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SINGULAR DIFFERENTIAL EQUATIONS AND THEIR
APPLICATIONS FOR MODELING STRONGLY

OSCILLATING PROCESSES
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Abstract. The normal system of ordinary differential equations, whose right-hand sides
are the ratios of linear and nonlinear positive functions, is considered. A feature of these
ratios is that some of their denominators can take on arbitrarily small nonzero values.
(Thus, the modules of the corresponding derivatives can take arbitrarily large value.)
In the sequel, the constructed system of differential equations is used to model strongly
oscillating processes (for example, processes determined by the rhythms of electroen-
cephalograms measured at certain points in the cerebral cortex). The obtained results
can be used to diagnose human brain diseases.
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1. Introduction

In this article a dynamic process determined by observed electroencephalo-
gram (EEG) rhythms measured at a certain point in the cerebral cortex is inves-
tigated [1]– [5]. The main tool of such research is recurrent analysis [6]– [15].

The application of recurrent analysis to the study of EEGs was considered in
many scientific articles [2]– [5]. In our opinion, the most fundamental approach
to revealing the hidden laws that determine the behavior of the mentioned EEGs
was demonstrated in [1].

Let
x0 = x(t0), x1 = x(t1), ..., xN = x(tN ) (1.1)

be a finite sequence (time series) of numerical values of some scalar dynamical
variable x(t) measured with the constant time step ∆t in the moments ti =
t0 + i∆t; xi = x(ti); i = 0, 1, ..., N (thus, ∆t = tN/N) [16–18].

Using the methods of Recurrence Quantification Analysis (RQA), the dimen-
sion m of the embedding space and the optimal time delay τ of the mentioned
time series are determined.
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It must be said that the quantities m and τ must be determined very pre-
cisely. The fact is that if the dimension m is less than the real dimension of the
space in which the process takes place, then there is no need to talk about high-
quality modeling. With the help of these characteristics, the hidden variables
x(t), y(t), z(t), ..., which determine a system of rational differential equations sim-
ulating electrical signals in the cerebral cortex, are restored.

The properties of this system are the main subject of study in this work.
Note that in the problem of studying brain diseases, the time series (1.1) has

a chaotic behavior. A common practice in chaotic time series analysis has been
to reconstruct the phase space by utilizing the delay-coordinate embedding tech-
nique, and then to compute the dynamical invariant magnitudes such as unstable
periodic orbits, a fractal dimension of the underlying chaotic set, and its Lya-
punov spectrum. As a large body of literature exists on applying of the technique
of the time series to study chaotic attractors [19]– [23], a relatively unexplored is-
sue is its applicability to dynamical systems of differential equations depending on
parameters. Our focus will be concentrated on the analysis of influence of param-
eters of found dynamic system on the behavior of its solutions. These parameters
are determined by the structure of series (1.1) and by choice of approximating
functions in right sides of the got system of differential equations.

To create a model by measuring the variables characterizing any dynamic
process, it is necessary to solve the following three main problems.

Usually, a continuous dynamic process is described using a system of differen-
tial equations. This remark leads to the first problem.

Problem 1. It is necessary to establish the type of functions on the right side of the
differential equations, which most correspond to the description of the processes
presented on the electroencephalograms.

It is known that any dynamic process depends on many variables. Most of these
variables are functions of some small number of independent variables. Identifying
these independent variables leads to the second problem.

Problem 2. Determine the dimension of phase space in which the explored process
takes place.

Problem 3. After the structure of the differential equations describing the dynamic
process is established, it is necessary to determine the numerical value of coefficients
of these equations.

After that, it remains only to check how the resulting model (solutions of the
resulting system of differential equations) is adequate to the real process.
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2. Mathematical preliminaries

2.1. Model design

We will begin this section by studying Problem 1. For this study, we will
consider EEGs obtained for healthy and sick patients (see Fig.2.1, Fig.2.2).

Let’s note several features inherent in these EEGs.

1. The diagrams have a pronounced oscillating character with a frequency of 400 -
500 hertz.

2. The oscillation amplitudes in the diagram of the sick patient are several times
greater than the amplitudes of oscillations in the diagram of the healthy patient.

3. Both diagrams contain a large number of spontaneous bursts of amplitudes, which
indicates the chaotic nature of the processes.

4. The presence of times ti, at which a spontaneous increase in the amplitude of
oscillations is observed, indicates that at points ti there is a sharp increase in the
derivative of the process under study; i = 1, 2, ....

5. The oscillating process takes place in some ball centered at the point 0.

(a1) (a2)

Fig. 2.1. The electroencephalogram taken from a certain point in the cerebral cortex: (a1) a
healthy patient, (a2) a patient with an epileptic disease (see [24]).

Let’s return to modeling the process x(t), which is generated by the time series
(1.1).

