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Abstract. Some discrete models for a simplified (compared to that published earlier in
JODEA, 28 (1) (2020), 1 – 42) initial boundary value problem for a 1D linear degenerate
wave equation, posed in a space-time rectangle and solved earlier exactly (JODEA, 30
(1) (2022), 89 – 121), have been considered. It has been demonstrated that the correct
evaluation of the degenerate grid flux can be possible.
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1. Introduction and the problem formulation

The current study complementes [5], dealing with the following 1-parameter
simplified initial boundary value problem (IBVP) for the degenerate wave equa-
tion, posed in the space-time rectangle [0, T ]× [−1,+1] ⊂ R+

t ×Rx wrt u(t, x;α)

∂2u

∂t2
− ∂

∂x

(
a
∂u

∂x

)
= 0 , (t, |x|) ∈ (0, T ]× (0, 1) ,

∂u(0, x;α)

∂t
=
∗∗
u(x;α)

u(0, x;α) =
∗
u(x;α)

 , x ∈ [−1,+1] ,

u(t,−1;α) = h1(t;α)

u(t,+1;α) = h2(t;α)

}
, t ∈ [0, T ] ,

(1.1)

where known control functions h1,2(t;α)∈C 1[0, T ]
⋂

C 2(0, T ] obey the compati-
bility conditions: h1(0;α) =

∗
u(−1;α), h ′1(0;α) =

∗∗
u(−1;α), h2(0;α) =

∗
u(+1;α),

h ′2(0;α) =
∗∗
u(+1;α), and the 1-parameter family of coefficient functions is defined

as follows

a(x;α) = |x|α, x ∈ [−1,+1] , (1.2)
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the parameter of degeneracy α∈ (0, 2), and all the variables are nondimensional.
The point x = 0, where the coefficient (1.2) vanishes, is referred below to as the de-
generacy point, whereas [0, T ]× [−1,+1] ⊃ [0, T ]×{0} is referred to as the dege-
neracy segment, or the dividing segment of the space-time rectangle. Dealing with
(1.1), (1.2), we distinguish between the cases of: 1) weak degeneracy, α∈ (0, 1),
2) strong degeneracy, α ∈ (1, 2), and 3) non-degeneracy, α = 0 (the limiting case).

The following matching conditions must be imposed on the required solution
to the IBVP at the degeneracy segmentu(t, x;α)

∣∣
x=0−0

= u(t, x;α)
∣∣
x=0+0

,

f(t, x;α)
∣∣
x=0−0

= f(t, x;α)
∣∣
x=0+0

,
t ∈ [0, T ] . (1.3)

where there is used a notion of the flux

f(t, x;α) = a(x;α)
∂u(t, x;α)

∂x
. (1.4)

The exact series solution to the IBVP (1.1) was obtained in [5], therefore
we follow the notations, terminology and even an analogy of the problem and its
solution to an imaginary ‘string’, wherever it is convenient.

In the current study our concern is numerical solving the IBVP (1.1). For-
mally, a proper grid approximation of the IBVP is not a problem. Nevertheless,
any attempt to implement directly a numerical procedure to the IBVP involves
a bulk of nested problems having relation to evaluating the flux (1.4) at the de-
generacy, segment, where the flux degenerates. It was proved [2,4,5], using series
solutions to the IBVP and to the degenerate wave equation alone, that the flux at
the degeneracy segment does not vanish and is continuous. From this it immedi-
ately appears a problem to retain the above properties for the grid flux. Note, that
in our previous study [1] we discussed some auxiliary problems arising in compu-
tational procedures applied to the IBVP. For example, it was attempted to intro-
duce a regularization of the IBVP, unfortunately the convergence of the numerical
solutions to the regularized problem was found not to exist.

The goal of the current study is:
1) to complement our previous study [5] in terms of suitable Bessel functions

being linearly independent (refer to Sect.2);
2) to demonstrate that correct evaluating the degenerate flux on the grid

is possible (refer to Sects. 3, 4, 5).

