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Abstract. We investigate the optimal control problem with respect to coefficients of
the degenerate parabolic variational inequality. Since problems of this type can have
the Lavrentieff effect, we consider the optimal control problem in a class of so-called H-
admissible solutions. We substantiate the attainability of H-optimal pairs via optimal
solutions of some nondegenerate perturbed optimal control problems.
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1. Introduction

The purpose of this paper is to investigate optimal control problem associated
with a degenerate parabolic inequality. The control is a matrix of coefficients in
the main part of elliptic operator. It is well known that degenerate control prob-
lems of this type may admit nonuniqueness of admissible solution classes, which
implies non-uniqueness of optimal solutions of particular kind and the optimal
control problem in the coefficients can be stated in different forms depending on
the choice of the class of admissible solutions (for example W- or H-solutions if
we consider the weighted Sobolev space W or its subspace H as the phase space,
correspondingly) (see [1], [2] and references there). These spaces allow to enlarge
the class of boundary value problems and variational inequalities which are sol-
vable by functional-analytical methods. In fact, we consider variational inequality
with some degenerate weight function which is not bounded away from zero and
infinity but only satisfying some local integrability conditions. Under these as-
sumptions the nonlinear differential operator in our inequality is not coercive in
the classical sense.
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Since the range of OCPs in coefficients is very wide, including as well optimal
shape design problems, optimization of certain evolution systems, some problems
originating in mechanics and others, this topic has been widely studied by many
authors (see [1]- [3], [6] and others).

As F. Murat showed (see [7]), in general, such problems have no solution even
if the original elliptic equation is non-degenerate. It turns out that this feature
is typical for the majority of problems for optimal control in coefficients. So,we
have to restrict our optimization problem by introducing some additional control
constrains (see, for instance, [8]). An optimal control problem for a variational
inequality with the so-called anisotropic p-Laplacian in the principle part of this
inequality is studied in [9] where the authors showed that the original problem is
well-posed and derived existence of optimal pairs. In [10] an optimal control prob-
lem associated to Dirichlet boundary value problem for non-linear elliptic equation
on a bounded domain is considered. In [6] the authors study the existence of op-
timal solutions in coefficients associated to a linear degenerate elliptic equa-tion
with mixed boundary condition where by control variable they mean a weight
coefficient in the main part of the elliptic operator. The sufficient conditions of
the existence of weak solutions to one class of Neumann boundary value problems
(BVP) are obtained in [11], and moreover, the authors propose a way for their
approximation. In [12] the existence of H-optimal solutions for optimal control
problem in coefficients for degenerate variational elliptic inequalities of monotone
type in the class of so-called generalized solenoidal controls was proved. The solv-
ability results for optimal control problems for degenerate elliptic and parabolic
variation inequalities one can find in [13–16].

Taking into account a wide spectrum of application of the optimal control
theory, in particular, we deal with possibilities of some types of approximation of
original problems by those that are better researched and converge to the original
problems in a suitable way. As for problems similar to the one studied in the given
paper, in application a degenerate weight ρ occurs as the limit of a sequence of non-
degenerate weights ρ for which the corresponding “approximate” optimal control
problem is solvable. Thus, naturally, it arises the question: if limit points of the
family of admissible solutions to the perturbed problems appear to be admissible
solutions to the original problem, whether all optimal solutions are attainable in
this sense? Note that for some optimal control problems the attainability and
approximability questions remain in the focus of attention. In particular, similar
questions were raised in [17] where the author studies the attainability issue for
optimal control problem in coefficients for degenerate variational inequality of
monotone type in the class of H-admissible solutions. In [2] the authors prove
the existence of W-solutions to the optimal control problem and provide way for
their approximation. In [18,19] the author investigates the attainability issue for
optimal control problem for degenerate linear elliptic and parabolic inequalities
respectively.

Here we concentrate on the solvability of optimal control problem in coeffi-
cients for degenerate parabolic inequality in the so-called class of H-admissible
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solutions. Moreover, we are interested about attainability of H-optimal solutions
to degene-rate problems via optimal solutions of non-degenerate problems.

2. Preliminaries and Notations

Let Ω be a bounded open subset of RN (N ≥ 2) with Lipschitz boundary. For
any subset E ⊂ Ω we denote by |E| its N-dimentional Lebesgue measure L(E).
The spaceW 1,1

0 (Ω) is the closure of C∞0 (Ω) in the classical Sobolev spaceW 1,1(Ω).
Let p be a real number such that 2 ≤ p < ∞ and let q be its conjugate, namely
p−1 + q−1 = 1. We say that a weight function ρ = ρ(x) is degenerate in RN if

ρ(x) > 0 a.e. in RN and ρ+ ρ−1/(p−1) ∈ L1
loc(RN ), (2.1)

and the sum ρ + ρ−1/(p−1) does not belong to L∞(Ω), in general. For a given
Ω ∈ RN we associate to this function the weighted Sobolev spaceW = W (Ω, ρdx)
which is a set of functions y ∈W 1,1

0 (Ω) for which the norm

‖y‖ρ =

(ˆ
Ω

(
|y|p + ρ

N∑
i=1

∣∣∣∣ ∂y∂xi
∣∣∣∣p
)
dx

)1/p

(2.2)

is finite.
Together withW let us consider the space H = H(Ω, ρdx) which is the closure

of C∞0 (Ω) in W .
Note that the spaces W and H are reflexive Banach spaces with respect to

the norm ‖ · ‖ρ due to the estimate

ˆ
Ω
|∇y| dx ≤

(ˆ
Ω
ρ|∇y|pp dx

)1/p(ˆ
Ω
ρ−1/(p−1) dx

)p/(p−1)

≤ C‖y‖ρ,

where |η|p =
(∑N

k=1 |ηk|p
)1/p

is a Hölder norm of order p in RN . It is clear that
H ⊆W .

Since the smooth functions are in general not dense in the weight Sobolev
space W , it follows that H 6= W ; that is, for a “typical” degenerate weight ρ
the identity W = H is not always valid (for the corresponding examples we refer
to [3,5]). However, if ρ is a non-degenerate weight function, that is, ρ is bounded
between two positive constants, then it is easy to verify that W = H = W 1,p

0 (Ω).
We recall that the dual space of H is H∗ = W−1,−p/(p−1)(Ω, ρ−1/(p−1)dx) (for
more details see [6]).

Remark 2.1. Assume that there exists a value ν ∈
(
N
p ,+∞

)
∩
[

1
p−1 ,+∞

)
such

that ρ−ν ∈ L1(Ω). Then the following result takes place (see [6]): relation (2.1)
implies that

|||y|||ρ,Ω =

[ˆ
Ω

N∑
i=1

∣∣∣∣ ∂y∂xi
∣∣∣∣p ρ dx

]1/p
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is a norm of the space H equivalent to (2.2) and the embedding

H ↪→ Lp(Ω)

is compact and dense.
Parabolic Variational Inequalities. Following Lions [20], let us cite some well-

known results concerning solvability and solution uniqueness for non-degenerate
non-linear parabolic variational inequalities which will be useful in the sequel.

