provides access to apps, content recommendations, and
global search. Users can access apps directly via the Apps menu or by searching channels or
programs that apps add to the Home screen. Android TV also enables interaction with other
devices. Figure 3.8 shows an example where an Android TV device is provisioned using a nearby

Android phone. TV users can also use a remote-control app to engage with the TV app UL

TV apps deliver media content or provide standard utilities. Like other Android apps, TV
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Figure 3.7: Android TV homescreen Figure 3.8: Android TV and mobile
interaction

apps have access to the file system, sensors, and network connections. However, developers are
restricted by the limitations of the underlying hardware, e.g., no precise geolocation due to the
lack of GPS chipsets or telephony services. The TV Input Framework (TIF) is a set of libraries
that facilitates the interaction of TV apps with media source providers [126]. Examples of
TV apps implementing the TIF are Netflix, HBO, and Disney+. The TIF offers an interface to
build apps emulating the TV broadcast style. It specifies channels, programs, track information,

sessions, and other components required to display media content in a TV broadcast style.

Communication in TV apps

TV apps can establish connections with other hosts. For instance, a TV app can exchange data
with a remote server or with a device connected to the same network or in close proximity. For
this, developers can use plain sockets [127-129] or high-level Android APIs like the Nearby
platform [54,130].

The Nearby platform is available for proximity communication since Android 4.0. It provides the
NearbyConnection and NearbyMessage APIs to communicate with nearby devices that are not
required to be connected to the same network. The NearbyConnection API offers the capability
to discover and connect with other devices using multiple protocols, while the NearbyMessage
provides a publish/subscribe communication model. Similarly, the WifiDirect API allows two
devices to communicate even if the two are not connected to the same network. The Cast-
TV API allows mobile apps to display content on a Smart TV, but this interaction is handled
internally by Android TV.

3.3.1 Mobile vs TV apps

We conducted a study of popular TV apps available in the Play Store similar to the preliminary
study of Wear OS applications. For this, we downloaded 65 popular streaming APKs (as of
January 2022). 75% of these APKs are pairs of mobile and TV apps, and the remaining 25%
correspond to APKs compatible with both platforms. We call this dataset popular-streaming,

and we further use it for the traffic analysis experiments in Chapter 5.

We use the same tools for this preliminary study, namely LibScout and LibRadar to analyse

third party-libraries and Androguard for permissions. In Addition, we extracted metadata from
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the Play Store, such as user reviews and the last updated date. Table 3.4 shows the number of
downloads and user rating for the streaming apps. By analysing the Play Store metadata, we
noted a significant degradation in the quality of the TV version of mobile apps. This degradation
is evident when looking at users’ ratings, reviews, and last app update from developers. For
instance, most TV apps have a significantly lower user rating than the mobile version. Two
examples are the YouTube apps (mobile version 4.3 vs TV 2.2) and CNN apps (mobile 4.5 vs
TV 1.3). A manual verification of Play Store reviews is consistent with the rating as users

constantly complain about buggy and unusable apps.

We also note that TV app updates come with a delay compared to the mobile version, between
one month and one year, with 50% of the TV apps taking at least three months. Worst, two
TV apps have been left without updates since 2018 (com.playstation.video.atv and 2019
com.ted.android.tv). These apps are still available in the PlayStore, and their mobile versions
are up to date (2022). These issues show that developers give less attention to their TV apps.
This might be because of the much bigger user base in the mobile ecosystem (see Table 3.4).
However, this leaves TV users vulnerable to bugs and bad development practices. We show that
the difference between TV and mobile apps updates is more significant for less popular apps in
Chapter 5.

