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Abstract

In this paper, a model for the coupled axial-torsional dynamics of a
drilling bit with a non-uniform blade arrangement is proposed. The
neutral-type time-delay model is used to model the drill pipes, which
transfer the actuation force and torque to the bit. The employed bit-
rock interaction law is a rate-independent law including both cutting
and frictional effects. A novel method for determining the depth of cut,
which is the key component in estimating the cutting forces, is devel-
oped to capture different phenomena, including multiple-regenerative
effects. In this method, a functional description of the well surface pat-
tern is presented to determine the depth of cut. Unlike the previous
studies, the well surface pattern evolution is represented by an algebraic
equation rather than a partial differential equation (PDE). Illustrative
simulation results are presented for a representative case study, which
demonstrates the validity of the proposed model even in the presence
of multiple-regenerative effects. The effect of the non-uniformly arrange-
ment of the blades on the drilling vibration is also discussed. It is shown
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that the non-uniform arrangement of the cutting blades can reduce the
vibration amplitude in some operating conditions. Moreover, disregard-
ing the multiple-regenerative effects (which appear in the presence of
severe oscillations) in the model, causes a considerable modeling error.

1 Introduction

Drill strings suffer from self-excited undesirable oscillations leading to detri-
mental phenomena such as stick-slip and the bit-bounce. A schematic view
of a drill-string is illustrated in Fig. 1. Stick-slip is a cyclic rotational oscilla-
tion during which the bit sticks (the angular velocity becomes zero) in some
time intervals. On the other hand, the angular velocity may become several
times larger than the nominal angular velocity in other time intervals. More-
over, in extreme torsional vibrations, the bit is susceptible to rotating in the
reverse direction. The other destructive phenomenon, bit-bounce, corresponds
to the axial motion of the bit. In this case, intensive axial vibrations lead
to bit-bounce and loss of contact with the formation. These undesired phe-
nomena significantly reduce the drilling efficiency in different aspects, such as
bit wear, rate of penetration reduction, and failure in drilling tools. Accord-
ingly, mitigating such destructive vibrations is important, which necessitates
understanding their root causes.

Self-excited coupled axial-torsional vibrations are (mainly) a result of the
complex interactions between the bit and the formation. Two independent
processes form the interactions (forces) between Poly-crystalline Diamond
Compact (PDC) bits and the formation: (i) the (pure) cutting process occur-
ring on the cutting face of the bit and (ii) the frictional process acting between
the underside part of the bit and the formation [1]. Cutting forces are propor-
tional to the depth of cut. The depth of cut is the summation of the thickness
of the rock layers (the cutting chips) that the cutting blades face. The cutting

Fig. 1: A schematic of the drill-string.
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chip thickness is a function of the current and the preceding (axial) posi-
tion of the drill bit. This introduces delay terms, which are state-dependent,
to the equations of motion. Using state-dependent delay terms for formula-
tion of the cutting chip thickness was introduced in the modeling of milling
dynamics [2]. For drilling systems, the state-dependent delay model was ini-
tially proposed in [3]. However, the significance of the state-dependent delay
model was not realized until much later [4, 5]. The state-dependent delay
model have been employed by many researchers to investigate the root cause
of these unwanted vibrations [6–12]. However, this model assumes that the
cutting operation is in progress whenever the bit rotates and hence, cannot
capture the multiple-regenerative effects.

Multiple-regenerative effects are the result of losing contact between the
cutting blades and the formation. More precisely, multiple-regenerative effects
occur when the bit rotates without cutting the formation. There are two
possibilities for this; bit-bounce, and bit reverse rotation. In the case of
multiple-regenerative effects, the depth of cut is dependent on the multiple pre-
ceding positions of the blade rather than the earlier position. There exist two
different approaches in the literature considering multiple-regenerative effects
in the bit-rock interactions [13–15]. In [14] and [13], the depth of cut is deter-
mined by defining the rock surface pattern function, which is determined by
a first-order Partial Differential Equation (PDE). In this model, since the cut
pattern is defined by employing a PDE, nonsmooth and discontinuous cut
patterns cannot be obtained. The discontinuous cut pattern can be generated
while the torsional stick and the bit-bounce take place simultaneously. On the
other hand, in the approach developed in [15], multiple preceding positions of
the bit are compared to estimate the instantaneous depth of cut. Since compar-
ing multiple preceding positions introduces multiple state-dependent delays to
the system, this model is called the complex time delay model. In the complex
time delay model, a history of the bit states should be saved conservatively,
and in each solving step, the state-dependent complex delay should be esti-
mated by comparing the current values of the states and the history of the
states, which increases the computational burden of the model simulation.

