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Abstract: Object detection in images taken by unmanned aerial vehicles (UAVs) is drawing ever-
increasing research interests. Due to the flexibility of UAVs, their shooting altitude often changes
rapidly, which results in drastic changes in the scale size of the identified objects. Meanwhile, there are
often many small objects obscured from each other in high-altitude photography, and the background
of their captured images is also complex and variable. These problems lead to a colossal challenge
with object detection in UAV aerial photography images. Inspired by the characteristics of eagles,
we propose an Eagle-YOLO detection model to address the above issues. First, according to the
structural characteristics of eagle eyes, we integrate the Large Kernel Attention Module (LKAM) to
enable the model to find object areas that need to be focused on. Then, in response to the eagle’s
characteristic of experiencing dramatic changes in its field of view when swooping down to hunt at
high altitudes, we introduce a large-sized feature map with rich information on small objects into the
feature fusion network. The feature fusion network adopts a more reasonable weighted Bi-directional
Feature Pyramid Network (Bi-FPN). Finally, inspired by the sharp features of eagle eyes, we propose
an IoU loss named Eagle-IoU loss. Extensive experiments are performed on the VisDrone2021-DET
dataset to compare it with the baseline model YOLOv5x. The experiments showed that Eagle-YOLO
outperformed YOLOv5x by 2.86% and 4.23% in terms of the mAP and AP50, respectively, which
demonstrates the effectiveness of Eagle-YOLO for object detection in UAV aerial image scenes.

Keywords: object detection; unmanned aerial vehicle; attentional mechanisms; Eagle-YOLO

MSC: 68T07

1. Introduction

Object detection is a significant branch of image processing and computer vision and
is the basis for many advanced computer vision applications. Therefore, object detection
has attracted increasing attention in both academia and industry [1–3] in recent years. In
particular, object detection in aerial photography scenarios with UAVs has led to various
important applications, such as biological detection, disaster rescue, security maintenance,
and power inspection. However, the high flexibility of UAVs makes the images vary
drastically in scale (e.g., Figure 1a,b), and the high altitude shots lead to the presence of a
large number of small objects that obscure each other (e.g., Figure 1c). At the same time,
the backgrounds of the captured images are also complex and variable (Figure 1d). These
issues make the object detection of UAV aerial images a vital challenge in practice.

In recent years, deep-neural-network-based object detection algorithms have improved
by leaps and bounds compared to traditional object detection algorithms. The current
mainstream object detection algorithms are based on deep learning models, broadly divided
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into anchor-based and anchor-free detectors. There are two main types of anchor-based
detectors: the highly accurate two-stage detector and the highly efficient one-stage detector.
The two-stage detector is used to generate regional proposals, and then the next step is to
locate and classify objects in more detail based on the candidate regions. The one-stage
detector algorithm is a “one-step” approach, which does not require the model to generate
region proposals but rather to obtain the position and classification of the object in the
input image. The idea of the anchor-free detectors algorithm is to view the object detection
problem as a critical point detection and classification problem. Without the introduction
of the anchor frame mechanism, the time-consuming design of the anchor frame size, scale,
and other hyperparameters can be significantly reduced.

(a) (b)

(c) (d)

Figure 1. Schematic diagram of the characteristics of UAV aerial imagery. (a) Overhead image.
(b) Low altitude image. (c) Object occlusion scene image. (d) Complex background image at night.

Abound object detectors were proposed to detect natural objects in some datasets, such
as MS COCO [4], PASCAL VOC [5], and ImageNet [6]. However, the object detectors that
perform well under natural images do not perform well when applied to UAV aerial images.
This issue is caused by the characteristics of aerial UAV images that differ significantly
from those of naturally collected images. Therefore, this work is dedicated to improving
object detection performance in UAV aerial photography scenes.

