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Abstract  10 

This study investigates vibrational transfer and energy flow in nonlinearly coupled systems, each subjected 11 

to a harmonic force with different excitation frequency. A nonlinear joint having either smooth or non-12 

smooth stiffness characteristics at the coupling interface is considered. The steady-state dynamic responses 13 

are obtained by a method of harmonic balance with alternating frequency and time and by a direct numerical 14 

integration. The time-averaged transmitted power is used to assess the direction of energy flow and the 15 

power transfer between the systems. It is shown that as the excitation frequency ratio increases, the point 16 

of zero net power transmission between subsystems move to lower frequencies. The cubic stiffness 17 

nonlinearity mainly affects the power transfer in the vicinity of the second resonant frequencies. It is also 18 

shown that the second resonant frequencies of both subsystems and the point of zero net power transmission 19 

shift to higher frequencies when the bilinear stiffness ratio increases. For the power transfer curves, the 20 

bilinear stiffness ratio controls the location of the second resonant frequencies. Findings from this study 21 

can provide insights for the design of the joint interfacial properties with regards to vibration transfer in 22 

coupled systems under multi-frequency excitations.  23 

Keywords: power flow analysis; vibrational energy transfer; non-smooth interface; multi-24 

frequency excitations 25 

1. Introduction 26 

There is a growing interest in comprehensive understanding nonlinear dynamics of engineering systems 27 

and a wide range of nonlinear models has been developed.  One important model, the Duffing oscillator, 28 

having cubic stiffness term and nonlinear restoring force in the governing equation, is widely used to 29 

describe different nonlinear dynamical systems including pendulums [1], beam with permanent magnets 30 

[2], cables [3], electric circuits [4] and nonlinear isolators [5-7]. It was also reported that bolted joints can 31 



2 
 

exhibit nonlinear stiffness property with the nonlinear force being a cubic function of the relative 32 

displacement [8, 9]. Different combinations of the coefficients of linear and nonlinear stiffness terms in the 33 

Duffing equation will lead to hardening, softening and double-well potential nonlinearities, causing 34 

complex nonlinear phenomena such as super- / sub- harmonic resonances, internal resonances, multiple 35 

response states, bifurcation and chaos.  36 

While many nonlinear systems are characterized by a smooth nonlinear function of the displacement 37 

or velocity in their governing equations, some systems behave non-smoothly in terms of restoring force and 38 

displacement relationship. A typical example is the so-called smooth and discontinuous oscillator (SD 39 

oscillator), which was originally proposed to describe a transition from smooth to discontinuous behaviour 40 

[10]. The SD oscillator was studied and shown to exhibit complex dynamical behaviour including 41 

bifurcations and chaos [11, 12]. Another example is piecewise linear systems, which can be used to 42 

represent typical nonlinear systems with motion constraints [13-15], dry friction [16, 17], asymmetrical 43 

stiffness or damping [18, 19], and bolted flange joints [21-23].  44 

Many recent studies been devoted to exploiting various types of nonlinearities for performance benefits 45 

in vibration suppression [24]. For example, nonlinear vibration isolators with geometric nonlinearity can 46 

have a high-static-low-dynamic characteristic, providing performance enhancement compared with that of 47 

conventional linear isolators [5, 6, 25, 26]. The use of nonlinear elements in energy harvesting systems [27] 48 

and nonlinear energy sinks (NES) [28-31] has been studied extensively, for the design objective of 49 

achieving optimal output power and targeted energy transfer, respectively. Quinn et al. [27] showed that a 50 

nonlinear energy harvester outperforms a tuned linear one with a higher efficiency across a broader 51 

frequency range. Much less work has been reported on the use of suppression systems with non-smooth 52 

nonlinear characteristics. Wang et al. [33] showed superior suppression performance of a piecewise linear 53 

NES compared to a linear vibration attenuation system.   54 

While there are many investigations on the dynamic analysis of nonlinear systems, most of them have 55 

primarily considered a single frequency excitation. As a result, the comprehensive understanding of the 56 

nonlinear dynamics of coupled systems subjected to multi-frequency excitations remains limited. However, 57 

in various engineering scenarios, it is common to encounter multiple excitation frequencies simultaneously. 58 

To illustrate, there is in fact a prevalence of multi-frequency excitations in various engineering applications. 59 

In turbomachinery, the vibration of rotating blades and airfoils can result in an unsteady flow subject to two 60 

distinct excitation frequencies [34, 35]. Additionally, an axially transporting beam can experience two-61 

frequency parametric excitation [36], and a dual-rotor system can exhibit two fundamental excitation 62 

frequencies induced by a low-pressure rotor and a high-pressure rotor [37]. Multi-frequency excitations are 63 

also encountered in microelectromechanical systems, such as microbeams and micromirrors [38, 39]. These 64 

examples highlight the presence of multiple excitation frequencies in various domains of engineering. 65 
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Unlike linear systems, nonlinear systems with multi-frequency excitations may exhibit super-/sub-66 

harmonics and combined resonances [40-42]. In addition, for nonlinear systems, the principle of 67 

superposition cannot be used. In view of this, some research attempts have been made. Guskov et al. [43] 68 

explored the multi-frequency dynamical behaviour of a modified Jeffcott rotor system using the multi-69 

dimensional harmonic balance method (MHBM), alternating frequency-time (AFT) and arc-length 70 

continuation. Didier et al. [44] used stochastic-MHBM and polynomial chaos expansion method to 71 

investigate the nonlinear vibration of a mechanical system with uncertain material and geometrical 72 

parameters. The considered system was subjected to unbalanced forces with incommensurable frequencies, 73 

leading to quasi-periodic dynamic response. Zhao et al. [45] studied the nonlinear cable vibration forced 74 

by two external periodic excitations. The Galerkin method was used to discretize the governing partial 75 

differential equations into ordinary differential equations, and the multiple scale method is further applied 76 

to obtain the frequency-response functions. 77 

It is noted that previous studies have focused on the dynamic response of systems, and there have been 78 

few attempts made on vibration power and energy transfer analysis of nonlinear systems under multi-79 

frequency excitations. Power flow analysis (PFA) is a widely accepted method for assessing vibration and 80 

energy transmission level in complex dynamical systems. Its concept was first proposed by Goyder and 81 

White [46] and has been further developed to study various linear and nonlinear systems [47-52]. Zhao et 82 

al. [53] studied the power flow transfer in space truss structures using a Timoshenko theory. The active 83 

control of the minimum power transmission was found to be more effective and achievable than the control 84 

of the minimum acceleration. Xie et al. [54] investigated the vibration transfer and power flow characteristic 85 

of a propulsion shaft system in underwater vehicles. The vibration attenuation in a shaft-hull system is 86 

quantified and evaluated by power flow and mean square velocity level. In recent years, time-averaged 87 

power flow quantities, e.g., input, dissipated, and transmitted powers, have also been used to assess the 88 

vibration transmission level in the Duffing oscillator [55] and coupled oscillators with smooth or non-89 

smooth connections [56-59]. 90 

This study investigates the vibration transfer and energy flow in a coupled system with a nonlinear 91 

smooth or a non-smooth interface under multi-frequency excitations. Two external harmonic forces with 92 

different excitation frequencies are applied to two subsystems. The smooth joint is characterized by a cubic 93 

stiffness spring and the non-smooth connection interface is modelled by a spring of piecewise linear 94 

restoring force and displacement relationship. The first-order HB and HB-AFT techniques [60-63] are used 95 

to obtain analytical solutions for dynamic response and related power transmission, and the fourth order 96 

Runge-Kutta (RK4) method is used as a numerical approach in the time domain. The rest of this article is 97 

organized as follows. Section 2 introduces the physical and mathematical model. Section 3 shows the 98 

analytical first-order HB, HB-AFT method, and PFA formulations. Two case studies with the smooth and 99 
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non-smooth interfaces are demonstrated in Sections 4 and 5, respectively. The conclusions are presented in 100 

the last section of this article. 101 

2. Physical and mathematical modelling 102 

Many engineering systems, such as the engine blade-disk dovetail structure, transmission shaft in ship 103 

propulsion system, and satellite separation system with clamp-band-joint comprise jointed components that 104 

are subjected to dynamic loading, see in Fig. 1(a). Understanding of the nonlinear dynamics including the 105 

vibration transmission within of the jointed structures is important to achieve enhanced design. It was 106 

reported that bolted joint will cause nonlinear behaviour and can be approximately described by a smooth 107 

cubic stiffness [8, 9] or a non-smooth bilinear stiffness model [21-23]. Fig. 1(b) shows a nonlinear joint 108 

with a smooth stiffness nonlinearity characterized by a cubic restoring force term: 109 

