
AWSomePy: A Dataset and Characterization of Serverless
Applications

Giuseppe Raffa

Royal Holloway, University of London

giuseppe.raffa.2018@live.rhul.ac.uk

Jorge Blasco Alís

Universidad Politécnica de Madrid

jorge.blasco.alis@upm.es

Dan O’Keeffe

Royal Holloway, University of London

daniel.okeeffe@rhul.ac.uk

Santanu Kumar Dash

Royal Holloway, University of London

santanu.dash@rhul.ac.uk

ABSTRACT

Over the last few years, the serverless computing paradigm has

become increasingly popular. Thanks to its cost-effectiveness and

the possibility of relying on a cloud provider to manage the under-

lying infrastructure, companies making use of serverless platforms

can fully focus on developing the business logic of their products.

However, adopting the serverless model also implies facing several

performance, traceability and security-related challenges. Some

of them can be tackled by analysing real-world applications and

identifying key trends, as these can guide the development of novel

models and tools. In spite of this, little up-to-date information on

such trends is currently available in the literature.

In this work, we gather and interpret information that can be

leveraged to analyse serverless applications. To achieve our goal,

we study a set of applications developed in Python for the Amazon

Web Services (AWS) platform. We first conduct an architectural

analysis to identify serverless-specific parameters, e.g., plugins used

in deployment tools and the number of events and handlers. We

then perform an application code-level analysis in order to estab-

lish which cloud services and APIs developers use most frequently.

Our results show that granular definition of handler permissions is

not common practice. Furthermore, developers make use of con-

figuration services and programmatic creation of cloud resources,

thus adding workflows difficult to analyse statically. Our dataset,

AWSomePy, is publicly available to support future research work.

1 INTRODUCTION

The serverless computing paradigm aims at reducing the overhead

associated with deployment and monitoring of traditional servers

by leveraging a stateless and event-driven model, which relies on

platform services offered by a cloud provider [5]. By abstracting

away almost all operational concerns, including infrastructure scal-

ability and IT hardware maintenance, enterprises can cut their

costs and focus on developing their software products. However,

relying on serverless environments, such as AWS [23], Azure [4]

and GCP [17], presents new challenges, especially in the areas of

performance [25], traceability [9] and security [2, 7, 15, 18].

Both static and dynamic analysis of serverless applications are

problematic. Unlike traditional applications, serverless applications

routinely receive their inputs from a variety of sources and code

execution can be triggered by different kinds of events, such as

a database update or a file upload [5]. Recent academic studies

have therefore introduced new frameworks for information flow

analysis [3, 8, 22, 24] and tracing of potentially malicious events [9].

While demonstrating the correctness in principle of the proposed

approaches, the experimental evaluations of such frameworks rely

on a very limited set of applications. Thus, they are not optimized

to consider architectures and cloud services most frequently used

in real-world applications.

Static analysis, in particular, is very challenging in the context

of serverless computing. In addition to the high number of events,

analysing the code that implements platform services is not possi-

ble. Obetz et al. [16], who extended the concept of call graphs to

serverless applications, show that static analysis is undoubtedly

useful, but inevitably has to rely on models and approximations.

Similarly to the case of information flow and traceability frame-

works discussed above, such models and approximations should

ideally be based on key trends and features extracted from a large

collection of applications. Unfortunately, existing general-purpose

datasets, such as PyTraceBugs [1] and BugsInPy [29], do not take

into account the specific characteristics of the serverless paradigm,

as they were primarily conceived to support static source code

analysis and unit testing for traditional Python applications.

In this work, to guide the development of models and tools for

serverless computing, we analyse a dataset of 145 applications ob-

tained from GitHub by adopting and customizing the Wonderless

dataset methodology [14]. Given the growing popularity of Python

in the serverless domain, we focus our attention on applications

implemented in Python for AWS, which is the most widely used

development platform [27]. Our results show that permissions are

rarely configured on a per-handler basis, despite this being consid-

ered a good practice to secure serverless applications. Furthermore,

while data storage and NoSQL services are, as expected, the most

frequently used, developers rely on configuration and management-

oriented services as well. These provide high flexibility, but they

also trigger workflows that are difficult to inspect prior to deploy-

ment.

In summary, we make the following contributions:

• We publicly release AWSomePy
1
, a new dataset of AWS

serverless applications implemented in Python and com-

patible with the Serverless Framework deployment tool.

• We provide a characterization of our dataset, which we

obtain by conducting an architectural and an application

code-level analysis.