The aerial photography characteristics of drones are remarkably similar to the hunting
behavior of eagles. In particular, eagles often swoop down from high altitudes to hunt,
which is similar to the drastic changes in the scale of the images captured by UAVs, as
shown in Figure 2. In fact, the unique structure of the eagle’s eye enables it to see not
only far but also a wide range. This work combines the behavioral features of eagles to
optimize the YOLO [3,7–10] and proposes an aerial image object detection method named
Eagle-YOLO, which supports multiscale agile perception fusion to enable the accurate
detection of UAV aerial images.
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Figure 2. Schematic diagram of eagle hunting behavior.

The basic flow of the Eagle-YOLO model is shown in Figure 3. First, the input image
goes through a data augmentation module to increase the robustness and diversity of the
data and then through the backbone feature extraction network to extract the features. The
backbone network of Eagle-YOLO is consistent with that of YOLOv5 as CSPDarknet53, so
Eagle-YOLO could employ the pretraining weights obtained from YOLOv5’s training on
the ImageNet [6] dataset to speed up the model convergence. Due to the presence of a large
number of small mutually occluded objects in the UAV aerial images and the low resolution
and lack of semantic information of the small objects, the Eagle-YOLO model introduces a
low-level feature map with rich details on small objects into the feature fusion network. The
model also introduces an attention mechanism to enable the model to focus on detecting
key object areas and capture semantic information. Eagle-YOLO uses Bi-FPN [11] as the
feature fusion network architecture, and the extracted feature information at each level is
weighted and fused to the final output for prediction.

Figure 3. Overview of the basic procedure of the Eagle-YOLO model. Compared to YOLOv5, this
model replaces the feature fusion network with a Bi-FPN and adds a large-size detection head.

The main contributions of this paper are summarized below:

• Inspired by the structure of an eagle’s eye, Eagle-YOLO is proposed to integrate the
LKAM and is enabled to focus on the object to be detected and capture the object’s
semantic information.

• Like the dramatic visual changes the eagles experience during swooping hunting, a
Bi-FPN feature fusion network is introduced to capture the feature map containing
more small object information and contextual semantic information to improve the
detection performance and accuracy.

• Inspired by the sharp eyes of eagles, an Eagle-IoU loss is proposed to improve the
original IoU loss of YOLOv5, which improves the detection accuracy and speeds up
the convergence.

Finally, extensive experiments are conducted on the VisDrone2021-DET dataset, and
the state-of-the-art YOLOv5x is employed as the benchmark for comparative analysis.
The experimental results showed that Eagle-YOLO improved by 2.86% and 4.23% over
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YOLOv5x in terms of the mAP and AP50, respectively. Additionally, Eagle-YOLO hds
a better detection capability for complex backgrounds and unbalanced classes, which
provides the effectiveness of object detection in UAV aerial image scenes.

2. Related Work
2.1. Usual Object Detection

Presently, object detection algorithms based on CNNs are divided into two main
categories: anchor-based detectors and anchor-free detectors. Anchor-based detectors are
mainly divided into two-stage detectors and one-stage detectors. Faster R-CNN [12] and
Mask R-CNN [13] are the commonly used two-stage detectors. Mask R-CNN extends
Faster R-CNN by adding a fully connected segmentation subnetwork in parallel for pixel-
level object instance segmentation. A Swin Transformer [14,15] is one of the more recently
popular one-stage detectors. It is a novel Transformer, called the hierarchical Transformer,
which uses the idea of shifted windows to restrict the computation of self-attentiveness to
nonoverlapping local windows while also allowing cross-window connections for efficiency.
This allows information to be interacted between neighboring patches while reducing the
computational complexity of the traditional Transformer. Recently, YOLOX has shown an
outstanding processing speed and detection accuracy for the natural scene image dataset [9].
However, UAV aerial images are far from natural scene images, and these UAV images
generally show the features of complex backgrounds and lots of small objects. Hence,
directly using YOLOX models to detect objects in UAV aerial images will result in missed
and false detections [16]. Anchor-free detectors mainly detect objects via classification
and key point detection. RepPoint [17] is an anchor-free detector, which novelly proposes
using point sets to represent the target’s position. Unlike other one-stage detectors that
use one-time regression and former classification to obtain the final object location and
class, RepPoint provides finer-grained classification and easier localization. RepPoint uses
two regressions and one classification, in which the classification and the last regression
use irregular and deformable convolution. However, their detection performance is not
suitable for drone aerial photography scenarios.