We introduce the following real singular function depending on parameters
a, b, γ, ω, f and e (or δ, γ, β, ω, α and ε):

h(t) =
a · sin(γt) + b · cos(γt)

1− f · sin(ωt)− e · cos(ωt)
=

δ sin(γt+ β)

1 + ε cos(ωt+ α)
, (2.1)
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(b1) (b2)

Fig. 2.2. Graphs of the same processes as on Fig.2.1, but in coordinates (x(t), x(t + τ)): (b1)
the healthy patient, (b2) the patient with an epileptic disease (see [24]).

where γ, ω ∈ R; δ =
√
a2 + b2, sin(β) =

b

δ
, cos(β) =

a

δ
; |ε| =

√
f2 + e2 < 1,

sin(α) =
f

ε
, cos(α) = −e

ε
(see Fig.2.3).

Taking into account the form of the function h(t), we can assume that the
simplest description of the derivative ẋ(t) satisfying items 1) - 5) should look like
this:

ẋ(t) ∼ c · x(t)

1 + ε cos(x(t) + α)
+ · · ·+ δ sin(ωt+ β)

1 + ε cos(ωt+ µ)
,

where the last term takes into account the possibility of the influence of external
perturbations on the formation of the structure of differential equations; here
c, α, ε, δ, ω, β, µ are real constants.

Using the function h(t), we construct the following system of ordinary differ-
ential equations:

ẋ1(t) =
a11x1

1− f11 sin(x1)− e11 cos(x1)
+ . . .

+
a1,n−1xn−1

1− f1,n−1 sin(xn−1)− e1,n−1 cos(xn−1)

+
b1 sin(xn) + c1 cos(xn)

1− f1n sin(xn)− e1n cos(xn)
,

................................................................

ẋn−1(t) =
an−1,1x1

1− fn−1,1 sin(x1)− en−1,1 cos(x1)
+ . . .

+
an−1,n−1xn−1

1− fn−1,n−1 sin(xn−1)− en−1,n−1 cos(xn−1)

+
bn−1 sin(xn) + cn−1 cos(xn)

1− fn−1,n sin(xn)− en−1,n cos(xn)
,

ẋn(t) = ω.

(2.2)
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(a1) (a2)

(a3) (a4)

(a5) (a6)

Fig. 2.3. Graphs of function (2.1) for different parameter values: (a1) ε = 0.93, γ = −3.3,
β = 6, ω = −3, α = −2; (a2) ε = 0.95, γ = −12, β = 2, ω = 1, α = −4; (a3) ε = 0.95, γ = −2,
β = −1, ω = 10, α = 10; (a4) ε = 0.8, γ = −10, β = −10, ω = −10.3, α = −3; (a5) ε = 0.9, γ =

9.9, β = −1, ω = 2.3, α = −52; (a6) ε = 0.3, γ = −2, β = −1, ω = 10, α = 1; δ = 1.
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Here aij , fij , eij , bi, ci, ω > 0 are real parameters;
√
f2
ij + e2

ij < 1; i = 1, ..., n −
1; j = 1, ..., n. (Thus, system (2.2) depends on (n−1)2 +2n(n−1)+2(n−1)+1 =
n(3n− 2) parameters, and all of them are rationally included in this system.)

Note that the denominators in the right-hand sides of system (2.2) can take
on arbitrarily small positive values.

Definition 2.1. System (2.2) will be called singular.

The inclusion of external perturbations in equations (2.2) cannot always be
correctly described. Therefore, sometimes instead of model (2.2), it is necessary
to consider the following model

ẋ1(t) =
a11x1

1− f1 sin(x1)− e1 cos(x1)
+ · · ·+ a1,nxn

1− fn sin(xn)− en cos(xn)
,

...............................................................................................

ẋn(t) =
an,1x1

1− f1 sin(x1)− e1 cos(x1)
+ · · ·+ an,nxn

1− fn sin(xn)− en cos(xn)
.

(2.3)
Now, if we put δ = 1, γ = 0, β = π/2 in formula (2.1), then after a linear

change of variables x→ Ax, system (2.3), can be transformed into the following
system: 

ẋ1(t) = h1(a11x1 + · · ·+ a1nxn),
ẋ2(t) = h2(a21x1 + · · ·+ a2nxn),
. . . . . . . . . . . . . .

ẋn(t) = hn(an1x1 + · · ·+ annxn).

(2.4)

Here
hi(ai1x1 + ...+ ainxn)=

ai1x1 + · · ·+ ainxn
1± εi cos(ai1x1 + · · ·+ ainxn + αi)

,

and εi =
√
f2
i + e2

i < 1; i = 1, ..., n.

System (2.4) can be considered as a system of neural ODEs, which makes it
possible to use neural network methods for its study [15,22,23,25].

2.2. On boundedness of solutions of singular system (2.2)

We now recall several well-known results from the theory of differential equa-
tions [26,27].