The preliminary study shows that TV apps use fewer permissions than mobile apps. We found
27 unique AOSP and 20 third-party permissions requested by TV apps. In contrast, we found 42
AOSP and 76 third-party permissions in mobile apps. However, we detected 18 permissions re-
quested exclusively in TV apps. For instance, permissions to read and write Electronic Program
Guide (EPG) data, digital rights (DRM), and integration with the Amazon Fire TV Launcher.
Third-party libraries follow a similar pattern. In general, mobile apps embed more TPL than
TV apps, but there are libraries found exclusively in TV apps. There are two exceptions in this
dataset of popular streaming apps with more libraries in the TV version (the Curiosity Stream
and WWE apps). We give an in-depth analysis of the Android TV ecosystem in Chapter 3.1,

so we leave the details for that chapter.

3.4 Android Platforms Threats

Android smart devices store private data, including PII (e.g., device identifiers) and other sensi-
tive data such as biomedical data, sensors, and multimedia. All this data available open the doors
for unintentional or malicious data leaks and attacks exploiting vulnerabilities. The research
community develop frameworks to address these threats. We refer the reader to Section 2.3 for

an overview of static and dynamic analysis frameworks for Android apps.

Unfortunately, most of these frameworks focus on mobile apps and do not consider the specific
features of other platforms. For instance, Liu et al. conducted a large-scale comparative study
between mobile and TV apps [131]. They showed that TV and mobile versions of the same
app often encounter different kinds of security vulnerabilities. Aafer et al. discovered 37 unique
vulnerabilities by analysing the firmware of 11 Android TV boxes. The nature Wear OS and

Android TV enforces developer to adapt their apps to the resources available on each platform.
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App Name Downloads-Mob  Downloads-TV ~ Rating-Mob Rating-TV
Netflix 1B 50M 4.3 2.4
Amazon Prime Video 100M 50M 4.3 1.6
Disney+ 100M - 4.4 -
Twitch 100M - 4.6 -
Youtube 10B 100M 4.3 2.2
Pluto TV 50M - 4.1 -
Plex 10M - 4.1 -
Hulu 50M 5M 3.9 1.7
Sling TV 10M - 4.1 -
BBC 10M 100K 4.1 2
Natgeo TV 1M - 4.1 -
Tik tok 1B 100k 4.4 *
ESPN 50M - 4.1 -
AppleTV 1M - 2.3 -
RedBull TV 10M - 4.3 -
WWE 10M 100k 4.5 3.8
Old Movies 5M - 4.5 -
Rakuten TV 1M 1M 4 1.7
Kodi 10M - 3.8 -
HBO GO 5M 500K 4.3 1.6
CNN 50M 100K 4.5 1.3
haystack 1M - 4.3 -
curiosity stream 1M 100K 4 3.7
TED talks 10M 5M 4.5 4
Lifetime A&E 5M - 4 -
MasterClass 1M 50k 4.7 *
Play Station 100M 100k 3.8 1.2
NBC sports 5M 100k 3.4 1.5
NFL 100M - 4.3 -
moviestar 10M 500k 4.2 2
ITV hub 10M 100M 3.7 -
Stadia 1M 100K 3.8 4.1
WRC 500K 10K 3 2.3
earthcam 1M 50k 3.2 3.6
CBN family 100k 10k 4.4 *
Yupp TV 10M 1M 3.5 2.5
Eros Now 10M 1M 2.8 2.7
Jellyfin 100K 100k 3.9 3.8
Player 10M 500k 3.7 2.3
Acorn TV 100k 50k 3.3 1.5

Table 3.4: Comparison between Mobile and TV versions of Streaming Apps. (-) indicates only
one version and (*) indicates information not available
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This adaption in conjunction with bad development practices and the lack of proper guidance

from Google, results in new threats that are platform-specific.

Although the risk of privacy and security problems is present across all platforms, the modes
in which the threats occur vary. This led us to pose new questions regarding user security and
privacy. Thus, we continue this thesis by analysing the threats in Wear OS and Android TV

apps. We first discuss these threats and then study some of these issues in the following chapters.