1
https://doi.org/10.5281/zenodo.7838076

https://doi.org/10.5281/zenodo.7838076


Raffa and Blasco Alís, et al.

Table 1: Summary of the dataset generation process.

Step YAML Files Repositories Dataset Size

1 9,096 ✗ ✗

2 7,912 ✗ ✗

3 ✗ 7,074 ✗

4 ✗ 811 8.7 GB

5 ✗ 783 8.5 GB

6 ✗ 159 1.6 GB

7 ✗ 147 1.6 GB

8 ✗ 147 1.6 GB

9 ✗ 145 1.6 GB

2 DATASET GENERATION

This section describes how the dataset used for our analysis (§ 3)

was generated. Starting from the consolidated methodology of

the Wonderless dataset [14], which collected GitHub applications

compatible with the Serverless Framework deployment tool [28],

we generate a new, Python-only version of the dataset in August

2022 by customizing the code provided by its authors [13].

While including a large collection of mature and well-maintained

applications, the Wonderless methodology suffers from the limita-

tion that it does not collect repository-specific or application-level

metadata. This information can help researchers to identify suit-

able benchmarks and to assess the complexity of applications in

the dataset, as we show in this study (§ 3.1). For this reason, our

methodology includes a further step that gathers a set of metadata,

which include, among others, the number of stars, events and han-

dlers. Moreover, Wonderless was created in July 2020. Considering

the constant evolution of serverless offerings and the latest features

of the widely adopted Serverless Framework
2
, which facilitates the

deployment of serverless applications through declarative infras-

tructure code, we decided to base our investigation on the most

up-to-date dataset possible.

The remainder of this section is dedicated to detailing the nine

steps of the dataset generation process, which is outlined in Fig. 1.

Identification of configuration files. The processing pipeline

developed by Eskandani et al. [14] starts by querying GitHub to

identify all the repositories containing at least one serverless.yml
file, which is used to configure applications to be deployed with

the selected framework. As shown in Table 1, which summarizes

the output of each processing step in terms of identified files or

repositories and dataset size, 9,096 configuration files are detected

in step ❶. These are filtered in step ❷ to remove files developed by

the Serverless Framework community as well as those included in

folders, e.g., demo and test, indicating that the application is either

a template or a toy example. The final number of identified config-

uration files is 7,912. We emphasize that no repository was cloned

during the execution of the first two processing steps.

Identification of repositories. Even though it is reasonable to

assume that a vast majority of serverless applications are deployed

2
According to Datadog, in 2021 the Serverless Framework was adopted by 90% of the

surveyed organizations using AWS [26].

with only one YAML file, the framework allows for the usage of

multiple configuration files. This implies that it is not possible to

uniquely identify the repositories URLs by exclusively relying on

the gathered serverless.yml files. The goal of step ❸ is therefore

to obtain such URLs by removing duplicate entries, which enables

us to shortlist 7,074 repositories. However, since the focus of this

research is the analysis of applications implemented in Python,

in step ❹ we filter the repositories by primary language prior to

cloning. This was achieved by using a GitHub API that returns

several pieces of information about a target repository [12]. The

outcome of the latter step consists of 811 repositories with a total

dataset size of 8.7 GB.

The removal of invalid YAML files is the objective of step ❺.

As observed by Eskandani et al., these include syntactically and

semantically invalid files, with the latter category comprising files

that do not specify either the cloud provider or the application

functions. This round of filtering causes only a modest reduction

in the number of repositories and in the size of the dataset, which

decrease to 783 and 8.5 GB, respectively. Congruently with the

Wonderless dataset, such quantities are much more significantly

reduced in step ❻, which aims at filtering out immature projects,

i.e., active for less than one year, and identifies 159 repositories

with a dataset size of 1.6 GB.

In order to remove non-real-world applications, the inherited

pipeline includes an additional round of filtering, namely step ❼,

which is focused on the analysis of repository metadata, such as

labels, topics and descriptions. They are compared with a set of

keywords, e.g., demo, test and example. In our case, this processing

step filters out only 12 repositories, thus bringing the total to 147

without any substantial variation of the dataset size. As for step

❽, Eskandani et al. explain that they analysed a list of potential

forks, i.e., repositories that feature the same name, but different

developers, to identify those to be filtered out. The rationale behind

this is that, in all probability, an application developed by forking

another shares large portions of the original source code. It is note-

worthy that the Wonderless dataset code only generates a list of

candidate forks, which have to be manually analysed. However, in

our case, no such candidates are shortlisted, which implies that the

total number of repositories remains unchanged.