𝑓𝑠(𝛿) = 𝑘𝑙𝛿 + 𝑘𝑛𝛿3,                                                              (1) 110 

where 𝑓𝑠(𝛿) is the restoring force with a smooth joint, 𝛿 = 𝑥2 − 𝑥1 is the relative displacement between 111 

two subsystems, 𝑘𝑙  and 𝑘𝑛  are the linear and nonlinear stiffness coefficients of the smooth joint, 112 

respectively. It is worth noting that the first derivative of the nonlinear force 𝑓𝑠(𝛿) with respect to relative 113 

displacement 𝛿 leads to a linear stiffness at the original equilibrium position, i.e., 
𝑑𝑓

𝑑𝛿
|𝛿=0 = 𝑘𝑙. It indicates 114 

that the linearization of the nonlinear restoring force can provide a good approximation for small-115 

displacement motions, especially for oscillation around the static equilibrium position. Fig. 1(c) shows the 116 

force-displacement relationship of a piecewise linear stiffness joint, and the corresponding function is given 117 

by   118 

𝑓𝑛𝑠𝑝(𝛿) = {

𝑘𝑡𝛿 + (𝑘𝑐 − 𝑘𝑡)𝑔,                   when  𝛿 > 𝑔,    

   𝑘𝑐𝛿,                                             when  |𝛿| ≤ 𝑔,    

   𝑘𝑡𝛿 − (𝑘𝑐 − 𝑘𝑡)𝑔,                   when  𝛿 < −𝑔,    

                           (2) 119 

where 𝑓𝑛𝑠𝑝(𝛿) is the nonlinear restoring force caused by the piecewise linear stiffness, 𝑔 is the offset 120 

deformation due to preload, 𝑘𝑐  and 𝑘𝑡  are the constant spring stiffness coefficients. Fig. 1(d) depicts a 121 

spring that exhibits asymmetrical behaviour under compression and tension, representing a simplified non-122 

smooth joint model without preload and offset deformation. The model can be mathematically expressed 123 

as   124 

𝑓𝑛𝑠𝑏(𝛿) = {
  𝑘ℎ𝛿,                     when  𝛿 < 0,   
  𝑘𝑠𝛿,                      when 𝛿 ≥ 0,   

                                            (3) 125 

where 𝑓𝑛𝑠𝑏(𝛿) is the nonlinear restoring force of the bilinear spring,  𝑘𝑠 and 𝑘ℎ are the constant spring 126 

stiffness coefficients corresponding to positive and negative relative displacement, respectively. 127 
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 128 

Fig.1 Schematic diagram of coupled structures with bolted joint, subject to different excitations 𝑓1ei𝜔1𝑡 and 𝑓2ei𝜔2𝑡. 129 

(a) Physical model of a bolted joint with dynamic loading. It may exhibit following force-deformation characteristics: 130 

(b) a smooth joint with linear stiffness coefficient 𝑘𝑙 and nonlinear stiffness coefficient 𝑘𝑛; (c) a non-smooth joint 131 

with piecewise linear stiffness coefficients 𝑘𝑐 and 𝑘𝑡, 𝑔 is the offset deformation; (d) a non-smooth joint with bilinear 132 

stiffness coefficients 𝑘ℎ and 𝑘𝑠. 133 

In Fig. 1(d), each structure can be further characterized by a SDOF linear subsystem representing the 134 

dominant mode. Therefore, the original physical model is simplified as a coupled oscillator system with 135 

smooth or non-smooth joint. Subsystem one (S1) consists of a mass 𝑚1 subjected to a harmonic force 136 

𝑓1 cos 𝜔1𝑡, a linear spring with stiffness coefficient 𝑘1, and a viscous damper with damping coefficient 𝑐1. 137 

Subsystem two (S2) comprises a mass 𝑚2 with another external force 𝑓2 cos 𝜔2𝑡 attached to a linear spring 138 

𝑘2 and a viscous damper 𝑐2. Both masses oscillate horizontally, and the static equilibrium position is taken 139 

as reference at which the displacements, 𝑥1 = 𝑥2 = 0. The equation of motion of the integrated system is 140 

[
𝑚1 0
0 𝑚2

] {
𝑥̈1

𝑥̈2
} + [

𝑐1 0
0 𝑐2

] {
𝑥̇1

𝑥̇2
} + [

𝑘1 0
0 𝑘2

] {
𝑥1

𝑥2
} + {

−𝑓(𝛿)

𝑓(𝛿)
} = {

𝑓1ei𝜔1𝑡 

𝑓2ei𝜔2𝑡 },             (4) 141 

where 𝑓(𝛿) is the coupling force at the interface, replaced by 𝑓𝑠(𝛿) in the case of the smooth nonlinear joint, 142 

and by 𝑓𝑛𝑠𝑝(𝛿) or 𝑓𝑛𝑠𝑏(𝛿) for the cases of non-smooth joint. New parameters and variables are introduced 143 

below to facilitate dynamic analysis 144 

𝜔10 = √
𝑘1

𝑚1
, 𝜔20 = √

𝑘2

𝑚2
, 𝛾 =

𝜔20

𝜔10
, 𝜇 =

𝑚2

𝑚1
, 𝑋1 =

𝑥1

𝑙0
, 𝑋2 =

𝑥2

𝑙0
, Δ = 𝑋2 − 𝑋1, 145 
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𝜁1 =
𝑐1

2𝑚1𝜔10
,   𝜁2 =

𝑐2

2𝑚2𝜔20
,   𝐹1 =

𝑓1

𝑘1𝑙0
, 𝐹2 =

𝑓2

𝑘1𝑙0
, Ω1 =

𝜔1

𝜔10
, Ω2 =

𝜔2

𝜔10
, 𝜏 = 𝜔10𝑡, 146 

where 𝜔10 and 𝜔20 are the undamped natural frequencies of subsystems one and two, respectively, 𝛾 is the 147 

frequency ratio between them,  𝜇 is the mass ratio, 𝑙0 is the un-stretched length of the spring on the left, 𝑋1 148 

and 𝑋2  are the non-dimensional displacements of masses 𝑚1  and 𝑚2 , respectively, ∆  is the non-149 

dimensional relative displacement between the masses, 𝜁1  and 𝜁2  are the non-dimensional damping 150 

coefficients, 𝐹1  and 𝐹2  are the non-dimensional forcing amplitudes, Ω1  and Ω2  are the non-dimensional 151 

fundamental excitation frequencies, 𝜏  is the non-dimensional time. By using these dimensionless 152 

parameters, the governing equation (4) can be written into a non-dimensional form  153 

𝐌𝐗′′ + 𝐂𝐗′ + 𝐊𝐗 + 𝐅𝐧𝐥(𝐗, 𝐗′, 𝜏) = 𝐅𝐞(𝜏),                                            (5) 154 

where 𝐗 = {𝑋1(𝜏), 𝑋2(𝜏)}T  is the displacement response vector, the primes (′)  denote differentiation 155 

operations with respect to the non-dimensional time 𝜏, the symbol “T” denotes taking the transpose of a 156 

matrix, 𝐅𝐞(𝜏) = {𝐹1eiΩ1𝜏, 𝐹2eiΩ2𝜏}
T

 denoting the external load vector, 𝐌, 𝐂, and 𝐊 represent the mass, 157 

damping and stiffness matrices of the system with 158 

𝐌 = [
1 0
0 𝜇

],       𝐂 = [
2𝜁1 0
0 2𝜇𝜁2𝛾

],       𝐊 = [
1 0
0 𝜇𝛾2],                               (6) 159 

and 𝐅𝐧𝐥(𝐗, 𝐗′, 𝜏) = {−𝐹(∆, 𝜏), 𝐹(∆, 𝜏)}T represents the force vector generated at the nonlinear joint. Here 160 

the excitation frequency ratio is defined as the ratio of the two excitation frequencies Ω1 and Ω2: 161 

𝜀 = Ω2/Ω1.                                                                         (7) 162 

For the joint with a cubic stiffness nonlinearity, we have 163 

𝐹(∆, 𝜏) = 𝐹𝑠(∆, 𝜏) = 𝜆∆ +  𝛽∆3,                                                        (8) 164 

where 𝜆 = 𝑘𝑙/𝑘1 and 𝛽 = 𝑘𝑛𝑙0
2/𝑘1, representing linear and nonlinear stiffness ratios of the smooth joint, 165 

respectively. When the joint is characterized by a piecewise linear spring, the corresponding dimensionless 166 

restoring force is 167 

𝐹(∆, 𝜏) = 𝐹𝑛𝑠𝑝(∆, 𝜏) =
𝑓𝑛𝑠𝑝(𝛿,𝑡)

