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ABSTRACT

Biochar amendment is one of the most promising agricultural approaches to tackle climate change by enhancing soil
carbon (C) sequestration. Microbial-mediated decomposition processes are fundamental for the fate and persistence of
sequestered C in soil, but the underlying mechanisms are uncertain. Here, we synthesise 923 observations regarding
the effects of biochar addition (over periods ranging from several weeks to several years) on soil C-degrading enzyme
activities from 130 articles across five continents worldwide. Our results showed that biochar addition increased soil lig-
ninase activity targeting complex phenolic macromolecules by 7.1%, but suppressed cellulase activity degrading simpler
polysaccharides by 8.3%. These shifts in enzyme activities explained the most variation of changes in soil C sequestration
across a wide range of climatic, edaphic and experimental conditions, with biochar-induced shift in ligninase:cellulase
ratio correlating negatively with soil C sequestration. Specifically, short-term (<1 year) biochar addition significantly
reduced cellulase activity by 4.6% and enhanced soil organic C sequestration by 87.5%, whereas no significant responses
were observed for ligninase activity and ligninase:cellulase ratio. However, long-term (≥1 year) biochar addition signif-
icantly enhanced ligninase activity by 5.2% and ligninase:cellulase ratio by 36.1%, leading to a smaller increase in soil
organic C sequestration (25.1%). These results suggest that shifts in enzyme activities increased ligninase:cellulase ratio
with time after biochar addition, limiting long-term soil C sequestration with biochar addition. Our work provides novel
evidence to explain the diminished soil C sequestration with long-term biochar addition and suggests that earlier studies
may have overestimated soil C sequestration with biochar addition by failing to consider the physiological acclimation of
soil microorganisms over time.
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I. INTRODUCTION

Biochar amendment of carbon (C)-rich products from biomass
pyrolysis has increasingly been regarded as a cost-effective and
environmentally friendly method of increasing soil C seques-
tration (Lehmann et al., 2021; Molina et al., 2009; Moore,
Jevrejeva & Grinsted, 2010; Yang et al., 2021). The amount
of biochar amendment has increased substantially in recent
decades, with predicted sequestration of 0.3–2.0 Pg CO2

annually by 2050 (Fawzy et al., 2021; Sohi et al., 2010; Woolf
et al., 2010). Despite increasing evidence demonstrating the
advantages of biochar in enhancing soil C sequestration
(Han et al., 2022; Hernandez-Soriano et al., 2016; Zhang,
Voroney & Price, 2015a), whether and how biochar addition
affects soil C dynamics over time remains unclear. Indeed, sev-
eral recent studies have shown that effects of biochar addition
on soil C sequestration can be positive (Ameloot et al., 2014;
Azlan Halmi et al., 2018), negative (Peng et al., 2019; Tian
et al., 2016) or neutral (Elzobair et al., 2016; Rafael
et al., 2019). Such large discrepancies illustrate a poor under-
standing of the underlying mechanisms. Positive effects of bio-
char addition on soil C sequestration can be explained by the
stimulation of plant growth (Lehmann et al., 2021; Liu
et al., 2016a) with a subsequent increase in inputs of plant
(e.g. litter and root) residues into soil (Hagemann
et al., 2017). On the other hand, biochar addition can acceler-
ate decomposition of pre-existing soil organic C (SOC) by
changing microbial community composition and activities,
leading to negative effects on SOC (Pei et al., 2021; Tian
et al., 2016). However, a mechanistic understanding of the
composite effects of biochar addition on SOC decomposition
process is lacking, hampering the prediction of the long-term
effects of biochar addition on soil C dynamics.

Soil extracellular enzymes catalyse the degradation of soil
organic matter, deconstructing plant and microbial residues
by breaking down largemacromolecules into simpler molecules
(Margida, Lashermes & Moorhead, 2020; Sinsabaugh, 2010).

Various extracellular enzymes target different pools of SOC,
for example, ligninases target structurally complex polyphenolic
macromolecules, and cellulases degrade ordered polysaccha-
rides with a simpler structure (Chen et al., 2018a; Margida
et al., 2020; Ren et al., 2017; Yang et al., 2022b). Biochar addition
may have different impacts on ligninase and cellulase activity,
partly due to changes in the chemical composition of soil
organic matter and also due to shifts in microbial community
composition (Gul et al., 2015; Jing et al., 2022; Singh &
Cowie, 2014). For instance, the condensation of cellulose and
hemicellulose into humic-like macromolecules on the surface
of biochar (Lehmann et al., 2021; Quilliam et al., 2013) could
lead to induction of microbial secretion of ligninase relative to
cellulase, as enzyme production is commonly induced by the
presence of suitable substrates (German et al., 2012; Sinsabaugh
et al., 2008). The observed increases in the proportion of struc-
turally complex macromolecules and fungal abundance with
time after biochar additionmay also lead to increased induction
of ligninase relative to cellulase activity over time (Pei
et al., 2021; Yi et al., 2020). Although some recent studies indi-
cated that soil C sequestration varied significantly with time
after biochar addition, biochar production technologies
(e.g. feedstock type and thermal pyrolysis temperature of bio-
char), and site-specific conditions (e.g. climate and soil proper-
ties) (Gronwald et al., 2015; Mitchell et al., 2016), a
comprehensive understanding of the underlying mechanisms
remains unexplored. In particular, there is no direct evidence
for how biochar addition affects key enzyme activities
(e.g. cellulase and ligninase) that are likely to influence long-
term impacts on soil C sequestration across various environ-
mental conditions.