Let V be reflexive Banach space and H be Hilbert space and

V ⊂ H ⊂ V∗. (2.3)

Let us consider such operator Λ that:

− Λ is an infinitesimal generating operator of a semigroup
s→ G(s) in V,H,V∗, which is a compressive semigroup in H.

(2.4)

Let us consider a non-linear operator A such that

A : V → V∗ is a pseudomonotone operator, i.e.
it is bounded and if yk → y weakly in V,

yk, y ∈ K and lim
k→∞
〈A(yk), yk − y〉V ≤ 0 then (2.5)

lim
k→∞
〈A(yk), yk − v〉V ≥ 〈A(y), y − v〉V ∀v ∈ V,

and

A is a coercive operator :

there exists such element v0 ∈ K that (2.6)
〈A(v), v − v0〉V

‖v‖V
→∞ as ‖v‖ → ∞,

where
K is a convex closed set in V. (2.7)

Using operators, spaces and sets discussed above, and taking Λ = d
dt , we can

consider the following problem for variational parabolic inequalities in its “weak”
statement (see for details [20]): find u ∈ K such that

〈Λv, v − u〉V + 〈A(u), v − u〉V ≥ 〈f, v − u〉V
∀v ∈ K, v′ ∈ V∗, v(0) = 0,

(2.8)

where f ∈ V∗.
Let us consider some “consistency conditions” for Λ and K: ∀v ∈ K there

exists some “regularizing” sequence vj which satisfies the following conditions:

vj ∈ K, v′j ∈ V∗, vj(0) = 0,

vj → v in V, j →∞, (2.9)

lim
j→∞
〈Λvj , vj − v〉V ≤ 0.
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Theorem 2.1. [20, Theorem 9.1] If for convex set K and semigroup G(s) we
have

G(s)K ⊂ K ∀s ≥ 0,

then (2.9) takes place.

Theorem 2.2. [20, Theorem 9.2] Let conditions (2.3), (2.4), (2.5), (2.6) with
v0 ∈ K such that v′0 ∈ V, v0(0) = 0, and (2.9) are fulfilled. Then ∀f ∈ V∗ there
exists the solution u ∈ K for the variational evolution inequality (2.8).

Theorem 2.3. [20, Theorem 9.4] Let conditions of Theorem 2.2 are fulfilled.
Let us assume that ∀u, v ∈ K :

〈A(u)−A(v), u− v〉V ≤ 0⇒ u = v. (2.10)

Then the inequality (2.8) admits a unique solution.

Smoothing. Throughout the paper ε denotes a small parameter which varies
within a strictly decreasing sequence of positive numbers converging to 0. When
we write ε > 0, we consider only the elements of this sequence, while writing
ε ≥ 0, we also consider its limit ε = 0.

Definition 2.1. We say that a weight function ρ with properties (2.1) is approxi-
mated by non-degenerate weight functions {ρε}ε≥0 on Ω if:

ρε(x) > 0 a.e. in Ω, ρε + (ρε)−1 ∈ L∞(Ω), ∀ε > 0, (2.11)

ρε → ρ, (ρε)−1/(p−1) → ρ−1/(p−1) in L1(Ω) as ε→ 0. (2.12)

Remark 2.2. The family {ρε}ε>0 satisfying properties (2.11)-(2.12) is called the
non-degenerate perturbation of the weight function ρ.

Examples of such perturbations can be constructed using the classical smoo-
thing. For instance, let Q be some positive compactly supported function such
that Q ∈ L∞(RN ),

´
RN Q(x)dx = 1, and Q(x) = Q(−x). Then, for a given

weight function ρ ∈ L1
loc(RN ), we can take ρε = (ρ)ε, where

(ρ)ε(x) =
1

εN

ˆ
RN

Q

(
x− z
ε

)
ρ(z) dz =

ˆ
RN

Q(z)ρ(x+ εz) dz. (2.13)

In this case, we say that the perturbation {ρε = (ρ)ε}ε>0 of the original degenerate
weight function ρ is constructed by the “direct” smoothing scheme.

Lemma 2.1. [12] If ρ, ρ−1/(p−1) ∈ L1
loc(RN ) then the “direct” smoothing {ρε =

(ρ)ε}ε>0 possesses properties (2.11)-(2.12).

Radon measures and convergence in variable spaces. By a nonnegative Radon
measure on Ω we mean a nonnegative Borel measure which is finite on every
compact subset of Ω. The space of all nonnegative Radon measures on Ω will
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be denoted by M+(Ω). If µ is a nonnegative Radon measure on Ω, we will use
Lr(Ω, dµ), 1 ≤ r ≤ ∞, to denote the usual Lebesque space with respect to the
measure µ with the corresponding norm ‖f‖Lr(Ω, dµ) =

(´
Ω |f(x)|r dµ

)1/r.
Let {µε}ε>0, µ be Radon measure such that µε ⇀∗ µ inM+(Ω) : that is,

lim
ε→0

ˆ
Ω
ϕdµε =

ˆ
Ω
ϕdµ ∀ϕ ∈ C∞0 (RN ), (2.14)

where C∞0 (RN ) is the space of all compactly supported continuous functions. A
typical example of such measures is dµε = ρε(x) dx, dµ = ρ(x) dx, where 0 ≤
ρε ⇀ ρ in L1(Ω). Let us recall the definition and main properties of convergence
in the variable Lp-space.

1. A sequence {vε ∈ Lp(Ω, dµε)} is called bounded if

lim
ε→0

ˆ
Ω
|vε|p dµε < +∞.

2. A bounded sequence {vε ∈ Lp(Ω, dµε)} converges weakly to v ∈ Lp(Ω, dµ)
if limε→0

´
Ω vεϕdµε =

´
Ω vϕdµ for any ϕ ∈ C∞0 (Ω) and we write vε ⇀ v in

Lp(Ω, dµε).
3. The strong convergence vε → v in Lp(Ω, dµε) means that v ∈ Lp(Ω, dµ)

and
lim
ε→0

ˆ
Ω
vεzε dµε =

ˆ
Ω
vz dµ as zε ⇀ z in Lq(Ω, dµε). (2.15)

The following convergence properties in variable spaces hold:
(a) Compactness criterium: if a sequence is bounded in Lp(Ω, dµε), then this

sequence is compact with respect to the weak convergence.
(b) Property of lower semicontinuity : if vε ⇀ v in Lp(Ω, dµε), then

lim
ε→0

ˆ
Ω
|vε|p dµε ≥

ˆ
Ω
vp dµ. (2.16)

(c) Criterium of strong convergence: vε → v if and only if vε ⇀ v in Lp(Ω, dµε)
and

lim
ε→0

ˆ
Ω
|vε|p dµε =

ˆ
Ω
vp dµ. (2.17)

Concluding this section, we recall some well-known results concerning the
convergence in the variable space Lp(Ω, dµε).