Recently, a new trend has been created in [16] to improve drilling stability
by rearranging the cutting blades. In this research, a non-uniform angular
blade distribution on the bit is proposed rather than arranging the blades
uniformly on the drill bit. It is shown in [17] that a non-uniform angular
blade distribution can enhance the stable region for stationary drilling. Note
that similar research can be found in the literature for milling operations with
variable pitch or variable helix tools [18, 19]. In [20], a combination of full and
partial blades is considered in addition to multiple angular offsets between
the blades, and the stability for different bit designs is determined. Drilling
bits with round cutters instead of radial flat cutters are studied in [21], which
introduce distributed time delays to the equation of motion rather than several
time delays. The PDE formulation presented in [14] is employed for PDC bits
with a non-uniform cutter layout in [22, 23].
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In this paper, a formulation for the regenerative effects caused by the bit-
bounce or the reverse rotation is developed. Compared to the previous related
paper [24], the formulation is developed generally assuming that the blades are
non-uniformly arranged on the cutting bit. The regeneration of the rock surface
pattern at the bottom of the well is employed to determine the instantaneous
depth of cut. In the previous models which use the well surface pattern in order
to calculate the depth of cut, the time evolution of the well surface pattern
is governed by a PDE [14]. However, in the proposed model in this paper,
the time evolution of the well surface pattern is governed by an algebraic
equation, needless of defining a PDE, which enables the model to capture the
discontinuous well surface patterns.

The main contributions of this paper are, firstly, presenting a compu-
tationally efficient model for the cutting operation of a bit equipped with
non-uniform distributed cutting blades, and secondly, using the proposed
model for studying the coupled axial-torsional vibrations of a drill-string
represented by an infinite-dimensional Neutral-type Time Delay (NTD) model.

It is noteworthy that the goal of this paper is to propose a comprehensive
model that can be used for parametric design or active controller design to
reduce unwanted vibrations. For example, the proposed model (which is a more
comprehensive model) can be used along with the approaches in [17, 21, 25] for
dynamical analysis, parametric design, or design an anti-stall tool for vibration
reduction.

The paper is organized as follows: Section 2 presents the NTD model for the
coupled axial-torsional motion of a drill-string and the boundary conditions.
Simulation results for a representative case study are presented in Section 3.
Conclusions are presented in Section 4.

2 Mathematical modelling

It is assumed that the drilling pipes are elastic and uniform structures with
equally distributed mass. Accordingly, the drill-string is governed by the simple
(undamped) wave equation in both axial and torsional directions [26, 27].
The boundary conditions of the wave equations are defined by the imposed
velocities at the top and the BHA dynamics at the bottom of the drill-string,
as depicted in Fig. 1. Then, the equations of motion are obtained by solving
d’Alembert’s solution and employing Riemann variables [28, 29]. Subsequently,
the following NTD model is given to represent the coupled axial-torsional
dynamics of a drill-string [11, 24, 28–30]:

Φ̈b(t)− Φ̈b(t− 2τt) =− GJcT
Jb

(Φ̇b(t) + Φ̇b(t− 2τt)) (1)

+
1

Jb
(−T (t) + T (t− 2τt)) +

2GJct
Jb

Ω0(t− τt), (2)
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Table 1: Parameter values [30].