To address these knowledge gaps, we conducted a global
meta-analysis to evaluate the responses of soil cellulase and
ligninase activities to biochar addition, and how these
responses may affect long-term soil C sequestration. We
compiled a database of 923 soil C-degrading enzyme activity
observations from 130 biochar addition studies (with biochar
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addition periods ranging from several weeks to several years)
across five continents worldwide (see online Supporting
Information, Fig. S1, Table S1). We combined the advan-
tages of classic meta-analysis with advanced model selection
analysis to quantify the relative importance of potential pre-
dictors in explaining the effects of biochar addition on
enzyme activities and soil C sequestration. This approach
allows us to assess the role of enzyme activities in determining
changes in soil C sequestration with biochar addition across a
wide range of climatic, edaphic and experimental factors.
Specifically, we test the following hypotheses: (i) biochar
addition induces shifts in C-degrading enzyme activity,
enhancing ligninase activity while suppressing cellulase activ-
ity; and (ii) ligninase:cellulase ratio may increase with time
after biochar addition, leading to weakened soil C sequestra-
tion by stimulating the decomposition of structurally com-
plex macromolecules with long-term biochar addition.

II. MATERIALS AND METHODS

(1) Enzymes included in this study

Seven kinds of extracellular enzymes involved in SOC
decomposition were included in this meta-analysis
(Table S2) following previous studies (Chen et al., 2018a;
Margida et al., 2020; Ren et al., 2017; Yang et al., 2022b): four
cellulases [β-1,4-glucosidase (BG), α-1,4-glucosidase (AG),
β-1,4-xylosidase (BX) and β-D-cellobiosidase (CBH)] and
three ligninases [phenol oxidase (PO), polyphenol oxidase
(PPO) and peroxidase (PER)].

(2) Data collection

We searched for articles on the effects of biochar addition on
cellulase and ligninase activities using Web of Science (http://
apps.webofknowledge.com/), Google Scholar (http://scholar.
google.com/), and China National Knowledge Infrastructure (http://
www.cnki.net/). Specifically, we searched for peer-reviewed
articles, academic theses, and book chapters published in
English or Chinese before May 2022. We used the following
search string [(‘biochar addition’ OR ‘biochar amendment’)
AND (‘cellulase’OR ‘ligninase’OR ‘glucosidase’OR ‘xylosi-
dase’ OR ‘cellobiosidase’ OR ‘peroxidase’ OR ‘phenol oxi-
dase’) AND (‘soil’ OR ‘terrestrial’ OR ‘land’)] and their
equivalents in Chinese. Additionally, we searched for articles
through other sources, including manual searches of reference
cited by or citing the articles identified by our search string.

Articles included in this study had to meet the following cri-
teria: (i) climatic, vegetation and soil attributes were similar for
the control and biochar addition treatments; (ii) biochar prop-
erties (biochar materials, biochar pH, biochar temperature,
biochar C% and biochar N%) and application protocols (bio-
char application method, biochar application rate and dura-
tion) were clearly described; (iii) ecosystem types were
reported; and (iv) standard deviation (SD) and sample size
were reported or could be calculated from the data presented

in the publication. Measurements with different durations of
biochar addition at the same site were considered as indepen-
dent observations because one of our primary purposes was to
explore the impacts of duration on enzyme activities and soil C
dynamics. Measurements with insufficient information on
study sites and from contaminated soil were excluded to elim-
inate any confounding effects of pollutants on soil enzyme
activities (Campos et al., 2020; Li et al., 2020c). The PRISMA
flowchart illustrating the processes for selection of the included
articles is shown in Fig. S1. All data were selected and collected
following PRISMA-EcoEvo guidelines (PRISMA-EcoEvo_
WordChecklist) (O’Dea et al., 2021). Based on these criteria,
we obtained 923 observations of soil C-degrading enzyme
activities from 130 independent publications worldwide
(Fig. S2, Table S1; references included in the meta-analysis
are identified with asterisks in the reference list). Data were
extracted directly from the tables, main text, or appendices
of the articles and theses, or digitised from figures using Get-
data Graph Digitizer (version 2.26) (http://www.getdata-
graph-digitizer.com/download.php).
We first extracted information on cellulase and ligninase

activities. If one paper reported two ormore kinds of cellulase
or ligninase, the sum of these enzyme activities was calculated
as the overall responses of cellulase and ligninase activities,
respectively (Chen et al., 2018a; Wu et al., 2022). If multiple
measurements over time were conducted, values from the
last time were selected. Multiple methods have been used
to measure enzyme activities based on assessments of sub-
strate concentrations or products over time at certain tem-
peratures (Deforest, 2009; Marx, Wood & Jarvis, 2001).
Most studies measured soil cellulase activity using fluorimet-
ric methods with fluorescent 4-methylumbelliferone sub-
strates, and assessed soil ligninase activity by colorimetric
methods using L-3,4-dihydroxy-phenylalanine as the sub-
strate (Elzobair et al., 2016; Li et al., 2020c). Methods and
incubation conditions often varied among studies. Moreover,
soil enzyme activities may also vary significantly depending
on sampling season and soil water content (i.e. dry or moist
periods). However, in our analyses we only consider the log-
arithmic response ratio of enzymes in each individual study,
in which experimental conditions such as the type and con-
centration of substrates, buffer pH, incubation temperature
and sampling season, etc., were the same for each paired
observation. Comparisons between different sites were car-
ried out using the logarithmic response ratio rather than
absolute values of soil enzymes. Therefore, differences in
measurement methods and sampling seasons should only
have a minor influence on our assessment of the effects of bio-
char addition on enzyme activities in this meta-analysis
(Chen et al., 2020, 2018a; Hedges, Gurevitch &Curtis, 1999).
To quantify drivers of biochar effects on enzyme activities

