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Deterministic Versus Randomized Kaczmarz

Iterative Projection

Tim Wallace and Ali Sekmen†

Department of Computer Science

Tennessee State University

Nashville, TN USA

Abstract

The Kaczmarz’s alternating projection method has been widely used for solving a consistent

(mostly over-determined) linear system of equations Ax = b. Because of its simple iterative nature

with light computation, this method was successfully applied in computerized tomography. Since

tomography generates a matrix A with highly coherent rows, randomized Kaczmarz algorithm is

expected to provide faster convergence as it picks a row for each iteration at random, based on a

certain probability distribution. It was recently shown that picking a row at random, proportional

with its norm, makes the iteration converge exponentially in expectation with a decay constant

that depends on the scaled condition number of A and not the number of equations. Since

Kaczmarz’s method is a subspace projection method, the convergence rate for simple Kaczmarz

algorithm was developed in terms of subspace angles. This paper provides analyses of simple

and randomized Kaczmarz algorithms and explain the link between them. It also propose new

versions of randomization that may speed up convergence.

I. INTRODUCTION

Kaczmarz (in [1]) introduced an iterative algorithm for solving a consistent linear system

of equations Ax= b with A ∈R
M×N . This method projects the estimate x j onto a subspace

normal to the row ai at step j+1 cyclically with i = j (mod M)+1. The block Kaczmarz

algorithm first groups the rows into matrices A1, A2, . . . , Ak and then it projects the estimate

x j onto the subspace normal to the subspace spanned by the rows of A i at step j + 1

cyclically with i = j (mod k)+1. Obviously, the block Kaczmarz is equivalent to the simple

Kaczmarz for k = M. The Kaczmarz method is a method of alternating projection (MAP)
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and it has been widely used in medical imaging as an algebraic reconstruction technique

(ART) [2], [3] due to its simplicity and light computation. Strohmer et al. [4] proved that

if a row for each iteration is picked in a random fashion with probability proportional

with ℓ2 norm of that row, then the algorithm converges in expectation exponentially with

a rate that depends on a scaled condition number of A (not on the number of equations).

Needell (in [5]) extended the work of [4] for noisy linear systems and developed a bound for

convergence to the least square solution for Ax= b. Needell also developed a randomized

Kaczmarz method that improves the incoherency for iteration [6] and she analyzed the

convergence of randomized block Kaczmarz method [7]. Chen and Powell (in [8]) consider

a random measurement matrix A instead of random selection of measurements. Galantai

(in [9], [10]) provides convergence analysis for block Kaczmarz method by expanding the

convergence analysis (based on subspace angles) of Deutsch [11]. Brezinski (in [12]) utilizes

the work of Galantai for accelerating convergence of regular Kaczmarz method.

A. Paper Contributions

• Research on regular and randomized Kaczmarz methods appear disconnected in the

literature. Even though convergence rates have been studied separately, the link

between them has not been explored sufficiently.

• A new randomization technique based on subspace angles has been developed which

indicates an advantage with coherent data measurements.

• A further method is introduced which orthogonalizes the subspace blocks in order to

mitigate the coherency. Convergence is consistent with statistical expectations from

theory and simulations.

• The effects of measurement coherence are observed in the literature and illustrated

in our simulations with norm and angle based iteration randomization.

• A broader review and mathematical analysis of common methods is presented from

both statistical and deterministic perspectives.

II. CONVERGENCE OF REGULAR BLOCK KACZMARZ METHOD

Let x∗ be the solution of consistent Ax = b where A ∈ R
M×M is full column rank. Let

A be row-partitioned as {A1, . . . , Ak} where A i ∈R
Mi×M . Then, the simple block Kaczmarz
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update is as follows:

x j+1 = x j + AT
i (A i A

T
i )−1(b i − A ix j) i = j (mod k)+1 (1)

where b i is the section of b that corresponds to the rows of A i. Note that since A i is full

row rank, AT
i

(A i A
T
i

)−1 is the right pseudo-inverse of A i. This is equivalent to:

x j+1 = x j + AT
i (A i A

T
i )−1(A ix

∗
− A ix j)

x j+1 − x∗
= x j − x∗

− AT
i (A i A

T
i )−1 A i(x j − x∗).

Note that AT
i

(A i A
T
i

)−1 A i is the projection matrix for projection of the range of AT
i

:

x j+1 − x∗
= x j − x∗

−PSp(AT
i

)(x j − x∗) (2)

x j+1 − x∗
= (I −PSp(AT

i
))(x j − x∗)

x j+1 − x∗
= PSp⊥(AT

i
)(x j − x∗). (3)

For one cycle of the blocks,

xk − x∗
= PSp⊥(AT

k
)PSp⊥(AT

k−1
) . . .PSp⊥(AT

1
)(x0 − x∗). (4)

Note that if A ∈R
M×N is a full column rank with M < N, then the simple block Kaczmarz

update is as follows:

x j+1 = x j + A
†

i
(b i − A ix j)= x j + A

†

i
A i(x

∗
− x j) i = j (mod k)+1 (5)

where A
†

i
is the pseudo-inverse of A i and A

†

i
A i is the orthogonal projection onto Sp(AT

i
).

Then, we get the same equation as Equation (2), and subsequently we get Equation (4),

x j+1 − x∗
= x j − x∗

−PSp(AT
i

)(x j − x∗). (6)
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A. Exponential Convergence

Theorem 1. Let x∗ be the solution of consistent Ax = b where A ∈ R
M×M is full column

rank. Let A be row-partitioned as {A1, . . . , Ak} where A i ∈ R
Mi×M . Then, the simple block

Kaczmarz converges exponentially and the convergence rate depends of the number of blocks.

Proof: By Equation (2) and orthogonal projection,

∥∥x j+1 − x∗
∥∥2

2
=

∥∥x j − x∗
∥∥2

2
−

∥∥∥PSp(AT
i

)(x j − x∗)
∥∥∥

2

2
. (7)

So,
∥∥x j+1 − x∗

∥∥2

2
≤

∥∥x j − x∗
∥∥2

2
, (8)

x j−x∗ depends on the initial condition x̃0 = x0−x∗, and this dependence is scale-invariant.

