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Abstracts
The past decade has seen an explosion of research in causal mediation analysis.
However, most analytic tools developed so far rely on frequentist methods which
may not be robust in the case of small sample sizes. In this paper, we propose a
Bayesian approach for causal mediation analysis based on Bayesian g-formula.
We created BayesGmed, an R-package for fitting Bayesian mediation models
in R. The application of the methodology (and software tool) is demonstrated
by a secondary analysis of data collected as part of the MUSICIAN study, a
randomised controlled trial of remotely delivered cognitive behavioural therapy
(tCBT) for people with chronic pain. We tested the hypothesis that the effect
of tCBT would be mediated by improvements in active coping, passive coping,
fear of movement and sleep problems. The analysis of MUSICIAN data shows
that tCBT has better-improved patients’ self-perceived change in health status
compared to treatment as usual (TAU). The adjusted log-odds of tCBT compared
to TAU range from 1.491 (0.452, 2.612) when adjusted for sleep problems to
2.264 (1.063, 3.610) when adjusted for fear of movement. Higher scores of fear
of movement (log-odds, -0.141 (-0.245, -0.048)), passive coping (log-odds, -0.217
(-0.351, -0.104)), and sleep problem (log-odds, -0.179 (-0.291, -0.078)) leads to
lower odds of a positive self-perceived change in health status. The result of
BayesGmed, however, shows that none of the mediated effects are statistically
significant. We compared BayesGmed with the mediation R package, and
the results were comparable. Finally, our probabilistic sensitivity analysis using
the BayesGmed tool shows that the direct and total effect of tCBT persists
even for a large departure in the assumption of no unmeasured confounding.
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1 Introduction
Studies in the health and behavioural sciences often aim to understand whether
and, if so, how an intervention causes an outcome. The randomised controlled
trial is considered the most rigorous method for answering the "whether" question,
but often the "how" part remains unclear. Causal mediation analysis plays
an important role in understanding the mechanism by which an intervention
produces changes in the outcome. Understanding how an intervention works can
be key for further improvement and targeting of an intervention program.

There is a fast-growing methodological literature on causal mediation analy-
sis [1-7 ]. One of the most important developments in mediation analysis is
the incorporation of the causal inference approach or the potential outcomes
framework (POF) to estimate causal mediation effects. This has led to (i) the
formulation of different estimands (effect definitions) that have explicitly causal
interpretations, (ii) clarification of the assumptions required for such effects to
be estimated from observed data, (iii) a framework for conducting sensitivity
analyses around violations of these assumptions, and (iv) has opened up a range
of relevant estimation methods.

Within the POF, the regression-based [8 ] and the simulation-based [9 ] approaches
are widely used for the estimation of causal mediation effects. The regression-
based approach requires fitting parametric regressions models for the mediator
and the outcome and involves approximations in the case of binary outcomes and
mediators. On the other hand, the simulation-based approach is quite flexible
and can accommodate parametric and non-parametric models. The regression-
based approach implemented in SAS and SPSS macros relies on frequentist
methods and the simulation-based approach implemented in the widely used
mediation R package [10 ] is based on the quasi-Bayesian approximation where
the posterior distribution of quantities of interest is approximated by their
sampling distribution.

Recently, Bayesian modelling has been introduced to the mediation analysis
literature [11, 12 ]. Compared to conventional frequentist mediation analysis,
the Bayesian approach combined with POF has several advantages, including
accuracy in small samples, the ability to construct credible intervals for direct
and indirect effects in a straightforward manner, probabilistic interpretation
of results, and the option of using relevant prior information [11, 13 ]. How-
ever, the open-source software tools developed so far, such as bmlm [14 ] and
bayestestR [15 ], have mainly focused on the Bayesian implementation of the
product-method or linear structural equation modelling (LSEM) approach [16 ].
The LSEM framework has been criticised for its limited applicability beyond
specific statistical models. In this paper, we introduce a Bayesian estimation
procedure and open-source software tool, BayesGmed, for causal mediation
analysis using the Bayesian g-formula approach. The proposed method follows
the potential outcomes framework for effect definition and identification. We
illustrate the applicability of the proposed method and software tool using data
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from MUSICIAN trial – a randomised controlled study [17 ].

2 Case study: MUSCIAN trial
To illustrate the methodology presented in this paper and demonstrate the use of
the R-package BayesGmed, we used data from the MUSICIAN trial (Managing
Unexplained Symptoms (CWP) In Primary Care: Involving Traditional and
Accessible New Approaches (ClinicalTrials.gov Identifier: ISRCTN67013851)).