Let’s define the norm of the vector w = (w1, ..., wk)
T ∈ Rk by the formula

‖w‖ = |w1| + · · · + |wk|. The norm of matrix C ∈ Rk×k is defined similarly:
‖C‖ =

∑k
i=1

∑k
j=1 |cij |.

Consider the system of ordinary differential equations

ẋ(t) = (A+B(t))x(t) + g(t) ∈ Rk, (2.5)

where x(t) = (x1(t), ..., xk(t))
T ,g(t) = (g1(t), ..., gk(t))

T ∈ Rk, A = {aij}, B(t) =
{bij(t)} ∈ Rk×k; i, j = 1, ..., k.
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Theorem 2.1. [26] Assume that for a homogeneous (g(t) ≡ 0) system (2.5) the
following conditions are fulfilled:

(a1) the matrix A is constant and such that its eigenvalues λi satisfy the
condition <e(λi) ≤ 0, i = 1, ..., k;

(a2) the variable continuous matrix B(t) depends on time and such thatˆ ∞
t0

∥∥∥B(t)
∥∥∥ dt <∞.

Then for any vector of initial conditions x0 the solution x(t,x0) of system
(2.5) is bounded at t→∞.

Theorem 2.2. [26] Let us assume that under the conditions of Theorem 2.1 for
an inhomogeneous (g(t) 6≡ 0) system (2.5) the following conditions also fulfilled:

ˆ ∞
t0

tr(A+B(t)) dt > −∞ and

∥∥∥∥∥
ˆ ∞
t0

g(t) dt

∥∥∥∥∥ <∞.
Then for any vector of initial conditions x0 the solution x(t,x0) of system

(2.5) is bounded at t→∞.

Theorem 2.3. [26] If the function φ(t) tends monotonically to zero (limt→∞ φ(t) =
0) and the function ψ(t) has a bounded antiderivative (

´∞
t0
ψ(t) dt < ∞), then

the integral
´∞
t0
φ(t)ψ(t) dt converges.

Theorem 2.4. [27] (Global Existence and Uniqueness) Suppose that the function
F(t,x) ∈ Rk is piecewise continuous in t and ∀x,y ∈ Rk, ∀t ∈ [t0,∞) satisfies the
conditions

‖F(t,x)− F(t,y)‖ ≤ L‖x− y‖ and ‖F(t,x0)‖ ≤ P,

where L > 0, P > 0 are constants. Then, the state equation ẋ(t) = F(t,x) with
the initial condition x(t0) = x0 has a unique solution over [t0,∞).

Let x1 = (x1, ..., xn−1)T ∈ Rn−1. We introduce the following square matrices

A1 = {aij}, B1(x1) =

{
aij

fij sin(xj) + eij cos(xj)

1− fij sin(xj)− eij cos(xj)

}
∈ R(n−1)×(n−1);

i, j = 1, ..., n− 1.
Let us also introduce the real (n− 1)-vector

g1(t)=

(
b1 sin(ωt) + c1 cos(ωt)

1− f1,n sin(ωt)− e1,n cos(ωt)
,...,

bn−1 sin(ωt) + cn−1 cos(ωt)

1− fn−1,n sin(ωt)− en−1,n cos(ωt)

)T
.

In this case, instead of system (2.2), we can consider the following system

ẋ1(t) = (A1 +B1(x1))x1 + g1(t) ∈ Rn−1 (2.6)

with the initial condition x1(t0) = x10.
The following theorem is the main one in this paper.
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Theorem 2.5. Let the matrix A1 = {aij}; i, j = 1, ..., n − 1, in singular system
(2.6) be Hurwitz. If

√
f2
ij + e2

ij < 1; i = 1, ..., n − 1; j = 1, ..., n, then for any
vector of initial conditions x10 the solution x1(t,x10) of system (2.6) is bounded
at t→∞.

Proof. (c1) Let us estimate the norm of the matrix (A1 + B1(x1)). Since√
f2
ij + e2

ij < 1, then we have

‖A1 +B1(x1)‖ =
n−1∑
i=1

n−1∑
j=1

|aij |
1− fij sin(xj)− eij cos(xj)

≤
n−1∑
i=1

n−1∑
j=1

|aij |

1−
√
f2
ij + e2

ij

= K > 0.

(c2) Let g1(t) ≡ 0. Now suppose that a solution w(t) = x1(t,x10) of system
(2.6) exists. Then we can estimate its norm ‖w(t)‖.

We have

w(t) = exp(A1t0)w(t0) +

ˆ ∞
t0

exp(A1(t− τ))B1(w(τ))w(τ) dτ

and

‖w(t)‖ ≤ ‖ exp(A1t0)‖‖w(t0)‖+

ˆ ∞
t0

‖ exp(A1(t− τ))B1(w(τ))‖‖w(τ)‖ dτ

Since the matrix A1 is Hurwitz, then we have ‖ exp(A1t)‖ < c · exp(−Λt) <
c · exp(−Λt0) = N1 and according to the Bellman-Gronwall Lemma [27], we have

‖w(t)‖ ≤ N1‖w(t0)‖ exp
(ˆ ∞

t0

‖ exp(A1(τ)B1(w(τ))‖ dτ
)
, (2.7)

where c > 0, −Λ = max(<e(λ1), ...,<e(λn)) < 0, and λ1, ..., λn are eigenvalues of
matrix A1.