To see this, let e j = x j − x∗ and consider cx̃0 where c ∈R. By Equation (3),

e j+1(cx̃0)= PSp⊥(AT
j+1

)e j(cx̃0)

= PSp⊥(AT
j+1

)PSp⊥(AT
j

) . . .PSp⊥(AT
1

)e0(cx̃0)

= PSp⊥(AT
j+1

)PSp⊥(AT
j

) . . .PSp⊥(AT
1

)(cx̃0)

= cPSp⊥(AT
j+1

)PSp⊥(AT
j

) . . .PSp⊥(AT
1

)e0(x̃0)

= ce j+1(x̃0). (9)

We will first show that if x0 6= x∗, then ‖xk − x∗‖2 < ‖x0 − x∗‖2. By the way of contradiction,

assume that x0 6= x∗ and ‖xk − x∗‖2 = ‖x0 − x∗‖2. By Equation (8),

∥∥xk − x∗
∥∥

2
≤

∥∥xk−1 − x∗
∥∥

2
. . .<

∥∥x0 − x∗
∥∥

2

and therefore ‖xl − x∗‖2 = ‖x0 − x∗‖2 for all 1≤ l ≤ k. By Equation (2), PSp(AT
l

)(xl−1 − x∗)=

0 for all 1 ≤ l ≤ k. By Equation (7), we get xl = x0 for all 1 ≤ l ≤ k. This implies that
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PSp(AT
l

)(x0 − x∗)= 0 for all 1≤ l ≤ k. So,

PSp⊥(AT
k

)∩Sp⊥(AT
k

)...∩Sp⊥(AT
1

)(x0 − x∗)= 0

PSp⊥(AT )(x0 − x∗)= 0.

Since A is full column rank we get x0 = x∗, which is a contradiction. So we know that

‖xk − x∗‖2 < ‖x0 − x∗‖2 (for one full cycle of k-iterations).

By compactness, there exists an ǫ ∈ (0,1) such that for all x̃0 = x0 − x∗ ∈ SN−1,

∥∥xk − x∗
∥∥

2
≤ 1−ǫ. (10)

By Equations (9) and (10)

∥∥xk − x∗
∥∥

2
= ‖x̃0‖2 ek(

x̃0

‖x̃0‖2

)≤ (1−ǫ)‖x̃0‖2

∥∥xk − x∗
∥∥

2
≤ (1−ǫ)

∥∥x0 − x∗
∥∥

2
.

Now consider iteration for q cycles,

∥∥xqk − x∗
∥∥

2
≤ (1−ǫ)q

∥∥x0 − x∗
∥∥

2

∥∥xqk − x∗
∥∥

2
≤ [(1−ǫ)1/k]qk

∥∥x0 − x∗
∥∥

2
.

Therefore, we conclude that the exponential decay depends on the number of blocks

k. Note that k = M for regular simple Kaczmarz and the exponential decay depends

on the number of rows in this case. The randomized Kaczmarz algorithm proposed by

Strohmer and Vershynin [4] avoids this and it converges in expectation as E

∥∥xp − x∗
∥∥2

2
≤

(1−κ(A)−2)p ‖x0 − x∗‖
2
2, where κ(A)= ‖A‖F

∥∥A†
∥∥

2
is the scaled condition number of matrix

A with A† is the pseudo-inverse of A.

B. Iterative Subspace Projection Approach

We can use the following theorem (in [10], [11]) to show the convergence of regular block

Kaczmarz method.
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Theorem 2. Let M1, M2, . . .Mk be closed subspaces of the real Hilbert space H. Let M =

∩k
i=1

Mi and PMi
(i = 1, . . . , k) be orthogonal projection on Mi. Then, for each x ∈H,

lim
q→∞

(PMk
PMk−1

. . .PM1
)qx= PMx

where PM is the orthogonal intersection projection.

The block Kaczmarz is an alternating projection method with M1 = Sp⊥(AT
1 ), . . . , Mk =

Sp⊥(AT
k

). Also, PM1
= PSp⊥(AT

1
), . . . ,PMk=Sp⊥(AT

k
) and M = Sp⊥(AT

1
)∩. . .∩Sp⊥(AT

k
)= Sp⊥(AT ).

Since A is full column rank, Sp⊥(AT )= {0} and PM = {0}. After q cycles,

xqk − x∗
= (PMk

PMk−1
. . .PM1

)q(x0 − x∗). (11)

By Theorem 2, limq→∞ xqk − x∗ = 0 and limq→∞ xqk = x∗. Galantai in [10] gives a bound

for
∥∥xqk − x∗

∥∥
2

in terms of principle angles between Mi ’s.

C. Bound for Block Kaczmarz in terms of Principle Angles

Smith, Salmon, and Wagner established the following convergence theorem for applying

the alternating projection method in tomography [10], [13]:

Theorem 3. Let M1, M2, . . .Mk be closed subspaces of the real Hilbert space H. Let M =

∩k
i=1

Mi and PMi
(i = 1, . . . , k) be orthogonal projection on Mi (PM is the orthogonal intersection

projection). Let θ j =α(M j,∩
k
i= j+1

Mi), then for each x ∈H and integer q ≥ 1,

∥∥(PMk
PMk−1

. . .PM1
)qx−PM x

∥∥2

2
≤ (1−Π

k−1
j=1 sin2θ j)

q
‖x−PM x‖2

2

where PM is the orthogonal intersection projection.

In the special case of the block Kaczmarz, we have H = R
N , M1 = Sp⊥(AT

1 ), . . . , Mk =

Sp⊥(AT
k

). Also, PM1
= PSp⊥(AT

1
), . . . ,PMk

= PSp⊥(AT
k

) and M = Sp⊥(AT
1

) ∩ . . .∩ Sp⊥(AT
k

) =

Sp⊥(AT ). Since A is full column rank, Sp⊥(AT ) = {0} and PM = {0}. Therefore, after q

cycles,

∥∥xqk − x∗
∥∥2

2
=

∥∥(PMk
PMk−1

. . .PM1
)q(x0 − x∗)

∥∥2

2
≤ (1−Π

k−1
j=1 sin2θ j)

q
∥∥xo − x∗

∥∥2

2
(12)
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where θ j is as defined in Theorem 3. Note that the exponential decay rate depends on the

number of blocks k as shown below.

∥∥xqk − x∗
∥∥2

2
≤ [(1−Π

k−1
j=1 sin2θ j)

1/k]qk
∥∥xo − x∗

∥∥2

2
(13)

Galantai in [10] developed another bound (for A ∈R
M×M) by defining a new matrix X i for

each block A i as follows:

Theorem 4. Let x∗ be the solution of Ax= b for a consistent linear system with A ∈R
M×M.

Let A be row-partitioned as {A1, . . . , Ak} where A i ∈ R
Mi×N . Let M1 = Sp⊥(AT

1
), . . . , Mk =

Sp⊥(AT
k

) and A i A
T
i
= LLT be the Cholesky decomposition of A i A

T
i

. Define X i = AT
i

L−T

and X = [X1, . . . , Xk]. Then for each x ∈R
N and integer q ≥ 1,

∥∥xqk − x∗
∥∥2

2
≤ [1−det(X T X )]q

∥∥xo − x∗
∥∥2

2
= [(1−det(X T X ))1/k]qk

∥∥xo − x∗
∥∥2

2

D. Special Case: Simple Kaczmarz for A ∈R
M×M

Note that this section assumes that A ∈R
M×M. The block Kaczmarz algorithm is equivalent

to the simple Kaczmarz algorithm if the number of blocks k is equal to the number of

rows M. In this case, A i A
T
i
= ‖a i‖

2
2
= LLT . therefore, L = ‖a i‖2 and L−T = 1/‖a i‖2. This

implies that X i = [
ai

‖ai‖2
]. Then, X ∈R

M×M is defined as:

X = [
a1

‖a1‖2

, . . . ,
aM

‖aM‖2

]. (14)

Assume the matrix A has normalized rows and we pick a row at each iteration uniformly

randomly. Note that this assumption is feasible as scaling a row of A and the corresponding

measurement in b does not change the solution x.