The MUSICIAN study was a 2x2 factorial trial that estimated the clinical
effectiveness and cost-effectiveness of remotely (by telephone) delivered cognitive-
behavioral therapy (tCBT), an exercise program, and a combined intervention
of tCBT plus exercise, compared with treatment as usual (TAU) among people
with CWP. For a complete discussion about the study and setting, we refer to
[17 ]. Briefly, a total of 442 patients with CWP (meeting the American College
of Rheumatology criteria) were randomised to one of the four treatment arms.
The primary outcome was a 7-point patient global assessment scale of change
in health since trial enrollment (range: 1: very much worse to 7: very much
better) assessed at baseline and 6 months (intervention end) and 9 months
after randomisation. A positive outcome was defined as "much better" or "very
much better." Secondary outcomes including the Tampa Scale for Kinesiophobia
(TSK) [18 ](to measure fear of movement; score range, 17-68), the Vanderbilt
Pain Management Inventory (VPMI) [19 ](for assessing active and passive coping
strategy use), and the Sleep Scale [20 ] (to measure sleep quality; score range,
0-20; higher scores indicate more sleep disturbance) were also assessed at baseline,
6 month and 9 months after randomisation.

Previous analysis of the MUSICIAN trial data has shown a significant benefit
of tCBT in people with chronic pain as compared to treatment as TAU [17 ].
However, little is known about the mechanisms that lead to improvement. In
this paper, using the MUSICIAN trial data, we aim to test the hypothesis that
the effect of tCBT on the primary outcome is mediated by reductions in fear of
movement, passive coping strategies, and sleep problems and an increase in the
use of active coping strategies [Figure 1].
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Figure 1. Causal directed acyclic graph (DAG) for the MUSICIAN study.

The analysis in this paper focuses on the outcome measured six months after
randomisation and compares tCBT with treatment as usual. Baseline character-
istics of the study cohort and outcome distribution at 6 months are presented in
Table 1.

Table 1: Baseline characteristics of study cohort and outcome at 6 months
post-randomisation.

Characteristics TAU tCBT
Baseline
N 109 112
Gender

Female, n (%)
76 (69.72) 80 (71.42)

Age, mean (SD) 56.4 (12.5) 56.6 (13.7)
Outcome at 6 month
Perceived health status since baseline

Much better or very much better, n
(%)

7 (6.42) 26 (23.21)

Fear of movement (Kinesiophobia) , mean (SD) 36.0 (6.75) 34.2 (6.31)
Active coping strategy use, mean (SD) 24.5 (4.50) 25.4 (4.15)
Passive coping strategy use, mean (SD) 28.0 (8.13) 27.6 (7.60)
Sleep problems, mean (SD) 9.96 (6.03) 7.83 (5.61)

3 The Mathematical Framework for Causal Me-
diation Analysis

In this section, we start by reviewing the ingredients of causal mediation analysis
including definition of causal estimands/effects and the identification assumptions
needed to learn those effects from observed data. We then describe how those
causal estimands can be estimated from observed data using the Bayesian g-
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formula approach. To simplify our presentation, we restrict our examples to the
context of an observed set of time-fixed variables.

3.1 Definition of Causal mediation effects
The first step in causal mediation analysis is defining the causal effects of interest.
We will start with the definition of the total treatment effect and then introduce
the direct and indirect effects.

Consider estimation of the causal effect of a binary treatment assignment A ∈
{0, 1} on some observed outcome Y , where 1 and 0 stand for the treatment and
control conditions. Following the potential outcome framework concept [1 ], we
denote the potential outcome that would have been observed for an individual
had the exposure A been set to the value a by Y (a). For the dichotomous
treatment, we denote the outcome variable for the ith individual that would
have been observed under the treatment value α = 1 by Yi(1) and the outcome
variable for the ith individual that would have been observed under the treatment
value α = 0 by Yi(0). Individual causal effects are defined as a contrast of the
values of these two potential outcomes and treatment A has a causal effect on an
individual's outcome Y if Yi(1) 6= Yi(0). More formally, the total treatment effect
at the individual level is defined on additive scale as TEi = Yi(1)−Yi(0). However,
we never observe both potential outcomes for the same individual. What we
observe is the realised outcome Yi – the one corresponding to the treatment
value experienced by the individual. Hence, identifying individual causal effects
is generally not possible. However, under some assumptions to be discussed in
the next subsection, the average total effect (ATE) in a population of individuals
can be estimated from the observed data and it is defined as the average of the
individual total effects over the population. That is, ATE = E [Y (1)− Y (0)].
Put simply, the ATE is interpreted as the average difference in the outcome
had everyone in the target population received treatment A = 1 rather than
A = 0. If the outcome is binary (coded 0/1), this definition is equivalent to
ATE = P (Y (1) = 1) − P (Y (0) = 1), a risk difference. Further, given
pre-exposure or pre-treatment assignment variables Z, the conditional average
total effect is given by E [Y (1)− Y (0)|Z].