𝑘1𝑙0
= {

𝛼𝑋 + 𝛼𝑒(𝜅 − 1),                 for ∆> 𝑒  
      𝛼𝜅𝑋,                                         for |∆| ≤ 𝑒    

    𝛼𝑋 − 𝛼𝑒(𝜅 − 1),                  for ∆< −𝑒   
                     (9) 168 

where 𝛼 = 𝑘𝑡/𝑘1 is the stiffness ratio, 𝜅 = 𝑘𝑐/𝑘𝑡 is the piecewise linear stiffness ratio and 𝑒 = 𝑔/𝑙0 is the 169 

non-dimensional offset. When the joint is characterized by a bilinear spring, the corresponding 170 

dimensionless restoring force is 171 
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𝐹(∆, 𝜏) = 𝐹𝑛𝑠𝑏(∆, 𝜏) =
𝑓𝑛𝑠𝑏(𝛿,𝑡)

𝑘1𝑙0
= {

  𝜌∆,                        when  ∆< 0,    
𝜂𝜌∆,                      when ∆≥ 0,   

                           (10) 172 

where 𝜌 = 𝑘ℎ/𝑘1 is the stiffness ratio and 𝜂 = 𝑘𝑠 𝑘ℎ⁄  is the bilinear stiffness ratio.  173 

To examine the vibration transmission and energy flow through the nonlinear joint of the coupled 174 

system, it is necessary to solve the nonlinear governing equations. In this study, two different approaches 175 

will be adopted. One is the harmonic balance (HB) method based on analytical derivations and the 176 

alternating frequency time (AFT) scheme. The other is based on a fourth-order Runge-Kutta (RK) method. 177 

The HB-AFT method has been a widely accepted tool to obtain the periodic responses of a dynamical 178 

system and it can provide physical insights into the dynamics of nonlinear systems. The RK method can be 179 

used to obtain both periodic or non-periodic responses with high accuracy but at higher computational cost.   180 

3. HB-based vibration energy flow analysis 181 

In this section, HB-based vibration energy flow analysis is presented. A general approach employing the 182 

HB-AFT is introduced to obtain the steady-state response solution of Eq. (4). Analytical method using first-183 

order HB approximations of smooth joint case is also presented. Multiple performance indices, such as 184 

time-averaged input and transmitted power, are defined and formulated.   185 

3.1 HB-AFT for multi-frequency excitations 186 

The HB-AFT technique is used to obtain the periodic responses of the coupled systems with a nonlinear 187 

joint [60-63]. For its implementation, the general solution of Eq. (4) can be truncated into 𝑁-th order Fourier 188 

series  189 

𝑋𝑗(𝜏) = ℜ{∑ 𝐻̃(𝑗,𝑛)ei𝑛Ω1𝜏𝑁
𝑛=0 } + ℜ{∑ 𝑄̃(𝑗,𝑛)ei𝑛Ω2𝜏𝑁

𝑛=0 },                         (11)    190 

where 𝑗=1 or 2 represents the subsystem S1 or S2; 𝐻̃(𝑗,𝑛) and 𝑄̃(𝑗,𝑛) are the complex Fourier coefficients of 191 

the dimensionless displacement for the 𝑛-th harmonics associated with excitation frequencies Ω1 and Ω2, 192 

respectively; ℜ denotes the operation of taking the real part of a complex number. The corresponding 193 

velocity and acceleration are 194 

𝑋𝑗′(𝜏) = ℜ{∑ i𝑛Ω1𝐻̃(𝑗,𝑛)ei𝑛Ω1𝜏𝑁
𝑛=0 } + ℜ{∑ i𝑛Ω2𝑄̃(𝑗,𝑛)ei𝑛Ω2𝜏𝑁

𝑛=0 },                              (12) 195 

𝑋𝑗′′(𝜏) = ℜ{∑ −(𝑛Ω1)2𝐻̃(𝑗,𝑛)ei𝑛Ω1𝜏𝑁
𝑛=0 } + ℜ{∑ −(𝑛Ω2)2𝑄̃(𝑗,𝑛)ei𝑛Ω2𝜏𝑁

𝑛=0 },                 (13) 196 

respectively. The nonlinear force applied to the nonlinear joint can be expressed as  197 

𝐹(𝜏) = ℜ{∑ 𝑅̃𝑛ei𝑛Ω1𝜏𝑁
𝑛=0 } + ℜ{∑ 𝑆̃𝑛ei𝑛Ω2𝜏𝑁

𝑛=0 },                                               (14) 198 
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where 𝑅̃𝑛 and 𝑆̃𝑛 are the complex variables of nonlinear force with 𝑛-th harmonics. By inserting Eqs (11)- 199 

(14) into Eq. (4) and balancing the harmonic coefficients at the n-th order, one obtains 200 

(−(𝑛Ω1)2𝐌 + i(𝑛Ω1)𝐂 + 𝐊)𝐇̃𝑛 = 𝐅̃1𝑛 − 𝐑̃𝑛,                                             (15) 201 

(−(𝑛Ω2)2𝐌 + i(𝑛Ω2)𝐂 + 𝐊)𝐐̃𝑛 = 𝐅̃2𝑛 − 𝐒̃𝑛,                                             (16) 202 

where 𝐇̃𝑛 = {𝐻̃(1,𝑛), 𝐻̃(2,𝑛)}
T

, 𝐐̃𝑛 = {𝑄̃(1,𝑛), 𝑄̃(2,𝑛)}
T
, 𝐑̃𝑛 = {𝑅̃𝑛, −𝑅̃𝑛}T, 𝐒̃𝑛 = {𝑆̃𝑛, −𝑆̃𝑛}T, 𝐅̃1𝑛 =203 

{𝐹1, 0}T , and 𝐅̃2𝑛 = {0, 𝐹2}T . It is noted that Eqs (15) and (16) are two nonlinear equations with 204 

complex numbers, which can be transformed into four real algebraic equations. Therefore, for the coupled 205 

two-DOF system with N-th order harmonics, the total equations will be 2(4𝑁 + 2). The solutions of these 206 

nonlinear algebraic equations can be obtained by the Newton-Raphson based pseudo arc-length 207 

continuation techniques [64-66]. 208 

3.2 Analytical HB approximation 209 

The previous section provides a general procedure to obtain the dynamic response and power flow variables 210 

for nonlinear systems with smooth or non-smooth joint based on the HB method. This approach is mainly 211 

based on the Fourier Transform and numerical continuation technique, which has sufficient accuracy but 212 

relatively large amount of calculation. For a smooth joint, e.g., cubic stiffness nonlinearity, the analytical 213 

first-order harmonic balance (HB) approximation can also be used to obtain the dynamic response 214 

effectively and efficiently. The steady-state dimensionless displacement of S1 and the relative displacement 215 

of the subsystems are expressed by  216 

𝑋1 = 𝑎 cos(Ω1𝜏 + 𝜙1) + 𝑏 cos(Ω2𝜏 + 𝜙2),                                        (17) 217 

𝑌 = 𝑝 cos(Ω1𝜏 + 𝜃1) + 𝑞 cos(Ω2𝜏 + 𝜃2),                                           (18) 218 

respectively, where 𝑎, 𝑏, 𝑝, and 𝑞 are the response amplitudes, 𝜙1, 𝜙2, 𝜃1 and 𝜃2 are the corresponding 219 

phase angles. Based on Eqs (17) and (18), the first and second derivatives of the displacements with respect 220 

to time can be calculated. By substituting related displacements, velocities and accelerations into governing 221 

Eq. (4), ignoring high-order terms, and balancing the coefficients of terms cos(Ω1𝜏), sin(Ω1𝜏), cos(Ω2𝜏), 222 

and  sin(Ω2𝜏) , we can obtain eight nonlinear algebraic equations with eight unknowns of response 223 

amplitudes and phase angles. See details in the Appendix. They can be solved by a standard Newton-224 

Raphson technique together with the numerical continuation algorithm scheme.  225 

For later analysis, the natural frequencies of the corresponding linear undamped system are determined. 226 