X is the Gram matrix with 0≤ det(X T X )≤ ‖x1‖
2
2
‖x2‖

2
2

. . .‖xM‖2
2
. Since ‖xi‖2 = 1 and X is

full rank, we have 0< det(X T X )≤ 1. Using Theorem 4, we get the following deterministic

bound:
∥∥xqM − x∗

∥∥2

2
≤ [(1−det(X T X ))1/M]qM

∥∥x0 − x∗
∥∥2

2
. (15)

Since A is normalized, we get, X = AT and therefore:

∥∥xqM − x∗
∥∥2

2
≤ [(1−det(AAT ))1/M]qM

∥∥x0 − x∗
∥∥2

2
. (16)
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Algorithm 1 Randomized Kaczmarz (of [4])

Require: An over-determined linear set of consistent equations Ax= b, where A is M×N

matrix and b ∈R
M. Let a1, . . . ,aM be the rows of A and b j be the jth element of b.

1: Pick an arbitrary initial approximation x0.

2: Set p = 0.

3: while not converged do

4: Randomly choose r(i) from {1, . . . , M} with probability proportional to
∥∥ar(i)

∥∥2

2
.

5: xp+1 = xp +
br(i)−〈ar(i),xp〉

‖ar(i)‖
2
2

ar(i)

6: Set p = p+1

7: end while

Bai et al. (in [14]) uses the Meany Inequality to develop a general form of this inequality.

III. RANDOMIZED KACZMARZ METHOD

A. Randomization Based on Row ℓ2 Norms

Strohmer et al. (in [4]) developed a randomized Kaczmarz algorithm that picks a row

of A in a random fashion with probability proportional with ℓ2 norm of that row. They

proved that this method has exponential expected convergence rate. Since the rows are

picked based on a probability distribution generated by the ℓ2 norms of the rows of A, it is

clear that scaling some of the equations does not change the solution set. However, it may

drastically change the order of the rows picked at each iteration. Censor et al. discusses

(in [15]) that this should not be better than the simple Kaczmarz as picking a row based

on its ℓ2 norm does not change the geometry of the problem. Theorem 5 is from [4].

Theorem 5. Let x∗ be the solution of Ax = b Then, Algorithm 1 converges to x∗ in

expectation, with the average error

E

∥∥xp − x∗
∥∥2

2
≤ (1−κ(A)−2)p

∥∥x0 − x∗
∥∥2

2
(17)

where κ(A) = ‖A‖F

∥∥A†
∥∥

2
is the scaled condition number of matrix A with A† is the left

pseudo-inverse of A.

Note that A is a full column matrix (A ∈ R
M×N with rank(A) = N) and therefore we

define A† as left pseudo-inverse of A. We observe that the randomization should work

better than the simple (cyclic) Kaczmarz algorithm for matrices with highly coherent rows

(e.g. matrices generated by the computerized tomography). Since the Kaczmarz algorithm
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is based on projections, the convergence will be slow if the consecutive rows selected are

highly coherent (i.e. the angle between a i and a i+1 is small). Picking rows randomly

(not necessarily based on the ℓ2 norms) makes picking more incoherent rows possible in

each iteration. Therefore, the randomization may be useful for certain applications such as

medical imaging. Note that matrix A generated by computerized tomography has coherent

and sparse rows due to physical nature of data collection. In fact, using Theorem 5, we

can develop the following proposition.

Proposition 6. Let Ax = b be a consistent linear system of equations (A ∈ R
M×N) and let

x0 be an arbitrary initial approximation to the solution of Ax= b. For k = 1,2, . . . compute

xp+1 = xp +
br(i)−〈ar(i), xp〉

∥∥ar(i)

∥∥2

2

ar(i) (18)

where r(i) is chosen from the set {1,2, . . ., M} at random, with any probability distribution.

Let x∗ be the solution of Ax = b. Then,

E

∥∥xp − x∗
∥∥2

2
≤ (1−κ(B)−2)p

∥∥x0 − x∗
∥∥2

2
(19)

where κ(B)= ‖B‖F

∥∥B†
∥∥

2
is the scaled condition number of a matrix B that is obtained by

some row-scaling of A.

Proof: This is due to the fact that, row-scaling of A (with scaling of the corresponding

b) does not change the geometry of the problem and we can scale the rows to generate any

probability distribution. In other words, we can obtain another matrix B from A by scaling

its rows in such a way that picking the rows of B based on the ℓ2 norms of the rows will be

equivalent to picking the rows of A based on the chosen probability distribution. Therefore,

clearly, any randomization of the row selection will have exponential convergence, however,

the rate will depend on the condition number of another matrix. For example, if we use

uniform distribution, we can then normalize each row to have matrix B as follows and

then pick the rows at random with probability proportional to the norms of the rows.

B = [
a1

‖a1‖2

, . . . ,
aM

‖aM‖2

]T . (20)
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Algorithm 2 Randomized Kaczmarz Hyperplane Angles

Require: An over-determined linear set of consistent equations Ax= b, where A is M×N

matrix and b ∈R
M. Let a1, . . . ,aM be the rows of A and b j be the jth element of b.

1: Pick an arbitrary initial approximation x0.

2: Set k = 0.

3: Randomly choose f (i) from {1,2, . . ., M} with a uniform distribution.

4: while not converged do

5: Randomly choose g(i) from {1, . . . , M} with probability proportional to 1 −

〈a f (i),ag(i)〉
2

‖a f (i)‖
2
2
‖ag(i)‖

2
2

6: Compute xk+1 = xk +
b f (i) −〈a f (i), xk〉

‖a f (i)‖
2
2

a f (i)

7: Compute xk+2 = xk+1 +
bg(i)−〈ag(i), xk〉

‖ag(i)‖
2
2

ag(i)

8: Set f (i)= g(i)

9: Set k = k+2

10: end while

B. Randomization based on Subspace Angles

Our approach iterates through the rows of A based on a probability distribution using

the hyperplane (subspace) angles. Therefore, it is immune to scaling or normalization.

This approach first generates a probability distribution based on the angles between the

hyperplanes (represented by the rows of Ax= b). Then, it randomly picks two hyperplanes

using this probability distribution. This is followed by a two-step projection on these

hyperplanes (see Algorithm 2).