Mediation analysis moves beyond calculation of average total treatment effects
and instead seeks to explain the effect of the exposure on the outcome. This is
achieved by splitting the total treatment effect in to direct and indirect effects
(Figure 2). By extending the previous notations to a joint exposure (A, M) with
M being the potential mediator, definition of direct and indirect effects can be
constructed as follows.
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Figure 2: Mediation with a single mediator M, exposure A, outcome Y, and
confounders Z.

LetMi(a) denote the potential value of a mediator of interest under the treatment
status A = a and let Yi(a,m) represent the potential outcome values under
regime A = a when the mediator M is set to the value it would naturally take
under either A = a. For a dichotomous exposure, the average controlled direct
effect for mediator at level m given covariate Z is given by ([1-3 ])

CDE (m) = E[Y (1,m)− Y (0,m)|Z]. (1)

The controlled direct effect expresses the exposure effect that would be realised if
the mediator were controlled, i.e., set to a specific level for everyone. Controlled
direct effects are relevant quantities when interest lies in the evaluation of an
intervention that can shift or fix the mediator across the population. However,
the controlled direct effect does not usually lead to the splitting of the total effect
in to direct and indirect effect. That is, the total effect minus the controlled
direct effect may not have the interpretation of indirect effect in situations
where the direct effect is different at different levels of the mediator. Hence,
we introduce below two additional quantities that can split the total effect in
to direct and indirect effect. They are the natural direct and natural indirect
effects.

The average natural direct and indirect effects, given a pre-exposure covariates
Z, are defined as ([1-3 ])

NDE(a) = E [Y (1,M(a))− Y (0,M(a))|Z] , (2)

and

NIE(a) = E[Y (a,M(1))− Y (a,M(0))|Z]. (3)

The indirect effect NIE represents the causal effect of the treatment on the
outcome that can be attributed to the treatment-induced change in the mediator
and the direct effect NDE denotes the causal effect of the treatment on
the outcome that can be attributed to causal mechanisms other than the one
represented by the mediator, and their sum leads to the total effect. That
is, TE = NIE(1) + NDE(0) = NIE(0) + NDE(1). Note that, NIE(1) and
NIE(0) may not be identical and a similar inequality holds for NDE(1) and
NDE(0).
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3.2 Identification Assumptions
To be able to identify or estimate the causal effects defined in 3.1, we need to
rely on a set of assumptions. To estimate the above causal estimands from the
observed data and ensure they have a causal interpretation, the following four
conditions need to hold:

• IA1 : Y (a,m)⊥A|Z: no-unmeasured confounder for the exposure-outcome
relationship given the pre-exposure covariate Z.

• IA2 : Y (a,m)⊥M |A,Z: no-unmeasured confounder for the mediator-
outcome relationship given the pre-exposure covariate Z and the exposure
A.

• IA3 : M(a)⊥A|Z: no-unmeasured confounder for the exposure-mediator
relationship given the pre-exposure covariate Z.

• IA4 : Y (a,m)⊥M(a∗)|Z for any value of a, a∗, and m: no-measured or
unmeasured confounder for the mediator-outcome relationship that is also
influenced by the exposure.

Under assumptions IA1-IA4, the natural direct and indirect effects can be
identified ([2, 3, 5 ]) by

NDE:

E
[
Y
(
a,M

(
a

′
))
− Y

(
a

′
,M

(
a

′
))∣∣∣Z] =∫ ∫ {

E [Yi|Mi = m, Ai = a, Zi = z]− E
[
Yi

∣∣∣Mi = m, Ai = a
′
, Zi = z

]}
× dFMi|Ai=a, Zi=z(m)dFZi (z) ,

(4)

and

NIE:

E
[
Y (a,M(a))− Y

(
a,M

(
a

′
))∣∣∣Z] =∫ ∫

E [Yi|Mi = m, Ai = a, Zi = z]

×
{
dFMi|Ai=a, Zi=z(m)− dFMi|Ai=a′ ,Zi=z(m)

}
× dFZi(z).