Wear OS Threats. We are primarily interested in understanding wearable channels that can
lead to sensitive data leaks. The Data Layer (described in Section 3.2.2) enables inter-device
channels where sensitive data can flow across devices before being leaked. Using this channel, a
wearable app could read sensor data and share with its mobile counterpart, which finally leaks
the data. This situation expands the context of wear/mobile applications across more than one
device. Therefore, we cannot assess the security of an Android app by just looking at the mobile
or wearable version in a vacuum. Instead, we need to consider both apps as part of the same

execution context.

Wear OS does not support many of the traditional mechanisms for inter-device communication,
e.g., sockets and Bluetooth, making the Data Layer the unique channel for Mobile-Wear commu-
nications, and its study fundamental to understand information flows in Wear OS. None of the
available frameworks model this interaction properly (see Section 4.7 for related work). Thus,
in Chapter 4 we propose WearFlow, a static analysis framework that models the Mobile-Wear

communication. WearFlow enables the tracking of sensitive data across mobile and wearable

apps.

While WearFlow addresses this specific feature of Wear OS applications, it is important to high-
light that Mobile-Wear communication is just one out of many problems specific to this platform.
Sikder et al. published a survey on sensor-based threats and attacks to smart devices and ap-
plications [132]. They describe many attacks using sensors to capture sensitive information,
including wearable apps. Wang et al. study keyboard attack inferences using smartwatches
sensors [7]. A study of Ching et al. presents evidence that low computing power cause devel-
opers to avoid strong security mechanisms in smartwatches [133]. An industry report describes
authentication and secure connection vulnerabilities in smartwatches [6]. Goyal et al. study the
security of wearable health trackers, and they found that wearables are susceptible to multiple

attacks, including DoS, hardware deactivation and traffic interception [8].

All these problems support the argument that the wearable ecosystem needs to be studied
appropriately, and we take care of one aspect of this platform in the next chapter. The specific

threats we consider for the wearable ecosystem are stated in section 4.1.2.

Android TV Threats. Similarly to the wearable ecosystem, we are interested in security and
privacy threats for TV apps. However, the context of this platform determines different threats.
Android TV primary purpose is to deliver media content. Users’ viewing history and preferences

are exposed to trackers. Most users are unaware of profiling risks or consider advertisers accessing
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their viewing history unacceptable [30]. Thus, we consider the threats pose by data leaks and

the relation of these events with third-party libraries and tracker domains.

TV apps rely on APIs such as sockets or the Nearby platform for inter-device communication
(the Data Layer is not available). These APIs allow developers more freedom but also increase
the risk of insecure communications. Thus, we look at how TV app developers implement inter-
device communication and their privacy implications. Another threat for TV apps resides in
bad development practices due to porting mobile apps to Android T'V. For instance, inconsistent
permissions and duplicated permissions. The specific threats considered for the Android TV

evaluation are stated in Section 5.1.1.

Note that we do not consider the same problems on both platforms. For instance, we do not
perform a large-scale study of permissions and third-party issues for wearable apps, even though

these might exist. We propose extensions to our work in Section 7.2.

3.5 Chapter Summary

Abstractions in Android vary across platforms because of hardware limitations and platform
design. These differences result in syntactic and semantic differences that security analysts
must consider as it affects the study of information flows across platforms RQ1. Thus, analysing

multi-platform apps requires the following considerations.

e Specific APIs might result in complex implementation patterns that need to be modelled
properly for precise analyses, e.g., the Data Layer. Additionally, different stakeholders offer
third-party libraries that are specific to each platform. Thus, the collection of library

signatures needs to be complemented.

e Taint specifications will differ for each platform as the available APIs differ. Unfortunately,
this situation yields an overload of manual analysis to generate specifications or requires

precise automated tools.

e Experiments must consider hardware limitations and how users interact with apps on each

platform.

We argue that unique characteristics require custom analyses for each platform RQ2. At the
same time, there are common tasks that could be automated RQ3, such as generating taint
specifications. Chapter 4 presents a framework that enables inter-device tracking in the wearable
platform RQ1 and a new benchmark suite designed for testing. Chapter 5 studies information
flows in TV apps using static/dynamic analysis RQ1. This c