C. P-Subspaces Approach

A new method has been developed which is intended to better accommodate the coherency

of non-orthogonal data measurements. This next section makes contributions towards

proving the statistical convergence of the randomized Kaczmarz orthogonal subspace (RKOS)

algorithm. As described in [16], the RKOS initially uses ℓ2-norm random hyperplane

selection and subsequent projection into a constructed P−dimensional orthogonal subspace

SP comprised of an additional P −1 hyperplanes selected uniformly at random.

The algorithm uses a recursive method to solve for the projections into the orthogonal

subspace which is constructed using Gram-Schmidt (GS) procedure. However, a second
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approach demonstrates an alternate method of arriving at similar results, based upon an

a closed form matrix for QR decomposition [17] of projection blocks.

In each of the above cases, vector operations inside the orthogonal subspace preserve the

ℓ2-norm, and reduce errors that would normally be induced for coherent non-orthogonal

projections which may be present in the simple Kaczmarz.

1) Orthogonal Subspaces: A statistical convergence analysis for Randomized Kaczmarz

Orthogonal Subspace (RKOS) method is developed assuming identically and independently

distributed (IID) random variables as vector components of each row of the measurement

matrix A.

a) Orthogonal Construction : In many problems, M≫N and fast but optimal solutions

are needed, often in noisy environments. In most cases, orthogonal data projection sampling

is not feasible due to the constraints of the measurement system. The algorithm and

procedure for the RKOS method is given in reference [16] and is intended to construct

orthogonal measurements subspaces (see Algorithm (3)).

The general technique is to solve using a constructed orthogonal basis from a full rank

set of linearly independent measurements in for each subspace in Gram-Schmidt fashion

[18], [19].

The subspace estimation may be computed as P−dimensional subspace projection into

the subspace orthonormal vector basis:

xSP
=

P∑

l=1

〈ûl , x〉ûl . (21)

where xSP
in SP ⊆ SN subspace is the P−dimensional solution approximation which

becomes exact for SP=N for xSP=N
∈R

N in the noiseless, self-consistent, case.1

b) Modified Kaczmarz: The standard Kaczmarz equation is essentially iterative projections

into a single subspace of dimension one; based upon the sampling hyperplanes, these

projections are often oblique, especially in highly-coherent sampling.

The approach herein is motivated towards constructing an iterative algorithm based

upon Kaczmarz which may be accelerated while controlling the potential projection errors

1The u vector with the hat symbol û indicates unit ℓ2-norm
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(a) IID Gaussian Unit Vector

Image

(b) CT Phantom Image

Fig. III.1: Representative test data

and incurring reasonable computational penalty. The algorithm is simply to add subspaces

of larger dimensions. Let

x− xk+1 = x− xk −

P∑

l=1

〈ûl , x− xk〉ûl . (22)

It is convenient to make a substitution as follows:

zk+1 = x− xk+1. (23)

Using above substitution and orthonormal condition2 〈û j, ûk〉 = δ j,k, where the Kronecker

δ j,k =





0 if j 6= k

1 if j = k,

, find the ℓ2-norm squared of zk+1:

‖zk+1‖
2
2 = ‖zk‖

2
2 −

P∑

l=1

|〈ûl , zk〉|
2. (24)

The ensemble average of the above Equation 24 yields the convergence result, which is

2It is worthwhile to note that in the problem setup, a fixed vector is projected into a randomized P-dimensional

subspace, where algebraic orthogonality was used to obtain Equation (24). In the this statistical treatment of the same

equation, the expectation of two random unit vectors vanishes for independent uncorrelated zero mean probability

distribution functions, providing the statistical orthogonality on average satisfying (24).
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Algorithm 3 P-Subspace Kaczmarz Projections

Require: Matrix A ∈R
M×N full-rank consistent measurements subject to Ax = b, for b ∈

R
M.

1: Set x0 to initial approximation, i = 1

2: while not converged do

3: Select dim(SP ) = P < N distinct linearly independent rows of A relative to random

rule. Construct block matrix A i ∈R
P×N comprised of rows

{
a i,1, . . . ,a i,P

}
.

4: Perform Gram-Schmidt procedure on A i to obtain the orthonormal set of columns{
ui,1, . . . , ui,P

}
. Let Q i =

{
ui,1, . . . , ui,P

}
∈R

N×P

5: Update xi as follows:

xi = xi−1 +Pro jSp(Q i )(xi−1 − x),

xi = xi−1 −Q iQ
T
i

(x− xi−1),

6: Compute QT
i

x iteratively using
{
a i,1, . . . ,a i,P

}
,
{
b i,1, . . . , b i,P

}
,
{
ui,1, . . . , ui,P

}

7: Update i = i+1

8: end while

the main topic of this section.

2) Convergence for IID Measurement Matrix: Firstly, the expectation of a single random

projection is computed. In the second step, the terms are summed for the P-dimensional

subspace. Experimental results are included in a latter section.

a) Expectation of IID Projections: Consider the expectation of the ℓ2-norm squared of

the projection of fixed vector x ∈R
N×1 onto a random subspace basis UP ∈ of dimension P,

E[‖UT
P x‖2

2],

where the matrix basis UP ∈ R
NxP is comprised of P−columns of unit vectors û j ∈ R

N in

a constructed orthogonal basis for

û j → Û j = [U j,1, . . . ,U j,N ]
1

Cσ

, (25)

=
U j

‖U j‖
2
2

∀ j ∈ [1, . . . ,P] . (26)

where the upper case components0 U j,i represent the ( j, i)-th IID random variable component,

and normalization constant Cσ is to be determined.
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Further noting that complex conjugate (.)∗ reduces to transpose (.)T for real components,

the ℓ2-norm squared of the projection expands to

‖UT
P x‖2

2 = xTUPUT
P x.

In the next section, the goal is to find the expected value for outer product of the projection,

E

[
xTÛ jÛ

T
j x

]
∀ j ∈ [1, . . .,P].

b) Unit Vector : The deterministic identity for the magnitude of a unit vector is well

known result for û ∈R
N ,

‖û‖
2
2 =

N∑

i=1

u2
i

‖u‖2
2

= 1. (27)

The following statistical result must apply for the j-th column unit vector:

E
[
‖Û j‖

2
2

]
= E

[
ÛT

j Û j

]
= 1 (28)

= E [U2
j,1 +·· ·+U2

j,N ]
1

C2
σ

.

c) Normalization of Random Unit Vector : Denote Û j as the j-th random variable

unit-norm vector associated with a set of column vectors
{
U j

}
j∈1,...,P

comprising a random

subspace matrix UN×P having IID random variable components U j,i. However, no additional

assumptions on the distribution of the random variables are made at this time, other than

IID.