and SOC sequestration, we further collected information on
a wide range of environmental variables, including elevation
(0–1746 m), latitude (−42.95� S to 55.37� N), longitude
(−119.74� W to 147.10� E), mean annual precipitation
(MAP, 27–2500 mm), mean annual temperature (MAT,
−1.0–32.3 �C), and vegetation type (cropland, grassland,
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forest, open area or wetland) for each site. Edaphic proper-
ties, including SOC, soil total nitrogen (N), soil C:N ratio, soil
pH and soil texture (classified as sandy, loamy or clay follow-
ing USDA Textural Soil Classification) were also recorded.
Table S1 and our Supplementary Data set (available at
https://doi.org/10.6084/m9.figshare.21769979) provides
detailed values or ranges for these variables obtained from
the 130 publications. For missing environmental and edaphic
variables, we searched for relevant publications by the same
research group at the same study sites or contacted the corre-
sponding authors. Alternatively, missing data for climatic
(MAT, MAP) and soil attributes (SOC, total N and soil tex-
ture) were obtained from the WorldClimate Database
(http://www.worldclim.org/) and Soil grids database
(https://www.isric.org/explore/soilgrids), respectively.

For biochar properties and application protocols, we
recorded feedstock, pH, pyrolysis temperature, C and N con-
tent (%) as well as method (Field, Pot or Laboratory incuba-
tion), rate (%) and duration (year) of biochar application.
The feedstock types for biochar production were classified into
five groups: herb, manure, residue, wood and urban waste.
The pyrolysis temperatures used to produce biochar were clas-
sified into three groups: low (≤350 �C), medium (350–550 �C)
and high temperature (>550 �C). We recorded microbial bio-
mass, the abundance of fungi, bacteria, the fungi:bacteria
ratio, and plant biomass for both ambient and biochar addi-
tion treatments, when these variables were reported.

In total, this data set included 12,194 records of the above
environmental, edaphic, and experimental factors, or the
responses of soil organic C, soil nutrient contents, microbial
or plant attributes to biochar addition.

(3) Data analysis

We used meta-analysis to investigate the effects of biochar
addition on soil cellulase and ligninase activities,
ligninase:cellulase ratio and other edaphic andmicrobial var-
iables. Specifically, we calculated the logarithmic response
ratio (LnR) of each variable using the following equation
(Chen et al., 2017b; Hedges et al., 1999):

LnR=Ln
XB

XC

 !
=Ln XB

� �
−Ln XC

� �
ð1Þ

where XB and XC are the arithmetic average values in the
biochar addition and control treatments, respectively. The
variance (V i) of LnR was calculated as:

V i=
SD2

B

nBX
2
B

+
SD2

C

nCX
2
C

… ð2Þ

where SDB and SDC are the standard deviations, and nB and
nC are the number of replicates, respectively.

The overall effects of biochar addition on different variables
and 95% confidence intervals (CI) were evaluated using rma.mv

function in the metafor package of R project (version 4.0.2)
(Viechtbauer, 2010). We included ‘Publication’ and
‘Observation’ as random factors in the mixed-effect models,
because some studies contributed more than one paired
observation (Chen et al., 2018a; van Groenigen et al., 2017).
To facilitate the interpretation of data, the effect size was
back-transformed to percentage change using the equation
(LnR–1) × 100 (Chen et al., 2018a). The effect of biochar
addition on each variable was considered significant if the
95% CI did not overlap with zero. The normality of data for
each kind of enzyme activity was tested using the
Kolmogorov–Smirnov and Shapiro–Wilk tests, except for
PPO due to its small sample size. A funnel plot and Egger’s test
were used to detect potential publication bias on soil enzyme
activities, ligninase:cellulase ratio and soil organic C using the
metafor package of R project (version 4.0.2). A sensitivity analysis
was conducted to investigate the stability of the results by
excluding one study a time using the leave1out function in metafor
(Copas & Shi, 2000).

We conducted a meta-analysis to analyse the combined
effects of environmental, edaphic and experimental factors
on the responses of soil cellulase activities, ligninase activities,
ligninase:cellulase ratio and soil C sequestration to biochar
addition. In brief, we used a mixed-effects meta-regression
model using the glmulti package in R (Calcagno & de
Mazancourt, 2010; Chen et al., 2020, 2018b). The importance
of different factors was evaluated using the sum of Akaike
weights. The weight was considered as the overall support
for each variable in all potential models. A cutoff of 0.8 was
set to identify the significant predictors for each model (Chen
et al., 2018a, 2017b; Terrer et al., 2016). We used Spearman’s
rank correlation analysis to evaluate the relationships of cellu-
lase activities, ligninase activities, and ligninase:cellulase ratio
with environmental, edaphic and experimental factors. To
explore further the effect of experiment duration on soil C
sequestration, we conducted both linear regression and
piece-wise regression models to fit the relationship between
the LnR of SOC and time after biochar addition. Specifically,
a piece-wise regression model was carried out using the seg-

mented R package (Muggeo, 2003). The optimal regression
model was selected by comparing regression coefficients (R)
and the model was statistically significant if P < 0.05. Further-
more, studies were separated into short-term and long-term
according to the slope of the curves for the relationship
between LnR-SOC and time after biochar addition. Spear-
man’s rank correlation analysis was conducted to investigate
factors associated with enzyme activities and soil C sequestra-
tion in short-term and long-term studies, respectively.