2.2. UAV Aerial Photography Object Detection

Object detection in UAV images is more challenging than general object detection.
Firstly, the background of UAV aerial imagery is complex and varied, and data augmenta-
tion is one of the common tools used to increase the robustness and diversity of the data,
which allows the model to learn more and have better generalization capabilities. Currently,
the most commonly used methods of data augmentation in traditional vision are adding
noise, random cropping, flipping horizontally, flipping up and down, scaling, panning,
and enhancing the image brightness and contrast. Advanced data augmentation includes
Cutmix [18], Transmix [19], Mosaic [7], and others. The next big tricky challenge for object
detection in UAV images is the presence of a large number of small objects that obscure
each other. Multiscale feature learning is a common approach [20,21], and Wang et al. [22]
proposed a Cascade mask generation framework that can quickly detect small objects by
combining multiscale input methods. However, memory consumption and inference time
are generally increased dramatically, which makes the model computationally expensive.
Furthermore, the deep network has a large sensory field and strong semantic information,
which lacks texture information of the object and is not conducive to detecting small objects.
Lin et al. [23] proposed a Feature Pyramid Network (FPN). This top-down architecture
gives each feature map layer a stronger ability to capture semantic information by fusing
deep semantic information with shallow texture information. However, the bottom-up
fusion approach has a single direction and lacks information fusion in a double direction.
Although many variants of FPNs have emerged in recent years [24–29], no specific detection
algorithm is proposed to improve small objects and their structure detection.
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3. Methodology

Inspired by the characteristics of eagles, a novel object detection model based on the
YOLOv5, named Eagle-YOLO, is proposed for UAV aerial image detection. As shown
in Figure 4, the model architecture of Eagle-YOLO consists of three modules, namely the
Backbone, Neck, and Head.

Figure 4. Diagram of the Eagle-YOLO network structure.

In the Eagle-YOLO network architecture, the first module is the Backbone for feature
extraction at different levels, where P2/4, P3/8, P4/16, P5/32 represent images downsam-
pled 4, 8, 16, and 32 times, respectively. The Backbone follows the original YOLOv5
CSPDarknet53 backbone network, and the training efficiency of the model is improved by
using YOLOv5’s initial pretraining weights. The second module is the Neck module for
feature re-extraction and feature fusion, which is also a crucial part of the Eagle-YOLO.

The overall feature fusion architecture is based on Bi-FPN [11], which fuses features
at different levels by weighting the values, which makes the feature fusion network more
rational. The SSC3 submodule in the Neck module consists of SoftPool Spatial Pyramid
Pooling (SSPP) and C3. The SSPP uses a SoftPool weighted by Softmax for pooling [30],
which helps keep the features’ expressiveness well. The attention mechanism LKAM
is introduced to enable Eagle-YOLO to focus on essential object regions and capture
semantic information for feature network fusion. The third module is the Head, in which a
detection layer containing rich details on small objects is employed to improve the detection
performance for small objects.

3.1. Attention Module

The visual attention module mimics the human visual mechanism by quickly preview-
ing the global image and focusing more on the critical object area to obtain more detailed
information. The basic form of the attention mechanism is shown in Equation (1). Due to
the unique structure of eagle eyes [31], as shown in Figure 5a, eagle eyes possess a well-
developed binocular vision and show acute visual capabilities. Therefore, we introduce the
LKAM in this work to capture a larger field of perception and enhance the features [32]:

Attention = f (g(x), x) (1)

where g(x) is used to find the important regions, and f (g(x), x) is used to make the network
focus on the critical regions.
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(a) (b)

Figure 5. (a) Eagle eyes. (b) Decomposition diagram of large-kernel convolution.