Lemma 2.2. If {ρε}ε>0 is a non-degenerate perturbation of the weight function
ρ(x) ≥ 0, then: (A1) (ρε)−1 → ρ−1 in Lq(Ω, ρεdx). (A2) [vε ⇀ v in Lp(Ω, dµε)]
⇒ [vε ⇀ v in L1(Ω)]. (A3) If a sequence {vε ∈ Lp(Ω, ρεdx)}ε>0 is bounded, then
the weak convergence vε ⇀ v in Lp(Ω, ρεdx) is equivalent to the weak convergence
ρεvε ⇀ ρv in L1(Ω). (A4) If a ∈ L∞(Ω) and vε ⇀ v in Lp(Ω, ρεdx), then
avε ⇀ av in Lp(Ω, ρεdx).



Optimal Control Problem for Degenerate Parabolic Variation Inequality 7

Variable Sobolev Spaces. Let ρ(x) be a degenerate weight function and let
{ρε}ε>0 be a non-degenerate perturbation of the function ρ in the sense of Defini-
tion 2.1. We denote by H(Ω, ρεdx) the closure of C∞0 (Ω) with respect to the norm
‖ · ‖ρε . Since for every ε the function ρε is non-degenerate, the space H(Ω, ρεdx)

coincides with the classical Sobolev space W 1,p
0 (Ω).

Definition 2.2. We say that a sequence {yε ∈ H(Ω, ρεdx)}ε>0 converges weakly
to an element y ∈W as ε→ 0, if the following hold: (i) This sequence is bounded.
(ii) yε ⇀ y in Lp(Ω). (iii) ∇yε ⇀ ∇y in Lp(Ω, ρεdx)N .

Theorem 2.4. [12] Let ρε = (ρ)ε be a direct smoothing of a degenerate weight ρ ∈
L1
loc(RN ) and let yε ∈ H(Ω, ρεdx), yε ⇀ y in Lp(Ω), ∇yε ⇀ v in Lp(Ω, ρεdx)N .

Then y ∈ H and v = ∇y.

Functional spaces. For some interval S and some Banach space {X, ‖ · ‖X}
we can consider the set of all measurable by Bochner functions u ∈ (S → X)
Lp(S;X), 1 ≤ p <∞ for which

´
s ‖u(s)‖pds <∞.

Theorem 2.5. [21, Theorem 1.11] The set Lp(S;X), 1 ≤ p <∞ which forms a
linear space with natural linear operations becames a Banach space with norm

‖u‖Lp(S;X) =

(ˆ
S
‖u(s)‖p ds

)1/p

. (2.18)

Remark 2.3. Taking into account the definition of Lp(S;X), Theorem 2.5 and
properties of Bochner’s integral (see [21]), the properties of the given section are
valid for Lp(S;X) as well as for X.

Compensated Compactness Lemma in Variable Lebesque and Sobolev spaces.
Let {ρε}ε>0 be a non-degenerate perturbation of a weight function ρ.

In order to discuss the attainability ofH-optimal solutions we use the following
result, which we can obtain applying similar suggestions to [12,22].

Lemma 2.3. Let {ρε}ε>0 be a non-degenerate perturbation of a weight function
ρ(x) > 0. Suppose that sequences {~fε}ε>0 and {gε}ε>0 are such that:

(i) ∂gε
∂t − div(ρε ~fε) = 0 in the sense of distributions in Ω× [0, T ];

(ii) ~fε ⇀ ~f in Lq(0, T ;Lq(Ω, ρεdx)N ) as ε→ 0;
(iii) gε is bounded in L∞(0, T ;L2(Ω)) and gε ⇀ g in Lp(0, T ;H(Ω, ρεdx)) as

ε→ 0.
If p > 2N

N+2 , then

lim
ε→0

ˆ T

0

ˆ
Ω

~fε · ∇gεϕρε dxdt =

ˆ T

0

ˆ
Ω

~f · ∇gϕρ dxdt,

∀ϕ ∈ C∞0 (Ω× [0, T ]).

(2.19)
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3. Setting of the Optimal Control Problem

The OCP, we consider in this paper, is to minimize the descrepancy between
a given distribution z∂ ∈ Lp(0, T ;Lp(Ω)) and the solution y of the degenerate
variational inequality by choosing an appropriate matrix U ∈ L∞(Ω;RN×N ),
namely we deal with the following minimization problem:

I(U, y) =

ˆ T

0

ˆ
Ω
|y(t, x)− z∂(t, x)|p dxdt→ inf, (3.1)

U ∈Mα,β
p (Ω), y ∈ K̂, (3.2)

〈v′, v − y〉Lp(0,T ;W ) + 〈− div
(
U(x)ρ(x)[(∇y)p−2]∇y

)
, v − y〉Lp(0,T ;W )

+ 〈|y|p−2y, v − y〉Lp(0,T ;W ) ≥ 〈f, v − y〉Lp(0,T ;W ) (3.3)

v ∈ K̂, v′ ∈ Lq(0, T ;Lq(Ω)), v(0, x) = 0,

where f ∈ Lq(0, T ;Lq(Ω)) is a fixed element, Mα,β
p (Ω) ⊂ L∞(Ω;RN×N ) is a class

of admissible controls, K̂ ⊂ Lp(0, T ;W ) is a closed convex subset and

[ηp−2] = diag{|η1|p−2, |η2|p−2, . . . , |ηN |p−2} ∀η ∈ RN .

Let α and β be constants such that 0 < α ≤ β < +∞. We define Mα,β
p (Ω) as

a set of all symmetric matrices U(x) = {aij(x)}1≤i,j≤N in L∞(Ω;RN×N ) such
that the following conditions of growth, monotonicity, and strong coercivity are
fulfilled:

|ai,j(x)| ≤ β a.e. in Ω ∀i, j ∈ {1, . . . , N}, (3.4)(
U(x)

(
[ζp−2]ζ − [ηp−2]η

)
, ζ − η

)
RN ≥ 0 a.e. in Ω ∀ζ, η ∈ RN , (3.5)

(
U(x)[ζp−2]ζ, ζ

)
RN =

N∑
i,j=1

ai,j(x)|ζj |p−2ζjζi ≥ α|ζ|pp a.e. in Ω. (3.6)

Remark 3.1. It is easy to see that Mα,β
p (Ω) is a nonempty subset of the space

L∞(Ω;RN×N ) and its typical representatives are diagonal matrices of the form
U(x) = diag{δ1(x), δ2(x), . . . , δN (x)}, where α ≤ δi(x) ≤ β a.e. in Ω ∀i ∈
{1, . . . , N}.

For every fixed control U ∈ Mα,β
p (Ω) let us define a non-linear operator A :

Lp(0, T ;H)→ Lq(0, T ;H∗) in the following way:

〈A(y), v〉Lp(0,T ;H) =

ˆ T

0

ˆ
Ω

N∑
i,j=1

(
ai,j(x)

∣∣∣∣ ∂y∂xj
∣∣∣∣p−2 ∂y

∂xj

)
∂v

∂xi
ρ dxdt

+

ˆ T

0

ˆ
Ω
|y|p−2yv dxdt. (3.7)

,
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Definition 3.1. We say that a matrix U = [ai,j ] is an admissible control to
degenerate problem (3.2)-(3.3) if U ∈ Uad, where the set Uad is defined as follows

Uad = {U = [~a1, . . . ,~aN ] ∈Mα,β
p (Ω)|| div(ρ~ai)| ≤ γi, a.e. in Ω, ∀i = 1, N}.