By setting 𝐹1 = 𝐹2 = 𝜁1 = 𝜁2 = 𝛽 = 0, Eq. (4) becomes  227 

[
−Ω2 + 1 + 𝜆 −𝜆

−𝜆 −𝜇Ω2 + 𝜇𝛾2 + 𝜆
] {

|𝑋1|

|𝑋2|
}  =0,                                   (19) 228 
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where first-order approximations are used, |𝑋1| and |𝑋2| are the response amplitudes of the S1and S2, 229 

respectively. The natural frequencies are determined by setting the determinant of the matrix to be zero 230 

𝜇Ω4 − Ω2(𝜇𝛾2 + 𝜆 + 𝜆𝜇 + 𝜇) + 𝜇𝛾2 + 𝜆 + 𝜆𝜇𝛾2 = 0.                                (20) 231 

Eq. (20) is the characteristic equation to which the corresponding solutions are the linearized natural 232 

frequencies Ω𝑛1 and Ω𝑛2 (assuming Ωn1 < Ωn2) . By solving the quadratic equation of Ω2, we have  233 

Ωn1
2 =

(𝜇𝛾2+𝜆+𝜆𝜇+𝜇)−√(𝜇𝛾2+𝜆+𝜆𝜇+𝜇)2−4𝜇(𝜇𝛾2+𝜆+𝜆𝜇𝛾2)

2𝜇
.                                (21) 234 

Ωn2
2 =

(𝜇𝛾2+𝜆+𝜆𝜇+𝜇)+√(𝜇𝛾2+𝜆+𝜆𝜇+𝜇)2−4𝜇(𝜇𝛾2+𝜆+𝜆𝜇𝛾2)

2𝜇
.                                (22) 235 

3.3 Vibration energy flow quantities 236 

Vibration power flow and energy variables are widely used to evaluate the level of vibration transmission 237 

for dynamical systems. In this study, the input and transmitted powers are of interest. 238 

The instantaneous input power is the sum of power injection from external sources in each subsystem, 239 

that is, the total energy or power consumption within the system due to the viscous damping according to 240 

the law of energy conservation, which can be expressed as 241 

𝑃in = 𝑃in1 + 𝑃in2 = ℜ{𝑋1′}ℜ{𝐹1eiΩ1𝜏} + ℜ{𝑋2′}ℜ{𝐹2eiΩ2𝜏} = (ℜ{∑ i𝑛Ω1𝐻̃(1,𝑛)ei𝑛Ω1𝜏𝑁
𝑛=0 } +242 

ℜ{∑ i𝑛Ω2𝑄̃(1,𝑛)ei𝑛Ω2𝜏𝑁
𝑛=0 })ℜ{𝐹1eiΩ1𝜏} + (ℜ{∑ i𝑛Ω1𝐻̃(2,𝑛)ei𝑛Ω1𝜏𝑁

𝑛=0 } +243 

ℜ{∑ i𝑛Ω2𝑄̃(2,𝑛)ei𝑛Ω2𝜏𝑁
𝑛=0 })ℜ{𝐹2eiΩ2𝜏},                                            (23) 244 

where 𝑃in1 and 𝑃in2 are the instantaneous input power of subsystem one and two, respectively; 𝑋1′ and 𝑋2′ 245 

are the velocities based on Eq. (12) of S1 and S2, respectively. For steady-state motion, the dimensionless 246 

time-averaged input power is  247 

𝑃̅in =
1

𝑡𝑠
∫ 𝑃in

𝑡0+𝑡𝑠

𝑡0
d𝜏 =

1

2
𝐹1ℜ{(iΩ1𝐻̃(1,1))

∗
} +

1

2
𝐹2ℜ{(iΩ2𝑄̃(2,1))

∗
},                            (24) 248 

where 𝑡0 is the starting time of integration and 𝑡𝑠 is the averaging time; (∗) denotes the complex conjugate 249 

of a complex number. Starting time is set as 𝜏0 = 800𝑇 to remove the transient motion, where 𝑇 = 2𝜋/Ω1. 250 

Averaging time is 𝑡𝑠 = 1000𝑇. The expression of the time-averaged input power obtained using the first-251 

order HB approximation is provided in the Appendix.  252 

The instantaneous transmitted power is defined as the product of the nonlinear transmitted force and 253 

the velocity of subsystem two, representing the power transmission between the two subsystems through 254 

the nonlinear smooth/non-smooth joint. Therefore, the non-dimensional instantaneous transmitted power 255 

can be expressed as 256 

𝑃t = 𝑃in2 − 𝑃d2 = ℜ{𝑋2
′ }ℜ{𝐹2eiΩ2𝜏} − ℜ{𝑋2

′ }ℜ{2𝜇𝜁2𝛾𝑋2
′ } .                                (25) 257 
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According to the energy conservation law, the sum of the transmitted power 𝑃t and the dissipated power 258 

𝑃d2 in S2 equals the total power input 𝑃in2. Therefore, the time-averaged transmitted power in steady-state 259 

can be written as 260 

𝑃̅t = 𝑃̅in2 − 𝑃̅d2 =
1

2
𝐹2ℜ{(iΩ2𝑄̃(2,1))

∗
} − 𝜇𝜁2𝛾{Ω1

2 ∑ 𝑛2𝐻̃(2,𝑛)
2𝑁

𝑛=0 + Ω2
2 ∑ 𝑛2𝑄̃(2,𝑛)

2𝑁
𝑛=0 },   (26) 261 

It should be mentioned that the positive value of the time-averaged transmitted power represents the 262 

vibrational power flow and energy transmission from subsystem one to two, which means that subsystem 263 

one has higher energy potential than subsystem two, and vice versa. Note that the expression of the time-264 

averaged transmitted power using the first-order HB method is shown in the Appendix. 265 

4. Results and discussion 266 

In this section, the dynamic response and vibrational energy transfer of coupled systems with a smooth or 267 

a non-smooth joint is presented in section 4.1 and 4.2, respectively. The effects of the excitation frequency 268 

ratio 𝜀 = Ω2/Ω1, the piecewise linear stiffness ratio 𝜅 = 𝑘𝑐/𝑘𝑡 and the bilinear stiffness ratio 𝜂 = 𝑘𝑠 𝑘ℎ⁄  269 

on the response amplitude and power flow quantities are examined.  270 

4.1 Vibration transmission through smooth joint 271 

Here, the two subsystems are connected by a nonlinear smooth joint with cubic stiffness nonlinearity 272 

described by Eq. (8). The effects of the excitation frequency ratio on the dynamic response and vibration 273 

transmission are investigated and analyzed.  274 

Figure 2 shows the impact of the excitation frequency ratio 𝜀 on the resonant peaks. Based on the free 275 

vibration analysis of the undamped system, the natural frequencies Ω𝑛1 and Ω𝑛2, as derived from Eqs (21) 276 

and (22) respectively, are denoted as peaks M and N in the figure. Furthermore, when subsystem two is 277 

excited by a frequency Ω2 (i.e., 𝜀Ω1), two additional resonances emerge, represented by Ω𝑛1/𝜀 and Ω𝑛2/𝜀, 278 

and labeled as peaks P and Q respectively. Consequently, the frequency-response curves exhibit a total of 279 

four resonant peaks, with peaks M and P corresponding to in-phase motions, while peaks N and Q 280 

correspond to out-of-phase motions. It is noted that the frequencies of peaks M and N do not change despite 281 

of the variations of the excitation frequency ratio 𝜀. In the case of system parameters set as 𝛾 = 𝜆 = 𝜇 = 1, 282 

peaks M and N are located at Ω𝑛1 = 1 and Ω𝑛2 = √3. In comparison, the other two peak frequencies vary 283 

with 𝜀. Therefore, from low to high frequencies, there are four possible orders of the appearance of the 284 

peaks: Type-1: MNPQ, Type-2: MPNQ, Type-3: PMQN, and Type-4: PQMN (sequence PMNQ is not 285 

applicable for the current case) depending on the fixed excitation frequency ratio, as shown in Figs 2(a), 286 