The core idea of the LKAM is to generate an attention map through large-kernel convolu-
tion to obtain important object areas, the essential expression of which is Equations (2) and (3).
However, large-kernel convolution usually leads to significant computational overhead and
parameter drawbacks. Therefore, the LKAM decomposes the large-kernel convolution into
a depth-wise convolution with local spatial properties(DW-Conv), a depth-wise dilation
convolution with long-range spatial properties (DW-D-Conv), and a channel convolution
(Conv1×1), as shown in Figure 5b. By the decomposition, the LKAM can generate attention
maps with a small computational cost:

g(x) = LargeKernelConv(x) (2)

f (g(x), x) = g(x)⊗ x (3)

where x ∈ RC×H×W denotes the input feature map and ⊗ denotes the product of the
elements.

As shown in Figure 6, the input data for the LKAM are feature tensors x∈ RC×H×W .
Firstly, the original feature map x is input to the DW-Conv submodule, which gener-

ates a three-dimensional spatial local attention feature denoted as Fl ∈ RC×H×W from a
convolution of kernel size of 5 × 5 and padding of 2. Fl is then passed through the DW-
D-Conv submodule, which generates a three-dimensional spatial long-range dependence
attention feature denoted as Flr ∈ RC×H×W from a convolution of kernel size of 7 × 7,
padding of 9, and dilation of 3. Then, Flr is fed into a Conv1×1 submodule consisting of
a convolution of kernel size of 1 × 1 to learn the channel adaptability and obtain a three-
dimensional attention map containing all of the above features. Finally, this submodule
generates a spatial adaptability feature F ∈ RC×H×W and then multiplies it by the original
input tensor x to obtain the refined features. The above derivation process is given in
Equations (4)–(7):

Fl = DW-Conv5×5(x) (4)

Flr = DW-D-Conv7×7(Fl) (5)

F = Conv1×1(Flr) (6)

Attention = F⊗ x (7)

Figure 6. The overview of LKAM module.

3.2. Context Based Feature Fusion

In order to make the model have a better context feature fusion mechanism, Eagle-
YOLO uses Bi-FPN [11] as the feature fusion network. In the original feature network fusion



Mathematics 2023, 11, 2093 7 of 15

PANet, features of different scales have the same weights for feature fusion. However, the
differences in the information of different scale features are ignored during the feature
fusion. Therefore, when it comes to feature fusion at different scales, Bi-FPN adds a
learnable weight to enable the network to learn the contribution of features at different
scales. At the same time, residual connection operations have been added to enhance the
representation ability of features. So, the Bi-FPN employed in this work will make the
feature fusion network more reasonable. Eagle-YOLO introduces a low-level feature map
with rich spatial geometric detail information into the feature fusion network to improve
the detection accuracy of small objects.

The schematic diagram of Bi-FPN is shown in Figure 7. In the schema, Pin
n (n =

2, 3, 4, 5) represents the feature map extracted by the Backbone with a scale of 2x times
downsampling; wn(n = 1, 2, 3) denotes the learnable weight parameters; Pmid

n (n = 3, 4)
represents the feature map under model feature re-extraction with a scale of 2x times
downsampling, and Pout

n (n = 2, 3, 4, 5) denotes the feature map downsampled at a scale of
2x times. We take Pout

4 as a example. As shown in Equations (8) and (9), Pout
4 is a weighted

fusion of Pin
4 , Pmid

4 , Pout
3 . Then, Pout

3 is an input to the LKAM to capture the contextual
semantic information and incorporate this information into the feature fusion network.

Pout
4 = Conv

(
w
′
1 × Pin

4 + w
′
2 × Pmid

4 + w
′
3 × Resize

(
Pout

3
))

(8)

w
′
n =

wn

w1 + w2 + w3 + ε
(9)

Figure 7. Schematic diagram of Bi-FPN.