Parameter Definition Value

Mb BHA mass 40000 kg

Jb BHA moment of inertia 89 kgm2

E Young modulus 200 × 109 N/m2

G Shear modulus 79 × 109 N/m2

A Drill-string cross sectional area 35 × 10−4 m2

J Drill-string moment of area 1.9 × 10−5 m4

L Drill-string length 2000 m

ct Torsional wave constant 3.2 × 10−4 s/m

ca Axial wave constant 1.99 × 10−4 s/m

τt Torsional wave travel time along the drill-string 0.64 s

τa Axial wave travel time along the drill-string 0.39 s

ε Rock intrinsic specific energy 60 × 106 N/m2

a Bit radius 10.8 × 10−2 m

ζ Cutter face inclination number 0.6

σ Maximum constant pressure at the wearflat interface 60 × 106 N/m2

l Length of the drill bit wearflat 1.2 × 10−3 m

µ Friction coefficient at the wearflat-rock interface 0.6

γ Bit geometry number 1

n number of blades 4

Üb(t)− Üb(t− 2τa) =− EAca
Mb

(U̇b(t) + U̇b(t− 2τa)) (3)

+
1

Mb
(−W (t) +W (t− 2τa)) +

2EAca
Mb

V0(t− τa), (4)

where Φb(t) := Φ(L, t) and Ub(t) := U(L, t) are the angular and axial dis-
placements of the bit, respectively (see Fig. 1), T (t) represents the torque on
bit, and W (t) represents the weight on bit. The parameters in (1) and (3)
are defined in Table 1. The delay term τt (τa) is the time required for the
torsional (axial) wave to travel along the string. The existence of the terms
with 2τt (2τa) is due to the wave reflection at the top and returning back to
the bit. Indeed, by employing the NTD model, the drill-string model is still
infinite-dimensional with delayed terms in the equations of motion.

2.1 Bit-rock interactions

The following bit-rock interaction law is employed to represent the torque and
the weight on the bit [3]:

T (t) = Tc(t) + Tf (t), (5a)

W (t) = Wc(t) +Wf (t), (5b)
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with the following cutting and frictional components:

Tc(t) =
1

2
εa2R (d(t))H

(
Φ̇b(t)

)
, (6a)

Tf (t) =
1

2
µγa2σlSign

(
Φ̇b(t)

)
H (d(t))H

(
U̇b(t)

)
, (6b)

Wc(t) = εaζR (d(t))H
(

Φ̇b(t)
)
, (6c)

Wf (t) = σalH (d(t))H
(
U̇(t)

)
, (6d)

where ε, µ, ζ, l and σ are constant parameters defined in Table 1, and d is the
depth of cut. Moreover, R(.), H(.), and Sign(.) are the Ramp, Heaviside, and
Sign functions, respectively [31].

2.1.1 Depth of cut estimation

Depth of cut is the summation of the thickness of the rock layers which
are being cut by the cutting blades. If the cutting blades are arranged non-
uniformly, the depth of cuts corresponding to different cutting blades are not
the same. Accordingly, the depth of cut is given by

d(t) =

n∑
i=1

di(t), (7)

where di(t) is the depth of cut corresponding to the ith cutting blade, and
n is the number of blades. One of the blades is considered the first blade
(arbitrarily), and the other blades are numbered according to their angular
distance from the first blade as follows (the angles are measured in the positive
angular direction):

α1 = 0 < α2 < ... < αn < 2π. (8)

Assuming that the first blade has zero angular position at time t = 0, the
angular position of the ith cutting blade at time t is given by

Φi(t) = Rem(Φb(t) + αi, 2π) i = 1, 2, ..., n. (9)

The function Rem(a, b) is the remainder of a divided by b. The remainder
function is employed in (9) to define the angular position of the blades in the
interval [0, 2π). If the well surface pattern i.e., the depth of the well surface
as a function of fixed polar coordinates, is known, the depth of cut for each
cutting blade can be obtained by knowing the axial position of the bit.

As shown in Fig. 2, the ith blade depth of cut is obtained as follows:

di(t) = lim
ε→0+

(
Ub(t)− P

(
Φi(t) + ε

))
H
(
Ub(t)− P

(
Φi(t) + ε

))
, (10)
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where P (θ) represents the well surface depth at the azimuth angle θ in a
cylindrical coordinate attached to the ground. The Heaviside function H(.)
indicates that if the axial penetration of the blade is smaller than the well
depth, the blade does not penetrate to the formation, and the depth of cut
corresponding to such blade equals zero. In other words, when the ith blade
crosses the angular position Φi, there are two posibilities:

1. The blade axial position is less than the well depth at Φi, the blade does
not penetrate to the formation and the well pattern remains unchanged.