(b), (c) and (d), respectively. For example, in Fig. 2(a), Type-1 with the frequency ratio 𝜀 = 1/3, the 287 

resonant peaks M, N, P, and Q are located at Ω1  = 1, Ω1 = √3, Ω1 = 3  and  Ω1  = 3√3, respectively. Fig. 288 
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2 also shows the influence of the cubic stiffness nonlinearity 𝛽 on the dynamic response as compared to the 289 

reference linear joint case. The response curves of two cases almost coincide at the peaks M and P, meaning 290 

that these two resonant peaks remain unchanged with the variations in 𝛽 value. Due to the hardening 291 

stiffness nonlinearity 𝛽 = 0.5, two peaks N and Q are bent to the high-frequency range, and the jump 292 

phenomena and multiple solutions also occur. Because of the large displacement motion near the resonance, 293 

the linearization fails in accurate prediction of the dynamic response. The stiffness nonlinearity has major 294 

effects in the vicinity of the second resonant peaks. In the high- and low-frequency ranges, the response 295 

curves for difference cases merge, indicating that the effects of the frequency ratio and the stiffness 296 

nonlinearity are negligible here. This is because that the relative displacement between the subsystems is 297 

relatively small in these regions, so that the nonlinear restoring force due to the nonlinearity of the joint is 298 

low compared to the linear term. 299 

 300 

Fig. 2 Effects of the excitation frequency ratio 𝜀 on the sequence of the resonant peaks computed for (a) 𝜀 = 1/3, (b) 301 

𝜀 = 3/5, (c) 𝜀 =  3/2, (d) 𝜀 = 3. Peaks M and N are the resonances due to excitation frequency Ω1, and peaks P and 302 

Q are resonances due to excitation frequency Ω2. Frequency spectra diagrams are for the points located at Ω1 = 0.2 303 

(A and A’) and  Ω1 = 8 (B and B’). Solid lines: nonlinear stiffness at the joint (𝛽 = 0.5). Dashed lines: linear stiffness 304 
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at the joint (𝛽 = 0). Symbols: numerical integration results. Other system parameters: 𝛾 = 𝜆 = 𝜇 = 1, 𝜁1 = 𝜁2 =305 

0.01, 𝐹1 = 𝐹2 = 0.1. 306 

Figure 2 also contains the frequency spectra information of four points as marked by A, A’, B and B’. 307 

Due to the multi-frequency excitations, there are two primary frequency components. Apart from the 308 

primary response component at Ω𝑟 = Ω1 , the other frequency component is related to the excitation 309 

frequency ratio, e.g., Ω𝑟 = Ω2 = Ω1/3 when 𝜀 is 1/3 and Ω𝑟 = Ω2 = 3Ω1with 𝜀 being 3. In other words, 310 

the instantaneous dynamic response only contains first-order frequency components, and there are no 311 

obvious super- or sub-harmonic components. However, at point B’, the response only shows a major 312 

frequency component at Ω𝑟 = Ω1 while the expected frequency component of Ω𝑟 = 3Ω1 disappears, as 313 

shown in Fig. 2(d). The reason is that the excitation frequency of Ω2 at point B’ is away from the resonant 314 

peaks P and Q, and the corresponding influence on the dynamic response is negligible. Therefore, the 315 

fundamental excitation frequency Ω1 is dominant at high frequencies for peak Type-4 (i.e. peak sequence 316 

PQMN). It demonstrates that the frequency spectra results are highly related to the excitation frequencies 317 

Ω1, Ω2 and their relative ratio. Similar phenomena can also be observed in Fig. 2(a) for peak Type-1 (i.e. 318 

peak sequence MNPQ), the spectrum shows a stronger frequency component at Ω𝑟 = Ω1 for point A as it 319 

is close to the resonant peak M. As for point B, it is near the resonant peak Q and away from the resonant 320 

M, therefore, the frequency component at Ω𝑟 = Ω1/3 is higher than Ω𝑟 = Ω1. In Figs 3(a) and (b), the 321 

dynamic responses associated with points A and A′ are obtained from the HB and RK methods and shown 322 

in the time domain. The figure shows that the analytical results using the first-order HB approximations 323 

agree well with the direct numerical integration results. Hence, with a balanced consideration of 324 

computational efficiency and accuracy, the analytical first-order approximation is used in this section. Fig. 325 

3 also shows that with the frequency ratio of 1/3 and 3, the displacement responses are periodic having 326 

periods 𝑇0 = 3𝑇 and 𝑇0 = 𝑇, respectively, where 𝑇0 is one oscillations cycle and 𝑇 = 2𝜋/Ω1.  327 

Figures 4(a) and (b) show the effects of the excitation frequency ratio on the relative displacement 328 

amplitude of 𝑌 and the time-averaged input power 𝑃̅in, respectively.  The appearance of the peaks is in 329 

sequence of PQMN, i.e., Type-4. Fig. 4(a) shows that there are only two right-bending peaks N and Q in 330 

the response curve of 𝑌, while there are no primary resonance peaks M and P. This behaviour is related to 331 

the fact that the coupled subsystems exhibit in-phase motion at the two peak frequencies M and P, and out-332 

of-phase motion at N and Q. Four peaks of similar heights are observed in the curves of 𝑃̅in. Fig. 4 also 333 

shows that the two resonances related to excitation frequency Ω2  (i.e., peaks P and Q) shift to lower 334 

frequencies as the frequency ratio 𝜀 increases. When 𝜀 increases from 3, to 5, and then to 7, the peak P 335 

moves from Ω1 =1/3 to 1/5 and then to 1/7. In comparison, the peaks M and N remain unchanged regardless 336 

of the variations in the excitation frequency ratio. Fig. 4(b) shows that in the low-frequency range, there is 337 
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a higher level of total power input when the system has a larger frequency ratio. This is because the 338 

excitation frequency Ω2 dominates at low frequencies for peak Type-4 (peak sequence PQMN). Away from 339 

the low frequency range, e.g., resonant area around peaks M and N as well as the high-frequency range, the 340 

influence of the frequency Ω2 is weakened, and the excitation frequency Ω1 plays a major role, with the 341 

lines for different cases merge.  342 

 343 

Fig. 3 Time histories of the displacement response of the mass in the time span from 𝜏 = 800𝑇 to 𝜏 = 800𝑇 for the 344 

system excited at (a) point A with 𝜀 = 1/3 and (b) point A’ with 𝜀 = 3. Solid lines: first-order HB; Dashed lines with 345 

symbols: fourth-order RK. System parameters: 𝛾 = 𝜆 = 𝜇 = 1, 𝜁1 = 𝜁2 = 0.01, 𝐹1 = 𝐹2 = 0.1, 𝛽 = 0.5. 346 

 347 

Fig. 4 Effects of the excitation frequency ratio 𝜀 on the (a) relative displacement amplitude Y and (b) time-averaged 348 

input power 𝑃̅in. Lines: first-order HB approximations. Symbols: fourth-order RK results. Other system parameters: 349 

𝜇 = 𝜆 = 𝛾 = 1, 𝜁1 = 𝜁2 = 0.01, 𝐹1 = 𝐹2 = 0.1, 𝛽 = 0.5. 350 
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The behaviour of vibrational energy transfer within the coupled system under different excitation 351 

frequency ratios is investigated and the results are shown in Fig. 5. The results indicate that when the 352 

excitation frequency is high or close to peaks M and N, the time-averaged transmitted power 𝑃̅𝑡 is positive. 353 

This signifies a net power flow from subsystem one to subsystem two through the smooth nonlinear 354 

interface. Importantly, there exists a critical frequency at which the power transmission curve changes sign, 355 

resulting in zero net energy transfer. Beyond this critical frequency, power starts flowing in the opposite 356 

direction, indicating that subsystem two possesses a higher energy potential, and power transfers from 357 

subsystem two to subsystem one. In Figure 5, this critical frequency is approximately Ω1 ≈0.687, 0.468, 358 

and 0.341 for the cases where 𝜀 equals 3, 5, and 7, respectively. 359 

 360 

Fig. 5 Effects of excitation frequency ratio 𝜀 on the time-averaged transmitted power 𝑃̅t. The critical frequencies for 361 

zero net power transfer: Ω1 ≈ 0.687, 0.468 and 0.341 for 𝜀 =3, 5 and 7, respectively. Phase portraits of two locations: 362 

(a) excitation frequency Ω1 = 8, and (b-d) excitation frequency Ω1 = 0.2. Black, red and blue lines represent 𝜀 =3, 5 363 

and 7, respectively. Other system parameters: 𝜇 = 𝜆 = 𝛾 = 1, 𝜁1 = 𝜁2 = 0.01, 𝐹1 = 𝐹2 = 0.1, 𝛽 = 0.5. 364 

As the frequency ratio increases, the peaks P and Q move to the low-frequency range, allowing the 365 

critical frequency to reach a new equilibrium point. For peak Type-4 shown in Fig. 5, the fundamental 366 

excitation frequency Ω1 of subsystem one has a major influence around resonances M and N as well as at 367 