(3.8)
Here γ = (γ1, . . . , γN ) ∈ RN is a strictly positive vector.

Definition 3.2. Let K be the convex closed subset of H, 0 ∈ K, K = {v| v ∈
Lp(0, T ;H), v(t) ∈ K a.e.} be the convex closed subset of Lp(0, T ;H). We say
that a function y = y(U, f) ∈ K is an H-solution to degenerate variational in-
equality (3.2)-(3.3), if

〈v′, v − y〉Lp(0,T ;H) + 〈A(y), v − y〉Lp(0,T ;H) ≥ 〈f, v − y〉Lp(0,T ;H)

v ∈ K, v′ ∈ Lq(0, T ;Lq(Ω)), v(0, x) = 0.
(3.9)

Definition 3.3. We say that the set ΞH is the set of admissible pairs to the
optimal control problem (3.1)-(3.3), (3.8) if

ΞH = {(U, y) ∈ Uad × Lp(0, T ;H)| y ∈ K, (U, y) are related by (3.9)}.

Remark 3.2. We can inroduce a W -solution and the set ΞW by the similar way.

Hence for given control object described by relations (3.2)-(3.3) with both
fixed control constraints (U ∈ Uad) and fixed cost functional (3.1), we have two
different statements of the original optimal control problem, namely〈

inf
(U,y)∈ΞW

I(U, y)

〉
and

〈
inf

(U,y)∈ΞH
I(U, y)

〉
.

As a matter of fact, there is no comparison between these problems, in general.
Indeed, having assumed thatW 6= H for a given degenerate weight function ρ ≥ 0,
we can come to the effect which is usually called the Lavrentieff phenomenon. It
means that for some U ∈ Uad and f ∈ Lq(0, T ;Lq(Ω)) an H-solution yH(U, f) to
problem (3.2)-(3.3) does not coincide with its W -solution yW (U, f). In this paper
we deal with H-solutions to problem (3.2)-(3.3).

Definition 3.4. We say that a pair (U0, y0) ∈ L∞(Ω;RN×N )×Lp(0, T ;H) is an
H-optimal solution to problem (3.1)-(3.3), (3.8) if (U0, y0) ∈ ΞH and I(U0, y0) =
inf(U,y)∈ΞH I(U, y).

Definition 3.5. We say that a sequence {(Uk, yk) ∈ ΞH}k∈N is bounded if

sup
k∈N

[‖Uk‖L∞(Ω;RN×N ) + ‖yk‖Lp(0,T ;Lp(Ω)) + ‖∇yk‖Lp(0,T ;Lp(Ω,ρdx)N )]

is finite.
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4. Existence of H-Optimal Solutions

In this section we show that considered optimal control problem (3.1)-(3.3) for
degenerate parabolic variational inequality with monotone operator is regular in
the class of H-admissible solutions. Imposing additional control constrains (3.8)
and using the special version of compensated compactness lemma (Lemma 2.3) we
prove that the set of H-admissible solutions for problem (3.2)-(3.3) is sequentially
closed. And using the direct method of Calculus of Variations we prove the
existence of H-optimal solutions for considered problem.

Theorem 4.1. For every control U ∈ Mα,β
p (Ω) and every f ∈ Lq(0, T ;Lq(Ω))

there exists a unique H-solution to degenerate parabolic variational inequality
(3.2)-(3.3).

Proof. Let U ∈Mα,β
p (Ω) be a fixed matrix. Let us consider the following elliptic

operator A1 : H → H∗:

〈A1(y), v〉H =

N∑
i,j=1

ˆ
Ω

(
ai,j(x)

∣∣∣∣ ∂y∂xj
∣∣∣∣p−2 ∂y

∂xj

)
∂v

∂xi
ρ dx+

ˆ
Ω
|y|p−2yv dx.

Then taking into account (3.6) from [12, Lemma 1] we have the next coercivity
property for operator A1:

〈A1(y), y〉H ≥ min{α, 1}‖y‖pρ. (4.1)

Hence from (3.7) and (2.18) we have that

〈A(y), y〉Lp(0,T ;H) ≥ min{α, 1}‖y‖pLp(0,T ;H), (4.2)

where ‖y‖Lp(0,T ;H) =
´ T

0 ‖y‖
p
ρdt.

Let us fix an element v0 ∈ K such that v′0 ∈ Lq(0, T ;Lq(Ω)), v0(0, x) = 0
and show the coercivity property (2.6). For all y ∈ K we consider the following
pairing, by estimate (4.2), we have:

〈A(y), y − v0〉Lp(0,T ;H) ≥ min{α, 1}‖y‖pLp(0,T ;H) − |〈A(y), v0〉Lp(0,T ;H)|. (4.3)

From [12, Lemma 1] and (3.4) it follows that

|〈A1(y), v0〉H | ≤ max{β, 1}‖v0‖H‖y‖p−1
H .

Further from (3.7) and (2.18) we obtain similar estimate:

|〈A(y), v0〉Lp(0,T ;H)| ≤ max{β, 1}‖v0‖Lp(0,T ;H)‖y‖
p−1
Lp(0,T ;H). (4.4)

Combining (4.3) and (4.4) we have the coercivity condition (2.6).
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Taking into account the estimate (3.5) and the strict monotonicity of the term
|y|p−2y we obtain:

〈A(y)−A(v), y − v〉Lp(0,T ;H) ≥ 2p−2‖y − v‖Lp(0,T ;Lp(Ω)) > 0 (4.5)

∀y 6= v a.e. in Q = Ω× (0, T ). Thus we have the strict monotonicity of operator
A.

From the semicontinuity property of operator A1 (see [12]) we obtain the
similar property for operator A. Taking into account (3.4) and the definition of
operator A we obtain the boundedness property for A. Hence, from the strict
monotonicity, boundedness and semicontinuity we obtain that A is a pseudo-
monotone operator (see for details [20, Proposition 2.5]).

If we consider V = Lp(0, T ;H), H = L2(0, T ;L2(Ω)), V∗ = Lq(0, T ;H∗) we
obtain condition (2.3), for Λ = d

dt the condition (2.4) is valid, for operator A
properties (2.5) and (2.6) take place. Note that for considered set K we have that
0 ∈ K, thus we have that G(s)K ⊂ K ∀s ≥ 0 (see [20]) and from Theorem 2.1 we
have conditions (2.9).

Hence, for problem (3.2)-(3.3) all conditions of Theorems 2.2 and 2.3 hold
true. Therefore for every control U ∈Mα,β

p (Ω) and every f ∈ Lq(0, T ;Lq(Ω)) the
considered problem has a unique solution.

Let us study the topological properties of the set of H-admisible solutions
ΞH ⊂ L∞(Ω;RN×N ) × Lp(0, T ;H). Let τ be the topology on L∞(Ω;RN×N ) ×
Lp(0, T ;H) which we define as the product of the weak-∗ topology of the space
L∞(Ω;RN×N ) and the weak topology of Lp(0, T ;H). In order to discuss further
results we suggest that the following assumption is fulfilled:

Hypothesis A. Let for a sequence {un}n≥1 that is weakly convergent in Lp(0, T ;H)
we additionally have that un ∈ L∞(0, T ;L2(Ω)) for all n ∈ N.