2. Some notes on separation of variables

Separation of variables applied to the original IBVP (1.1) is known [2–5] to in-
volve us into solving the following boundary-value problem

D′(x;α) + λ(α)X(x;α) = 0 , 0 < |x| < 1 ,

a) X(∓1;α) = 0 , b) X(x;α)
∣∣
x=0−0

= X(x;α)
∣∣
x=0+0

,

c) D(x;α)
∣∣
x=0−0

= D(x;α)
∣∣
x=0+0

,

(2.1)
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where D(x;α)=a(x;α)X ′(x;α) is the flux of the solution X(x;α), referred to as
the eigenfunction, whereas λ(α) is referred to as the eigenvalue.

To simplify further discussion, it is convenient to introduce the following α-
dependent quantities

ν(α) = 1− α , θ(α) = 2− α , %(α) =
ν

θ
=

1− α
2− α

, (2.2)

then in the case of weak degeneracy: 1) the eigenvalues λk,µ(α) and the eigen-
functions Xk,µ(x;α) of the problem (2.1) of the two kinds (marked with k∈{1, 2})
are defined as follows

λ1,µ(α) =

(
θ

2
s1,µ

)2

, X1,µ(x;α) = Z1,µ(x;α),

λ2,µ(α) =

(
θ

2
s2,µ

)2

, X2,µ(x;α) = sgnx Z2,µ(x;α),

(2.3)

where % /∈Z,
{
sk,µ

}∞
µ=1

are the unbounded monotonically increasing sequences of
the zeros of the linearly independent Bessel functions J∓%(s) of the first kind and
orders ∓% [7], and 

Z1,µ(x;α) = |x|
ν
2 J−%

(
s1,µ |x|

θ
2

)
,

Z2,µ(x;α) = |x|
ν
2 J+%

(
s2,µ |x|

θ
2

)
.

(2.4)

The Bessel functions J∓%(s) satisfy the ordinary differential equation

Z′′∓%(s) +
1

s
Z ′∓%(s)−

(
%2

s2
− 1

)
Z∓%(s) = 0 (2.5)

and have the following power series representations

J∓%(s) =
(s

2

)∓% ∞∑
γ=0

(−1)γ

γ! Γ(1∓ %+ γ)

(s
2

)2γ
. (2.6)

Now we shortly recall the underlying idea [2] to reduce the governing equa-
tion of the BVP (2.1) to the Bessel equation (2.5). To this end, we introduce
the following ansatz

Z(x;α) = xo Vα (r) , r = xω, (2.7)

where o, ω are undetermined real exponents, and for the sake of brevity we assume
that x > 0 . Substituting the ansatz (2.7) and its flux

D(x;α) = aZ ′(x;α) = o xo+α−1Vα (r) + ω xo+ω+α−1V ′α (r) (2.8)
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into the equation of the IBVP gives the following relation involving the undeter-
mined exponents and the degeneracy parameter α

D′ + λZ = ω2xo+2ω+α−2V ′′α + ω [2o+ ω + α− 1]xo+ω+α−2V ′α

+ o [o+ α− 1]xo+α−2Vα + λxo Vα = 0 .

Dividing by xo simplifies the above relation to the following one

ω2x2ω−θV ′′α + ω [2o+ ω + α− 1]xω−θV ′α + o [o+ α− 1]x−θVα + λVα = 0 , (2.9)

where quantities (2.2) are used. To agree (2.9) with the Bessel equation (2.6),
we assume that 2ω − θ = 0, then (2.9) simplifies as follows(

θ

2

)2

V ′′α +
θ

2

(
2o+

θ

2
− ν
)
x
− θ2V ′α + o (o− ν)x

− θ2 2
Vα + λVα = 0 ,

and we have to assume that 2o − ν to complete the agreement with the Bessel
equation (2.6) in the form(

θ

2

)2

V ′′α +

(
θ

2

)2

x
− θ2V ′α −

(
ν

2

)2

x
− θ2 2

Vα + λVα = 0 . (2.10)

From (2.10) we immediately find the eigenvalues and the eigenfunctions (2.3),
where the functions Z1,µ(x;α), Z2,µ(x;α) are defined in (2.4) and are linearly
independent, provided that % /∈ Z . In the case % ∈ Z we should take following
pairs of the eigenvalues and the eigenfunctions