The expectation of both sides of Equation (28) for random vector U j are found such that:

E

N∑

i=1

U2
j,i

C2
σ

=

N∑

i=1

E

[
U2

j,i

C2
σ

]
= 1, (29)

N×

E

[
U2

j,i

]

C2
σ

= 1.
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Solving above for each unit vector component in this treatment implies a random variable

U j,i with zero mean and variance as follows:

E

[
U2

j,i

]
=σ2

j,i =
C2

σ

N
∀U j,i∈1,...,N ∈ f (U j,i), (30)

where f (Ui, j) is the associated IID probability distribution.

d) P-Dimensional Random Projection: The next step is to compute the expectation of

the magnitude of the projection of fixed vector x onto random P-dimensional orthonormal

subspace UP projection term by term. Let α ∈ R
P be a column vector defined as α=UT

P
x

and find the ℓ2-norm squared:

‖α‖
2
2 = α2

1 +α2
2+ . . .+α2

P (31)

= ‖UT
P x‖2

2 = xTUPUT
P x,

where

α2
j = 〈û j, x〉2 (32)

=
(
u j,1x1 + . . .+u j,N xN

)2
(33)

=

N,N∑

i,k

u j,ku j,ixkxi

‖u j‖
2
2

. (34)

Let upper case U j,k denote the k-th IID element random3 variable of the j-th column

vector U j associated with column vector u j; let x vector denote a fixed point. Next, take

the expectation of the term over the possible outcomes of U j,k random variables. Using

the IID assumption, the expected value for a single projection component preserves terms

squared as follows:

E

[
α2

j

]
= E

[
N,N∑

i,k

U j,kU j,ixkxi

C2
σ

]
=

N,N∑

i,k

E

[
U j,kU j,ixkxi

C2
σ

]
(35)

3This is not the same k-variable as the Kaczmarz iteration variable
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=

N∑

k=1

E

[
U2

k
x2

k

C2
σ

]
=

N∑

k

E

[
U2

j,k

C2
σ

]
x2

k

= E

[
U2

j,k

C2
σ

]
N∑

k

x2
k = E

[
U2

j,k

C2
σ

]
‖x‖2

2

=
1

C2
σ

C2
σ

N
‖x‖2

2

=
1

N
‖x‖2

2.

It is now possible to determine the expectation for P-terms of the projection as,

E
[
‖α‖

2
2

]
= E

[
P∑

j=1

α2
j

]
=

P

N
‖x‖2

2 (36)

subject to IID constraint on Û j where it is further noted that σ2N = C2
σ in Equation (30).

e) Error per Iteration: For a given k-th Kaczmarz iteration, the expectation of the

projection of fixed vector x onto the random P-dimensional subspace UP is known from

above. The total convergence expectation may then be computed, using a method similar

to Strohmer’s, starting4 with Equation (37):

‖zk+1‖
2
2 = ‖zk‖

2
2 −

P∑

l=1

|〈zk, ûl〉|
2 (37)

E{k+1|z0,z1,...,zk}

[
‖zk+1‖

2
2

]
= (38)

= E{k+1|z0,z1,...,zk}

[
‖zk‖

2
2 −

P∑

l=1

|〈zk, ûl〉|
2

]

= E{k+1|z0,z1,...,zk}

[
‖zk‖

2
2

]
−E{k+1|z0 ,z1,...,zk}

[
P∑

l=1

|〈zk, ûl 〉|
2

]
.

4Recall that derivation of this equation (37) requires orthogonality among the ûl subspace basis vectors.
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We identify the term on the right as:

E{k+1|z0,z1 ,...,zk }

[
P∑

l=1

|〈zk, ûl〉|
2

]
= E{k+1|z0,z1,...,zk }

[
‖UP zk‖

2
2

]

=
P

N
×E{k+1|z0,z1,...,zk}

[
‖zk‖

2
2

]
. (39)

The results from the two equations ((39) and (38)) above may then be combined to obtain,

E{k+1|z0,z1,...,zk}

[
‖zk+1‖

2
2

]
=

(
1−

P

N

)
×E{k|z0,z1,...,zk−1}

[
‖zk‖

2
2

]
,

where the expectation on the right hand side includes k+1→ k accounting for the previous

iteration.

Next, apply induction to arrive at the expectation for the whole iterative sequence up

to the β-th iteration given that z0 ≡ x− x0:

E{β+1|z0}

[
‖zβ+1‖

2
2

]
=

(
1−

P

N

)β
‖z0‖

2
2 ∀β ∈ 1,2,3, . . .. (40)

f) Asymptotic Convergence: The statistical ensemble average of the above Equation

(24) for the β-th iteration yields the convergence result given in Equation (40). These

results assume random variables identically and independently distributed, but compare

well to others in the literature, such as the convergence result in Strohmer [20].

The theoretical convergence iterative limit for uniform random IID sampling was compared

to numerical simulations using random solution vector point on a unit sphere. Equation

(41) has an asymptotic form:

E{β+1|z0
}

[
‖zβ+1‖

2
2

]‖z0‖
2
2 = (41)

lim
β→∞

[
1−

P

N

]β
≃ e−βP/N

P = dim(SP ), β≫ 1,2,3, . . .→ k ∈ P,2P,3P, . . ..
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For comparison, recall the convergence for RK method of Strohmer for IID measurements

with R = N is approximately:

E{k+1|z0
}

[
‖zk+1‖

2
2

]‖z0‖
2
2 =

[
1−

1

N

]k

(42)

lim
k→∞

[
1−

1

N

]k

≃ e−k/N
∀ k ≫ 1,2,3, . . ..

Estimated noise bound convergence complexity to ǫ error is O(N2). Since the value of z0

is given, the expectation is known to be the same.

g) Theory and Simulation: Simulations in reference [16] compare theory to Gaussian

IID with noise variance added to the measurements with magnitude β= 0.05 (about five

percent) and iteration termination at β = 0.05/4 = 0.0125. In the first problem, the exact

solution x is chosen as a random point on the unit sphere - which is illustrated in Figure

III.1a. In a second problem, a measurement of the standard phantom using parallel beam

measurements is included, which contains coherent measurements.

3) QR Representation: An alternative method for finding the expected convergence of

the RKOS iterative block Kaczmarz method used to solve Ax∗ = b∗ for (x∗; b∗) ∈R
N , and

A ∈R
N×N is considered below. The formalism is slightly more rigorous and contemporary,

allows direct computation of matrix quantities (instead of recursive GS), but is consistent

with the former method of finding the orthogonal projection subspaces Ui.

The method includes sufficient algebra to allow representation of the Kaczmarz orthogonal

block iterative process subject to the Smith Solmon Wagner [13] inequality, by incorporating

the subspace projection concepts from Galantai et a l [21].

In this work, it is assumed that measurement matrix A ∈R
N×N is square full row rank,

however, the results may be extended to cases where M ≥ N with proper modification.

a) Approach: The i-th block iteration of the RKOS selects blocks of Mi-rows of matrix

A to form A i. In general, the blocks may be selected to allow overlapping rows or unique

row selections per cycle, in natural row order or via random a priori partitioning into

the set {M1, M2, . . . , Mk} of row blocks comprising A i ∈ R
Mi×N . However, in the following
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analysis, we assume set is subject to

k∑

i=1

Mi = N (43)

which applies to the case in which rows are selected uniquely without replacement for

each cycle.