Theorem 4.2. Let ρ(x) > 0 be a degenerate weight function, let Hypothesis A
hold true and let Hypothesis 2 from [12] hold true for X = Lq(Ω). Then for every
f ∈ Lq(0, T ;Lq(Ω)) the set ΞH is sequentially τ -closed.

Proof. Let {(Uk, yk)}k∈N ⊂ ΞH be any τ -convergent sequence of admissible pairs
to the problem (3.1)-(3.3), (3.8) (in view of Theorem 4.1 such choice is always
possible). Let (U0, y0) be its τ -limit. Our aim is to prove that (U0, y0) ∈ ΞH .

Since {Uk = [~a1k, . . . ,~aNk]}k∈N ⊂ Uad, it follows that | div(ρ~aik)| ≤ γi a.e. in
Ω ∀i = 1, . . . , N and ∀k ∈ N. Let us show that U0 ∈ Uad.

Indeed, passing to the limit as k →∞ in the relationsˆ
Ω

(~aik,∇ϕ)RNρdx = −
ˆ

Ω
ϕ div(ρ~aik) dx, ∀ϕ ∈ C∞0 (Ω),∀i = 1, . . . , N,

−γi
ˆ

Ω
ϕ ≤

ˆ
Ω
ϕ div(ρ~aik)dx ≤ γi

ˆ
Ω
ϕdx, ∀i = 1, . . . , N, ∀ϕ ≥ 0,

we may suppose that | div(ρ~a0
i )| ≤ γi a.e. in Ω ∀i ∈ {1, . . . , N} and

div(ρ~aik) ⇀ div(ρ~a0
i ) in Lq(Ω) as k →∞. (4.6)
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Thus Uk ⇀ U0 = [~a0
1, . . . ,~a

0
N ] weakly-∗ in L∞(Ω;RN×N ), and U0 ∈ Uad.

It remains to show that the pair (U0, y0) satisfies variational inequality (3.9).
Since each of the pairs (Uk, yk) is admissible to the OCP (3.1)-(3.3), (3.8), we

have

〈v′, v − yk〉Lp(0,T :H) + 〈− div(Ukρ(x)[(∇yk)p−2]∇yk)
+ |yk|p−2yk, v − yk〉Lp(0,T ;H)

≥ 〈f, v − yk〉Lp(0,T ;H). (4.7)

Since Uk → U0 weakly-∗ in L∞(Ω;RN×N ) and yk → y0 weakly in Lp(0, T ;H) as
k →∞, one gets

div(ρ~aik) ⇀ div(ρ~a0
i ) in Lq(Ω), ∀i = 1, . . . , N,

yk → y0 strongly in Lp(0, T ;Lp(Ω))(see [22, Proposition 4.1]),

∇yk ⇀ ∇y0 in Lp(0, T ;Lp(Ω, ρdx)N ),

|yk|p−2yk ⇀ |y0|p−2y0 in Lq(0, T ;Lq(Ω)) within a subsequence,

{Uk[(∇yk)p−2]∇yk}k∈N is bounded in Lq(0, T ;Lq(Ω, ρdx)N ).

Then Uk[(∇yk)p−2]∇yk := ~ξk ⇀ ~ξ in Lq(0, T ;Lq(Ω, ρdx)N ) within a subsequence.
Similarly to [12, Theorem 5] we obtain that function − div(ρ~ξk) + |yk|p−2yk ∈
Lq(0, T ;Lq(Ω)) having that Hypothesis 1 from [12] holds true if we set V =
H, X = Lq(Ω) and f, v′ ∈ Lq(0, T ;Lq(Ω)) ∀k ∈ N, and, obviously, div(ρ~ξk) ∈
Lq(0, T ;Lq(Ω)) ∀k ∈ N. Further, the relation

ˆ T

0

ˆ
Ω

div(ρ~ξk)ϕdxdt = −
ˆ T

0

ˆ
Ω

~ξk · ∇ϕρ dxdt

→ −
ˆ T

0

ˆ
Ω

~ξ · ∇ϕρ dxdt =

ˆ T

0

ˆ
Ω

div(ρ~ξ)ϕdxdt

∀ϕ ∈ C∞0 (Ω× [0, T ]),

means that div(ρ~ξk) → div(ρ~ξ) weakly in Lq(0, T ;Lq(Ω)) implying {~ξk}k∈N is
bounded in X , where

X = {~f ∈ Lq(0, T ;Lq(Ω, ρdx)N )| div(ρ~f) ∈ Lq(0, T ;Lq(Ω))},

that is

lim
k→∞

(‖~ξk‖qLq(0,T ;Lq(Ω,ρdx)N )
+ ‖ div(ρ~ξk)‖qLq(0,T ;Lq(Ω)))

1/q < +∞.

Therefore, as a result, passing to the limit in (4.7) as k →∞, we obtain

〈v′, v − y0〉Lp(0,T ;H) + 〈−div(ρ~ξ) + |y0|p−2y0, v − y0〉Lp(0,T ;H)

≥ 〈f, v − y0〉Lp(0,T ;H), ∀v ∈ K, v′ ∈ Lq(0, T ;Lq(Ω)), v(0, x) = 0. (4.8)
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It remains to prove that ~ξ = U0[(∇y0)p−2]∇y0.
To do this we apply the similar suggestions to [12, Theorem 5] and [22] and

by initial assumptions (see (3.5)), we have

ˆ T

0

ˆ
Ω

(Uk([(∇yk)p−2]∇yk − [~zp−2]~z)) · (∇yk − ~z)ϕρ dxdt ≥ 0 (4.9)

for a fixed element ~z of RN .
Let us show that the sequence {div(ρUk[(~z)

p−2]~z)}k∈N is weakly convergent in
Lq(0, T ;Lq(Ω)). Taking into account the definition of the elements div(ρUk[~z

p−2]~z)
for all k ∈ N (see [12]) and boundedness of {div(ρUk[(∇yk)p−2]∇yk)}k∈N in
Lq(0, T ;Lq(Ω)) we get

div(ρUk([(∇yk)p−2]∇yk − [~zp−2]~z))

⇀ div(ρ~ξ)− div(ρU0[~zp−2]~z) in Lq(0, T ;Lq(Ω)). (4.10)

Combining the property (4.10), and the fact that

Uk[~z
p−2]~z ⇀ U0[~zp−2]~z in Lq(0, T ; (Lq(Ω, ρdx))N )

it is easy to see that all suppositions of Lemma 2.3 for the sequences {ρε ≡
(ρ)}ε>0 are fulfilled having put in the statement of this lemma ε = k, ~f =
Uk([(∇yk)p−2]∇yk − [~zp−2]~z) and gε = yk for all k ∈ N. Hence, we get

ˆ T

0

ˆ
Ω

(~ξ − U0[~zp−2]~z) · (∇y0 − ~z)ϕρ dxdt ≥ 0, ∀~z ∈ RN

for all positive ϕ ∈ C∞0 (Ω× [0, T ]). After localization, we have

ρ(~ξ − U0[~zp−2]~z) · (∇y0 − ~z) ≥ 0. (4.11)

Taking into account conditions (3.4)–(3.6) and suggestions from [22] we have that
the identity ξ = Â(U0,∇y0) = U0(x)[(∇y0)p−2]∇y0 holds true a.e. in Ω× (0, T ).