3.3. Eagle-IoU Loss

Like an eagle’s eyes, whose sharpness makes it possible to perceive small objects
at high altitudes and in complex scenarios, the loss function in the Eagle-YOLO should
be improved in terms of its sense ability. Therefore, we propose Eagle-IoU loss; this
loss function focuses on the angle between the center point of the truth bounding box
and the predicted bounding box. In addition, we combine L1 loss and Alpha-IoU [33]
to balance the contribution of each part. The essential IoU loss (L) is represented by
Equations (10) and (11):

L = 1− IoU + R
(

B, BGT
)

(10)

IoU =
|B ∩ BGT |
|B ∪ BGT |

(11)

where B represents the predicted bounding box; BGT denotes the ground truth bounding
box, and IoU represents the ratio of the intersection and union of B and BGT . R

(
B, BGT) is

the penalty term in the essential Loss function, consisting of B and BGT .
As a specific model, we propose a novel penalty term of Eagle-IoU loss in this work,

denoted as REagle. This penalty term integrates three parts: the Angle–Distance cost (Ra),
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L1 cost (RL1), and Shape cost (Rs). Firstly, we calculate the angle penalty strength (PAngle)
for the Angle–Distance cost (Ra), as shown in Equation (12):

PAngle = 1− 2 ∗ sin2
(

θ − π

4

)
(12)

where θ is the angle between the center point of B and BGT , as shown in Figure 8. If
0 ≤ θ ≤ π/4, then B and BGT keep approaching the same horizontal line; otherwise,
π/4 < θ ≤ π/2, then B and BGT keep approaching the same vertical line. When θ = π/4,
the value PAngle is the largest. Then, we calculate the value of the Angle–Distance cost (Ra),
as shown in Equation (13):

Ra =
(
1− e−γρw

)
+
(
1− e−γρh

)
(13)

where cw and ch are the x and y distances from the centers of B and BGT , respectively. ρw
and ρh are in Equations (14)–(16):

ρw =
( cw

w

)2
(14)

ρh =
( ch

h

)2
(15)

γ = 2− PAngle (16)

where w and h are the length and width of the smallest rectangle enclosing B and BGT ,
respectively; cw and ch are the horizontal distance and vertical distance between the center
point of B and BGT , respectively; and γ is the evaluation coefficient of the angle which is
claculated to make sure that the value of PAngle is the largest and the cost of Ra is the largest.

Secondly, the L1 cost(RL1) is computed with Equation (17):

RL1 =
|x− xgt|

w
+
|y− ygt|

h
(17)

where x , xgt and y , ygt are the x and y coordinates of the center points of B and BGT ,
respectively.

Then, the Shape cost(Rs) is calculated with Equation (18):

Rs =
(
1− e−ωw

)3
+
(
1− e−ωh

)3 (18)

where w is the length of B and h is the width of B. ωw and ωh are in Equations (19) and (20):

ωw =
|w− wgt|

max(w, wgt)
(19)

ωh =
|h− hgt|

max(h, hgt)
(20)

where wgt is the length of BGT and hgt is the width of BGT .
Finally, we establish the penalty term REagle and LEagle−IoU , as shown in

Equations (21) and (22):
REagle = Ra

α1 + RL1
α2 + Rs

α3 (21)

LEagle−IoU = 1− IoUα + REagle (22)

Extensive experiments conducted with the VisDrone2021-DET dataset showed that
the model obtained the best performance when we set all the parameters α, α1, α2, α3 as 3.
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Figure 8. Calculation of the Eagle-IoU, the ground truth bounding box, and the predicted bound-
ing box.

4. Experiments

The Eagle-YOLO was evaluated with the VisDrone2021-DET dataset [34]. The exper-
imental environment was equipped with an NVIDIA RTX3090 (24G) GPU card, CUDA
version 11.1, CUDNN version 8.2.1, python 3.8, and Pytorch 1.10.1.

4.1. Dataset

VisDrone2021-DET is an object-detection dataset with a drone perspective. In the
VisDrone2021-DET dataset, there are 6471 images in the training set, 548 in the validation
set, and 1580 in the test set. The dataset has ten categories: pedestrian, people, bicycle,
car, van, truck, tricycle, bus, motor, and awning tricycle. The VisDrone2021-DET dataset
includes several difficulties: (1) the size of the objects in images is highly variable; (2) some
categories have a high degree of similarity (e.g., people and pedestrians); (3) most of the
objects are too small (less than 32 pixels) to detect, and in addition, there are occlusions
between the objects; and (4) data distribution is not uniform enough. For example, the
numbers for cars and pedestrians are more than 65% of the total number of objects, while
the number of other categories is small. The quantity and proportion are summarized in
Table 1.