III. RESULTS

(1) Responses of cellulase and ligninase activity to
biochar addition

Averaged across all studies, biochar addition significantly sup-
pressed cellulase activity by 8.3% (P < 0.001; Fig. 1A).
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Specifically, biochar addition decreased the activities of BG
and BX by 7.3% and 9.3% (P < 0.05), respectively. By con-
trast, biochar addition increased ligninase activity by 7.1%
on average (P < 0.001), with an increase of PER activity by
7.0% (P < 0.001) and of PPO by 23%. The differential
responses of cellulase and ligninase activities to biochar addi-
tion led to a marginally increased ratio of ligninase:cellulase
activities by 10.7% (P = 0.052). In addition, the responses of
cellulase, ligninase and ligninase:cellulase ratio were normally
distributed according to both Kolmogorov–Smirnov and
Shapiro–Wilk tests (P> 0.05; Fig. 1B).Moreover, Egger’s fun-
nel plots appeared symmetrical (P > 0.05), and the results
showed no significant publication bias in this meta-analysis
(Fig. S3).

The effects of biochar addition on soil enzyme activities
depended on the feedstock type and pyrolysis temperature for
biochar production and variation in soil texture (Fig. S4). Herb,
wood and urban waste biochar significantly reduced cellulase
activity by 4.4–22.0% (P < 0.05), while manure and residue
biochar enhanced ligninase activity by 2.5–12.7% (P < 0.05).
Biochar produced at medium (350–550 �C) and high (>550
�C) temperatures significantly decreased the activity of cellulase
by 10.0% and 6.7%, respectively (P < 0.05). By contrast, bio-
char produced at low (<350 �C) and medium temperature
increased ligninase activity by 16.0% and 4.6%, respectively.
There were significant reductions in cellulase activity in sandy
(by 16.6%, P < 0.05) and clay (by 7.0%, P < 0.05) soils, and

significant increases in ligninase activity in sandy (by 13.2%,
P< 0.05) and loamy (by 15.3%, P< 0.05) soils. These differen-
tial responses of cellulase and ligninase activities resulted in sig-
nificant increases in ligninase:cellulase ratio by 7.8–14.5%
(P< 0.05) with biochar produced using feedstock frommanure
or wood materials, at medium temperature and in sandy and
loamy soils (Fig. S4).
Model selection analysis showed that the main factors

influencing the response of cellulase and ligninase activities to
biochar addition were different (Fig. 2). The effects of biochar
addition on cellulase activity were best explained by biochar
application rate, MAP, longitude and soil clay content
(Fig. 2A). By contrast, the responses of ligninase activity to bio-
char addition were best explained by soil N content, biochar
temperature, site location (i.e. longitude) and biochar
pH. Linear regression analysis confirmed that LnR of cellulase
activity was negatively correlated with biochar application rate,
whereas a positive correlation was found with MAP (P < 0.05).
Moreover, LnR of ligninase had negative relationships with soil
N content and biochar pyrolysis temperature, but a positive cor-
relation with biochar pH (P < 0.05; Fig. 2B). For the
ligninase:cellulase ratio, the most important predictors were
the time after biochar addition, soil C:N ratio, biochar C con-
tent, and biochar C:N ratio. Specifically, the LnR-ligninase:cel-
lulase ratio was positively correlated with time after biochar
addition but negatively correlated with soil C:N ratio, biochar
C content and biochar C:N ratio (P < 0.05).

Fig. 1. Carbon-degrading enzyme activities. (A) Effects of biochar addition on activity of cellulases, ligninases, and on the ligninase:cellulase
ratio. Values represent themean percentage change in each variable with biochar addition versus control; error bars indicate 95%confidence
intervals. Sample sizes for each variable are shown on the right. (B) Distribution of the log response ratios (LnR) of cellulase activity (top), and
ligninase activity and the ligninase:cellulase ratio (bottom) to biochar addition. BG, β-1,4-glucosidase; AG, α-1,4-glucosidase; CBH, β-D-
cellobiohydrolase; BX, β-1,4-xylosidase; PO, phenol oxidase; PPO, polyphenol oxidase; PER, peroxidase.
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(2) Linking shifts in soil enzyme activities to changes
in SOC with biochar addition