Metadata gathering. To support the characterization of the ob-

tained applications, in step ❾ we further customize the dataset

generation process with code that extracts repository-specific meta-

data, such as number of stars, watchers and forks, and processes

both the YAML files and the source code to gather information

about cloud provider, Serverless Framework version, lines of code,

number of events and number of handlers. This analysis step en-

ables us to verify that only 2 out of 147 are non-AWS applications,

which we remove. As a result, 145 repositories are included in AW-

SomePy, which we release along with the associated metadata.

3 DATASET ANALYSIS

In this section, we detail the methodology of our analysis and

present the obtained results. We first consider configuration and



AWSomePy: A Dataset and Characterization of Serverless Applications

Figure 1: Dataset generation process. The dashed lines indicate the customized steps compared to the Wonderless dataset.

Table 2: Top eight plugins in AWSomePy.

Plugins Occurrences

serverless-python-requirements 95

serverless-pseudo-parameters 25

serverless-domain-manager 15

serverless-step-functions 14

serverless-offline 9

serverless-dotenv-plugin 8

serverless-prune-plugin 8

serverless-iam-roles-per-function 7

application architectural parameters (§ 3.1), such as deployment

tool plugins used and the number of handlers and events. Second,

we analyse the application code (§ 3.2) to identify the most common

cloud platform services and APIs.

3.1 Configuration & Architectural Analysis

Plugin analysis. The Serverless Framework supports a large num-

ber of plugins that facilitate the integration of complex features. To

gain insight into the plugins used when deploying AWSomePy ap-

plications, we parse serverless.yml files and extract the relevant

information from a dedicated tag. For simplicity, when a reposi-

tory contains more than one YAML configuration file, we consider

only one of them, as it is plausible that all have similar features

and complexity. The processed file is always the first identified by

recursively visiting the repository with the Python standard library

function os.walk.

A total of 44 plugins were identified, and the top eight most

frequently occurring are shown in Table 2. The most frequent

plugin by far is serverless-python-requirements, which is de-

signed to assist with dependency management. The next plugin, i.e.,

serverless-pseudo-parameters, is also configuration-oriented,

as it supports using AWS CloudFormation syntax to specify config-

uration parameters. Interestingly though, the plugin in question is

now deprecated [20], as its functionality is natively supported by

the most recent releases of the Serverless Framework. This result is

consistent with the approach adopted to generate the dataset (§ 2),

which explicitly prioritises mature applications.

Unlike the first and the second, the third and the fourth most

frequently used plugins, i.e., serverless-domain-manager and

serverless-step-functions are functionality-oriented. The for-

mer enables creating custom domain names by leveraging special-

ized AWS services, whereas the latter facilitates the deployment of

step functions.

As for the remaining four plugins, serverless-offline, which
supports local testing of serverless applications, is present in only

9 YAML files. Finally, with 7 occurrences, the least frequently de-

tected plugin in Table 2 is serverless-iam-roles-per-function.
Crucially, this implies that developers are not adopting the best

practice of configuring permissions in a granular fashion. Without

this plugin, which defines per-function IAM roles, every function

in the application is deployed with the same global IAM role, thus

increasing the chances of it being over-privileged.

Complexity analysis. In order to understand architectural char-

acteristics of the applications in our dataset, we assess their com-

plexity by considering the number of lines of code (LOC)
3
, events

and handlers. The average LOC is 4,468, while the minimum and

the maximum are 26 and 132,658, respectively. Furthermore, the

cumulative distribution of the LOC in Fig. 2 indicates that 55% of

the AWSomePy repositories have less than 1 kLOC, though those

with under 100 LOC constitute less than 10% of the dataset.

An assessment based on LOC alone, despite its importance, does

not capture key complexity indicators of serverless applications.

For this reason, we process each serverless.yml file to obtain in-

formation about the application’s events and handlers. Even though

both types of information can be specified in a YAML file in multiple

ways, to facilitate the implementation of an automated parser, we

limit our analysis to the tag functions. Considering the plugins

present in AWSomePy (Table 2) and the application code analy-

sis detailed later in § 3.2, we believe this does not significantly

affect the accuracy of our results. As elucidated later in § 3.2, the

3
We compute the LOC with the command-line tool Pygount [19].



Raffa and Blasco Alís, et al.