A rougher estimate of the norm ‖w(t)‖ can be obtained as follows:

‖ẇ(t)‖ ≤ ‖A1 +B1(w1(t))‖ · ‖w(t)‖ ≤ K‖w(t)‖.

From here it follows that ‖w(t)‖ ≤ exp(Kt)‖w(t0)‖.
(c3) Now, let’s estimate the integral

ˆ ∞
t0

exp(A1(τ)B1(w(τ)) dτ, (2.8)

where the elements of the matrix B1 are

bij = aij
fij sin(wj(t)) + eij cos(wj(t))

1− fij sin(wj(t))− eij cos(wj(t))
.
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Let tk be the root of the equation wj(tj,k+1) = wj(tj,k)+2π; j = 1, ..., n−1; k =
0, 1, .... In this case, we can get the following estimate:∥∥∥∥∥
ˆ ∞
t0

exp(A1(τ)B1(w(τ)) dτ

∥∥∥∥∥ ≤
ˆ ∞
t0

∥∥∥exp(A1(τ)B1(w(τ))
∥∥∥ dτ

≤
n−1∑
i=1

n−1∑
j=1

c|aij |

1−
√
f2
ij + e2

ij

×

[
lim
l→∞

l∑
k=0

ˆ tj,k+1

tj,k

exp(−Λt)|fij sin(wj(t)) + eij cos(wj(t))| dt︸ ︷︷ ︸
↪→0

+

ˆ tj,ξ(l)

tj,l+1

exp(−Λt)|fij sin(wj(t)) + eij cos(wj(t))| dt

]

≤
n−1∑
i=1

n−1∑
j=1

c|aij |

1−
√
f2
ij + e2

ij

ˆ tj,ξ(l)

tj,l+1

exp(−Λt)|fij sin(wj(t)) + eij cos(wj(t))| dt

≤ 2c0

n−1∑
i=1

n−1∑
j=1

|aij |
√
f2
ij + e2

ij

1−
√
f2
ij + e2

ij

ˆ tj,ξ(l)

tj,l+1

| sin(wj(t)) + cos(wj(t))| dt

≤ 2c0

n−1∑
i=1

n−1∑
j=1

|aij |
√
f2
ij + e2

ij

1−
√
f2
ij + e2

ij

<∞.

Here c0 = c · (Λ)−1 · exp(−Λt0);wj(tj,ξ(l)) < wj(tj,l+1) + 2π; j = 1, ..., n− 1.
Thus, integral (2.8) is bounded.
As follows from item (c2), the solution w(t) of system (2.6) has an order of

growth no higher than the function exp(N1t):

lim
t→∞

‖w(t)‖
exp(Kt)

= l (0 ≤ l <∞). (2.9)

Taking into account (2.9) (‖w(t)‖ ∼ l exp(Kt)), we estimate the integral

Hij =

ˆ ∞
t0

fij sin(wj(t)) + eij cos(wj(t))

1− fij sin(wj(t))− eij cos(wj(t))
dt.

Since εij =
√
f2
ij + e2

ij < 1, it is obvious that

Hij ∼ Qij =

ˆ ∞
t0

fij sin(l exp(Kt)) + eij cos(l exp(Kt))

1− fij sin(l exp(Kt))− eij cos(l exp(Kt))
dt.

Let’s change the variable s(t) = l exp(N1t). Then we will have

Hij ∼ Qij =

ˆ ∞
s0

δij sin(s+ βij)

s(1 + εij cos(s+ αij))
ds =

ˆ ∞
s0

hij(s) ds

s
,
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where the function hij(s) is defined by formula (2.1) and s0 = s(t0) = l exp(Kt0).
The improper integral Qij can be written as follows

Qij =

ˆ ∞
s0

φ(s)ψ(s) ds,

where the functions φ(s) and ψ(s) satisfy the conditions

lim
s→∞

φ(s) = lim
s→∞

1

s
= 0, lim

s→∞

ˆ ∞
s0

ψ(s) ds = lim
s→∞

ˆ s

s0

δij sin(s+ βij)

1 + εij cos(s+ αij)
ds

≤ lim
s→∞

|δij |√
1− ε2

ij

∣∣∣∣∣
ˆ s

s0

sin(s+ βij) ds

∣∣∣∣∣ ≤ 2|δij |√
1− ε2

ij

<∞.