(5)

If the mediator is discrete, the integrals will be replaced by summation over the
possible values of M . In the epidemiological literature, computation of causal
effects using the above expression is called standardisation – a special case of
g-computation.

Note that, to identify the control direct effect, only assumption IA1 and IA2 are
need to hold. If assumption IA1 and IA2 hold, then the controlled direct effects
are identified [2 ] by
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E [Y (1,m)− Y (0,m)|Z] = E [Y |A = 1,M = m,Z]− E [Y |A = 0,M = m,Z] ,
(6)

and the average controlled direct effect can be estimated from the data by
averaging over the distribution of Z.

3.3 Estimation
After defining the causal estimands and specifying the necessary conditions for
the estimand to be identified, the next step is doing the actual estimation from
the observed data. In this section, we will introduce Bayesian modeling for
causal effect estimation. Bayesian causal mediation analysis combines Bayesian
modeling with the identification assumptions discussed in 3.2 to compute a
posterior distribution over the causal estimands of interest.

Suppose we observe data D = {Yi, Mi, Ai, Zi}i=1:n on n independent indi-
viduals, where Ai ∈ {0, 1} is a binary treatment indicator, Zi is a vector of
confounders, Mi is a scalar candidate mediator, and Yi is a binary outcome of
interest. Assume assumption IA1− IA6 hold, and that and that the following
regression models for Y and M are correctly specified:

logit (P (Yi = 1|Ai,Mi,Zi)) = α0 + α
′

ZZi + αAAi + αMMi, (7)
E [Mi|(Ai,Zi)] = β0 + β

′

ZZi + βAAi, with εi ∼ N(0, σ2). (8)

In addition to the probability model for the conditional distribution of
the outcome and the mediator (the likelihood), Bayesian inference re-
quires a probability distribution over the unknown parameter vector,
θ = (α0, αz, αA, αM , β0, βZ , βA), governing this conditional distribution (i.e.
a prior). Inference then follows from making probability statements about θ
having conditioned on the observed data (via the posterior). One of the key
advantages of Bayesian inference is using priors one can obtain a stabilised
causal effect estimates when data are sparse. Specification of priors to induce
shrinkage is beyond the scope of this paper and we refer interested readers to
[21 ]. For now, we assume suitable priors in line with the specific problem one is
addressing are specified.

Bayesian estimation of causal effects rely on Bayesian analog of the g-formula
(standardisation) and bootstrap estimation of the confounder distribution. The
Bayesian analog to the g-formula [22 ] formulates the distribution of the counter-
factual Ya as a posterior predictive value, integrating over the parameters θ as
well as the confounder distribution.

p (ỹ(a)|o) =
∫ ∫

p (ỹ|a, z̃, θ) p (z̃|θ) p (θ|o) dθdz̃.
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Integration over the parameters and the confounder distribution as well as the
computation of causal effects involve the following 5 steps.

1. Given B iterations, at the bth iteration obtain the posterior draws of the pa-
rameters θ and denote them by θ(b) = (α(b)

0 , α
(b)
z , α

(b)
A , α

(b)
M , β

(b)
0 , β

(b)
Z , β

(b)
A ).

2. Using the classical bootstrap, sample n new values of Z with replacement
from the observed Z distribution during iteration b of the Markov Chain
Monte Carlo and denote these resampled values as Z(1,b), . . . ,Z(n,b).

3. Get the potential outcome values

a. Simulate the potential values of the mediator. Using the resampling of
Z as described earlier, we can draw samples from the distributions of
the counterfactuals M(a) for a ∈ {0, 1}. At the bth MCMC iteration
and for i = 1, . . . , n,

M(a)(i,b) ∼ Normal
(
β

(b)
0 + β

(b)
Z Z(i,b) + β

(b)
A a, σ(b)

)
b. Given the potential value for the mediator, simulate the potential value

for the outcome. For example, Y (a,M(a)(i,b))(i,b) is simulated using

Y (a,M(a)(i,b))(i,b) ∼

Bernoulli
(
logit−1

(
β

(b)
0 + β

(b)
Z Z(i,b) + β

(b)
A a+ α

(b)
M ∗M(a)(i,b)