2. The blade is penetrated to the formation and imposes its axial position on
the well surface at the radial plane θ = Φi.

Accordingly, the following implicit relation governs the well-trajectory time
evolution:

P
(
Φi(t)

)
= max

(
Ub(t), P

(
Φi(t)

))
, i = 1, 2, ..., n. (11)

The general idea behind the proposed model is as follows. If the cutting is in
progress and the bit penetrates the formation, the well surface depth behind
the cutting blade is equal to the axial position of the blade. Otherwise, the
depth of cut is zero, and the well surface pattern remains unchanged. Accord-
ingly, the depth of cut can be obtained from the well surface function, like
the approach in [14]. Note that, here, unlike [14], the formulation is not in the
differential framework. This enables the model to capture the cases with dis-
continuous and non-differentiable well surface, e.g., when the torsional stick
and bit-bounce occur simultaneously. For more insight, see Fig. 3, which illus-
trates the discontinuity of the well surface trajectory in this case. First, the
bit sticks according to insufficient operating torque to overcome the Torque
On Bit (TOB). Then, the bit bounces which reduces the depth of cut, and
eventually, the TOB becomes less than the operating torque, and the bit tor-
sionally slips. Summarizing, the total dynamics of the drill-string is governed

Fig. 2: A planar representation of a portion of the full cut surface by unfolding
the cylinder.
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(a) bit sticking (b) bit bouncing
(c) bit slipping

Fig. 3: Discontinuous cut pattern.

by (1), (3) with the TOB and the Weight On Bit (WOB) obtained by (5) and
(6) with the depth of cut (7), (10) obtained by the well depth function P (θ)
which is evolving according to (11).

Compared to the model presented in [14], the proposed model in this
paper has some advantages; first, discontinuous and non-differentiable well
surface patterns can be modeled, second, bits with non-uniform blade arrange-
ment are in the scope of this work, third, reverse rotation of the bit can be
captured, fourth, the computation burden corresponding to the well surface
pattern evolution is less since there is no need to solve a PDE. On the other
hand, compared to the model presented in [20], multiple-regenerative effects
are taken into account, and the presented model is more reliable in the presence
of bit-bounce and reverse rotation of the bit.

3 Results and discussion

Simulation results for the proposed distributed model (1), (3), (5), (6) with the
new depth of cut calculation method (7), (10) are presented. The parameter
values used for the simulations are given in Table 1. In order to present the
time-domain simulations of the drilling system with the proposed bit-rock
interaction law, the continuous azimuth angle θ ∈ [0, 2π) should be discretized,
as well as the operating time t. Accordingly, nθ nodes representing the azimuth
angle in the interval [0, 2πn ) are defined. Subsequently, the rock surface depth
is discretized and represented by nθ variables corresponding to the discretized
nodes as follows:

pk := P (θ), k = [
θ

2π
nθ] + 1, θ ∈ [0, 2π). (12)

As a result, the discretized form of the cut pattern evolution equation (11) is
given by

pk = max(Ub(t), pk), k = [
Φi
2π
nθ] + 1, (13)

which indicates that although nθ states represent the rock surface depth in
the discretized coordinate, only n operation is carried out according to these
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nθ states (n << nθ since n is the number of the blades and nθ is the number
of discretized nodes in the azimuth direction).

In comparison with the discretized form of a PDE, which demands nθ oper-
ations in each solving step, the proposed method reduces the computational
burden significantly. Now, consider a bit with four blades, as illustrated in Fig.
4, distributed non-uniformly with the following blade angles:

α2 =
π

3
, α3 = π, α4 =

4π

3
. (14)

In each step, the depth in four discretized nodes corresponding to the four
cutting blades may be updated with the following time evolution relation:

pk1 = max(Ub(t), pk1), k1 = [
Φ1

2π
100] + 1, (15a)

pk2 = max(Ub(t), pk2), k2 = [
Φ2

2π
100] + 1, (15b)

pk3 = max(Ub(t), pk3), k3 = [
Φ3

2π
100] + 1, (15c)

pk4 = max(Ub(t), pk4), k4 = [
Φ4

2π
100] + 1, (15d)

with

Φ1 = Rem(Φb(t), 2π), (16a)

Φ2 = Rem(Φb(t) + α2, 2π), (16b)