Table 1. The proportion and number of labels for each category.

Category Ped. 1 Awn. 2 People Bicycle Car Bus Van Truck Tricycle Motor

Quantity 79,335 3246 27,059 10,480 144,866 5926 24,956 12,875 4812 29,646

Proportion [%] 23.12 0.95 7.88 3.05 42.21 1.73 7.27 3.75 1.4 8.64
1 Ped. is pedestrian; 2 Awn. is awning-tricycle.

4.2. Evaluation Metrics

In this work, we employed the mean Average Precision (mAP) and Average Precision
50 (AP50) to verify the model’s performance. The mAP considers both precision and recall,
which are calculated as follows:

Precision =
TP

TP + FP
(23)

Recall =
TP

TP + FN
(24)

where TP represents True Positive, FP represents False Positive, and FN represents False
Negative. For object detection, when the Intersection Over Union (IoU) exceeds a threshold,
the predicted result is considered a TP. Otherwise, the predicted result is regarded as an
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FP. If the ground truth bounding box does not have a matching box, it is viewed as a FN.
The Average Precision (AP) is the area of the Precision–Recall curve plotted against the
coordinate axis circumference, which is calculated as shown in Equation (25). The AP50
represents the AP with a threshold value of 0.5. The mAP represents the average value of
the AP under the IoU threshold in the range [0.5, 0.95], with a step size of 0.05, as shown in
Equation (26):

AP =
∫ 1

0
P(R)dR (25)

where P represents Precision, R represents Recall, and P(R) represents the relationship
function between P and R:

mAP =
AP50 + AP55 + . . . + AP90 + AP95

10
(26)

4.3. Implementation Details

Experiment prep. YOLOv5 is available in four different model sizes, YOLOv5s, YOLOv5m,
YOLOv5l, and YOLOv5x. These models’ mAP values on the COCO dataset increase
sequentially, and the size of these models increases accordingly. In this work, we used the
mAP and AP50 to evaluate the performance of these four models on the VisDrone2021-DET
dataset, and the results are shown in Figure 9. Based on the experimental results, it is clear
that YOLOv5x outperformed the other versions in both the mAP and AP50 metrics at all
sizes. To achieve a better performance, in this work, we used the pretrained weights and
backbone network of YOLOv5x, which not only has a better detection accuracy but also
significantly reduces the training time of the model.
Training phase. We trained the model with a fixed image size of 1600 × 1600 and set two
as the batch size. We used the VisDrone2021-DET-train dataset for 300 epochs of training,
and the first two stages were used for warmup. We used an adam optimizer for training,
with 3× 10−4 as the initial learning rate, as shown in Table 2.
Test phase. We tested the model on the VisDrone2021-DET-test dataset with the same size
of images as the training phase.

Figure 9. Comparison of performance metrics on VisDrone2021-DET dataset for each YOLOv5 model
under different input sizes. (a) Evaluation metric is AP50. (b) Evaluation metric is mAP.

Table 2. Training parameters.

Parameter Value

Image size 1600 × 1600
Batch size 2

Epochs 300
Warmup 2

Optimizer adam
Initial learning rate 3× 10−4
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5. Experimental Results

In this section, we evaluate the Eagle-YOLO model on VisDrone2021-DET-test dataset.
In addition, we compare the performance of Eagle-YOLO with the baseline model YOLOv5x
and other object detection algorithms. Table 3 reports the mAP of 10 categories in the
VisDrone2021 dataset and the overall mAP and AP50. The experimental results showed
that our model was far superior to the detection algorithm submitted by the VisDrone team,
both in the overall detection performance and in the detection performance of a single
category. Compared with CornerNet, which had the best overall performance among the
detection algorithms submitted by the VisDrone team, Eagle-YOLO improved the overall
AP50 and mAP by 15.5% and 19.52%, respectively. Regarding the bus category where
the improvement was most significant, the mAP increased by 30.97%. Compared to the
baseline model YOLOv5x, Eagle-YOLO improved the overall mAP and AP50 by 2.86% and
4.23%, respectively. Then, the three categories with the most significant improvement were
truck, van, and bus, which improved by 4.64%, 4.13%, and 3.56%. All other categories of the
mAP were also higher than the baseline model. After the above analysis, the Eagle-YOLO
model outperformed the baseline model YOLOv5x overall.