))
4. Compute draw of the causal effect estimates.

a. NDE(a)(b) = 1
n

∑n
i=1 {Y

(
a′,M(a′)(i,b))(i,b) − Y

(
a,M

(
a

′
)(i,b)

)(i,b)
}

b. NIE(a)(b) = 1
n

∑n
i=1 {Y

(
a,M(a)(i,b))(i,b) − Y

(
a,M

(
a

′
)(i,b)

)(i,b)
}

5. Get summary of causal effect estimates by taking the mean and quantiles
of the causal effect estimates draws.

3.4 Sensitivity Analysis
As described in section 3.1, estimating direct and indirect effects from observed
data requires a series of assumptions. As a result, the main challenge in mediation
analysis has been understanding bias from unmeasured confounding variables.
Several methods have been proposed in the literature to explore the sensitivity
of causal effect estimates to unmeasured confounding [23,24, 26, 27 ]. In our
Bayesian causal mediation analysis R-package, presented in the following section,
we implemented the Bayesian sensitivity analysis (BSA) proposed by [26,27 ].
BSA works by incorporating uncertainty about unmeasured confounding in the
outcome and mediator model through a prior distribution. That is, we extend
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the outcome and mediator model in Equations (7) and (8) to a triple set of
structural equations

logit (P (Yi = 1|Ai,Mi,Zi)) = α0 + α
′

ZZi + αAAi + αMMi + αUUi, (9)
E [Mi|(Ai,Zi)] = β0 + β

′

ZZi + βAAi + βUUi, with εi ∼ N
(
0, σ2) , (10)

logit (P (Ui = 1|Ai,Zi)) = γ0 + γAAi, (11)

where the binary random variable U that takes values 1 or 0 indicates the
presence or absence of an unmeasured confounder and the parameters αU and
βU governs the association between U and Y and U and M, respectively. Finally,
γ0 and γA controls the prevalence of the unmeasured confounder within levels
of the exposure variable A given Z.

The BSA approach proceeds by assuming a uniform prior distribution,
Uniform(−δ, δ), for the bias parameters αU , βU , γ0 and γA where δ to
represent the size of unmeasured confounding (E.g. δ = 0 means no unmeasured
confounding)[26,27 ]. The estimation of direct and indirect effect using Equations
9 – 11 follows the same procedure as described in section 3.3 but the potential
outcome and mediator values now will also depend on the values of U. This way,
the posterior distribution for the causal effect estimates incorporates uncertainty
from bias (systematic error) in addition to uncertainty from random sampling
(random error).

4 Implementation
The BayesGmed package implements Bayesian causal mediation analysis pro-
cedure described in the previous section in R using the probabilistic program-
ming language Stan [28]. The latest development version of the R-package,
BayesGmed, can be installed from GitHub via:

devtools::install_github("belayb/BayesGmed”)

Models are fitted in BayesGmed using the following procedure:

bayesgmed(outcome, mediator, treat, covariates = NULL,
dist.y = “continuous”, dist.m = “continuous”,
link.y = “identity”, link.m = “identity”, data,
control.value = 0, treat.value = 1,
priors = NULL, ...)

The BayesGmed R-package currently handles continuous outcome – continuous
mediator, binary outcome – binary mediator, continuous outcome – binary
mediator, and binary outcome – continuous mediator. Currently, a multinormal,
MVN(location, scale), prior is assigned to all regression parameters where the
location and scale parameters are fixed to the following default values. The user
can change the location and scale parameters by passing the location and scale
parameters of the priors as a list as below
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priors <- list(scale_m = 2.5*diag(P+1),
scale_y = 2.5*diag(P+2),
location_m = rep(0, P+1),
location_y = rep(0, P+2),
scale_sd_y = 2.5,
scale_sd_m = 2.5)

where P is the number of covariates (including the intercept) in the media-
tor/outcome model. For the residual standard deviation, a half-normal prior is
assumed with mean zero. The user can change the scalesd values as above.

To conduct sensitivity analysis, the bayesgmed_sens function in BayesGmed
can be used as follow:

bayesgmed_sens(outcome, mediator, treat, covariates = NULL,
dist.y = “continuous”, dist.m = “continuous”,
link.y = “identity”, link.m = “identity”,
data, control.value = 0, treat.value = 1,
priors = NULL, ...)