Let H be a Hilbert space having a defined inner product and finite norm. Let the

measurement matrix A ∈R
N×N be full row rank in H and segmented into k-blocks according

to

IN = [E1, . . . ,Ek]
(
E i ∈R

N×Mi , i = 1, . . . , k
)

where E i is a set of Mi-column index vectors (which may be non-contiguous) of the identity

matrix INxN to form AT
i
= AT E i.

5

The segmentation of the blocks and the order of blocks is stationary with respect to

iteration number in this treatment.

b) QR and Gram-Schmidt: In the RKOS algorithm, the process of decomposing AT
i

into the QR [17], [19] factorization performs the Gram-Schmidt process for orthogonalization.

Algorithm (3) recursively solves for the orthonormal set and allows recursive computation

of the projections of exact solution x∗ onto the the orthogonal basis in terms measurements

b i.

Direct QR decomposition for row block A i is noted to be

AT
i = AT E i =Q iR i =UiR i (44)

is equivalent to GS and may be directly computed6, where Ui ∈R
N×Mi is the i-th orthonormal

basis (columns) constructed from the Mi-rows randomly selected from matrix A, and

5To understand the sampling vector E i , consider the following example.

Let I6,6 be the identity matrix and select non-continguous sampling set Mi = {3,5,6} and form E i as E i(3,5,6) =


0 0 0

0 0 0

1 0 0

0 0 0

0 1 0

0 0 1




and E i(3,5,6)T =




0 0 1 0 0 0

0 0 0 0 1 0

0 0 0 0 0 1


.

6The transpose is needed since the columns of Ui are the rows of A i block
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R i ∈ R
Mi×Mi is upper triangular matrix. It is important to note that matrix Q i = Ui in

the RKOS algorithm (3).

For x ∈H, define the j-th iterative error estimate as, z j ≡ x∗
i
−x j and z̃ j ≡ x∗

i
+ǫx(i)−x j

respectively without and with noise, where x j is the j-th iterative estimate for the i-th

block projection of k-blocks per cycle; x∗ is the desired noise-free solution to Ax∗ = b∗;

x∗
i

is the i-th block estimate of the noise free solution; and ǫx(i) is the i-th propagated

measurement noise vector in the current basis.7

The simple block Kaczmarz’s equation (without noise) using the orthogonal projection

matrix Ui may be written as

x j+1 = x j +UiU
T
i (x∗

− x j) (45)

x∗
− x j+1 = x∗

− x j −UiU
T
i (x∗

− x j)

z j+1 = z j −UiU
T
i z j = (I −UiU

T
i )z j

(i ≡ j( mod k)+1).

In above, notice that Ui is orthonormal column matrix, i.e. UT
i

Ui = I under contraction,

but on projection, UiU
T
i
= Pi acts to preserves components within the subspace Ui. The

following relations are noted:

A i A
T
i = (UiR)T

i (UiR i)= RT
i UT

i UiR i = RT
i R i (46)

AT
i A i = (UiR i)(UiR i)

T
=UiR iR

T
i UT

i .

To find the new basis, use definition in Equation (44) solve to find

Ui = AT
i RT

i (R iR
T
i )−1, (47)

UT
i UiR i = R i =UT

i AT
i . (48)

c) Block Equations: Next, consider that measurement vector b is comprised of (a)

b∗ the self-consistent error free measurement vector solution of Ax∗ = b∗, and (b) the

7It should be noted that the noise terms are generally not separable in practice, but are explicitly shown here in order

to facilitate the analysis.
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measurement noise term, ǫb. Therefore, Ax∗ = b∗, x = x∗+ǫx, b = b∗+ǫb. Then we may

find,

Ax = b = b∗
+ǫb, (49)

A ix= (UiR i)
T x= RT

i UT
i x = b i = b∗

i +ǫb(i),

where b i = E ib to obtain the i-th under-determined block estimate for the solution,

xi =

(
AT

i A i

)−1
AT

i b i =

(
AT

i A i

)−1
AT

i (b∗
i +ǫb(i)). (50)

The next objective is to find the result in the new basis. First, substitute from Equation

(44) and multiply both sides by R i as follows:

A ix= (UiR i)
T x= RT

i UT
i x= b i, (51)

R iR
T
i UT

i x= R ib i,

UT
i [x]= (R iR

T
i )−1R ib i = (R iR

T
i )−1R i(b

∗
i +ǫb(i)), (52)

which has been converted to terms of Ui and R i. Using the orthogonality of Ui, Equation

(52) may be solved for x in terms of Ui,R i as follows:

UiU
T
i x = UiI (R iR

T
i )−1R ib i (53)

(
UiU

T
i

)
x =

(
UiU

T
i

)
Ui(R iR

T
i )−1R ib i

→ xi = x∗
i +ǫx(i)=Ui(R iR

T
i )−1R ib i

where b i = b∗
i
+ ǫb(i) and the contraction of the orthonormal matrix I = UT

i
Ui is used

on the right hand side, UiU
T
i

is non-singular, x = x∗ + ǫx, and the i-th block estimate

xi = x∗
i
+ǫx(i). The result xi =Ui(R iR

T
i

)−1R ib i may be verified by

UT
i xi =UT

i Ui(R iR
T
i )−1R ib i = (R iR

T
i )−1R i

(
b∗

i +ǫb(i)
)

which is equation (52) as expected.

d) Block Iteration and Noise: Making the substitutions for the consistent noise free

solution x∗ and the measurement noise ǫb, the j-th error difference vector terms are as
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follows:

z̃ j ≡ z j +ǫx = x∗
+ǫx − x j, (54)

→ z̃ j = x∗ +Ui(R iR
T
i )−1R iǫb(i)− x j.

The orthogonal block Kaczmarz Equation (45) for z j+1 ≡ x∗−x j+1 may be written as follows:

z j+1 +ǫx(i)=
(
z j +Ui(R iR

T
i

)−1R iǫb(i)
)

−UiU
T
i

(
z j +Ui(R iR

T
i

)−1R iǫb(i)
)

(55)

= (I −UiU
T
i

)
[
z j +Ui(R iR

T
i

)−1R iǫb(i)
]

or,

z̃ j+1 = (I −UiU
T
i )z̃ j (i ≡ j(mod k)+1) (56)

where

z̃ j+1 = z j+1 +ǫx(i)= x∗
+ǫx(i)− x j+1, (57)

and the estimated noise component in the block-row basis is ǫx(i)=Ui(R iR
T
i

)−1R iǫb(i). In

actual practice, the projected component in the new orthogonal subspace basis is computed

as UiU
T
i

x=UiI (R iR
T
i

)−1R ib i from the right hand side, where the value of the under-determined

solution vector x for the block estimate is not explicitly realized.

e) Cyclical Projections: In the notation of Halperin [22] and Galantai [10], AT
i
=

AT E i =UiR i, and the projection operator, null subspace, and orthonormal condition may

be identified as follows:

PM j
= I −U jU

T
j

, M j =R
⊥(UT

j
), U j ∈ R

N×Mi UT
j

U j = IMi×Mi
where during the first cycle,

observe that j = i for j = 1, . . . , k.