15 
 

high frequencies, so subsystem one has higher energy potential in these areas. In comparison, the 368 

fundamental excitation frequency Ω2  of subsystem two controls the power transmission in the low-369 

frequency range, that is, subsystem two has higher energy potential in this region. Figs 5(a)-(d) further show 370 

the dynamic response behaviour of two positions (Ω1 = 0.2 and Ω1 = 8) for different cases using phase 371 

portrait diagrams. The results in Fig. 5(a) suggest that in the high-frequency region, the excitation frequency 372 

ratio has little effect on the transmitted power. This is reflected in the fact that the phase portrait shows only 373 

one periodic solution, regardless of the value of 𝜂. This indicates that the system behaviour is relatively 374 

insensitive to the changes in the excitation frequency ratio in this region. In contrast, the results in the low-375 

frequency region show that the system behaviour is much more sensitive to the changes in the excitation 376 

frequency ratio. The phase portrait can show multiple types of solutions, such as two periodic solutions, 377 

quasi-periodic solutions, and multi-periodic solutions. This means that changes in the excitation frequency 378 

ratio can significantly impact the transmitted power, leading to different system behaviour. 379 

In Fig. 6 the mechanism of power transmission through the nonlinear smooth interface under multi-380 

frequency excitations is further investigated. The dotted line represents the time-averaged transmitted 381 

power with frequency ratio 𝜀 = 1/3 (peak sequence MNPQ, i.e., Type-1), and the solid line denote the 382 

peak Type-3 (peak sequence PMQN) with frequency ratio 𝜀 = 3/2. For Type-1, the two resonant peaks of 383 

the excitation frequency Ω2  (peaks P and Q) are in the high-frequency with negative value. The 384 

corresponding equilibrium point of power transmission is around Ω1 ≈ 2.061. For Type-3 case shown in 385 

Fig. 6, the downward arrows represent the net power flows from subsystem one to two, and the upward 386 

arrow indicates the energy transmission in the opposite direction. In the two frequency ranges Ω1 ≈ 0.10 387 

to 0.861 and Ω1 ≈ 1.102 to 1.253, the time-averaged transmitted powers are negative. Combined with Fig. 388 

6, it shows that 𝑃̅t has a negative value in the vicinity of the resonant peaks P and Q, and 𝑃̅t is positive near 389 

the resonance areas of peaks M and N. It indicates that the frequency ratio has a significant effect on the 390 

location of peaks P and Q and the direction of energy transfer in coupled vibration system, while other 391 

regions have negligible effects. Fig. 6 provides a potential control method for power transmission by using 392 

different excitation frequencies. In addition, the influence of the stiffness nonlinearity of the joint and the 393 

forcing amplitude is also considered, and results are presented in the Appendix. 394 
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 395 

Fig. 6 Performance of the time-averaged transmitted power with different excitation frequency ratios 𝜀 = 3/2 and 396 

𝜀 = 1/3. Positive 𝑃̅𝑡: net energy transfer from S1 to S2; negative 𝑃̅𝑡: net energy transfer from S2 to S1. Lines: first-397 

order HB approximations. Symbols: fourth-order RK results. Other system parameters: 𝜇 = 𝜆 = 𝛾 = 1, 𝜁1 = 𝜁2 =398 

0.01, 𝐹1 = 𝐹2 = 0.1, 𝛽 = 0.5.  399 

4.2 Vibration transmission through non-smooth joint 400 

This section explores the dynamic responses and vibrational energy transfer within the coupled systems, 401 

facilitated by a non-smooth joint. Two models are considered: one featuring piecewise linear stiffness 402 

(illustrated in Fig. 1c), and the other employing bilinear stiffness (depicted in Fig. 1d). In order to obtain 403 

accurate and efficient results for the dynamic response and power flow variables, the seventh-order HB-404 

AFT method is utilized. This section also aims to assess the influence of the stiffness ratio and excitation 405 

frequency ratio on the vibration transmission. 406 

Figure 7 examines the impact of the stiffness ratio, represented by the piecewise linear joint 𝜅 = 𝑘𝑐/𝑘𝑡, 407 

on the relative response amplitude 𝑌 and the time-averaged input power 𝑃̅in. The findings highlight that the 408 

ratio of the two slopes primarily influences the dynamic response and power transmission in the secondary 409 

resonances. An increase in the 𝜅 value, indicating a higher stiffness, results in the secondary resonant peaks 410 

shifting towards higher frequencies. Additionally, the study reveals that bending and discontinuity occur in 411 

the response and power transmission curves when the relative displacement amplitude surpasses the offset 412 

deformation 𝑒. When the 𝜅  value is small, i.e., 𝑘𝑐 < 𝑘𝑡 , a right-bending is observed in the secondary 413 
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resonant peaks, reminiscent of hardening behaviour. Conversely, when 𝜅 > 1, indicating 𝑘𝑐 > 𝑘𝑡 , the 414 

secondary resonant peaks bend towards the low-frequency range, similar to softening behaviour. 415 

 416 

Fig. 7 Effects of the stiffness ratio in the piecewise linear stiffness joint 𝜅 = 𝑘𝑐/𝑘𝑡 on the (a) relative displacement 417 

amplitude and (b) time-averaged input power. Lines: seventh-order HB-AFT. Symbols: fourth-order Runge-Kutta. 418 

Other system parameters: 𝜇 = 𝜌 = 𝛾 = 1, 𝜁1 = 𝜁2 = 0.01, 𝐹1 = 0.1, 𝐹2 = 0.05, 𝛼 = 1, 𝑒 = 0.5. 419 

Figure 8 depicts the frequency-response curve of the relative response amplitude Y obtained using two 420 

different methods. The first method employs a seventh-order HB-AFT approach (represented by dashed 421 

lines) to characterize the dynamic response of the system featuring a piecewise linear stiffness joint. The 422 

second method approximates the non-smooth joint by utilizing a smooth cubic stiffness function and 423 

employs an analytical first-order HB method (represented by solid lines). The study demonstrates that the 424 

piecewise linear stiffness joint can be effectively approximated by a smooth polynomial function with a 425 

cubic term, yielding a satisfactory agreement between the two approaches. Furthermore, the study reveals 426 

that increasing the stiffness ratio 𝛼 (where 𝛼 = 𝑘𝑡/𝑘1) causes the secondary resonant peaks to shift towards 427 

higher frequencies. Additionally, a larger value of 𝛼 leads to a lower level of the relative response amplitude 428 

in the low-frequency range. However, in the high-frequency range, the impact of the stiffness ratio 𝛼 429 

becomes negligible as the frequency-response curves for each case coincide with each other. 430 
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 431 

Fig. 8 Effects of the stiffness ratio 𝛼 = 𝑘𝑡/𝑘1 on the relative displacement amplitude. Dashed lines: non-smooth joint 432 

with piecewise linear stiffness, using the seventh-order HB-AFT; Solid lines: approximated model using smooth joint 433 

with cubic stiffness, employing the first-order HB. Other system parameters: 𝜇 = 𝜌 = 𝛾 = 1, 𝜁1 = 𝜁2 = 0.01, 𝐹1 =434 

0.1, 𝐹2 = 0.05, 𝑒 = 0.5. 435 

The results shown in Fig. 9 demonstrate the influence of the bilinear stiffness ratio 𝜂 on the response 436 

amplitude of the relative displacement Y, considering the bilinear stiffness model. The figure compares the 437 

HB-AFT results with the numerical integration results obtained from the Runge-Kutta method. As the 438 

bilinear stiffness ratio increases, the two resonant peaks shift to higher frequencies, indicating that the 439 

natural frequencies of the system increase with the stiffness. In the low-frequency range, the response 440 

amplitude is higher for a smaller bilinear stiffness ratio, while in the high-frequency range, the effect of the 441 

bilinear stiffness ratio on the response amplitude is not significant. It is noted that the equivalent stiffness 442 

using the linearization method can provide a good estimation of the dynamic response, especially in the 443 

resonant area and high-frequency range. However, for the low-frequency range, it may lead to an 444 

underestimation of the response amplitude, and important dynamic information such as super-harmonics 445 

and quasi-periodic motions will not be captured. In comparison, the use of the seventh-order HB-AFT 446 

method enables the detection of super-harmonics at low frequencies and the corresponding results are in 447 

good agreement with the numerical integration results. 448 
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 449 

Fig. 9 Effects of the bilinear stiffness ratio 𝜂 on the relative displacement amplitude. Lines: seventh-order HB-AFT. 450 