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

101 102 103 104 105

R
ep

o
s 

C
m

l 
F

ra
ct

io
n
 [

%
]

LOC

Figure 2: Cumulative distribution of the lines of code in AW-

SomePy (cumulative fraction of repositories on the y axis).

 0

 2

 4

 6

 8

 10

 12

 14

 16

 18

 20

10
1

10
2

10
3

10
4

10
5

N
o
. 

o
f 

H
a
n
d
le

rs

LOC

Figure 3: Number of handlers vs lines of code in AWSomePy.

AWS services, e.g., stepfunctions, that would require specifying

events and handlers in other YAML tags are not widely adopted in

AWSomePy.

The correlation between number of handlers and LOC is shown

in Fig. 3, where the darkest areas indicate a higher point density.

The figure shows that the AWSomePy applications typically include

at most four handlers. We note that as a consequence of the afore-

mentioned limitation of our parser a few points in Fig. 3 have no

handlers.

Finally, the number of events versus number of handlers diagram

in Fig. 4 reveals that the majority of the AWSomePy applications

comprise less than five events. However, similarly to Fig. 3, due to

our simplified parsing approach, some applications are classified as

having no events, which implies that their architecture should be

further inspected.

3.2 Cloud Service & API Usage

Cloud services. To identify the provider-managed services most

frequently used in our dataset, we look for lines of code that in-

stantiate a client or resource object with the open-source library

boto3 [11]. The latter is an essential component of the analysed

 0

 2

 4

 6

 8

 10

 12

 14

 16

0 2 4 6 8 10 12 14 16 18

N
o
. 

o
f 

E
v
e
n
ts

No. of Handlers

Figure 4: Number of events vs handlers in AWSomePy.

applications as it provides a rich interface to a large number of AWS

services. The targeted lines of code, e.g., boto3.client(’s3’) and
boto3.resource(’s3’), can be processed via regular expressions

because, despite the differences between client and resource ob-

jects
4
, the class constructors always require specifying the cloud

service as a string.

Our analysis identifies 46 services in total, with those with the

highest number of occurrences, computed in terms of boto3 client

and resource objects instantiations, shown in Table 3. Data storage

and NoSQL services, i.e., s3 and dynamodb, are significantly more

common than the others, with 217 and 201 instantiations detected,

respectively. In the case of s3, these were found in 59 reposito-

ries, whereas they were present in 47 repositories in the case of

dynamodb.
The third most frequently used service is lambda, which allows

configuring the serverless platform itself. The fourth is ssm, which
is used to perform a variety of management tasks. This indicates

that despite the wealth of configuration features and the rich plugin

ecosystem offered by the Serverless Framework, developers access

management-oriented services via their application code.

Cloud APIs.We next provide additional details on how the top five

services in our dataset are used by conducting a cloud API-focused

analysis. We parse the boto3 library documentation to extract in a

semi-automated manner the APIs exposed by the clients of the AWS

services present in our dataset
5
. Our preliminary analysis of the

documentation reveals that the sections dedicated to the supported

services share the same structure, but there exist some differences.

Consequently, implementing a parser capable of dealing with all the

services would be time-consuming. We therefore use a simplified

documentation parser
6
and subsequently manually validate the

obtained results. Unlike an on-the-fly processing, i.e., conducted at

the same time as the actual analysis of the application code, our

4
While it is possible to instantiate a client object for all the AWS services supported

by the boto3 library, only some of them can be accessed through a resource object.

Additional differences are mentioned in the remainder of this section.

5
Note that we extract only the APIs supported by the boto3 client objects. These

implement low-level interfaces, which implies that they offer a richer set of APIs in

comparison with resource objects [6].

6
Our boto3 documentation parser is based on the Beautiful Soup library [21].



AWSomePy: A Dataset and Characterization of Serverless Applications

Table 3: Top eleven AWS services in AWSomePy. The column

Occurrences reports the number of boto3 client and resource

objects instantiations within the relevant repositories.

Services No. of Repositories Occurrences

s3 59 217

dynamodb 47 201

lambda 24 47

ssm 14 46

sqs 21 41

sns 11 30

ec2 12 29

sts 9 26

rekognition 8 15

cloudformation 7 14

stepfunctions 9 14

pre-analysis allows storing the parser results, which facilitates their

manual validation and management in a version control system.