It is further noted that the cumulative projection and null space intersection for the

k-th iteration block are as follows:

Ω= Pk, . . . ,P2P1 = (I −UkUT
k ), . . . , (I −U1UT

1 ), (58)
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M =

k⋂

j=1

R
⊥(U j)=R

⊥([U1, . . . ,Uk])=R
⊥(U), (59)

respectively, with PM = PR⊥(U) = I −PR(U). The Smith Solmon Wagner [13] referenced in

Theorem 4 of Galantai [10], has the form

∥∥∥
[
(I −UkUT

k ), . . . , (I −U1UT
1 )

]N
z0 −PM z0

∥∥∥ (60)

≤ cN
SSW

∥∥∥z0 −PM z0

∥∥∥

where cSSW =

(∏k−1
j=1

sin2θ j

)1/2
and angle

θ j =α

(
M j,

k⋂

i= j+1

Mi

)
=α

(
R

⊥(U j),R
⊥(

[
U j+1, . . . ,Uk

]
)
)
. (61)

The above result provides a bound for convergence using linear block projections

f) Gram-Schmidt and QR Summary : The expected statistical convergence method

described using Gram-Schmidt (GS) shows good agreement to experimental simulations.

The results are consistent with Strohmer for P = 1. The P-dimensional orthogonal subspace

method based upon QR gives similar convergence result, and the deterministic bounds are

consistent with the results of Galantai. In both of the above cases, i.e. Gram-Schmidt and

QR decomposition, the proofs of convergence were based upon IID probability distribution

of the measurement noise and the measurement sampling vectors.

The propagation of measurement noise is seen to be dependent upon the iterative

convergence and general iterative process. An additional study may be worthwhile to

determine a possible method for noise minimization and feasibility.

4) Convergence for Almost Any Probability Distribution: Although the former methods

for RKOS Gram Schmidt and QR assumed IID random variables, it is noted that application

of Theorem (2) to Equation (60) in section (III-C3e) yields convergence regardless of the



24

distribution8 of the sampling and IID variates as follows:

lim
q→∞

[
(I −UkUT

k ), . . . , (I −U1UT
1 )

]q
z0 = PM z0. (62)

As noted before, the block Kaczmarz is an alternating projection method with M1 =

Sp⊥(UT
1

), . . . , Mk = Sp⊥(UT
k

). Also, PM1
= PSp⊥(UT

1
), . . . ,PMk=Sp⊥(UT

k
) and M = Sp⊥(UT

1
)∩ . . .∩

Sp⊥(UT
k

) = Sp⊥(AT ). Since A is full column rank, Sp⊥(AT ) = {0} and PM = {0}. After q

cycles,

zqk = xqk − x∗
= (PMk

PMk−1
. . .PM1

)q(x0 − x∗). (63)

By Theorem 3, limq→∞ xqk − x∗ = 0 and limq→∞ xqk = x∗. Here, it should be noted that

orthogonality of Uk is consistent with Galantai.

IV. REGULAR VERSUS RANDOMIZED KACZMARZ

The randomized Kaczmarz’s algorithm developed by Strohmer in [4] has the following

convergence in expectation:

E

∥∥xqM − x∗
∥∥2

2
≤ (1−

1

κ(A)2
)qM

∥∥x0 − x∗
∥∥2

2
(64)

where κ(A) = ‖A‖F

∥∥A†
∥∥

2 is the scaled condition number of matrix A with A† is the left

pseudo-inverse of A. The bound for regular Kacmarz is given in Equation (16). Note that

we assume A ∈ R
M×M. Now, we need to compare (1− 1

‖A‖2
F‖A†‖

2
2

) and (1−det(AAT ))1/M to

assess which bound is tighter. Let σ1 ≥σ2 ≥ . . .≥σM > 0 be ordered singular values of A.

Then,

∥∥∥A†
∥∥∥

2

2
= 1/σ2

N (65)

‖A‖
2
F =

M∑

i=1

σ2
i . (66)

8Note that the span of the solution space must be completely sampled with non-zero probability
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Also, note that

AAT
=




1 cosθ12 . . . cosθ1M

cosθ21 1 . . . cosθ2M

...
... . . .

...

cosθM1 cosθM2 . . . 1




(67)

where θi jdenotes the angles between the rows ai and a j of A. Then,

det(AAT )≤
M∏

i=1

M∑

j=1

cos2θi j. (68)

Note that
M∏

i=1

σ2
i (A)=

M∏

i=1

λi(A
T A)= det(AT A)= det(AAT ) (69)

therefore

[1−det(AAT )]1/M
= (1−

M∏

i=1

σ2
i )1/M. (70)

Now, Equations 64 and 16 become:

E

∥∥xqM − x∗
∥∥2

2
≤ (1−

σ2
M∑M

i=1
σ2

i

)qM
∥∥x0 − x∗

∥∥2

2
, (71)

∥∥xqM − x∗
∥∥2

2
≤ [(1−

M∏

i=1

σ2
i )1/M]qM

∥∥x0 − x∗
∥∥2

2
. (72)

V. EXPERIMENTAL RESULTS

Here, we compare our angle-based randomization with norm-based randomization of

Strohmer [4] in the context of measurement methods. In particular, a phantom image was

used as the solution in simulation experiments [3]. Figure V.5 shows that our approach

(angle-based randomization) provides a better convergence rate over the randomized Kaczmarz

(norm-based randomization) in the case of fan-beam sampling. However, our method is
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Angle Probability Distribution for Random Sampling Tomography
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Fig. V.1: (a) Example angles distribution (y-axis) from AAT where θi, j =

cos−1(〈â i, â j〉) ∀ i, j ∈ {1, . . . , M} vs angles (x-axis) degrees using random data acquisition

strategy, (b) Gramian matrix 〈â i, â j〉 distribution

Angle Probability Distribution for Fan-Beam Sampling Tomography
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Fig. V.2: (a) Example normalized angles distribution (y-axis) for the first eight columns of

AAT where θi, j = cos−1(〈â i, â j〉) ∀ i, j ∈ {1, . . . , M} vs angles (x-axis) degrees using fan-beam

tomographic data acquisition strategy, (b) Gramian matrix 〈â i, â j〉 distribution

computationally more complex, and therefore we devised another algorithm (explained in

the next following section) that addresses this issue.

The following experiments compare Kaczmarz (K), randomized Kaczmarz (RK), and

randomized Kaczmarz hyperplane angles (RKHA) via simulations. The objective is to

illustrate the effect of row randomization upon the convergence and observe the dependence

upon the sampling methods.
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A. Angular Distribution of Hyperplanes

A comparison of the distribution of hyperplane sampling angles in computed tomography

(CT) was performed to investigate the convergence rate versus measurement strategy.