Thus, the above inequality takes the form

〈v′, v − y〉Lp(0,T ;H) + 〈−div(ρU0[(∇y0)p−2]∇y0) + |y0|p−2y0, v − y0〉Lp(0,T ;H)

≥ 〈f, v − y0〉Lp(0,T ;H(Ω,ρdx)) ∀v ∈ K, v′ ∈ Lq(0, T ;Lq(Ω)), v(0, x) = 0.

Thus τ -limit pair (U0, y0) is admissible to the problem (3.1)-(3.3), (3.8), hence,
(U0, y0) ∈ ΞH .

Theorem 4.3. Let ρ(x) be a degenerate weight function. Then the set of H-
optimal solutions to the problem (3.1)-(3.3), (3.8) is non-empty for every f ∈
Lq(0, T ;Lq(Ω)).
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Proof. First of all we note that in virtue of Theorem 4.1 for the given function f ∈
Lq(0, T ;Lq(Ω)) and every admissible control U ∈ Uad there exists an H-solution
y = y(U, f) ∈ Lp(0, T ;Lp(Ω)) to the problem (3.2)-(3.3). Let {(Uk, yk) ∈ ΞH}k∈N
be an H-minimizing sequence to the problem (3.1)-(3.3), (3.8), that is,

lim
k→∞

I(Uk, yk) = inf
(U,y)∈ΞH

I(U, y) < +∞.

Hence, taking into account the Definition 3.1 of Uad and Definition 3.5, we may
suppose that within a subsequence, there exists (U∗, y∗) ∈ L∞(Ω;RN×N ) ×
Lp(0, T ;H), such that Uk → U∗ weakly-∗ in L∞(Ω;RN×N ), yk ⇀ y∗ in Lp(0, T ;H).
Since ΞH is sequentially τ -closed, the pair (U∗, y∗) is H-admissible to the prob-
lem (3.1)-(3.3), (3.8). In view of lower τ -semicontinuity of the cost functional we
obtain that I(U∗, y∗) ≤ limk→∞ I(Uk, yk) = inf(U,y)∈ΞH I(U, y). Hence, (U∗, y∗)
is an H-optimal pair.

5. Attainability of H-Optimal Solutions

In this section we propose an appropriate non-degenerate perturbation for
the original degenerate OCP (3.1)-(3.3), (3.8) and show that H-optimal solutions
of (3.1)-(3.3), (3.8) can be attained by optimal solutions of perturbed problems.
In view of results obtained in the previous section we assume that the set of
H-optimal solutions to the considered problem is non-empty.

Let ρ be a degenerate weight function with properties (2.1), and let {ρε}ε>0

be a non-degenerate perturbation of ρ in the sense of Definition 2.1.

Definition 5.1. We say that a bounded sequence

{(Uε, yε) ∈ Y = L∞(Ω;RN×N )× Lp(0, T ;H(Ω, ρεdx))}ε>0

w-converges to (U, y) ∈ L∞(Ω;RN×N ) × Lp(0, T ;W ) in the variable space Y as
ε → 0 , if Uε → U weakly-∗ in L∞(Ω;RN×N ), yε ⇀ y in Lp(0, T ;Lp(Ω)) and
∇yε ⇀ ∇y in Lp(0, T ;Lp(Ω, ρεdx)N )

Similarly to [17, Definition 8] we consider the next concept.

Definition 5.2. We say that a minimization problem〈
inf

(U,y)∈ΞH
I(U, y)

〉
(5.1)

is a weak variational limit (or variational w-limit) of the sequence{〈
inf

(Uε,yε)∈Ξε
Iε(Uε, yε)

〉
; Ξε ∈ Y, ε > 0

}
, (5.2)

with respect to w-convergence in the variable space Y, if the following conditions
are satisfied:
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(1) if {εk} is a subsequence of {ε} such that εk → 0 as k → ∞, and a sequence
{(Uk, yk) ∈ Ξεk}ε>0 – w-converges to a pair (U, y), then

(U, y) ∈ ΞH : I(U, y) ≤ lim
k→∞

Iεk(Uk, yk); (5.3)

(2) for every pair (U, y) ∈ ΞH and any value δ > 0 there exists a realizing sequence
{(Ûε, ŷε) ∈ Y}ε>0 such that

(Ûε, ŷε) ∈ Ξε ∀ε > 0, (Ûε, ŷε)
w→ (Û, ŷ), (5.4)

‖U − Û‖L∞(Ω;RN×N ) +

(ˆ T

0
‖y − ŷ‖pρdt

)1/p

≤ δ, (5.5)

I(U, y) ≥ lim
ε→0

Iε(Ûε, ŷε)− δ. (5.6)

Similarly to [23] we can assume that Definition 5.2 is motivated by the follow-
ing property of variational w-limits.

Theorem 5.1. Assume that (5.1) is a weak variational limit of the sequence
(5.2), and the constrained minimization problem (5.1) has a solution. Suppose
{(U0

ε , y
0
ε) ∈ Ξε}ε>0 is a sequence of optimal pairs to (5.2). Then there exists a

pair (U0, y0) ∈ ΞH such that (U0
ε , y

0
ε) w-converges to (U0, y0), and

inf
(U,y)∈ΞH

I(U, y) = I(U0, y0) = lim
ε→0

inf
(Uε,yε)∈Ξε

Iε(Uε, yε).

Remark 5.1. Let us recall that sequential K-upper and K-lower limits of a sequence
of sets {Ek}k∈N are defined as follows, respectively:

Ks − limEk = {y ∈ X : ∃σ(k)→∞,∃yk → y,∀k ∈ N : yk ∈ Eσ(k)},
Ks − limEk = {y ∈ X : ∃yk → y,∃k ≥ k0 ∈ N : yk ∈ Ek}.

The sequence {Ek}k∈N sequentially converges in the sense of Kuratovski to the
set E (shortly, Ks-converges), if E = Ks − limEk = Ks − limEk.

Let us consider the sequence {Kε}ε>0 of non-empty closed and convex subsets,
which sequentially converges to the set K in the sense of Kuratovski as ε → 0
with respect to weak topology of the space Lp(0, T ;H(Ω, ρεdx)) and the sequence
{K̃ε}ε>0 of non-empty closed and convex subsets, which sequentially converges to
the set K̃ = {v ∈ Lp(0, T ;H)|v′ ∈ Lq(0, T ;Lq(Ω)), v(0, x) = 0} in the sense of
Kuratovski as ε→ 0 with respect to the topology τ1:

vε ⇀ v in Lp(0, T ;H(Ω, ρεdx)), v′ε ⇀ v′ in Lq(0, T ;Lq(Ω)), vε(0, x) = 0.