For studies that have reported SOC, biochar addition
enhanced SOC by an average of 52.8% (P < 0.001) (Fig. 3A).
Biochar-induced increases in SOCwere found regardless of dif-
ferences in feedstock, pyrolysis temperature of biochar addition
and soil types (Fig. S4). Specifically, wood- and herb-derived
biochar significantly increased SOC by over 60% (P < 0.001),
and biochar produced from manure and residue enhanced
SOC by 24.9 and 43.5%, respectively. Biochar produced at
high pyrolysis temperature had a more positive effect on SOC
(with SOC increased by 119.7%) compared with those pro-
duced at low and medium temperature (enhanced SOC by
47.6 and 54.8%, respectively). Moreover, SOC in loamy and
clay soils (increased by 68.7 and 62.6%, respectively) showed a
more positive response to biochar addition than in sandy soils
(increased by 24.5%) (Fig. S4). Our piece-wise regression anal-
ysis showed that biochar-induced increases in SOC overall
diminished with time after biochar addition (Fig. 3B;
P < 0.001). The relationship between LnR-SOC and time of
biochar addition could be divided into two periods
(i.e. <1 year and ≥1 year) according to the slope of the curves

identified using piece-wise regression. Themodel selection anal-
ysis showed that the response of SOC to biochar addition was
best explained by LnR-ligninase:cellulase ratio (Fig. 3C). Specif-
ically, changes in SOCwith biochar applicationwere negatively
related to the ligninase:cellulase ratio (Fig. 3D, P < 0.001).

(3) The effect of time after biochar addition on soil
enzyme activities and SOC sequestration

Studies were separated into short term (<1 year) and long
term (≥1 year) according to the results of piece-wise regres-
sion between LnR-SOC and time after biochar addition
(Fig. 3B). Short-term and long-term biochar addition
reduced the activity of cellulase by 4.6 and 12.7%, respec-
tively (P < 0.05; Fig. 4A). By contrast, there were no signif-
icant effects of biochar addition on ligninase activity and
ligninase:cellulase ratio in short-term studies (P > 0.05),
while long-term biochar addition significantly enhanced soil
ligninase activity by 5.2% (P < 0.05) and ligninase:cellulase
ratio by 36.1% (P < 0.001). Short-term biochar addition
had more positive effects on SOC compared with long-term
studies, with significant increase in SOC by 87.5 and

Fig. 2. Factors influencing the responses of soil enzymes. (A) Relative importance of different variables regulating the effects of
biochar addition on cellulase activity, ligninase activity, and ligninase:cellulase ratio. Relative importance is shown according to
the sum of Akaike weights of model selection. A cutoff of 0.8 was set to differentiate the important versus non-essential predictors.
(B) Correlations between studied variables and the responses (log response ratio, LnR) of cellulase activity, ligninase activity, and
ligninase:cellulase ratio to biochar addition. Biochar temperature, temperature of biochar production; Biochar rate, application
rate of biochar addition; Duration, time after biochar addition; MAP, mean annual precipitation, MAT, mean annual temperature.
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25.1%, respectively. In short-term studies, the response of
soil enzyme activities was significantly associated with
changes in soil properties. Specifically, LnR-cellulase activ-
ity had negative relationship with soil clay content, but pos-
itive associations with soil pH and soil N content, whereas
LnR-ligninase activity showed opposite relationships with
these soil properties (Fig. 4B). LnR-SOC correlated nega-
tively with soil pH and positively with biochar pyrolysis tem-
perature. In long-term studies, the response of both soil
enzyme activities and SOC were significantly related to soil
clay content. LnR-cellulase activity and LnR-SOC showed
positive relationships with soil clay content, whereas LnR-
ligninase and LnR-ligninase:cellulase ratio correlated nega-
tively with soil clay content.

IV. DISCUSSION

Our results indicate that shifts in C-degrading enzyme activ-
ities are key drivers of soil C sequestration with time (ranging
from several weeks to several years) after biochar addition.

Most importantly, our model selection analysis underscores
that changes in ligninase:cellulase ratio explains the most var-
iation in the response of SOC to biochar addition, with
biochar-induced shift in ligninase:cellulase ratio correlating
negatively with SOC content (Fig. 3D). Specifically, the sig-
nificantly increased ligninase:cellulase ratio under long-term
(≥1 year) biochar addition leads to progressively diminished
soil C sequestration. These results provide strong support
for our hypothesis that the increasing ligninase:cellulase ratio
with time contributes to a declining capacity for soil C
sequestration with long-term biochar addition. To the best
of our knowledge, this is the first comprehensive study linking
enzyme activity and soil C with biochar addition, providing
novel evidence to unravel the mechanisms controlling soil
C sequestration with prolonged biochar exposure.
We propose several possible underlying mechanisms to

explain differential responses of cellulase and ligninase activ-
ity with biochar addition (Fig. 5). First, biochar-induced
reductions in soil N availability could stimulate ligninase
rather than cellulase activity. Several lines of evidence have
demonstrated reductions in soil N availability after biochar
addition, which might be driven by (i) higher plant biomass

Fig. 3. The response of soil organic C to biochar addition and associated driving factors. (A) Effects of biochar addition on soil
organic C sequestration. Value represents the mean percentage change with biochar addition versus control; error bar indicates
95% confidence intervals. Sample size is shown above the column. (B) Relationship between duration of biochar addition and the
log response ratio (LnR) of soil organic C to biochar addition. The relationship between duration of biochar addition and LnR-
soil organic C was analysed using a piece-wise regression model. (C) Relative importance of different variables regulating the
effects of biochar addition on soil organic C sequestration. A cutoff of 0.8 is set to differentiate the important versus non-essential
predictors. (D) Relationship between the response of ligninase:cellulase ratio and the response of soil organic C to biochar
addition. Biochar temperature, temperature of biochar production; Biochar rate, application rate of biochar addition; Duration,
time after biochar addition; MAP, mean annual precipitation; MAT, mean annual temperature.
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production (Fig. S5) and associated translocation of N from
soil to vegetation, (ii) the additional C inputs increasing bulk
soil stoichiometric C:N ratio (Fig. S6A), and (iii) occlusion of
soil NH4