Symbols: fourth-order Runge-Kutta. The equivalent stiffness 𝑘𝑒𝑞  is approximated using the reference [67]. Frequency 451 

spectra and phase portrait of the relative displacement and time history of the input power in (a-c) with  Ω1 =452 

0.389, 𝜂 = 1/2, in (d-f) with Ω1 = 3.793, 𝜂 = 2. Other system parameters: 𝜇 = 𝜌 = 𝛾 = 1, 𝜁1 = 𝜁2 = 0.01, 𝐹1 =453 

0.1, 𝐹2 = 0.05, Ω2/Ω1 = 3. 454 

In Figs 9(a-f), the dynamic information of two points, C and D, is analyzed to gain a deeper 455 

understanding of the behaviour of the system. The frequency spectra, phase diagram, and time history plots 456 

are used to observe the system’s behaviour in the time and frequency domains. Figs 9(a-c) show the 457 

dynamic information of point C at an excitation frequency of 𝛺1 ≈  0.389, while Figs 9(d-f) show the 458 

information of point D at an excitation frequency of 𝛺1  ≈  3.793. The system at point C exhibits steady-459 

state periodic motion with three super-harmonic components at 𝛺𝑟  =  3𝛺1, 4𝛺1, and 5𝛺1. However, at 460 

point D, the dynamic response and input power obtained by HB-AFT method are lower than the numerical 461 

results, due to a sub-harmonic component of 𝛺𝑟 =
1

2
𝛺1. This is because the HB-AFT method used in the 462 

study expands the Fourier series to integer orders of the fundamental excitation frequency, which leads to 463 

discrepancy for fractional frequency ratios. The time history, phase diagram, and Poincaré map of the 464 
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dynamic response 𝑋1  at three different excitation frequencies, 𝛺1  = 0.400, 0.443, and 0.586, are also 465 

investigated in Fig. 10. It is found that the system exhibits periodic-1, periodic-2, and periodic-3 motions, 466 

respectively, at these three different locations. No quasi-periodic or chaotic motions are observed in the 467 

dynamic response and power flow. 468 

 469 

Fig. 10 Time history, phase diagram and Poincare map of the dynamic response 𝑋1 at Ω1 = 0.4 (a − c) with 470 

periodic-1 motion, Ω1 = 0.443 (d − f) with periodic-2 motion and Ω1 = 0.5864 (g − i) with periodic-3 motion, 471 

respectively. Other system parameters: 𝜇 = 𝜌 = 𝛾 = 1, 𝜁1 = 𝜁2 = 0.01, 𝐹1 = 0.1, 𝐹2 = 0.05, Ω2/Ω1 = 3, 𝜂 =472 

1/2. 473 

Figures 11(a) and (b) show the effects of the excitation frequency ratio 𝜀 on the relative displacement 474 

amplitude and the time-averaged input power of the coupled system with a bilinear stiffness joint. The 475 

results indicate that as the frequency ratio increases, peaks P and Q, which are resonances caused by the 476 

fundamental frequency 𝛺2, shift toward lower frequencies. In contrast, peaks M and N remain nearly fixed 477 

at 𝛺1 = 1  and 𝛺1 ≈ 1.557 , respectively. The results also show that in the low-frequency range, the 478 

response amplitude and time-averaged input power increase with the excitation frequency ratio. However, 479 

in the high-frequency range, the effect of the frequency ratio is insignificant. Combined with the previous 480 
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findings in Fig. 9, it suggests that the bilinear stiffness ratio 𝜂 primarily affects the dynamic response and 481 

energy transmission curves around the second resonant frequencies, while the frequency excitation ratio ε 482 

is responsible for the resonant peaks of 𝛺2. This provides potential methods for controlling and mitigating 483 

vibrations and power in nonlinear systems subjected to multi-frequency excitation.  484 

 485 

Fig. 11 Effects of the excitation frequency ratio 𝜀 on the (a) relative displacement amplitude and (b) time-averaged 486 

input power. Lines: seventh-order HB-AFT. Symbols: fourth-order Runge-Kutta. Other system parameters: 𝜇 = 𝜌 =487 

𝛾 = 1, 𝜁1 = 𝜁2 = 0.01, 𝐹1 = 0.1, 𝐹2 = 0.05, 𝜂 = 1/2. 488 

Figures 12(a) and (b) analyze the influence of two parameters, the bilinear stiffness ratio 𝜂 and the 489 

excitation frequency ratio 𝜀 , on the time-averaged transmitted power 𝑃̅t  between two subsystems. The 490 

results in Fig. 12(a) show that the critical frequency of zero net power transmission between the subsystems 491 

increases with the bilinear stiffness ratio 𝜂. It is observed that the two primary resonant peaks of the time-492 

averaged transmitted power remain unchanged, but the peaks N and Q shift to higher frequencies as the 493 

bilinear stiffness ratio increases. Furthermore, the results suggest that a greater value of bilinear stiffness 494 

ratio leads to a higher level of power transmission in the high-frequency range, but has little effect on 𝑃̅t in 495 

the low-frequency range. The results in Fig. 12(b) indicate that the frequency bandwidth of positive 𝑃̅t 496 

increases with the frequency ratio 𝜀. It is found that the point of zero net power transmission shifts to lower 497 

frequencies as the frequency ratio increases. These results show that changing the bilinear stiffness and 498 

frequency ratios can be a potential way of energy mitigation and targeted energy transmission in nonlinear 499 

dual-excitation systems. 500 
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 501 

Fig. 12 Effects of the (a) bilinear stiffness ratio 𝜂 with 𝜀 = 3 and (b) excitation frequency ratio 𝜀 with 𝜂 = 1/2 on the 502 

time-averaged transmitted power 𝑃̅t . In (a), zero net power transfer is located at Ω1 ≈ 0.621, 0.650 and 0.702 for 𝜂 =503 

1/2, 1 and 2, respectively; In (b), zero net power transfer is located at Ω1 ≈ 0.621, 0.431 and 0.342 for 𝜀 = 3, 5 and 504 

7, respectively. Other system parameters 𝜇 = 𝜌 = 𝛾 = 1, 𝜁1 = 𝜁2 = 0.01, 𝐹1 = 0.1, 𝐹2 = 0.05. 505 

5. Conclusions 506 

In this study we investigated the dynamic response and the vibrational energy transfer between coupled 507 

systems subjected to different excitation frequencies. The two subsystems are connected by a nonlinear 508 

cubic stiffness, a non-smooth piecewise linear or a bilinear stiffness joint. The first-order HB and the 509 

seventh-order HB-AFT methods were used as analytical approximations. The numerical fourth-order 510 

Runge-Kutta method was also employed for validation and comparison. The time-averaged input and 511 

transmitted powers were used to assess the energy transmission performance.  512 

For the system with the smooth joint, the resonant peaks, caused by fundamental frequency Ω1, do not 513 

change with the variation of excitation frequency ratio ε. However, the other two peak frequencies change 514 

with ε, leading to four possible orders of appearance of the peaks depending on the value of ε. It was found 515 

that the dynamic response of each subsystem only contains fundamental excitation frequencies without 516 

obvious sub-/super-harmonics. It was also demonstrated that the cubic stiffness nonlinearity mainly affects 517 

the vicinity of the second resonant peaks of the energy transmission curves.  518 

For the system featuring a non-smooth joint, the piecewise linear stiffness ratio induces a bending 519 

behaviour in the second resonant peaks, resembling either hardening or softening characteristics. In the case 520 

of the bilinear stiffness joint, it has been observed that increasing the bilinear stiffness ratio leads to a 521 

shifting of the second resonant peaks and the point of zero net energy transmission towards higher 522 
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frequencies. The excitation frequency ratio exerts a significant influence on the peak frequencies of 523 

subsystem two in terms of energy transmission, while the bilinear stiffness ratio primarily affects the 524 

characteristics of the second resonant peaks. Moreover, various nonlinear phenomena such as periodic-1, 525 

periodic-2, periodic-3, and super-/sub-harmonic resonances have been identified in the system's response. 526 

For both two cases, it is shown that the direction and the amount of time-averaged transmitted power 527 

through the nonlinear joint can be tuned by adjusting the excitation frequency and bilinear stiffness ratios, 528 

and thus achieving better dynamic performance. The resonances of subsystem two move to lower 529 

frequencies as the increase of the excitation frequency ratio. In the low-frequency range, the dynamic 530 

response and energy transmission level decrease with the excitation frequency ratio, which is beneficial for 531 

vibration suppression. 532 
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Appendix 537 