Let Hypothesis 2 from [17] hold true for X = Lq(Ω) and V = H(Ω, ρεdx) ∀ε > 0.
Taking into account Theorem 5.1, we consider the following collection of perturbed
OCPs in coefficients for non-degenerate parabolic variational inequalities:

Minimize
{
Iε(U, y) =

ˆ T

0

ˆ
Ω
|y(x)− z∂(x)|p dxdt

}
(5.7)

U ∈ U εad, y ∈ Kε, (5.8)
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〈v′, v − y〉Lp(0,T ;H(Ω,ρεdx))

+ 〈−div(ρεU [(∇y)p−2]∇y) + |y|p−2y, v − y〉Lp(0,T ;H(Ω,ρεdx))

≥ 〈f, v − y〉Lp(0,T ;H(Ω,ρεdx)) ∀v ∈ K̃ε, (5.9)

U εad = {U = [~a1, . . . ,~aN ] ∈Mα,β
p (Ω) :

|div(ρε~ai)| ≤ γi, a.e. in Ω, ∀i = 1, . . . , N}, (5.10)

where the elements z∂ ∈ Lp(0, T ;Lp(Ω)), f ∈ Lq(0, T ;Lq(Ω)) and γ = (γ1, . . . , γN )
∈ RN are the same as for the original problem (3.1)-(3.3), (3.8). For every ε > 0
we define Ξε as a set of all admissible pairs to the problem (5.7)-(5.10), namely
(U, y) ∈ Ξε if and only if the pair (U, y) satisfies (5.8)-(5.10).

Note that each of perturbed OCPs (5.7)-(5.10) is solvable provided {ρε}ε>0 is
a non-degenerate perturbation of ρ ≥ 0 (see [20]).

Lemma 5.1. Let {ρε = (ρ)ε}ε>0 be a “direct” smoothing of a degenerate weight
function ρ(x) ≥ 0. Let {(Uε, yε) ∈ Ξε}ε>0 be a sequence of admissible pairs to
the problem (5.7)-(5.10) and let Hypothesis A hold true for weakly convergent
sequences in Lp(0, T ;H(Ω, ρεdx)). Then there exists a pair (U∗, y∗) and a subse-
quence

{(Uεk , yεk)}k∈N ⊂ {(Uε, yε) ∈ Ξε}ε>0

such that (Uεk , yεk) w-converges to (U∗, y∗) as k →∞ and (U∗, y∗) ∈ ΞH .

Proof. Let us consider the variational inequality

〈v′ε, vε − yε〉Lp(0,T ;H(Ω,ρεdx))

+ 〈−div(ρεUε[(∇yε)p−2]∇yε), vε − yε〉Lp(0,T ;H(Ω,ρεdx))

+ 〈|yε|p−2yε, vε − yε〉Lp(0,T ;H(Ω,ρεdx))

≥ 〈f, vε − yε〉Lp(0,T ;H(Ω,ρεdx)), ∀vε ∈ K̃ε. (5.11)

As follows from (5.10) that the sequence {Uε}ε>0 is bounded in L∞(Ω;RN×N ).
Let us prove the boundedness of {yε}ε>0 in the space Lp(0, T ;H(Ω, ρεdx)) by

contradiction. Namely, suppose that ‖yε‖Lp(0,T ;H(Ω,ρεdx)) → ∞, ε → 0. Then on
the one hand

〈−div(ρεUε[(∇yε)p−2]∇yε) + |yε|p−2yε, vε − yε〉Lp(0,T ;H(Ω,ρεdx))

≤ 〈−v′ε, vε − yε〉Lp(0,T ;H(Ω,ρεdx)) + 〈f, vε − yε〉Lp(0,T ;H(Ω,ρεdx))

≤ (‖v′ε‖Lq(0,T ;Lq(Ω)) + ‖f‖Lq(0,T ;Lq(Ω)))‖yε − vε‖Lp(0,T ;H(Ω,ρεdx)), (5.12)

∀vε ∈ K̃ε and ∀ε > 0.
On the other hand, for arbitrary fixed element v ∈ K̃ let us consider the

sequence {vε ∈ K̃ε}ε>0 such that vε → v in τ1-topology (such sequence always
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exists provided K̃ = Ks− lim K̃ε) and then, using the estimate (see Theorem 4.1)

〈A(U, y), y − v〉Lp(0,T ;H) ≥ min{α, 1}‖y‖pLp(0,T ;H)

−max{β, 1}‖v‖pLp(0,T ;H)‖y‖
p−1
Lp(0,T ;H), v ∈ L

p(0, T ;H),

we obtain the following relations:

〈− div(ρεUε[(∇yε)p−2]∇yε) + |yε|p−2yε, vε − yε〉Lp(0,T ;H(Ω,ρεdx))

‖yε − vε‖Lp(0,T ;H(Ω,ρεdx))

≥ ‖yε‖p−1
Lp(0,T ;H(Ω,ρεdx))

(
min{α, 1} − max{β,1}‖vε‖Lp(0,T ;H(Ω,ρεdx))

‖yε‖Lp(0,T ;H(Ω,ρεdx))

)
(

1 +
‖vε‖Lp(0,T :H(Ω,ρεdx))

‖yε‖Lp(0,T ;H(Ω,ρεdx))

) →∞ as ε→ 0,

since the sequence {vε}ε>0 is bounded in Lp(0, T ;H(Ω, ρεdx)). The obtained
contradiction with (5.12) implies that {yε}ε>0 is bounded in Lp(0, T ;H(Ω, ρεdx)).

Hence, there exists a subsequence {εk} of the sequence {ε} converging to 0
and elements U∗ ∈Mα,β

p (Ω), y∗ ∈ Lp(0, T ;Lp(Ω)), ~v ∈ Lp(0, T ;Lp(Ω, ρdx)N ) and
~ξ ∈ Lq(0, T ;Lq(Ω, ρdx)N ) such that

Uεk → U∗ weakly-∗ in L∞(Ω;RN×N ),

yεk ⇀ y∗ in Lp(0, T ;Lp(Ω)),

∇yεk ⇀ ~v in Lp(0, T ;Lp(ρεkdx)N ),

Uεk [(∇yεk)p−2]∇yεk := ~ξεk ⇀
~ξ in Lq(0, T ;Lq(Ωεkdx)N ). (5.13)

By Theorem 2.4, taking into account properties of the Bochner integral and
definitions of equivalent functions (see [21, Definition 1.6]), we have that y∗ ∈
Lp(0, T ;H) and ~v = ∇y∗ and moreover, we have y∗ ∈ K.