The bayesgmed_sens function have the same structure as the main function
bayesgmed except one has to provide a list of priors for the bias parameters.
The user has then has to call bayesgmed_sens multiple times for a varying level
prior scale parameter. Detailed vignettes describing the step-by-step use of
BayesGmed to conduct causal mediation analysis on various types of outcomes
and mediators are currently available at https://github.com/belayb/BayesGmed.

5 Results
We analysed the MUSICIAN trial data using the Bayesian causal mediation
analysis framework presented in the previous section and implemented in the
R-package BayesGmed. We investigated the potential mediating effect of each
of the mediators separately, assuming independence between the mediators. We
considered a logistic regression model for the outcome and a linear regression
model for the mediator model (see Appendix S1). For all model parameters,
we assumed non-informative priors listed in Appendix S1. We ran 4 Markov
chain cycles, each with 4000 samples after 4000 burn-in samples and assessed
convergence using standard MCMC convergence checks. For a simple comparison
of the BayesGmed result with the result of the well-established method, we
also analysed the data using the mediation R-package and presented the results
side by side.

Compared to TAU, we found that tCBT has a significant positive effect on
self-perceived change in health status (Table 2). The adjusted log-odds of tCBT
on self-perceived change in health status compared to TAU range from 1.491
(95% CI: 0.452 – 2.612) when adjusted for sleep problems to 2.264 (95% CI: 1.063
- 3.610) when adjusted for fear of movement. Adjusted for the intervention,
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https://github.com/belayb/BayesGmed


the result of the outcome model revealed a significant relationship between self-
perceived change in health status and fear of movement, passive coping, and sleep
problem. Higher scores of fear of movement, passive coping, and sleep problem
leads to lower odds of a positive self-perceived change in health status. However,
the result of the mediator model shows that tCBT has a significant influence
only on reducing sleep problem score (-2.350, 95% CI: -4.132, -0.569). tCBT
had a negative relationship with fear of movement and passive coping score
and a positive relationship with the active coping score but none of them are
statistically significant.

The result of BayesGmed shows that none of the mediated effects are statisti-
cally significant, indicating that either the effect of tCBT on self-perceived change
in health status is through other mechanisms independent of fear of movement,
the use of active or passive coping strategies, and sleep problems or the study is
too small to detect a significant mediated effect. The result of BayesGmed is
comparable to the mediation R- package results except for the indirect effect
estimates of sleep problems. Analysis using the mediation R-package shows
a significant mediating effect of sleep problems. This is due to the relatively
larger standard errors from BayesGmed since it accounts additional sources of
uncertainty in the parameter estimation.

Table 2: MUSICIAN trial: Mediation analysis with one mediator at a time
approach. The Total effect, the average causal direct (ADE) and indirect effects
(ACME) are presented in risk difference scale. The coefficients in the outcome
model are in log odds scale and the coefficients of the mediator model are on
a linear scale. All models are adjusted for age, sex and baseline GHQ median
scores.

Mediators
R-packages Fear of

move-
ment

Active
coping

Passive
coping

Sleep
problems

BayesGmed

Outcome
Model

tCBT
2.26
(1.06,
3.61)

1.18
(0.61,
3.31)

1.77
(0.27,
3.43)

1.49
(0.45,
2.61)

Mediators
-0.14
(-0.25,
-0.05)

-0.03
(-0.17,
0.12)

-0.22
(-0.35,
-0.10)

-0.18
(-0.29,
-0.08)

Mediator
Model
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Mediators

tCBT
-1.78
(-3.82,
0.37)

0.52
(-0.98,
2.05)

-0.55
(-3.08,
1.98)

-2.35
(-4.13,
-0.57)

Direct &
indirect
effects
ADE
(control)

0.21
(0.09,
0.35)

0.16
(0.04,
0.29)

0.11
(0.01,
0.23)

0.15
(0.03,
0.29)

ADE
(treated)

0.23
(0.09,
0.38)

0.16
(0.04,
0.29)

0.11
(0.01,
0.23)

0.18
(0.04,
0.33)

ACME
(control)

0.01
(-0.05,
0.09)

-0.00
(-0.05,
0.05)

0.01
(-0.05,
0.07)

0.03
(-0.04,
0.11)

ACME
(treated)

0.04
(-0.06,
0.14)

-0.00
(-0.09,
0.09)

0.01
(-0.09,
0.11)

0.06
(-0.05,
0.17)

Total effect 0.25
(0.11,
0.39)

0.15
(0.03,
0.29)