+ by phenolic- and lignin-like compounds through
complex organo-mineral interactions on biochar surfaces
(Fig. S6B). In response, soil microorganisms may increase lig-
ninase production to stimulate the breakdown of complex
phenolic- and lignin-like compounds to acquire bound
N. In support of this explanation, we found that soil N con-
tent was the most important predictor (negative relationship)
of the effects of biochar addition on soil ligninase activity
(Fig. 4). This explanation supports the ‘microbial N mining
theory’, which assumes that soil microorganisms will
likely invest resources to decompose complex structural
macromolecules to acquire N under N limitation (Craine,
Morrow & Fierer, 2007; Meyer et al., 2017; Moorhead &
Sinsabaugh, 2006).

Second, shifts in microbial community composition could
contribute to the opposite effects of biochar addition on cel-
lulase and ligninase activity. Our results show positive

associations between ligninase activity andmicrobial biomass
with biochar addition, but not for cellulase activity
(Fig. S7A,B). These results suggest that soil microbial com-
munity composition or enzyme production efficiency may
change under biochar addition. Indeed, previous studies
have reported that biochar addition stimulates fungal growth
including the two most commonly occurring types of mycor-
rhizal (arbuscular mycorrhizal and ectomycorrhizal) fungi
(Lehmann et al., 2011; Yang et al., 2022a). This increase in
fungal abundance with biochar addition could arise because
fungal hyphae can grow into biochar pores and thereby
access complex macromolecules adsorbed on biochar (Gul
et al., 2015; Lehmann et al., 2011). Moreover, the protection
of soil fungi from grazers or competitors on biochar pores
may also contribute to increased soil fungal abundance
(Li et al., 2020b). Consistently, we found that increased fungal
abundance associated with biochar addition was positively
correlated with changes in ligninase activity (Figs S7 and
S8). These results indicate that biochar-induced shifts
towards a fungi-dominant microbial community could

A

B

Fig. 4. Responses of soil enzymes and soil organic C to short-term and long-term biochar additions. (A) Effects of biochar addition on
soil enzyme activities, ligninase:cellulase ratio, and soil organic C (SOC) sequestration in short-term (<1 year) and long-term (≥1 year)
studies. Values represent the mean percentage change in each variable with biochar addition versus control; error bars indicate 95%
confidence intervals. Sample sizes for each variable are shown above the column. (B) Relationships between different variables and the
log response ratio (LnR) of enzyme activities, ligninase:cellulase ratio, and SOC sequestration. Biochar temperature, temperature of
biochar production; Biochar rate, application rate of biochar addition; MAP, mean annual precipitation; MAT, mean annual
temperature.
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promote ligninase activity, possibly because fungi are more
efficient at mineralizing structural complex macromolecules
than bacteria and are the primary producers of phenol oxi-
dase (Burke & Cairney, 2002). In addition, we observed a
positive relationship between LnR-ligninase:cellulase ratio
and LnR-fungi:bacteria ratio (Fig. S7D), further suggesting
that the observed shifts in extracellular enzyme activities
were related to changes in microbial community
composition.

Third, biochar addition significantly altered the chemical
composition of soil organic matter (Mitchell et al., 2016; Tian
et al., 2016), which likely contributed to the differential
responses of cellulase and ligninase activities. By introducing
additional phenolic- and lignin-like compounds, biochar could
reduce the availability of readily decomposable C compounds
because they could be occluded within macromolecule assem-
blages through complex organo-mineral interactions
(e.g. H-bonding, cation bridging, and hydrophobic interac-
tions) on biochar surfaces (Jing et al., 2022; Kleber, Sollins &
Sutton, 2007; Singh & Cowie, 2014). In particular, the result-
ing non-polar and hydrophobic compounds are composed
predominantly of alkyl and aromatic functional groups
(Hernandez-Soriano et al., 2016;Kleber et al., 2007).Microbial
utilisation of readily decomposable C compounds thus could
be suppressed due to limitation in substrate availability (Jing
et al., 2022; Singh & Cowie, 2014). By contrast, the increase
in lignin-like soil organic C would possibly induce expressional
and/or translational upregulation of ligninase activity. There-
fore, our findings indicate that after the initial depletion and
stabilisation of readily decomposable C by biochar, soil
microbes likely stimulate ligninase production to access more
chemically recalcitrant soil C pools (Li et al., 2020b).

Biochar production technologies (e.g. feedstock type and
thermal pyrolysis temperature of biochar) and soil properties
(e.g. soil texture) may also be potential reasons underlying
shifts in enzyme activities with biochar addition. For
instance, biochar made from wood fibres commonly had
higher degree of aromaticity and recalcitrance (Liu
et al., 2016a; Wang, Xiong & Kuzyakov, 2016), which could
reduce cellulase activity and enhance ligninase:cellulase ratio
by affecting the chemical composition of soil substrates
(Fig. S4). By contrast, the addition of carbohydrate-rich bio-
char (e.g. biochar derived from crop residues) may alleviate
substrate restriction on cellulase activity and contribute to a
reduced ligninase:cellulase ratio (Fig. S4). Additionally, our
model selection and correlation analysis indicates that the
pyrolysis temperature of biochar had differential effects on
the response of cellulase and ligninase activity to biochar
addition. Biochar produced at high (>550�C) pyrolysis tem-
peratures commonly has more C present as aromatic com-
pounds (Mukherjee, Zimmerman & Harris, 2011; Wang
et al., 2015), which may explain its reduced cellulase activity,
but lack of a significant effect on ligninase activity (Fig. S4).
Moreover, the response of soil ligninase activities to biochar
addition correlated negatively with soil clay content, because
humics and complex aromatic compounds could be prefer-
entially or competitively adsorbed by soil clay particles
(Balcke et al., 2002). Therefore, loamy and clay soils with
higher soil clay content had higher retention capacity for
SOC compared with sandy soils (Fig. S4).
Shifts in responses of cellulase and ligninase activity to bio-