Thus, the indicated functions φ(s) and ψ(s) satisfy the conditions of Theorem
2.3. Consequently, the integral Qij and also the integral Hij converge. Therefore,
integral (2.8) also converges. Then according to (2.7), we get ‖w(t)‖ < ∞. All
conditions of Theorem 2.1 are satisfied.

(c4) Now let g1(t) 6≡ 0. It is necessary to estimate the integralˆ ∞
t0

g1(t) dt.

Any component of the vector g1(t) has the form

gin =
bi sin(ωt) + ci cos(ωt)

1− fin sin(ωt)− ein cos(ωt)
.

Further reasoning repeats the reasoning of item (c3).
Let us introduce a number ti,k such that ωti,k+1 = ωti,k + 2π. In this case, we

can get the following estimate:∥∥∥∥∥
ˆ ∞
t0

g1(t) dt

∥∥∥∥∥ =

n−1∑
i=1

∣∣∣∣∣
ˆ ∞
t0

gin(t) dt

∣∣∣∣∣ ≤
n−1∑
i=1

1√
1− ε2

in

×

[
lim
l→∞

l∑
k=0

∣∣∣ˆ ti,k+1

ti,k

(bi sin(ωt) + ci cos(ωt)) dt
∣∣∣︸ ︷︷ ︸

↪→0

+
∣∣∣ˆ ti,ξ(l)

ti,l+1

(bi sin(ωt) + ci cos(ωt)) dt
∣∣∣]

≤
n−1∑
i=1

√
b2i + c2

i√
1− ε2

in

×

[
lim
l→∞

l∑
k=0

∣∣∣ˆ ti,k+1

ti,k

(sin(ωt) + cos(ωt)) dt
∣∣∣︸ ︷︷ ︸

↪→0

+
∣∣∣ˆ ti,ξ(l)

ti,l+1

(sin(ωt) + cos(ωt)) dt
∣∣∣] ≤ 2

n−1∑
i=1

√
b2i + c2

i√
1− ε2

in

= N2 <∞,
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where N2 > 0 is a constant.
Further, using the technique of proving that the integral Hij is bounded (see

item (c3)) and condition a11 + · · ·+ ann < 0 (see [26]), we obtain

ˆ ∞
t0

tr(A1 +B1(w1(t)) dt =
n−1∑
i=1

ˆ ∞
t0

aii
1− fii sin(wi(t))− eii cos(wi(t))

dt

=
n−1∑
i=1

aii

ˆ ∞
s0

ds

s(1 + εii cos(s+ αii))
. (2.10)

For the integral in formula (2.10), we have the following estimate:

lim
s→∞

ˆ s

s0

ds

1 + εii cos(s+ αii)

= lim
s→∞

2√
1− ε2

ii

arctan

(√
1− εii
1 + εii

tan
s+ αii

2

)

− 2√
1− ε2

ii

arctan

(√
1− εii
1 + εii

tan
s0 + αii

2

)
<

2π√
1− ε2

ii

.

Now the last inequality and Theorem 2.3 allow us to obtain such an estimate
for integral (4.2):

ˆ ∞
t0

tr(A1 +B1(w1(t)) dt > 2π(a11 + · · ·+ an−1,n−1)
n−1∑
i=1

1√
1− ε2

ii

> −∞.

Now, to prove the boundedness of the solutions of system (2.6), it only remains
to apply Theorem 2.2.

(c5) Consider the linear system

ẋ1(t) = (A1 +B1(w(t)))x1 + g1(t) ∈ Rn−1. (2.11)

where B1(w(t)) is piecewise continuous functions of t.
Now we check the fulfillment of the conditions of Theorem 2.4 for system

(2.6). Over any finite interval of time [t0,∞), the elements of A1 +B1(w(t)) are
bounded. Therefore, we have

‖F(t,x1)− F(t,y1)‖ = ‖(A1 +B1(x1))x1 − (A1 +B1(y1))y1‖ ≤ N1‖x1 − y1‖,

‖F(t,x10)‖ = ‖(A1 +B1(x10))x10 + g1(t)‖ ≤ N1‖x10‖+N2 ≤ P.

Thus, if L = N1, P > N2, and ‖x10‖ ≤ (P − N2)/N1, then the conditions
of Theorem 2.4 are satisfied for any t ∈ [t0,∞). This means that under these
conditions a solution to system (2.6) exists and is unique.

The proof of Theorem 2.5 is complete. �
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Note that systems (2.3) and (2.4) are particular cases of system (2.6) (Only
it should be remembered that in these systems A ∈ Rn×n.) Therefore, Theorem
2.5 is also true for systems (2.3) and (2.4).

3. Rationale for using equations (2.2) to model EEG rhythms

In the study of dynamic processes, as a rule, only a few variables describing
the process are available for direct measurement. The remaining variables (the so-
called hidden variables) are inaccessible to observation. This raises the problem
of reconstructing these unobserved variables from known observable variables.
The first step towards solving this problem is to establish the minimum number
of all variables (measured and hidden) on which the dynamic process depends
(Problem 2).