Table 3. Comparison of the individual methods in the VisDrone2021-DET test.

Method mAP AP50 Ped. People Bicycle Car Van Truck Tricycle Awn. Bus Motor

RetinaNet * [35] 11.81 21.37 9.91 2.92 1.32 28.99 17.82 11.35 10.93 8.02 22.21 7.03
RefineDet * [36] 14.9 28.76 14.9 3.67 2.02 30.14 16.33 18.13 9.03 10.25 21.93 8.38
Cascade-RCNN * [37] 16.09 31.91 16.28 6.16 4.18 37.29 20.38 17.11 14.48 12.37 24.31 14.85
FPN * [23] 16.51 32.2 15.69 5.02 4.93 38.47 20.82 18.82 15.03 10.84 26.72 12.83
Light-RCNN * [38] 16.53 32.78 17.02 4.83 5.73 32.29 22.12 18.39 16.63 11.91 29.02 11.93
CornerNet * [39] 17.41 34.12 20.43 6.55 4.56 40.94 20.23 20.54 14.03 9.25 24.39 12.1

YOLOv4 [7] 29.91 49.03 23.02 13.08 12.23 58.06 38.23 40.12 21.02 19.38 50.93 23.01
TPH-YOLOv5 [40] 30.94 50.69 23.80 13.43 12.74 59.06 40.38 42.77 19.31 19.87 53.33 24.71
YOLOv5x 30.05 49.41 23.1 13.1 12.4 58.2 38.3 40.3 21.3 19.7 51.8 23
Eagle-YOLO 32.91 53.64 25.19 15.08 14.0 60.24 42.43 44.94 24.03 21.4 55.36 26.41

* indicates the detection algorithm submitted by the VisDrone team. The best result is presented in bold.

6. Discussion

In this section, we firstly analyze the experimental results of Eagle-YOLO versus the
baseline model YOLOv5x in Table 2; then, we perform ablation experiments on Eagle-
YOLO by using the VisDrone2021-DET-test dataset, and finally, we visualize the model
predictions.

It is worth noting that although truck and bus accounted for only 3.75% and 1.75% of
the dataset, the model in this paper still had a good detection effect regarding truck and
bus, with a mAP of 44.94% and 55.36%, respectively. Compared with the baseline model,
the mAP of truck and bus improved by 4.64% and 3.56%, respectively. This indicated that
the Eagle-YOLO model had a good feature learning ability and robustness for unbalanced
data. For the tricycle and awning-tricycle categories, the mAP improvement was the lowest
at only 1.6% and 1.7%, respectively. The performance of Eagle-YOLO in terms of detecting
people and cars was not good enough. Maybe the reasons were the small size of the pixels
and the mutual occlusion of the objects in these two categories.

Then, we validated the effect of each component of the Eagle-YOLO model by using the
VisDrone2021-DET-test dataset. As shown in Table 4, the ablation study for each component
was conducted by using the VisDrone2021-DET-test dataset. We employed YOLOv5x as
the baseline model with a fixed input size of 1024 × 1024 for the images, and P2 represents
images downsampling four times. After we added the P2 detection layer to YOLOv5x,
the total number of layers increased from 444 to 525, and GFLOPs increased from 204.2 to
237.7. At the same time, the model’s detection performance for small objects improved
significantly. As shown in Table 3, the mAP and AP50 improved by 1.53% and 3.15%,
respectively.
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Table 4. Ablation studies in the VisDrone2021-DET test.