λ3,µ(α) =

(
θ

2
s3,µ

)2

, λ4,µ(α) =

(
θ

2
s4,µ

)2

, (2.11)


Z3,µ(x;α) = |x|

ν
2 Y%

(
s3,µ |x|

θ
2

)
,

Z4,µ(x;α) = |x|
ν
2 J%

(
s4,µ |x|

θ
2

)
,

(2.12)

where Y%(s) are the Bessel functions of the second kind and orders ∓% [7] (referred
to as the Neumann functions),

{
sk,µ

}∞
µ=1

, k = 3, 4, are the unbounded monotoni-
cally increasing sequences of the zeros of the linearly independent functions Y%(s),
J%(s), and it is evident that s1,µ = s3,µ, σ1,µ = σ3,µ, X2,µ = X4,µ .

The above reducing (2.7) to the Bessel equation (2.5) is not valid for the in-
termediate case α = 1, therefore we repeat reducing especially for the case. Again
taking the ansatz of the form (2.7)

Z(x; 1) = xσ Vα (r) , r = xω, (2.13)



Can a finite degenerate ‘string’ hear itself? 99

calculating its flux

D(x; 1) = aZ ′(x; 1) = σ xσ−1V0 (r) + σω xσ+ωV ′0 (r) , (2.14)

and substituting into the equation of the IBVP gives the following relation in-
volving the undetermined exponents

D′ + λX = ω2xσ+2ω−1V ′′0 (r) + ω [2σ + ω]xσ+ω−1V ′0 (r)

+ σ2xσ−1V0 (r) + λxσV0 (r) = 0 .

Dividing by xo yields to the simplified relation

ω2x2ω−1V ′′0 (r) + ω [2σ + ω]xω−1V ′0(r) + σ2x−1V0(r) + λV0(r) = 0 , (2.15)

where we have to assume 2ω − 1 = 0, σ = 0, to obtain the required equation

1

4
V ′′0 (r) +

1

4

1√
x
V ′0(r) + λV0(r) = 0 , (2.16)

consistent with the Bessel equation (2.5) of the order zero, provided s = 2
√
λx .

In this case we have the following pairs of the eigenvalues and the eigenfunctions.

λ5,µ(α) = s2
5,µ , λ6,µ(α) = s2

6,µ , (2.17)
Z5,µ(x;α) = |x|

ν
2 Y0

(
2 s5,µ |x|

1
2

)
,

X6,µ(x;α) = |x|
ν
2 J0

(
2 s6,µ |x|

1
2

)
,

(2.18)

where notation used is exactly the same as that in (2.11), (2.12).
The Neumann function has a series representation different from that for

the Bessel function of the first kind, for example in the case of the zero order
it reads

Y0(s) =
2

π

(
C + ln

s

2

)
J0(s)− 2

π

∞∑
γ=0

(−1)γ Φ(γ)

(γ!)2

(s
2

)2γ
, Φ(γ) =

γ∑
ρ=1

1

ρ
, (2.19)

where C = 0.5772 . . . is the Euler constant and Φ(0) = 0, nevertheless all the prop-
erties of the solution expressed in terms of (2.12) are exactly the same as those
expressed in terms of (2.4).

3. Discrete formulation of the problem

In order to develop discrete models of the IBVP(1.1), we first introduce an or-
thogonal grid with space-time nodes

(
xk, t

n
)
, k = 1, . . . ,K, n = 0, . . . , N , in rec-

tangle [−1,+1] × [0, T ]. Nodes tn are distributed uniformly on segment [0, T ],
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whereas spatial nodes xk cluster in some way on segment [−1,+1] towards the mid-
point x=0. Second, we introduce the following grid operators

∆∓k xk := ∓
(
xk∓1 − xk

)
,

2∆0
k xk := ∆−k xk + ∆+

k xk =
(
∆−k + ∆+

k

)
xk ,

∆n
∓ t

n := ∓
(
tn∓1 − tn

)
≡ ∆t .