char addition could exert inverse effects on soil C sequestra-
tion. Specifically, suppressed cellulase activity may promote
soil C sequestration with biochar by reducing the

Fig. 5. Schematic of enzyme-mediated soil organic C sequestration. A conceptual paradigm illustrating the mechanisms of biochar
addition on soil carbon-degrading enzyme activities and their impacts on soil organic C (SOC) dynamics. Biochar addition has
differential effects on soil cellulase and ligninase activities via direct and indirect effects on substrate quality, microbial community
composition and soil N availability. The differential responses of cellulase and ligninase activities to biochar addition results in an
increasing ligninase:cellulase ratio with duration of biochar addition, which may reduce SOC sequestration over time.
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decomposition of ordered polysaccharides with simpler
structure (Margida et al., 2020). By contrast, enhanced ligni-
nase activity may cause increased decomposition of complex
phenolic macromolecules, which is commonly considered to
be a rate-limiting step of SOC decomposition (Fontaine
et al., 2007; Schmidt et al., 2011). For instance, the decompo-
sition of phenolics such as tannins may result in reduced sta-
bilisation of fungal necromass (Adamczyk et al., 2019) and
alleviate the toxicity and binding effects of phenols on hydro-
lase activities (Freeman et al., 2004; Sinsabaugh, 2010), con-
sequently limiting the effect of biochar addition on soil C
sequestration. Therefore, biochar-induced sequestration of
SOC could reflect the differential responses of these key
extracellular enzymes. In support of this idea, our model
selection analysis results indicate that shifts in soil enzyme
activity from cellulase to ligninase explained the most varia-
tion in soil C sequestration with biochar addition (Fig. 3).
Our regression analysis further showed a significant negative
relationship between ligninase:cellulase ratio and SOC with
biochar addition (Fig. 3D), suggesting that the increased
decomposition of lignin-like substrates relative to cellulose-
like substrates may limit soil C sequestration with biochar
addition.

Moreover, the response of ligninase activity and
ligninase:cellulase ratio to biochar addition varied between
short-term (<1 year) and long-term (≥1 year) studies, contribut-
ing to the observed changes in the soil C sequestration capacity
with time after biochar addition. In short-term studies, biochar
addition significantly reduced cellulase activity, but had no sig-
nificant effect on ligninase activity and ligninase:cellulase ratio,
contributing to a significant 87.5% increase in SOC. However,
the increased ligninase activity and ligninase:cellulase ratio
observed in long-term studies may counteract the effects of cel-
lulase activity on SOC sequestration and lead to weakened soil
C sequestration (increased by only 25.1%) under biochar addi-
tion. These results indicate that some studies may have overesti-
mated the long-term effects of biochar addition on soil C
sequestration by failing to consider dynamics in activities of dif-
ferent enzymes with time after biochar addition (Woolf &
Lehmann, 2012). Furthermore, the ligninase:cellulase ratio
increases with time after biochar addition, which could exacer-
bate the decline in soil C over time. Previous studies have
reported that complex-macromolecular C adsorbed on the sur-
face of biochar could be used by themicrobial community when
polysaccharides with simple ordered structure are depleted over
time (Gul et al., 2015; Yi et al., 2020). Therefore, this gradual
increase in ligninase:cellulase ratio over time may also reflect
changes in the chemical composition of soil organic matter
and associated shifts in microbial community composition with
time after biochar addition (Acosta-Martínez & Harmel, 2006;
Pei et al., 2021). Similar declines in soil C sequestrationwith time
after biochar addition have also been observed in long-term case
studies, and are mainly considered the result of declining
adsorption capacity of biochar over time (Lefebvre et al., 2020;
Quilliam et al., 2013). These results provide new evidence from
enzyme activities that a functional acclimation of soil microor-
ganisms to the chemical composition of organic substrates

affects the response of soil C sequestration to biochar addition
over time.