P2 Bi-FPN LKAM Eagle-IoU
Loss mAP (%) AP50 (%)

- - - - 27.12 44.56
X 28.65 (↑1.53) 47.71 (↑3.15)

X 27.27 (↑0.15) 45.64 (↑1.08)
X 27.50 (↑0.38) 46.14 (↑1.58)

X 27.84 (↑0.72) 46.33 (↑1.77)
X X 28.93 (↑1.81) 48.12 (↑3.56)

To evaluate the effectiveness of Bi-FPN in feature fusion, we replaced FPN with Bi-
FPN in the model; then, the mAP and AP50 improved by 0.15% and 1.08%, respectively.
Although the improvement was not significant, the improvement was significant when we
combined the Bi-FPN feature fusion network and P2 head layer in the model. After adding
the LKAM, the mAP of Eagle-YOLO increased only 0.38% and AP50 increased 1.58%.

When we employed Eagle-IoU loss, the mAP and AP50 increased by 0.72% and 1.77%,
respectively, which showed that the Eagle-IoU loss provided a stronger robustness in fewer
categories and boxes containing noise. At the same time, the introduction of the L1 cost
(RL1) effectively avoided the problem of unstable gradients and slow convergence during
the early training of the Euclidean distance.

Based on the ablation experiments discussed above, the Eagle-YOLO showed a signifi-
cant improvement compared to the state-of-the-art baseline model.

To further verify the effectiveness of the Eagle-YOLO model, we employed the Gra-
dient Class Activation Mapping (Grad-CAM [41]) method to interpret our model’s pre-
dicted results visually. Grad-CAM is a backpropagation-based Explainable AI (XAI [42,43])
method that displays important areas of interest to the model by generating thermal maps.
As shown in Figure 10 , the baseline model YOLOv5x showed a poor detection perfor-
mance for small objects at longer distances despite having a good detection performance
for close-range objects. However, the proposed model offers an improved effect when it
comes to detecting larger objects at a short distance and small objects at a long distance.
At the same time, compared with the baseline model, Eagle-YOLO is more accurate at
positioning the object.

(a) (b) (c)

Figure 10. Schematic diagram of the model visualization of the Grad-CAM technique. (a) Original
image. (b) Visualization of the YOLOv5x model. (c) Visualization of the Eagle-YOLO model.

Finally, we listed some typical scenarios in the VisDrone2021-DET-test dataset to
visualize the effect of Eagle-YOLO, which is shown in Figure 11. The first row contains the
raw images, the second row shows the results of the YOLOv5x model, and the third row
shows the results of the Eagle-YOLO model. The green oval box indicates the object area
that was not detected by YOLOv5x, and the red oval box indicates the improved part of
our proposed model compared with YOLOv5x. The results showed that Eagle-YOLO is
quite good at detecting small objects in dense, overlapping, and complex environments,
such as low light at night. In addition, Eagle-YOLO is not only sensitive to small objects
but also has a better detection performance for small numbers of categories.
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Figure 11. Some test results on the VisDrone2021-DET test. We selected some representative images
for the display of the test results. The first row is the original image, the second row is the detection
effect of YOLOv5x, and the third row is the detection result of Eagle-YOLO.

7. Conclusions and Future Work

To improve the object-detection accuracy in UAV aerial image scenes, we propose an
Eagle-YOLO model inspired by the characteristics of eagles’ eyes in this work. The model
is based on YOLOv5 and is inspired by the hunting behavior of eagles. First, we introduced
the Large Kernel Attention Module (LKAM) to make the model pay more attention to
the detected regions and capture contextual information. Then, we combined the LKAM
and the modified BiFPN feature fusion network to perform a contextual feature fusion
to improve the detection accuracy when it comes to small objects in UAV aerial images.
Finally, we propose a novel IoU loss named Eagle-IoU loss, which significantly improved
the detection accuracy and model convergence speed. Compared to the baseline model
YOLOv5x using the VisDrone2021-DET dataset, the experiments showed that Eagle-YOLO
improved the mAP and AP50 by 2.86% and 4.23%, respectively.

In the future, we will continue to improve the structure of the model to lighten the network
and increase the detection speed of the network without degrading its detection accuracy.
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