(3.1)

Third, we integrate the degenerate wave equation over the cell, centered at
an arbitrary interior node

(
xk, t

n
)
(xk−h 6 x 6 xk+h, t

n−h 6 tn+h, h = 1
2) of

the grid

0 =

¨
ωnk

[
∂2u

∂t2
− ∂

∂x

(
a
∂u

∂x

)]
dx dt =

ˆ xk+h

xk−h

ˆ tn+h

tn−h

[
∂2u

∂t2
− ∂

∂x

(
a
∂u

∂x

)]
dx dt

=

ˆ xk+h

xk−h

(
∂u

∂t

) ∣∣∣∣tn+h

tn−h
dx−

ˆ tn+h

tn−h

(
a
∂u

∂x

) ∣∣∣∣xk+h

xk−h

dt

and evaluate the integrals by applying the midpoint rule of Calculus as follows

∆0
kxk

(
∂u

∂t

) ∣∣∣∣(k,n+h)

(k,n−h)

= ∆t

(
a
∂u

∂x

) ∣∣∣∣(k+h,n)

(k−h,n)

, (3.2)

where notations (k, n∓ h)=
(
xk, t

n∓h), (k ∓ h, n)=
(
xk∓h, t

n
)
are used for the sake

of brevity. Fourth, using spatial averaging, introduce grid functions

unk =
1

∆0
kxk

ˆ xk+h

xk−h

u(tn, x;α) dx , (3.3)

f nk∓h =
∓1

∆∓kxk

ˆ xk∓h

xk

a(x;α)
∂u(tn, x;α)

∂x
dx , (3.4)

then integration in (3.2) yields to

∆0
k xk

(
∆n

+u
n
k

∆t
−

∆n
−u

n
k

∆t

)
= ∆t

(
f nk+h − f nk−h

)
. (3.5)

From (3.5) it follows the required explicit computational formula for finding
the values of grid function unk at the upper time level n + 1, being a well known
three-layer finite-difference scheme [6]

un+1
k = 2unk − u

n−1
k + σk

(
f nk+h − f nk−h

)
, σk =

(∆t)2

∆0
k xk

. (3.6)
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4. Calculation of the fluxes

The inter-cell fluxes, playing the key role in (3.6), can be evaluated in various
ways, but the most obvious one reads

f nk∓h = ak∓h
∆∓k u

n
k

∆∓k xk

, (4.1)

where the inter-cell coefficients ak∓h are not determined uniquely. For example,
they can be directly taken as the inter-cell values of the coefficient function a(x;α),
as follows

ak∓h = a(xk∓h;α) = |xk∓h|α. (4.2)

Simplicity of the direct approach is in contrast to nature of the phenomenon
being under consideration. Indeed, in original IBVP (1.1), the flux on the dege-
neracy segment was proved [1, 5] not to vanish, whereas the grid flux computed
due to (4.1), (4.2) on the degeneracy segment, vanishes whatever values grid func-
tion unk takes.

To overcome this fault of the direct approach due to (4.2), we refer to ‘the best
scheme’ [6]. Following [6], we resolve the definition of the flux(1.4) wrt to ‘the string’
inclination

∂u(t, x;α)

∂x
=
f(t, x;α)

a(x;α)

and integrate the above relation over segment [xk, xk+h] at instant tn

ˆ xk+h

xk

∂u(tn, x;α)

∂x
dx =

ˆ xk+h

xk

f(tn, x;α)

a(x;α)
dx .

Applying the fundamental and the midpoint theorems of Calculus to the above
relation and dividing both sides of the resulting equality by the length of the seg-
ment yields to

u(tn, xk+1;α)− u(tn, xk;α)

∆+
k xk

= f(tn, xk+h;α)
1

∆+
k xk

ˆ xk+h

xk

dx

a(x;α)
.