Φ3 = Rem(Φb(t) + α3, 2π), (16c)

Φ4 = Rem(Φb(t) + α4, 2π). (16d)

The depth of cut corresponding to each blade is obtained as

d1 = max(Ub(t)− pk1+1)H(Ub(t)− pk1+1), k1 = [
Φ1

2π
100] + 1, (17a)

d2 = max(Ub(t)− pk2+1)H(Ub(t)− pk2+1), k2 = [
Φ2

2π
100] + 1, (17b)

d3 = max(Ub(t)− pk3+1)H(Ub(t)− pk3+1), k3 = [
Φ3

2π
100] + 1, (17c)

Fig. 4: Top view of the bit with four non-uniformly distributed blades.
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Fig. 5: A comparison between the dynamical behavior of a bit with four
non-uniformly distributed blades predicted by our model and predicted by
the state-dependent delay model presented in [20]. The nominal operating
conditions are Ω0 = 6.28 rad/s (60 rpm) and V0 = 0.0014 m/s (5 m/h), and
the rock intrinsic specific energy is ε = 8Mpa.

d4 = max(Ub(t)− pk4+1)H(Ub(t)− pk4+1), k4 = [
Φ4

2π
100] + 1. (17d)

Eventually, the total depth of cut is the summation of these depths, as follows:

d(t) = d1 + d2 + d3 + d4. (18)

In the following, the aforementioned non-uniform bit is used in the simulations.
Figure 5 compares the behavior of the non-uniform bit modelled by the

state-dependent delay model presented in [20] and the proposed model in this
paper. In this figure, the nominal velocities and the rock specific energy are
considered Ω0 = 6.28 rad/s (60 rpm), V0 = 0.0014 m/s (5 m/h), and ε =
8Mp, respectively. As can be seen, both the axial and torsional velocities are
positive in the whole time domain. Hence, bit-bounce and reverse rotation do
not occur during this operation, and there are no multiple-regenerative effects.
Consequently, both models predict precisely the same behavior for the drill-
string. In this operating condition, the hardness of the formation is not high
enough to stubbornly resist the cutting process and impose severe vibrations on
the drilling bit. Moreover, the bit is penetrating with a moderate penetration
rate in order to avoid severe vibrations. As a result, the vibration amplitude
is low, which prevents the multiple-regenerative effects (that invalidate the
state-dependent delay model).

To observe the multiple-regenerative effects, a more challenging case is
considered: drilling a stiffer formation with a faster rate of penetration. The
simulation results for the case with Ω0 = 6.28 rad/s (60 rpm) and with
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Fig. 6: A comparison between the dynamical behavior of a bit with four
non-uniformly distributed blades predicted by our model and predicted by
the state-dependent delay model presented in [20]. The nominal operating
conditions are Ω0 = 6.28 rad/s (60 rpm) and V0 = 0.0028 m/s (10 m/h), and
the rock intrinsic specific energy is ε = 120Mpa.

V0 = 0.0028 m/s (10 m/h), and ε = 120Mpa are depicted in Fig. 6. Severe
torsional vibrations cause stick-slip phenomena, leading more than half of the
operating time to the stick phase. For example, the bit is stuck to the forma-
tion between the times 7.5 s and 10 s. At this time, on the other side of the

5 10 15 20 25 30

t[s]

0

5

10

10
-3

5 10 15 20 25 30

t[sec]