The API-related information is then used to parse the dataset

application code in order to identify relevant lines. For simplicity,

we focus our attention on the top five services (Table 3) and, after

filtering out the lines of code including the widely adopted API

names close and copy, we manually check the remaining lines to

ascertain that they are legitimate boto3 API calls for one of the ser-
vices of interest. We recognize that our approach requires manual

validation of the API names extracted from the boto3 documenta-

tion and of the lines of code where such APIs are detected, but we

believe this constitutes a good compromise between accuracy and

ease of implementation. We leave to future work the development

of a more automated framework.

Our results are shown in Table 4, which reports the occurrences

of the detected s3, dynamodb, lambda, ssm, and sqs APIs. Interest-

ingly, we observe a similarity between s3 and dynamodb, because
their most frequently used APIs, i.e., put_object and put_item,
allow storing information in cloud-based resources. This confirms

the importance that these have, given the stateless and ephemeral

nature of serverless functions. Moreover, we note that developers

rather often create s3 buckets and dynamodb tables programmati-
cally via the create_bucket and create_table APIs. We believe

that this trend poses a security challenge, because the configura-

tion of these resources cannot be straightforwardly inspected by

analysing the serverless.yml file of the application.
As for the lambda service, our results highlight that the API with

the highest number of occurrences is invoke, which supports both

asynchronous and synchronous execution of serverless functions.

Contrary to our expectations, this implies that some applications

do not rely on the facilities provided by the AWS platform for auto-

matic execution of their handlers. While understanding the reasons

behind this design choice would require a more in-depth analysis,

the manual inspection of ten invoke API calls in six applications

indicates that, in eight cases, the API is used to facilitate the pa-

rameterization of a handler name, which is helpful when there are

multiple versions of an application, e.g., production and develop-

ment. By contrast, the remaining two cases show test scripts that

rely on the invoke API to artificially trigger the execution of a

handler passed as a parameter. Even though a specific permission is

required to execute the API in question [10], we emphasize that its

usage, unless necessary for testing purposes, affects the application

workflows in a way not easily detectable via static analysis, thus

potentially leading to security vulnerabilities.

Finally, it is worth mentioning that developers rarely use the

lambda API add_permission, which we detect only seven times.

In addition, as far as the ssm service is concerned, we observe that

three out of the top four APIs
7
allow retrieving information from a

provider-managed parameter store. Both these trends are example

of security-oriented design patterns present in our dataset.

4 DISCUSSION

The purpose of this section is to further discuss the obtained results

and the limitations of our approach.

Application code analysis. We observe that the boto3 client and

resource object instantiations reported in Table 3 are always higher

than the respective number of AWSomePy projects. Thus, on av-

erage, the analysed applications include multiple instantiations of

these objects for the same service. This affects the overall amount

of data flows, and we therefore recommend considering the number

of such instantiations for the development of serverless-specific

complexity metrics.

Security implications. Our architectural analysis shows that the

security-focused plugin serverless-iam-roles-per-function
is used in only 7 applications (Table 2). Considering the function-

ality that it offers (§ 3.1), we believe that this is one of the most

interesting results of this study. Although over-privileged function

permissions and roles are among the most critical risks for server-

less applications recently identified by PureSec [18] and the Cloud

Security Alliance [2], the vast majority of the AWSomePy appli-

cations rely on application-wide IAM roles and do not follow the

principle of least privilege. While this does not imply that all these

applications are vulnerable, since the most common services in our

dataset are s3 and dynamodb, it could lead, similarly to traditional

SQL injection attacks, to loss or unauthorised disclosure of infor-

mation. In addition, given that serverless applications frequently

use such services to store data between different executions, this

could be compromised as well.

We emphasize that a comprehensive security analysis of AW-

SomePy is beyond the scope of this work, but, in the light of our

results, it is a possible avenue for future work.

Limitations. As mentioned in § 1, static analysis of serverless

applications is challenging due to the variety of events that can

trigger the execution of their handlers. It might therefore appear

contradictory that the majority of the applications in our dataset

comprise less than five events (Fig. 4). To better understand this

result, it should be observed that we extract events-related informa-

tion only from the YAML tag functions. This approach has two

implications. First, we do not consider that some plugins require

specifying events in other parts of the serverless.yml file. While

7
Namely, get_parameter, get_parameters and get_parameters_by_path.



Raffa and Blasco Alís, et al.