Comparing the obtained equation with (4.1) prompts the way used in ‘the best
scheme’ to calculate the inter-cell coefficient

ak∓h = åk∓h =

[
∓1

∆∓kxk

ˆ xk∓h

xk

dx

a(x;α)

]−1

. (4.3)

In further discussion we will distinguish between the approaches to calcu-
late the inter-cell fluxes outside the degeneracy segment (the regular fluxes, or
the fluxes at the regular inter-cells) and exactly on the the degeneracy segment
(the degenerate flux).
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For example, the first approach, based on (4.2), is applicable only for the regu-
lar fluxes, whereas the second one, based on (4.3), is valid for fluxes of both kinds.
Unfortunately, the second approach can not be applied in the case of strong de-
generacy, therefore we consider some other approaches to evaluate the inter-cell
fluxes.

Again, refer to the definition of the flux (1.4), written in its original form
at instant tn, integrate it over the same segment

ˆ xk+h

xk

f(tn, x;α) dx =

ˆ xk+h

xk

a(x;α)
∂u(tn, x;α)

∂x
dx ,

apply the midpoint theorem of Calculus, divide both sides of the resulting equality
by the length of the segment, and account for (3.4), to obtain

f nk+h =

(
∂u(tn, x;α)

∂x

) ∣∣∣∣
x=xk+h

1

∆+
k xk

ˆ xk+h

xk

a(x;α) dx .

Evaluating the inter-cell inclination of ‘the string’ similarly to (4.1), we easily
obtain one more approach for the inter-cell coefficients

ak∓h = a∗k∓h =
∓1

∆∓k xk

ˆ xk∓h

xk

a(x;α) dx . (4.4)

Other approaches to evaluate the inter-cell fluxes, we are going to discuss, refer
to the degenerate flux and do not involve any direct way to calculate the inter-
cell coefficient ak∓h. The first group of such approaches utilizes the continuity
of the flux across the degenerate segment, for example, the simplest averaging of
the regular fluxes calculated at the inter-cells adjacent to the degenerate inter-
cell k + h

fk+h =
1

2

(
fk−h + fk+3h

)
. (4.5)

A more sophisticated approach, utilizing the flux continuity, reads as follows

fk+h =
1

2

(
f−k+h + f+

k+h

)
, (4.6)

where f∓k+h are ‘one-sided’ values of the required degenerate flux, obtained using
extrapolation {

f−k+h = fk−1h + (∆x)k D−mk fk−1h ,

f+
k+h = fk+3h − (∆x)k+1D

+m
k fk+3h ,

(4.7)

where (∆x)k=xk+h−xk−h , (∆x)k+1 =xk+1+h−xk+h , D
∓m
k ,m > 2, are one-sided

m-nodal grid operators of the first order differentiation (involving the regular grid
fluxes calculated at m nodes). For example, the left (or backward) operator reads

D−mk fk−1h = bk−1h fk−1h + bk−3h fk−3h + . . .+ bk−(2m−1)h fk−(2m−1)h , (4.8)
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where the coefficients bk−1h, etc, are undetermined. The proper well-conditioned
linear algebraic system m×m wrt the coefficients can be set up and solved easily.

The second group of approaches utilizes the possibility of building the solution
to the original IBVP (1.1) in space-time rectangle [−1,+1]×[0, T ] using match-
ing the solutions to the auxiliary IBVPs posed in subrectangles [−1, 0]× [0, T ],
[0,+1]×[0, T ]. Proper matching may involve other conditions in addition to (1.3).
For example, it was shown [2] that the flux across the degenerate segment can
be continuously differentiable. This property can be easily implemented to evalu-
ate the degenerate flux. Indeed, using the above one-sided grid operatorsD∓mk , we
can represent the property as the equality of two one-sided derivatives of the first
order at both sides of the degenerate inter-cell

D−mk fk+h = D+m
k fk+h , (4.9)

involving the required degenerate flux fk+1h . The above equality is nothing but
the linear algebraic equation wrt the required flux fk+h.