However, the moderate correlations between soil C
sequestration and ligninase:cellulase ratio suggest that shifts
in soil enzyme activity alone cannot fully explain the varia-
tions in soil C sequestration with biochar addition (Fig. 3D).
Indeed, overall soil C sequestration is determined by interac-
tions among at least three C pools, namely biochar, the pre-
existing SOC and plant litter/root exudates (Lehmann
et al., 2021). Therefore, other soil processes, such as the
decomposition of labile components of biochar and priming
of pre-existing C in soil could also affect soil C sequestration
with biochar addition (Singh et al., 2014; Zhang et al., 2022).
For example, a previous meta-analysis indicated that a small
part of biochar (�3%) is bioavailable with a mean residue
time of 108 days (Wang et al., 2016), which may partly con-
tribute to the initial decline in the response of soil C seques-
tration during the first year of biochar addition in this
study. Further studies deciphering these processes
(e.g. using isotopic tracers) are needed to predict accurately
the long-term consequences of biochar addition to soil C
sequestration. In addition, heterogeneity in experimental
design (e.g. sampling season, properties of the original soil,
type and concentration of substrate used for enzyme analysis,
etc.) may affect our results and inferences. To investigate the
sensitivity of our results to these heterogeneities, the influ-
ences of individual studies on the overall results were esti-
mated by excluding one study a time. Our results showed
that the response ratio of enzyme activities and SOC to bio-
char addition were relatively constant and without marked
fluctuations (Table S3). This stability of results suggests that
our findings do not merely reflect biases in the data set and
provides support for our conclusions.

Models used to predict soil C sequestration with biochar
addition vary significantly, with annual increases in SOC
ranging from 0.07 to 10% per unit of biochar C added
(Lehmann et al., 2021;Woolf & Lehmann, 2012). These large
uncertainties may stem from the timescales and soil C miner-
alisation processes simulated in different models. Existing
biochar models commonly consider soil C mineralisation as
simple first-order reactions (Woolf & Lehmann, 2012). How-
ever, C mineralisation is a complex process that combines
enzyme-mediated catalysis of both fast- and slow-mineralised
organic fractions (Chen et al., 2020; Wu et al., 2022). Our
results suggest that retaining inflexible microbial functional
traits over the duration of biochar addition may lead to
inaccurate predictions of soil C sequestration. Therefore, it
is necessary to include the temporal shifts in microbial
C-degrading enzyme activity to improve model predictions
of soil C sequestration over time with added biochar.

Our study provides evidence for the contribution of bio-
char addition to enzyme-catalysed microbial decomposition
processes and soil C sequestration over wide temporal and
environmental scales. Our results show that shifts in cellulase
and ligninase activities drive long-term impacts of biochar
addition on soil C sequestration. This physiological acclima-
tion in microbial metabolic activity has been overlooked to
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date (Hernandez-Soriano et al., 2016; Jing et al., 2022). In
addition, our analyses offer insights to options for regulating
soil C sequestration with biochar addition across a broad
range of environmental and experimental conditions. Specif-
ically, the responses of cellulase and ligninase depend on dif-
ferent environmental, edaphic and experimental factors
(Fig. 2). Therefore, it should be possible to promote soil C
accrual with biochar addition by regulating factors control-
ling different soil enzyme activities. For instance, biochar
can be applied with N fertiliser to promote C sequestration
by reducing N-mining and associated ligninase activity.
Moreover, reduced response of soil ligninase activity and
associated increase in soil C sequestration could also be
achieved by selecting the appropriate pyrolysis temperature
of biochar production. Therefore, there are promising
potentials for innovative biochar management techniques
for long-lasting climate mitigation, which will require the col-
lective actions of policy makers, farmers and industry at both
local and regional scales.

V. CONCLUSIONS

(1) Our synthesis identifies differential responses of cellulase
and ligninase to biochar addition, with important implica-
tions for long-term soil C sequestration.
(2) Biochar addition increased ligninase activity but reduced
cellulase activity, with an increasing ligninase:cellulase ratio
with time after biochar addition.
(3) Biochar-induced changes in ligninase:cellulase ratio were
negatively related to SOC pool size, suggesting a progressive
reduction in soil C sequestration with long-term biochar
addition.
(4) Various factors influenced the responses of cellulase and
ligninase activities to biochar addition, providing insights
into options for increasing soil C sequestration under pro-
longed biochar exposure.
(5) We provide new evidence to explain the diminished soil
C sequestration with long-term biochar addition, and high-
light that the C sequestration potential of biochar may be
overestimated without considering temporal changes in the
physiological acclimation of soil microorganisms.
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X. SUPPORTING INFORMATION

Additional supporting information may be found online in
the Supporting Information section at the end of the article.

Fig. S1. PRISMA flowchart illustrating the processes for the
selection of articles included in the meta-analysis.
Fig. S2. Global distribution of the biochar addition experi-
ments selected for this meta-analysis.
Fig. S3. Funnel plots for soil enzyme activities, ligninase:cellulase
ratio and soil organic carbon in this meta-analysis.
Fig. S4. Effects of biochar addition on soil enzyme activities,
ligninase:cellulase ratio and soil organic carbon sequestration
as categorised by feedstock type, pyrolysis temperature of
biochar and soil type.
Fig. S5. Effects of biochar addition on plant biomass and
relationship between the responses of soil organic carbon
and plant biomass to biochar addition.

Fig. S6. Effects of biochar addition on soil carbon:nitrogen
ratio and NH4

+ availability, and relationship between
biochar-induced changes in carbon:nitrogen ratio and the
application rate of biochar addition.
Fig. S7. Relationships between the responses of cellulase,
ligninase and ligninase:cellulase ratio with various microbial
attributes after biochar addition.
Fig. S8. Effects of biochar addition on fungal abundance,
and relationship between the log response ratio of fungal
abundance and biochar carbon:nitrogen ratio after biochar
addition.
Table S1. Overview of studies included in our meta-
analysis.
Table S2.Overview of cellulases and ligninases included in
this meta-analysis.
Table S3. Results of sensitivity analysis for soil enzyme
activities and soil organic carbon with biochar addition.
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