Table 4: Occurrences of the sixmostwidely usedAPIs for the top fiveAWS services inAWSomePy. The occurrences of all the other

detected APIs are aggregated in the entry other. The ssm APIs get_parameters_by_path and describe_instance_information
are abbreviated as get_parameters_by_p and describe_instance_i, respectively.

s3 dynamodb lambda ssm sqs
API # API # API # API # API #

put_object 61 put_item 143 invoke 55 get_parameter 79 send_message 27

get_object 52 scan 64 add_permission 7 put_parameter 18 get_queue_url 16

create_bucket 50 query 62 list_functions 3 get_parameters 7 delete_message 15

upload_file 48 get_item 58 get_policy 3 get_parameters_by_p 3 create_queue 14

download_file 24 update_item 57 get_function 2 list_commands 2 receive_message 13

list_objects_v2 22 create_table 41 list_tags 2 describe_instance_i 1 send_message_batch 2

other 111 other 93 other 4 other 6 other 1

one of these plugins, i.e., serverless-step-functions, is among

the most frequent in AWSomePy, it is used in only 14 out of 145

repositories (Table 2). The second implication is that we do not

count events implicitly defined by some services, e.g., dynamodb,
as we focus our attention exclusively on events explicitly listed by

the developer. However, implicit events do not necessarily trigger

the execution of a handler, as this depends on how the latter is

configured. Although in the two discussed cases our analysis yields

an underestimation of the total number of events, we believe that

our results provide a valid starting point for future research.

5 CONCLUSION

In this work
8
, we present AWSomePy, a novel dataset of 145 AWS

serverless applications developed in Python and compatible with

the Serverless Framework. We analyse their architecture by consid-

ering serverless-specific parameters, such as plugins, events and

handlers, along with the LOC. We also conduct an application code-

level analysis that aims to identify the most frequently used cloud

services and APIs.

Our results highlight that developers tend to use plugins to

facilitate the configuration of their applications and the deploy-

ment of complex pieces of functionality. Crucially, the security

plugin serverless-iam-roles-per-function can be found only

in 7 AWSomePy applications, in spite of the fact that 55% of them

feature a number of LOC between 26 and 1,000. As for our applica-

tion code-level analysis, it confirms that data storage and NoSQL

services are by far the most commonly used, followed by, inter-

estingly, configuration and management-oriented services. While

these provide a high degree of flexibility, they also add workflows

that are difficult to inspect prior to deployment. Moreover, the

identified APIs indicate that developers make use of programmatic

creation of data stores and database-like resources, which has simi-

lar security-related implications.

In conclusion, the analysis of the AWSomePy dataset shows that

the granular configuration of handler permissions is not widely

adopted, and that analysing serverless applications statically to

detect misconfigurations and security-sensitive data flows is chal-

lenging for real-world serverless applications.

8
This research was part-funded by EPSRC grant EP/W015927/1.

REFERENCES

[1] Elena N. Akimova, Alexander Yu. Bersenev, Artem A. Deikov, Konstantin S.

Kobylkin, Anton V. Konygin, Ilya P. Mezentsev, and Vladimir E. Misilov. 2021.

PyTraceBugs: A Large Python Code Dataset for Supervised Machine Learning

in Software Defect Prediction. In 2021 28th Asia-Pacific Software Engineering
Conference (APSEC). 141–151. https://doi.org/10.1109/APSEC53868.2021.00022

[2] Cloud Security Alliance. 2019. The 12 Most Critical Risks for Serverless Applica-

tions. Retrieved February 28, 2023 from https://cloudsecurityalliance.org/blog/

2019/02/11/critical-risks-serverless-applications/

[3] Kalev Alpernas, Cormac Flanagan, Sadjad Fouladi, Leonid Ryzhyk, Mooly Sagiv,

Thomas Schmitz, and Keith Winstein. 2018. Secure Serverless Computing Using

Dynamic Information Flow Control. Proc. ACM Program. Lang. 2, OOPSLA,
Article 118 (Oct. 2018), 26 pages. https://doi.org/10.1145/3276488

[4] Microsoft Azure. 2023. Power your vision on Azure. Retrieved March 02, 2023

from https://azure.microsoft.com/en-gb/

[5] Ioana Baldini, Paul Castro, Kerry Chang, Perry Cheng, Stephen Fink, Vatche

Ishakian, Nick Mitchell, Vinod Muthusamy, Rodric Rabbah, Aleksander Slomin-

ski, and Philippe Suter. 2017. Serverless Computing: Current Trends and Open
Problems. Springer Singapore, Singapore, 1–20. https://doi.org/10.1007/978-981-

10-5026-8_1

[6] Ralu Bolovan. 2018. Python, Boto3, and AWS S3: Demystified. Retrieved March

01, 2023 from https://realpython.com/python-boto3-aws-s3/

[7] Jeremy Daly. 2020. Event Injection: Protecting your Serverless Applications.