5. The test case of the problem

To estimate and compare the approaches of Sect. 4 for the flux evaluation,
we refer to test case A of [5], as a benchmark. Recall that in that test case:
1) the initially (t = 0) disturbed ‘string’ is at rest

∗∗
u(x;α) ≡ ∗∗u0 = 0 ,

∗
u(x;α) =

{
0 ,

∣∣x− x0

∣∣ > δ ,

∗
u0 ,

∣∣x− x0

∣∣ 6 δ , x ∈ [−1,+1] ; (5.1)

and 2) both ends of the ‘string’ are fixed

u(−1, t;α) = u(+1, t;α) = 0 , t ∈ [0, T ] , (5.2)

i. e., both controls are not applied: h1(t;α)=h2(t;α)≡0. The initial step function
was smoothed using a mollifier.

To resolve the structure of the grid solutions to the IBVP near the degenerate
segment we first introduce the uniform grid on [−1,+1] ⊂ Rξ with spacing ∆ξ
between the nodes, the coordinates ξk of the nodes are calculated as follows

(K − 1) ∆ξ = 2 , ξk = −1 + (k − 1) ∆ξ , k = 1, . . . ,K ,

N being the number of the nodes. In the case of even K, two central nodes
are biased wrt the degeneracy point ξ=0 by half of ∆ξ. Second, a nonlinear trans-
formation ξ → x is applied to calculate the coordinates xk of the grid nodes on seg-
ment [−1,+1] ⊂ Rx , for the nodes to cluster near the degeneracy point x= 0.
To obtain the results partially presented below in Figs. 5.1 – 5.6, we assigned
the number 2000 to K, and two values 0.25 and 0.75 to the parameter of dege-
neracy. Exact solutions to the test case A [5] are drawn as dashed lines. We will
not give any comments to the behavior of the solution plots, since any curve
should be studied individually to evaluate the possibilities of the approaches used
to model vibrations of ‘the damaged string’. The results, we believe, will be useful
to develop proper discrete models for the case of strong degeneracy as well.
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Fig. 5.1. Test case A: the regular fluxes are calculated due to (4.1), (4.3)
(α = 0.25 — curves 1 of short dashes, α = 0.75 — curves 2 of long dashes,
each 25 th node point of the grid solution is shown)
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Fig. 5.2. Test case A: the regular fluxes are calculated due to (4.1), (4.3)
(α = 0.25 — curves 1 of short dashes, α = 0.75 — curves 2 of long dashes,
each 25 th node point of the grid solution is shown)
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Fig. 5.3. Test case A: the regular fluxes are calculated due to (4.1), (4.3), whereas
the degenerate fluxes are calculated using averaging (4.5) (α = 0.25 — curves 1 of
short dashes, α = 0.75 — curves 2 of long dashes, each 25 th node point of the grid
solution is shown)
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Fig. 5.4. Test case A: the regular fluxes are calculated due to (4.1), (4.3), whereas
the degenerate fluxes are calculated using 2-nodal grid operators D∓mk and equa-
lity (4.9) (α = 0.25 — curves 1 of short dashes, α = 0.75 — curves 2 of long dashes,
each 25 th node point of the grid solution is shown)
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Fig. 5.5. Test case A: the regular fluxes are calculated due to (4.1), (4.3), whereas
the degenerate fluxes are calculated using 3-nodal grid operators D∓mk and equa-
lity (4.9) (α = 0.25 — curves 1 of short dashes, α = 0.75 — curves 2 of long dashes,
each 25 th node point of the grid solution is shown)
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Fig. 5.6. Test case A: the regular and the degenerate fluxes are calculated due to (4.1), (4.4)
(α = 0.25 — curves 1 of short dashes, α = 0.75 — curves 2 of long dashes, each 25 th node
point of the grid solution is shown)
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6. Conclusions

We have demonstrated for test case A [5], treated as a benchmark, that
the problem of correct evaluating the inter-cell fluxes at the degeneracy segment
can be solved using various approaches. The first group of approaches is based
on a proper (or efficient) calculation of the coefficient function a(x;α) at the de-
generate inter-cell. The second and third group utilize respectively the properties
of the flux continuity and continuous differentiability across the degeneracy seg-
ment and do not involve any calculation of the coefficient function a(x;α) at
the degenerate inter-cell.

The preliminary results of the current study will be further used to develop
discrete models of the IBVP(1.1) in the case of strong degeneracy.
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