Following arguments of the proof of [17, Lemma 11] we obtain that U∗ ∈ Uad.
In what follows, we consider the relation (5.11) for (Uεk , yεk) and pass to

the limit in it as k → ∞ using the property of the strong convergence and the
following relations:

|yεk |
p−2yεk ⇀ |y

∗|p−2y∗ in Lq(0, T ;Lq(Ω)) within a subsequence, (5.14)

〈− div(ρεk~ξεk), yεk〉Lp(0,T ;H(Ω,ρεkdx)) → 〈−div(ρ~ξ), y∗〉Lp(0,T ;H). (5.15)

The latter is valid in view of Lemma 2.3 and boundedness of the sequence {~ξεk} ⊂
X(Ω, ρεkdx), which we can obtain by the similar manner as in Theorem 4.2 for

X(Ω, ρεkdx) = {~f ∈ Lq(0, T ;Lq(Ω, ρεkdx)N )| div(ρεk ~f) ∈ Lq(0, T ;Lq(Ω))},

with the norm

‖~f‖X(Ω,ρεkdx) = (‖~f‖q
Lq(0,T ;Lq(Ω,ρεkdx)N )

+ ‖ div(ρεk ~f)‖qLq(0,T ;Lq(Ω)))
1/q.
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Let us prove relation (5.14). We have that yεk ⇀ y∗ in Lp(0, T ;Lp(Ω)), ∇yεk ⇀
∇y∗ in Lp(0, T ;Lp(Ω, ρεkdx)N ) and from [22, Proposition 4.1] we obtain that there
exists an element ỹ such that yεk → ỹ strongly in L1(0, T ;L1(Ω)). However, it is
easy to see that yεk ⇀ y∗ in L1(0, T ;L1(Ω)). Hence, y∗ = ỹ a.e. on (0, T ) × Ω.
It means that up to a subsequence yεk → y∗ a.e. in (0, T ) × Ω and together
with boundedness of {|yεk |p−2yεk}k∈N in Lq(0, T ;Lq(Ω)) we have |yεk |p−2yεk ⇀
|y∗|p−2y∗ in Lq(0, T ;Lq(Ω)) (within a subsequence).

Since v′εk ⇀ v′ in Lq(0, T ;Lq(Ω)) we can obtain that

〈v′εk , vεk − yεk〉Lp(0,T ;H(Ω,ρεkdx)) → 〈v′, v − y∗〉Lp(0,T ;H) as k →∞. (5.16)

Therefore, as a result of limit passage in (5.11), taking into account (5.14),
(5.15) and (5.16), we obtain

〈v′, v − y∗〉Lp(0,T ;H) + 〈−div(ρ~ξ), v − y∗〉Lp(0,T ;H) + 〈|y∗|p−2y∗, v〉Lp(0,T ;H)

− lim
k→∞
〈|yεk |

p−2yεk , yεk〉Lp(0,T ;H(Ω,ρεkdx))

≥ 〈f, v − y∗〉Lp(0,T ;H), ∀v ∈ K̃. (5.17)

In order to prove the lemma, it is left to show that ~ξ = U∗[(∇y∗)p−2]∇y∗. However
it can be done in a similar manner as we did it proving Theorem 4.2.

Now, let us show that

lim
k→∞
〈|yεk |

p−2yεk , yεk〉Lp(0,T ;H(Ω,ρεkdx))

= lim
k→∞

ˆ T

0

ˆ
Ω
|yεk |

p dxdt =

ˆ T

0

ˆ
Ω
|y∗|p dxdt.

On the one hand, in view of property of lower semicontinuity, weak convergence
yεk → y∗ in Lp(0, T ;Lp(Ω)) as k →∞, implies that:

ˆ T

0

ˆ
Ω
|y∗|p dxdt ≤ lim

k→∞

ˆ T

0

ˆ
Ω
|yεk |

p dxdt.

On the other hand, from (5.17), taking into account the representation of the
vector-function ξ, we obtain:

lim
k→∞

ˆ T

0

ˆ
Ω
|yεk |

p dxdt ≤ 〈v′ − div(U∗(x)ρ(x)[(∇y∗)p−2]∇y∗)− f, v − y∗〉Lp(0,T ;H)

+〈|y∗|p−2y∗, v〉Lp(0,T ;H), ∀v ∈ K̃.

Having put in the last inequality v = y∗, we get

lim
k→∞

ˆ T

0

ˆ
Ω
|yεk |

p dxdt ≤
ˆ T

0

ˆ
Ω
|y∗|p dxdt.
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Hence, summing up, the chain of inequalities
ˆ T

0

ˆ
Ω
|y∗|p dxdt ≤ lim

k→∞

ˆ T

0

ˆ
Ω
|yεk |

p dxdt

≤ lim
k→∞

ˆ T

0

ˆ
Ω
|yεk |

p dxdt ≤
ˆ T

0

ˆ
Ω
|y∗|p dxdt

turns into equality

lim
k→∞

ˆ T

0

ˆ
Ω
|yεk |

p dxdt =

ˆ T

0

ˆ
Ω
|y∗|p dxdt

which implies, in view of criterium of strong convergence that yεk → y∗ strongly
in Lp(0, T ;Lp(Ω)) as k →∞.

Therefore, variational inequality (5.17) can be represented in the form

〈v′, v − y∗〉Lp(0,T ;H) + 〈−div(U∗(x)ρ(x)[(∇y∗)p−2]∇y∗)
+ |y∗|p−2y∗, v − y∗〉Lp(0,T ;H) ≥ 〈f, v − y∗〉Lp(0,T ;H), ∀v ∈ K̃. (5.18)

Thus, w-limit pair (U∗, y∗) is admissible to the problem (3.1)-(3.3), (3.8), hence,
(U∗, y∗) ∈ ΞH .

Theorem 5.2. Let {ρε = (ρ)ε}ε>0 be a “direct” smoothing of a degenerate weight
function ρ(x) > 0. Then the minimization problem (3.1)-(3.3), (3.8) is a weak
variational limit of the sequence (5.7)-(5.10) as ε → 0 with respect to the w-
convergencs in the variable space Y.

Proof. As an evident consequence of the previous lemma and the lower semi-
continuity property of the cost functional (5.7) with respect to w-convergence in
variable space Y, we have the following conclusion: if {εk} be a subsequence of
indices {ε} such that εk → 0 as k →∞ and {(Uk, yk) ∈ Ξεk}k∈N is a sequence of
admissible solutions to corresponding perturbed problems (5.7)-(5.10) such that
(Uk, yk)→ (U, y) with respect to w-convergence, then properties (5.3) are valid.

To discuss properties (5.4)-(5.6) similarly to suggestions from [17] and [19]
we can obtain that for an admissible pair (U, y) ∈ ΞH there exists a realizing
sequence {(Ûε, ŷε) ∈ Y}ε>0 such that

(Ûε, ŷε) ∈ Ξε ∀ε > 0, Ûε → U ∗ −weakly in L∞(Ω;RN×N );

div(ρε~̂aiε) ⇀ div(ρ~ai) in Lq(0, T ;Lq(Ω)) ∀i ∈ {1, . . . , N},
ŷε → y strongly in Lp(0, T ;Lp(Ω)), ∇yε ⇀ ∇y in Lp(0, T ;Lp(Ω; ρεdx)N ).

From these suggestions the equality I(U, y) = limε→0 Iε(Ûε, ŷε) follows.
Taking into account Definition 5.2 and previous suggestions of this proof we

obtain the statement of the theorem.
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