Retrieved March 02, 2023 from https://www.jeremydaly.com/event-injection-

protecting-your-serverless-applications/

[8] Pubali Datta, Prabuddha Kumar, Tristan Morris, Michael Grace, Amir Rahmati,

and Adam Bates. 2020. Valve: Securing Function Workflows on Serverless

Computing Platforms. In Proceedings of The Web Conference 2020 (Taipei, Taiwan)
(WWW ’20). Association for ComputingMachinery, New York, NY, USA, 939–950.

https://doi.org/10.1145/3366423.3380173

[9] Pubali Datta, Isaac Polinsky, Muhammad Adil Inam, Adam Bates, and William

Enck. 2022. ALASTOR: Reconstructing the Provenance of Serverless Intrusions.

In 31st USENIX Security Symposium (USENIX Security 22). USENIX Association,

Boston, MA, 2443–2460. https://www.usenix.org/conference/usenixsecurity22/

presentation/datta

[10] Boto3 Documentation. 2022. Lambda client invoke API. Retrieved February 28,

2023 from https://boto3.amazonaws.com/v1/documentation/api/latest/reference/

services/lambda.html#Lambda.Client.invoke

[11] Boto3 Documentation. 2023. AWS SDK for Python (Boto3) to create, configure,

and manage AWS services. Retrieved March 01, 2023 from https://boto3.

amazonaws.com/v1/documentation/api/latest/index.html

[12] GitHub REST API Documentation. 2022. Get a Repository API. Retrieved March

01, 2023 from https://docs.github.com/en/rest/repos/repos?apiVersion=2022-11-

28#get-a-repository

[13] Nafise Eskandani. 2021. Wonderless Dataset Github Repository. Retrieved

March 01, 2023 from https://github.com/prg-grp/wonderless

[14] Nafise Eskandani and Guido Salvaneschi. 2021. The Wonderless Dataset for

Serverless Computing. In 2021 IEEE/ACM 18th International Conference on Mining
Software Repositories (MSR). 565–569. https://doi.org/10.1109/MSR52588.2021.

00075

[15] Julien Lepiller, Ruzica Piskac, Martin Schäf, and Mark Santolucito. 2021. Ana-

lyzing Infrastructure as Code to Prevent Intra-update Sniping Vulnerabilities.

In Tools and Algorithms for the Construction and Analysis of Systems, Jan Friso

Groote and Kim Guldstrand Larsen (Eds.). Springer International Publishing,

Cham, 105–123.

https://doi.org/10.1109/APSEC53868.2021.00022
https://cloudsecurityalliance.org/blog/2019/02/11/critical-risks-serverless-applications/
https://cloudsecurityalliance.org/blog/2019/02/11/critical-risks-serverless-applications/
https://doi.org/10.1145/3276488
https://azure.microsoft.com/en-gb/
https://doi.org/10.1007/978-981-10-5026-8_1
https://doi.org/10.1007/978-981-10-5026-8_1
https://realpython.com/python-boto3-aws-s3/
https://www.jeremydaly.com/event-injection-protecting-your-serverless-applications/
https://www.jeremydaly.com/event-injection-protecting-your-serverless-applications/
https://doi.org/10.1145/3366423.3380173
https://www.usenix.org/conference/usenixsecurity22/presentation/datta
https://www.usenix.org/conference/usenixsecurity22/presentation/datta
https://boto3.amazonaws.com/v1/documentation/api/latest/reference/services/lambda.html#Lambda.Client.invoke
https://boto3.amazonaws.com/v1/documentation/api/latest/reference/services/lambda.html#Lambda.Client.invoke
https://boto3.amazonaws.com/v1/documentation/api/latest/index.html
https://boto3.amazonaws.com/v1/documentation/api/latest/index.html
https://docs.github.com/en/rest/repos/repos?apiVersion=2022-11-28#get-a-repository
https://docs.github.com/en/rest/repos/repos?apiVersion=2022-11-28#get-a-repository
https://github.com/prg-grp/wonderless
https://doi.org/10.1109/MSR52588.2021.00075
https://doi.org/10.1109/MSR52588.2021.00075


AWSomePy: A Dataset and Characterization of Serverless Applications

[16] Matthew Obetz, Stacy Patterson, and Ana Milanova. 2019. Static Call Graph

Construction in AWS Lambda Serverless Applications. In 11th USENIX Workshop
on Hot Topics in Cloud Computing (HotCloud 19). USENIX Association, Renton,

WA. https://www.usenix.org/conference/hotcloud19/presentation/obetz

[17] Google Cloud Platform. 2023. Accelerate your transformation with Google Cloud.