(a1) (a2)

Fig. 3.1. Dimension of the embedding space for time series (1.1): healthy (a1) and sick (a2)
patients.

Consider the time series (1.1). Using the recurrent analysis [2, 17, 18, 25, 28],
we calculate the dimension m of the embedding space and the optimal time delay
τ . Using these characteristics, we construct m time series

x1(t) = {x1(t0) = x(t0),
x1(t1) = x(t1),

...
x1(tk) = x(tk)},

x2(t) = {x2(t0) = x(t0 + τ),
x2(t1) = x(t1 + τ),

...
x2(tk) = x(tk + τ)},

. . . . . . . . . . . . . . . .
xm(t) = {xm(t0) = x(t0 + (m− 1)τ),

xm(t1) = x(t1 + (m− 1)τ),
...

xm(tk) = x(tk + (m− 1)τ)},

(3.1)
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defining the behavior of a real dynamical system. (Here tk + (m− 1)τ < tN .)
As experimental studies show, the processes presented in Fig.2.1 can be em-

bedded in the phase space, the dimension of which is 4, 5, or 6 [28]. Therefore, in
the future, we will assume that m = 5 (see Fig.3.1).

In addition, at the next stage of modeling (see Section 4), a model will be
built that depends on a small number of parameters and adequately describes the
processes presented in Fig.2.1.

In the case m = 5, to simplify system (2.2), some of the parameters fij , eij in
the denominators will be omitted. As a result, instead of (m−1)2 + 2m(m−1) +
2(m− 1) + 1 = 16 + 40 + 8 + 1 = 65 parameters, the newly obtained system will
contain only 16+10+8+1=35 parameters aij , fi, ei, bi, ci, ω. An example of such
system is given below:

ẋ(t) =
0 · x

1− 0.23 sin(x) + 0.85 cos(x)
+

1 · y
1 + 0.72 sin(y)− 0.37 cos(y)

+
−10.1 · z

1− 0.67 sin(z) + 0.67 cos(z)
+

0 · u
1 + 0.68 sin(u)− 0.68 cos(u)

+
0 · sin(v) + 0 · cos(v)

1− 0.69 sin(v) + 0.70 cos(v)
,

ẏ(t) =
−11 · x

1− 0.23 sin(x) + 0.85 cos(x)
+

−0.1 · y
1 + 0.72 sin(y)− 0.37 cos(y)

+
0 · z

1− 0.67 sin(z) + 0.67 cos(z)
+

10.9 · u
1 + 0.68 sin(u)− 0.68 cos(u)

+
0 · sin(v) + 0 · cos(v)

1− 0.69 sin(v) + 0.70 cos(v)
,

ż(t) =
10 · x

1− 0.23 sin(x) + 0.85 cos(x)
+

0 · y
1 + 0.72 sin(y)− 0.37 cos(y)

+
0 · z

1− 0.67 sin(z) + 0.67 cos(z)
+

1 · u
1 + 0.68 sin(u)− 0.68 cos(u)

+
0 · sin(v) + 110 · cos(v)

1− 0.69 sin(v) + 0.70 cos(v)
,

u̇(t) =
0 · x

1− 0.23 sin(x) + 0.85 cos(x)
+

−20 · y
1 + 0.72 sin(y)− 0.37 cos(y)

+
−110.4 · z

1− 0.67 sin(z) + 0.67 cos(z)
+

−0.1 · u
1 + 0.68 sin(u)− 0.68 cos(u)

+
−100 · sin(v)− 110 · cos(v)

1− 0.69 sin(v) + 0.70 cos(v)
,

v̇(t) = ω.

(3.2)

The following Fig.3.2 shows the application of system (3.2) (at certain values of
the coefficients) for modeling the processes shown in Fig.2.1.

Thus, model (3.2), with the help of appropriate parameter settings, can cor-
rectly describe the dynamics of rhythms (see Fig.3.2) in the cerebral cortex, shown
in Fig.2.1.

In the case of m = 5, system (3.2) can be transformed into system (2.3). For
this, it is necessary:
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(a1) (a2)

Fig. 3.2. Simulation of the process shown in Fig.2.1 with the help of system (3.2): (a1) ω = 10.5;
(a2) ω = 12.

1) In the first four equations of system (3.2), make substitutions bi sin(v) +
ci cos(v)→ ai5v; i = 1, ..., 4;

2) Replace the fifth equation of system system (3.2) with equation

v̇(t) =
a51x

1− f1 sin(x)− e1 cos(x)
+

a52y

1− f2 sin(y)− e2 cos(y)

+
a53z

1− f3 sin(z)− e3 cos(z)
+

a54u

1− f4 sin(u)− e4 cos(u)

+
a55v

1− f5 sin(v)− e5 cos(v)
.

Note that the number of parameters in the newly obtained system at m = 5
will remain the same: 35.