-10
0

10

Uniformly distributed blades

Non-uniformly distributed blades

Fig. 7: A comparison between the dynamical behavior of a bit with four
uniformly distributed blades and a bit with four non-uniformly distributed
blades. The nominal operating conditions are Ω0 = 6.28 rad/s (60 rpm) and
V0 = 0.0014m/s (5m/h), and the rock intrinsic specific energy is ε = 60Mpa.
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drill-string, the rotary table is rotating and increasing the elastic energy of the
string by twisting it. At the time 10 s, the stored elastic energy becomes suffi-
cient to overcome the formation, the bit accelerates (torsionally), and the slip
phase starts. The result of this sudden energy release is an overshoot in the
angular velocity of the bit. It is seen that after one second, at the time 11 s,
the angular velocity becomes 20 rad/s, which is more than two times greater
than the nominal angular velocity (6.28rad/s). On the other hand, in the axial
direction, bit-bounce occurs frequently. In the beginning, before t = 15 s, at
t = 5.8 s, t = 10 s, and t = 14.2 s the bit-bounce occurs in very short time
intervals. But, after t = 15s, the bit-bounce occurs more severely with longer
time intervals. Subsequently, multiple-regenerative effects frequently take place
making the difference between the predictions of the two models significant.
More severely, even bit reverse rotation occurs at t = 26.4s. Note that the sim-
ulation results of the model presented in [14] diverge since the well-trajectory
becomes discontinuous when the reverse rotation occurs. In this case, differ-
entiating the well-trajectory for the governing PDE give infinite values. These
simulation results, which are presented for practical field condition, illustrates
the necessity of using the proposed model in this paper that captures the
reverse rotation phenomenon as well as the bit bouncing.

To show the effectiveness of non-uniformly arranging the cutting blades,
a comparison between the behavior of the drill-string equipped with the
non-uniform bit and a drill-string equipped with a bit with four uniformly
distributed blades is presented in Fig. 7. In this case, the non-uniform arrange-
ment of the cutting blades reduces the amplitude of unwanted vibrations
significantly. In order to make a quantitative comparison between the results,
the deviation of the axial and angular velocities from the nominal values is com-
puted, and the pick values in the time interval between t = 20s and t = 30s are
compared for the two models. For the bit with uniformly distributed blades, the
maximum deviation of the axial velocity from the nominal value is 0.0079m/s,
which occurs at t = 25.53s. On the other hand, for the bit with non-uniformly
distributed blades, the maximum deviation occurs when the bit axially sticks
(this takes place in several time intervals between t = 20 s and t = 30 s), and
its value is equal to the nominal axial velocity which is 0.0028 m/s. For the
torsional dynamics, the maximum deviation of the angular velocity from the
nominal value is 9.64 rad/s (occurring at t = 24.13 s), for the bit with uni-
formly distributed blades, and 0.82 rad/s (occurring at t = 20.53 s) for the bit
with non-uniformly distributed blades. Accordingly, the axial vibration ampli-
tude is reduced by more than 64 percent and the torsional one is reduced by
more than 90 percent (in the sense of the above quantitative criterion).

4 Conclusions

In this paper, coupled axial-torsional dynamics of a distributed drill-string
with a bit equipped with non-uniformly distributed blades has been studied.
A modified model has been proposed for the calculation of the depth of cut
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for a bit with non-uniformly distributed cutting blades. The cut-surface profile
has been determined by providing an implicit function of the bit torsional and
axial trajectories. This modification enables the model to capture the multiple-
regenerative effects caused by the bit reverse rotation in addition to the bit
bouncing. The proposed model is illustratively compared with other models in
the literature by employing a distributed drill-string model in terms of neutral-
type delay differential equations. The simulation results illustrate the existence
of the bit-bounce in a wide range of operating conditions, which indicates the
necessity of considering multiple-regenerative effects. Moreover, it is illustrated
that non-uniformly arranging the cutting blades can mitigate the unwanted
vibrations. Future work under consideration is using the proposed model in
this paper for dynamical analysis and parametric design of the drill-string with
the aim of reducing undesirable vibrations.
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[29] B. Saldivar, S. Mondié, J. J. Loiseau, V. Rasvan, Suppressing axial-
torsional coupled vibrations in drillstrings, Journal of Control Engineering
and Applied Informatics 15 (2013) 3–10.

[30] S. Tashakori, G. Vossoughi, H. Zohoor, N. van de Wouw, Prediction-
based control for mitigation of axial–torsional vibrations in a distributed
drill-string system, IEEE Transactions on Control Systems Technology
30 (2021) 277–293.

[31] S. Tashakori, G. Vossoughi, H. Zohoor, E. A. Yazdi, Modification of
the infinite-dimensional neutral-type time-delay dynamic model for the
coupled axial–torsional vibrations in drill strings with a drag bit, Journal
of Computational and Nonlinear Dynamics 15 (2020).


	Introduction
	Mathematical modelling
	Bit-rock interactions
	Depth of cut estimation


	Results and discussion
	Conclusions