0.12
(0.00,
0.25))

0.21
(0.07,
0.35)

ADE
(average)

0.22
(0.10,
0.35)

0.16
(0.05,
0.28)

0.11
(0.02,
0.22)

0.17
(0.04,
0.29)

ACME
(average)

0.03
(-0.04,
0.10)

-0.00
(-0.05,
0.05)

0.01
(-0.06,
0.08)

0.05
(-0.03,
0.12)

mediation

ADE
(control)

0.20
(0.08,
0.35)

0.16
(0.06,
0.26)

0.11
(0.01,
0.23)

0.15
(0.05,
0.26)

ADE
(treated)

0.22
(0.09,
0.40)

0.16
(0.06,
0.27)

0.12
(0.02,
0.25)

0.17
(0.06,
0.29)

ACME
(control)

0.02
(-0.00,
0.05)

-0.00
(-0.01,
0.01)

0.01
(-0.02,
0.04)

0.03
(0.01,
0.07)

ACME
(treated)

0.04
(-0.00,
0.10)

-0.00
(-0.02,
0.02)

0.01
(-0.03,
0.06)

0.06
(0.01,
0.12)
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Mediators
Total effect 0.24

(0.11,
0.41)

0.15
(0.06,
0.27)

0.12
(0.02,
0.27)

0.20
(0.09,
0.32)

ADE
(average)

0.21
(0.09,
0.38)

0.16
(0.06,
0.27)

0.11
(0.01,
0.24)

0.16
(0.06,
0.27)

ACME
(average)

0.03
(-0.00,
0.07)

-0.00
(-0.18,
0.09)

0.05
(-0.65,
0.47)

0.04
(0.01,
0.10)

We applied BSA to the MUSICIAN trial data in order to explore sensitivity of
the results to bias from unmeasured confounding. We considered three values
for the bias parameter (i.e., γ = (γ0, γA, βU , αU ) ∼ MVN(0, δI4),where δ =
0, 0.5, and 1) to denote varying level of departure from no unmeasured con-
founder assumption. When δ = 0, we fit a model without unmeasured confounder.
The results of BSA are presented in Figure 3. For brevity, we only presented
the results of the average direct (ADE), average indirect effect (ACME) and
total effect (TE). Overall, BSA leads to a much wider credible intervals for all
effects of interest than the Naive (δ = 0). If we consider 95% credible interval
overlap with zero in order to identify non-zero natural direct and indirect effects,
then Figure 3 shows that the direct and total effect of cognitive behavioral
therapy on changes in perceived health status persists even for a large departure
in the assumption of no unmeasured confounding.

Figure 3: MUSICIAN trial: Bayesian sensitivity analysis for varying levels of
departure from no-unmeasured confounder assumptions.
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6 Concluding remark
In this paper, we introduced a Bayesian estimation algorithm for causal mediation
analysis. We also provide an easy-to-use R-package for conducting Bayesian
causal mediation analysis and assessing sensitivity of results for unmeasured
confounder. Compared to the existing open-source tools for mediation analysis,
BayesGmed has several advantages. First, point and interval estimates can
be easily constructed for causal risk ratios, odds ratios, and risk differences by
post-processing posterior draws from the fitted model. Second, priors can be
specified to obtain more stabilised causal effect estimates than the frequentist
procedure. Third, priors can also be used to conduct probabilistic sensitivity
analyses around violations of key causal identification assumptions.

Using the proposed methodology, we analysed data from a randomised control
trial with the aim of identifying mediators of tCBT on self-perceived change in
health status in patients with chronic widespread pain. We showed the beneficial
effect of tCBT compared to TAU, similar to previous reports [17 ]. However,
none of the considered potential mediators (i.e. reduction in fear of movement,
reduction in passive coping, reduction in sleep problem, and an increase in
activing coping) were found to mediate the effect of tCBT. Except active coping,
all of the potential mediating factors were found to have a statistically significant
effect on the outcome of interest, but tCBT had a significant effect only on
reducing sleep problems leading to a non-significant indirect effect. These results
suggest that either improving the scope of tCBT or combining tCBT with
other interventions that can target fear of movement, passive coping, and sleep
problem would increase patient benefit. However, it is important to note that
the MUSICIAN trial was not powered to detect mediators of the effect of tCBT
on outcome. tCBT was associated with change in scores for fear of movement,
active coping, passive coping, and sleep problems in the expected direction, and
the magnitude of effect was greatest for sleep problems. Whether these would
mediate the effect of tCBT in an adeqaultely powered trial remains unknown.
However, the methds presented here would be able to address that question in
an well-powered study. It also remains possible that tCBT exerts its influence
through some other mechanism(s). It would be of interest to explore non-specific
effects in non-blinded trials sucha s MUSICIAN.