4. Simplified identification of processes described by system (2.2)

In this section, we will begin to solve Problem 3. In the future, the number
of variables in systems of equations, we will denote by n, where n ≥ m = 5.

Note that the bounded variables x2(t), ..., xn(t) derived from the measured
variable x1(t) = x(t). Therefore, for models built using EEG, the equation ẋn(t) =
ω must be replaced by the equation ẋn(t) = annxn(t)+φ(x1(t), ...., xn−1(t)), where
ann < 0. A possible form of such model can be as follows:
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ẋ1(t) =
a10 + · · ·+ a1,n−1xn−1 + b1 sin(xn) + c1 cos(xn)

1− f1 sin(xn)− e1 cos(xn)
,

= ...................................................................................

ẋn−1(t) =
an−1,0 + · · ·+ an−1,n−1xn−1 + bn−1 sin(xn) + cn−1 cos(xn)

1− fn−1 sin(xn)− en−1 cos(xn)
,

ẋn(t) = ω0 + ω1x1 + · · ·+ ωnxn.
(4.1)

Here aij , fi, ei, bi, ci, ωi are real parameters;
√
f2
i + e2

i < 1; i = 1, ..., n − 1; j =

0, ..., n. (Thus, system (4.1) depends on (n− 1)n+ 4(n− 1) +n+ 1 = n2 + 4n− 3
parameters, and all of them are rationally included in this system.)

Note that by replacing

xn(t) = ω0t+

ˆ t

t0

(ω1x1(t) + · · ·+ ωnxn(t)) dt→ ωt,

system (4.1) can be reduced to system (2.6) . This means that under the con-
ditions of Theorem 2.5 the solutions of system (4.1) will be bounded. (To prove
Theorem 2.5 for system (4.1), it is necessary to slightly change item (c4) in its
proof. In the presence of item (c3) in the same proof, such changes are quite
obvious.)

Model (4.1) is still difficult to study. Therefore, in the future we will focus on
the study of the following model:

ẋ1(t) =
1

1− f1 sin(xi)− e1 cos(xi)

n∑
j=0,j 6=i

a1jxj ,

. . . . . . . . . . . . . . . . . . . . ,

ẋi(t) =
1

1− fi sin(xi)− ei cos(xi)

n∑
j=0

aijxj ,

. . . . . . . . . . . . . . . . . . . . ,

ẋn(t) =
1

1− fn sin(xi)− en cos(xi)

n∑
j=0,j 6=i

anjxj .

(4.2)

Here f2
i + e2

i < 1; i ∈ {1, ..., n}. (In total, n different models of type (4.2) can be
designed in this way.)

Let us introduce the following matrix

Ai =



a11 . . . a1,i−1 a1,i+1 . . . a1n
...

. . .
...

...
...

...
ai−1,1 . . . ai−1,i−1 ai−1,i+1 . . . ai−1,n

ai+1,1 . . . ai+1,i−1 ai+1,i+1 . . . a+1,n
...

...
...

...
. . .

...
an1 . . . an,i−1 an,i+1 . . . ann


∈ R(n−1)×(n−1).
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Theorem 4.1. Suppose that for some i ∈ {1, ..., n} the matrix Ai for the singular

system (4.2) be Hurwitz. If ∀i ∈ {1, ..., n}, we have
√
f2
i + e2

i < 1, then for any
vector of initial conditions x0 the solutions

x1(x0)(t), ..., xi−1(x0)(t), xi+1(x0)(t), ..., xn(x0)(t)

of system (4.2) is bounded at t → ∞. If, in addition, aii < 0, then the solution
xi(x0)(t) is also bounded.

Proof. Let the vector b = (b1, ..., bi, bi+1, ..., bn)T be the solution of the linear
equation a +Aib = 0, where a = (a10, ..., ai−1,0, ai+1,0, ..., an0)T .

Without loss of generality, we can assume that a = 0. Indeed, if this is not
true, then with the help of the change of variables yj = xj + bj , j 6= i, we will pass
from system (4.2) to a new system in which condition a = 0 is already satisfied.

Now it remains to apply Theorem 2.5 to system (4.2).
Let αj(t) = 1− fj sin(xi(t))− ej cos(xi(t)); j = 1, ..., n.
We have that the obtained solutions x1(t), ..., xi−1(t), xi+1(t), ..., xn(t) of sys-

tem (4.2) are bounded. In this case, in the i-th equation

ẋi(t) =
aiixi(t)

1− fi sin(xi(t))− ei cos(xi(t))
+ φ(x1(t), ..., xn(t))

of system (4.2) the function φ(x1(t), ..., xn(t)) is also bounded. Finally, by virtue
of conditions aii < 0 and αi(t) > 0, we obtain that the solution xi(t) and all solu-
tions x1(t), ...., xn(t) of system (4.2) are bounded. �

Note that Theorem 4.1 admits the following obvious generalization.