Example results are presented for iterative convergence of methods K, RK, and RKHA

under conditions of random, fan, and parallel beam sampling strategies using the Shepp-Logan

phantom (see Figure (III.1b))9, paralleltomo.m and fanbeamtomo.m from the AIRtools

distribution [23], and randn() from the built-in function method [24].

B. Measurement Coherence

In linear algebra, the coherence or mutual coherence [25] of a row measurement matrix

A is defined as the maximum absolute value of the cross-correlations between the normalized

rows of A.

Formally, let {a1, . . . ,aM} ∈R
N be the set of row vectors of the matrix A ∈R

M×N normalized

such that 〈a i,a i〉 = aH
i

a i = 1 where (.)H is the Hermitian conjugate and where M > N. Let

the mutual coherence of A be defined as

φi, j = max
1≤i 6= j≤M

∣∣∣aH
i a j

∣∣∣ . (73)

A lower bound was derived as φ≥ M−N
N(M−1)

in reference Welch [26].

It is noted that the statistical expectation10 of the non-diagonal Gramian matrix elements

G i, j = 〈â i, â j〉 (1≤ i 6= j ≤ M) for normalized random unit vectors
{
â i, â j

}
would be zero for

two independent random IID row vectors, 1/N for the case of a single dependent vector

component (one variable in N variables), and the maximum expected value occurs when

two unit row vectors are parallel, which gives a value of unity. Estimated numerical results

for the three sampling methods are shown in Table (I) along with values for the mean of

the Gramian.

Computations of the Gramian and angular density distributions are shown in Figures

(V.1), (V.2), and (V.3). It should be noted that the random sampling is concentrated near 90

9Shepp-Logan phantom was generated from AIRtools/paralleltomo.m with non-uniform coherent parallel tomographic

CT sampling, P. C. Hansen and M. Saxild-Hansen, AIR Tools - A MATLAB (tm) Package of Algebraic Iterative

Reconstruction Methods, Journal of Computational and Applied Mathematics, 236 (2012), pp. 2167-2178

10A more formal treatment of the expectation of random IID vectors is given in section (III-C2a).
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Coherence vs Measurement Method11 Random Fan Parallel

coherence Eq. (73) .4 1.0 1.0

average value of G i, j = 〈â i, â j〉 (1≤ i 6= j ≤ M) -.0013 .06 .18

median value of G i, j = 〈â i, â j〉 (1≤ i 6= j ≤ M) -0.0009 0 .12

TABLE I: Typical coherence estimates for N = 100, M = 200 for random randn() and N =

100, M = 222 for fan fanbeamtomo() and parallel paralleltomo()

degrees probability and zero for the Gramian, but parallel sampling is spread out across

the interval [0,90] degrees.

C. Distribution of Measurement Angles for K, RK, and RKHA for Shepp-Logan Versus

Measurement Method

Firstly, the convergence rates of K, RK, and RKHA are noted to be closely correlated

for the case of random data sampling of the phantom. This is consistent with the mean

values of coherence near zero for random sampling.

The cases for fan and parallel sampling have increasingly higher coherence, and generally

benefit from methods which minimize the coherence, such as RK, RKHA, and RKOS.

Representative results for convergence are shown in Figures (V.4), (V.5), and (V.6).

Comparison of convergence results to the estimated coherence for the three cases given in

Table (I) suggest consistent interpretation.

Since the iterative methods utilize projections, the angles between the optical lines of

sight (LOS) forming the measurement hyperplanes is of considerable interest. The figures

also show example computations of distribution of measurement hyperplane angles relative

to a hyperplane reference as given by θi, j = cos−1(〈â i, â j〉) ∀ â i, â j ∈ A i ∀i, j ∈ {1, . . ., M}

where the unit norm vectors â i, â j are selected rows of A.

D. Convergence of K, RK, and RKHA vs Measurement Method

Iterative simulations were performed to estimate the relative convergence rates of methods

K, RK, RKHA for the data examples above, random, parallel, and fan beam sampling.

Representative results are shown in Figures (V.4), (V.5), and (V.6) for noiseless data

measurement scenarios of the standard Shepp-Logan phantom.
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Angle Probability Distribution for Parallel-Beam Sampling Tomography
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Fig. V.3: (a) Example normalized angles distribution (y-axis) from AAT where θi, j =

cos−1(〈â i, â j〉) ∀ i, j ∈ {1, . . ., M} vs angles (x-axis) degrees using parallel-beam tomographic

data acquisition strategy, (b) Gramian matrix 〈â i, â j〉 distribution

N
o
rm

a
li

z
e
d

C
o
n

v
e
rg

e
n

ce
E

rr
o
r

Iteration

10−3

10−2

10−1

100

0 100 200 300 400 500

RK

RKHA

Kaczmarz

Fig. V.4: Semilog (y-axis) plot example convergence result for K, RK, RKHA on

Shepp-Logan phantom using IID random tomographic data acquisition for 10 cycles

of iteration (x-axis). Note that randomization tends to equalize convergence rates and

diminish advantage of a particular method.



30

N
o
rm

a
li

z
e
d

C
o
n

v
e
rg

e
n

ce
E

rr
o
r

Iteration

10−2

10−1

100

0 100 200 300 400 500

RK

RKHA

Kaczmarz

Fig. V.5: Semilog (y-axis) plot example convergence result for K, RK, RKHA on

Shepp-Logan phantom using fan tomographic data acquisition for 10 cycles of iteration

(x-axis). Note that both RK and RKHA appear to have advantage since each method utilizes

randomization which improves avoidance of coherent neighbors, but simple Kaczmarz is

too naive.
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Fig. V.6: Semilog (y-axis) plot example convergence result for K, RK, RKHA on

Shepp-Logan phantom using parallel tomographic data acquisition for 10 cycles of iteration

(x-axis). Note that initially, both RK and RKHA have similar advantage, but simple

Kaczmarz eventually improves.
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VI. CONCLUSIONS

A new iterative selection rule based upon the relative central angle shows enhanced

convergence in measurements which contain coherence. However, the method requires a

computational penalty related to the dot products of all to all rows, which may be overcome

by a priori determination. A new block method using constructed orthogonal subspace

projections provides enhanced tolerance to measurement incoherence, but may be affected

by noise at least as much as simple Kaczmarz. The exponential convergence is accelerated

by the P/N term and is computationally feasible for small P relative to N.

The convergence of above subspace methods was demonstrated using statistical IID

assumptions. But, the more generalized approach based upon cyclical projections using

the formalism of Galantai also prove convergence, without the statistical argument.

It is worthwhile to note that an additional method to prove the convergence rate for

a given angular probability distribution function is currently underway and is considered

an essential task towards validation of the RKHA results.
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