At present, there are some limitations of the package BayesGmed. First
of all, we assumed a parametric specification for the outcome and mediator
model. In some situations, parametric models might be restrictive and a general
non-parametric models might be preferred. Second, we only considered the
case of single mediator and assumed no exposure mediator interaction. The
Bayesian estimation algorithm we presented is quite generic and can easily be
extended to accommodate the aforementioned limitation and we aim to extend
the BayesGmed package to handle the above settings in a future version. Since
the package is distributed as an open source software users can also update the
package for their own needs.
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Appendix
Appendix S1: Model formulation for the MUSICIAN study
Let Yi represent the binary response variable (i.e., Yi = 1 denoting a much or
very much better outcome since randomization) of the ith subject, A denotes
the treatment (A = 1 for tCBT and A = 0 for TAU), Mki represent the kth
mediator variable for the ith subject, and Zi denotes the baseline covariates to
adjust for for the i subject. The outcome and mediator model of the mediation
analysis is then formulated as follows

logit (P (Yi = 1|Ai,Mi,Zi)) = α0 + α
′

ZZi + αAAi + αMk
Mki, (12)

E [Mki|(Ai,Zi)] = β0 + β
′

ZZi + βAAi, with εi ∼ N(0, σ2
m). (13)

The covariate vector Zi includes age, gender, and baseline median GHQ score.
We considered K = 4 mediators including M1 - tsk (fear of movement measure),
M2 - active coping, M3 - passive coping, and M4 - sleep problems. We fit the
above structural model for each mediators separately assuming the following
priors.

α = (α0, αZ , αA, αM )′ ∼ MVN(locationy, scaley), (14)
β = (β0, βZ , βM )′ ∼ MVN(locationm, scalem), (15)
σ2

m ∼ (0, scale_sd_m). (16)

We assume 06 and 05 for the locationy and locationm, respectively. For the
scaley and scalem, we considered 10 ∗ I6 and 10 ∗ I5, respectively. Finally, we
set the scalesdm = 2.5 for all models.

Appendix S2: R - code for the MUSICIAN study
Install and load the BayesGmed, Rstan, and mediation packages.

install.packages("rstan")
devtools::install_github("belayb/BayesGmed”)
install.packages("mediation")
library(rstan)
library(BayesGmed)
library(mediation)
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Mediation model fitting using the BayesGmed package with tsk (fear
of movement) as a mediator.

fit <- bayesgmed(outcome = "outcome", mediator = "tsk",
treat = "TrT",
covariates = c("gender", "age","ghqmedian"),
dist.y = "binary", dist.m = "continuous",
link.y = "logit", link.m = "identity",
data = med_data,
priors = list(scale_m = 10*diag(5),

scale_y = 10*diag(6),
location_m = rep(0, 5),
location_y = rep(0, 6)),
iter=8000)

bayesgmed_summary(fit)

Mediation model fitting using the mediation package with tsk (fear
of movement) as a mediator.

outcome_model <- glm(outcome ~ gender + age + ghqmedian +
Trt + tsk,

data = med_data,
family = binomial(link="logit"))

mediator_model_tsk <- lm(tsk ~ gender + age + ghqmedian + Trt,
data = med_data)

med.out_tsk <- mediate(mediator_model_tsk, outcome_model_tsk,
treat = "Trt", mediator = "tsk",
robustSE = TRUE, sims = 100)

summary(med.out_tsk)

We repeat the above steps for each mediators.

Sensitivity analysis for unmeasured confounding using the
BayesGmed package with tsk (fear of movement) as a mediator.

fit <- bayesgmed_sens(outcome = "outcome", mediator = "tsk",
treat = "TrT",

covariates = c("gender", "age","ghqmedian"),
dist.y = "binary", dist.m = "continuous",
link.y = "logit", link.m = "identity",
data = med_data,
priors = list(scale_m = 10*diag(5),

scale_y = 10*diag(6),
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location_m = rep(0, 5),
location_y = rep(0, 6),

location_gamma = rep(0,4),
scale_gamma = 0.5*diag(4)),

iter=8000)
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