The first-order HB approximations continue from Eqs (17) and (18). By taking the derivatives of 𝑋1 and 𝑌 538 

with respect to the non-dimensional time, we have the approximate expressions of the velocities and 539 

accelerations: 540 

𝑋1
′ = −𝑎Ω1 sin(Ω1𝜏 + 𝜙1) − 𝑏Ω2 sin(Ω2𝜏 + 𝜙2), 𝑋1

′′ = −𝑎Ω1
2 cos(Ω1𝜏 + 𝜙1) − 𝑏Ω2

2 cos(Ω2𝜏 + 𝜙2)                            541 

(A1) 542 

𝑌′ = −𝑝Ω1 sin(𝛺1𝜏 + 𝜃1) − 𝑞Ω2 sin(Ω2𝜏 + 𝜃2),  𝑌′′ = −𝑝Ω1
2 cos(𝛺1𝜏 + 𝜃1) − 𝑞Ω2

2 cos(Ω2𝜏 + 𝜃2),                              543 

(A2) 544 

By substituting Eqs (17), (18), (A1) and (A2) into governing Eq. (4), ignoring high-order terms, and 545 

balancing the coefficients of terms cos(Ω1𝜏), sin(Ω1𝜏), cos(Ω2𝜏), and sin(Ω2𝜏), we can obtain eight 546 

nonlinear algebraic equations as 547 

−𝑎Ω1
2 cos 𝜙1 + 𝑎 cos 𝜙1 − 2𝜁1𝑎Ω1 sin 𝜙1 − 𝜆𝑝 cos 𝜃1 −

3𝛽𝑝3

4
cos 𝜃1 = 𝐹1,         (A3) 548 

𝑎Ω1
2 sin 𝜙1 − 𝑎 sin 𝜙1 − 2𝜁1𝑎Ω1 cos 𝜙1 + 𝜆𝑝 sin 𝜃1 +

3𝛽𝑝3

4
sin 𝜃1 = 0,          (A4) 549 

−𝑏Ω2
2 cos 𝜙2 + 𝑏 cos 𝜙2 − 2𝜁1𝑏Ω2 sin 𝜙2 − 𝜆𝑞 cos 𝜃2 −

3𝛽𝑞3

4
cos 𝜃2 = 0,          (A5) 550 

𝑏Ω2
2 sin 𝜙2 − 𝑏 sin 𝜙2 − 2𝜁1𝑏Ω2 cos 𝜙2 + 𝜆𝑞 sin 𝜃2 +

3𝛽𝑞3

4
sin 𝜃2 = 0,          (A6) 551 
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𝜇(−𝑎Ω1
2 cos 𝜙1 − 𝑝Ω1

2 cos 𝜃1) + 2𝜇𝜁2𝛾(−𝑎Ω1 sin 𝜙1 − 𝑝Ω1 sin 𝜃1) + 𝜇𝛾2(𝑎 cos 𝜙1 + 𝑝 cos 𝜃1) +552 

𝜆𝑝 cos 𝜃1 +
3𝛽𝑝3

4
cos 𝜃1 = 0,           (A7) 553 

𝜇(𝑎Ω1
2 sin 𝜙1 + 𝑝Ω1

2 sin 𝜃1) + 2𝜇𝜁2𝛾(−𝑎Ω1 cos 𝜙1 − 𝑝Ω1 cos 𝜃1) + 𝜇𝛾2(−𝑎 sin 𝜙1 − 𝑝 sin 𝜃1) −554 

𝜆𝑝 sin 𝜃1 −
3𝛽𝑝3

4
sin 𝜃1 = 0,           (A8) 555 

𝜇(−𝑏Ω2
2 cos 𝜙2 − Ω2

2𝑞 cos 𝜃2) − 2𝜇𝜁2𝛾(𝑏Ω2 sin 𝜙2 + 𝑞Ω2 sin 𝜃2) + 𝜇𝛾2(𝑏 cos 𝜙2 + 𝑞 cos 𝜃2) +556 

𝜆𝑞 cos 𝜃2 +
3𝛽𝑞3

4
cos 𝜃2 = 𝐹2,         (A9) 557 

𝜇(𝑏Ω2
2 sin 𝜙2 + Ω2

2𝑞 sin 𝜃2) − 2𝜇𝜁2𝛾(𝑏Ω2 cos 𝜙2 + 𝑞Ω2 cos 𝜃2) + 𝜇𝛾2(−𝑏 sin 𝜙2 − 𝑞 sin 𝜃2) −558 

𝜆𝑞 sin 𝜃2 −
3𝛽𝑞3

4
sin 𝜃2 = 0,       (A10) 559 

 560 

which can be solved by Newton-Raphson based numerical continuation technique. Once the response 561 

amplitudes and phase angles in Eqs (A3)-(A10) are obtained, the related power flow variables can be 562 

calculated, e.g., the instantaneous total input power of the coupled system is expressed as 563 

𝑃in = 𝑋1
′ 𝐹1 cos Ω1𝜏 + 𝑋2

′ 𝐹2 cos Ω2𝜏  

≈ −𝐹1(𝑎Ω1 sin(Ω1𝜏 + 𝜙) + 𝑏Ω2 sin(Ω2𝜏 + 𝜃)) cos Ω1𝜏

− 𝐹2(𝑝Ω1 sin(Ω1𝜏 + 𝛿) + 𝑞Ω2 sin(Ω2𝜏 + 𝜎)

+ 𝑎Ω1 sin(Ω1𝜏 + 𝜙) + 𝑏Ω2 sin(Ω2𝜏 + 𝜃)) cos Ω2𝜏 

 

 (A11) 

where 𝑋1′ and 𝑋2′ are the velocity of the subsystem one and two, respectively, and 𝑋2
′ = 𝑋1′ + ∆′. Based 564 

on Eq. (24), the analytical expression of the dimensionless time-averaged input power with first-order HB 565 

approximation is  566 

𝑃̅in =
1

𝑇
∫ 𝑃in

𝜏0+𝑇

𝜏0
d𝜏 ≈ −

1

2
(𝑎Ω1𝐹1 sin 𝜙 + 𝑞Ω2𝐹2 sin 𝜎 + 𝑏Ω2𝐹2 sin 𝜃).                (A12) 567 

The instantaneous transmitted power based on the first-order HB approximation can be expressed as  568 

𝑃t = 𝑋2
′ 𝐺(𝜏)  

≈ [𝜆(𝑝 cos(Ω1𝜏 + 𝛿) + 𝑞 cos(Ω2𝜏 + 𝜎))

+  𝛽(𝑝 cos(Ω1𝜏 + 𝛿)

+ 𝑞 cos(Ω2𝜏 + 𝜎))3](𝑎Ω1 sin(Ω1𝜏 + 𝜙)

+ 𝑏Ω2 sin(Ω2𝜏 + 𝜃) + 𝑝Ω1 sin(Ω1𝜏 + 𝛿)

+ 𝑞Ω2 sin(Ω2𝜏 + 𝜎)). 

 

 

 

(A13) 

The time-averaged transmitted power using first-order HB approximation gives 569 

𝑃̅t =
1

𝑇
∫ 𝑃t

𝜏0+𝑇

𝜏0

d𝜏 570 
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≈
1

8
[𝑎𝑝Ω1(4𝜆 + 3𝛽𝑝2 + 6𝛽𝑞2) sin(𝜙 − 𝛿) + 𝑏𝑞Ω2(4𝜆 + 3𝛽𝑞2 + 6𝛽𝑝2) sin(𝜃 − 𝜎)].        571 

(A14) 572 

 573 

Fig. A1 Effects of force amplitude on (a) response amplitude of the relative displacement; (b) time-averaged input 574 

power. 𝜇 = 𝜆 = 𝛾 = 1, 𝜁1 = 𝜁2 = 0.01, 𝐹2 = 0.1, 𝛽 = 0.5, 𝜀 = 3.  575 

 576 

Fig. A2 Effects of the stiffness nonlinearity 𝛽 on the response amplitudes and time-averaged input power. 𝜇 = 𝜆 =577 

𝛾 = 1, 𝜁1 = 𝜁2 = 0.01, 𝐹1 = 𝐹2 = 0.1, 𝜀 = 3. 578 
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 579 

Fig. A3 Effects of the stiffness nonlinearity 𝛽 on the time-averaged transmitted power. 𝜇 = 𝜆 = 𝛾 = 1, 𝜁1 = 𝜁2 =580 

0.01, 𝐹1 = 𝐹2 = 0.1, 𝜀 = 3. 581 
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