Retrieved March 02, 2023 from https://cloud.google.com/

[18] PureSec. 2019. The Ten Most Critical Risks for Serverless Applications v1.0.

Retrieved March 02, 2023 from https://github.com/puresec/sas-top-10

[19] Pygount. 2023. Pygount Command Line Tool Documentation. Retrieved March

01, 2023 from https://pygount.readthedocs.io/en/latest/index.html

[20] GitHub Repository. 2021. Serverless AWS Pseudo Parameters. Retrieved Febru-

ary 27, 2023 from https://github.com/svdgraaf/serverless-pseudo-parameters

[21] Leonard Richardson. 2023. Beautiful Soup Documentation. Retrieved March 01,

2023 from https://www.crummy.com/software/BeautifulSoup/

[22] Arnav Sankaran, Pubali Datta, and Adam Bates. 2020. Workflow Integra-

tion Alleviates Identity and Access Management in Serverless Computing.

In Annual Computer Security Applications Conference (Austin, USA) (ACSAC
’20). Association for Computing Machinery, New York, NY, USA, 496–509.

https://doi.org/10.1145/3427228.3427665

[23] Amazon Web Services. 2023. AWS Solutions. Retrieved March 02, 2023 from

https://aws.amazon.com/

[24] Deepak Sirone Jegan, Liang Wang, Siddhant Bhagat, Thomas Ristenpart, and

Michael Swift. 2020. Guarding Serverless Applications with SecLambda. arXiv
e-prints (Nov. 2020). https://doi.org/10.48550/arXiv.2011.05322

[25] Dmitrii Ustiugov, Plamen Petrov, Marios Kogias, Edouard Bugnion, and Boris

Grot. 2021. Benchmarking, Analysis, and Optimization of Serverless Function

Snapshots. In Proceedings of the 26th ACM International Conference on Architec-
tural Support for Programming Languages and Operating Systems (ASPLOS’21).
ACM. https://doi.org/10.1145/3445814.3446714

[26] Datadog Website. 2021. The State of Serverless. Retrieved February 27, 2023

from https://www.datadoghq.com/state-of-serverless-2021/

[27] Datadog Website. 2022. The State of Serverless. Retrieved February 27, 2023

from https://www.datadoghq.com/state-of-serverless/

[28] Serverless Framework Website. 2022. Zero-friction serverless development.

Retrieved March 02, 2023 from https://www.serverless.com/

[29] Ratnadira Widyasari, Sheng Qin Sim, Camellia Lok, Haodi Qi, Jack Phan, Qijin

Tay, Constance Tan, Fiona Wee, Jodie Ethelda Tan, Yuheng Yieh, Brian Goh,

Ferdian Thung, Hong Jin Kang, Thong Hoang, David Lo, and Eng Lieh Ouh. 2020.

BugsInPy: A Database of Existing Bugs in Python Programs to Enable Controlled

Testing and Debugging Studies (ESEC/FSE 2020). Association for Computing

Machinery, New York, NY, USA, 1556–1560. https://doi.org/10.1145/3368089.

3417943

https://www.usenix.org/conference/hotcloud19/presentation/obetz
https://cloud.google.com/
https://github.com/puresec/sas-top-10
https://pygount.readthedocs.io/en/latest/index.html
https://github.com/svdgraaf/serverless-pseudo-parameters
https://www.crummy.com/software/BeautifulSoup/
https://doi.org/10.1145/3427228.3427665
https://aws.amazon.com/
https://doi.org/10.48550/arXiv.2011.05322
https://doi.org/10.1145/3445814.3446714
https://www.datadoghq.com/state-of-serverless-2021/
https://www.datadoghq.com/state-of-serverless/
https://www.serverless.com/
https://doi.org/10.1145/3368089.3417943
https://doi.org/10.1145/3368089.3417943

	Abstract
	1 Introduction
	2 Dataset Generation
	3 Dataset Analysis
	3.1 Configuration & Architectural Analysis
	3.2 Cloud Service & API Usage

	4 Discussion
	5 Conclusion
	References