Theorem 4.2. If, under the conditions of Theorem 4.1, the matrix Ai is replaced
by a matrix A = {aij} ∈ Rn×n such that A is Hurwitz, then the assertion of
Theorem 4.1 remains valid.

In this paper, Theorem 4.2 will not be required. It is presented in order to
show how you can expand the modeling capabilities for time series (1.1).

4.1. Algorithm for constructing model (4.2) from known time series

Let us write the equations of system (4.2) in the following form

ẋi(t) =
ai1xi + · · ·+ ainxn

1− fi sin(xi)− ei cos(xi)
= φi(x1, ..., xn); i = 1, ..., n. (4.3)

Now we rewrite the equations of system (4.3) as follows

ẋi(t) = ai1xi + · · ·+ ainxn + ẋifi sin(xi) + ẋiei cos(xi)

= ψi(x1, ..., xn); i = 1, ..., n.
(4.4)

From the point of view of the theory of differential equations, systems (4.3)
and (4.4) describe the same dynamics. However, from the point of view of ap-
proximation theory (determining the coefficients ai1, ..., ain, fi, ei from the known
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values of the functions xi(t), i = 1, ..., n), these are different problems for systems
(4.3) and (4.4).

Indeed, in case of system (4.3) it is necessary to minimize by a11, ..., en the loss
function

∑n
i=1|ẋi−φi(x1, ..., xn, a11, ..., en)|, and in case of system (4.4) it is neces-

sary to minimize by a11, ..., en the loss function
∑n

i=1|ẋi−ψi(x1, ..., xn, a11, ..., en)|,
where the equations (4.3) are rational and the equations (4.4) are linear.

It is clear that in the case of system (4.4), the approximation problem will be
simpler than in the case of system (4.3). That is why we chose system (4.4) for
solving the approximation problem. (It should be remembered that the approxi-
mation results for system (4.4) may be worse than for system (4.3).)

To simplify the notation, we can assume that in model (4.2) i = n.

1. Based on the known time series x(t) = {x0, x1, ..., xN}, determine the di-
mension of the embedding space m and the delay time τ .

2. Based on the known m (here m = 5) and τ , construct five time series

x(t) = {x0, x1, x2, ..., xL},x(t+ τ) = {y0, y1, y2, ..., yL},
x(t+ 2τ) = {z0, z1, z2, ..., zL},x(t+ 3τ) = {u0, u1, u2, ..., uL},

x(t+ 4τ) = {v0, v1, v2, ..., vL}

that are given on the same time interval TL ≤ t0 + (m− 1)τ ≤ T in equally
spaced L ≤ N nodes: 0,∆t, ..., k∆t, ...., L∆t = TL ≤ T . Thus, ∆t = TL/L.

3. Fix a learning selections

x0, x1, ..., xk; y0, y1, ..., yk; z0, z1, ..., zk;u0, u1, ..., uk; v0, v1, ..., vk,

where 36 ≤ k ≤ L.

4. Construct the columns of numerical derivatives Dx, Dy, Dz, Du, Dv, where

Dx =
1

∆t

 x1 − x0
...

xk − xk−1

 ∈ Rk, ..., Dv =
1

∆t

 v1 − v0
...

vk − vk−1

 ∈ Rk.

5. Construct five Jacobi matrices Jx, Jy, Jz, Ju, Jv:

Jx =

 1 x0 y0 z0 u0 Dx1 sin(v0) Dx1 cos(v0)
...

...
...

...
...

...
...

1 xk−1 yk−1 zk−1 uk−1 Dxk sin(vk−1) Dxk cos(vk−1)

∈Rk×7,

.....................

Ju =

 1 x0 y0 z0 u0 Du1 sin(v0) Du1 cos(v0)
...

...
...

...
...

...
...

1 xk−1 yk−1 zk−1 uk−1 Duk sin(vk−1) Duk cos(vk−1)

∈Rk×7,
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Jv =

 1 x0 y0 z0 u0 v0
...

...
...

...
...

...
1 xk−1 yk−1 zk−1 uk−1 vk−1

∣∣∣∣∣∣∣→
∣∣∣∣∣∣∣

Dv1 sin(v0) Dv1 cos(v0)
...

...
Dvk sin(vk−1) Dvk cos(vk−1)

 ∈ Rk×8.

6. Introduce a vector of unknown parameters

p = (px, ...,pv)
T

= (a10, a11, a12, a13, a14, f1, e1︸ ︷︷ ︸
px

, ..., a50, a51, a52, a53, a54, a55, f5, e5︸ ︷︷ ︸
pv

)T ∈ R36

7. Fix the parameters 0 < ε ≤ 1 and λ > 0, and minimize the five loss functions
(see [29]):

‖Jxpx −Dx‖22 + λ‖px‖1 with restriction
√
f2

1 + e2
1 ≤ 1− ε,

..., ‖Jvpv −Dv‖22 + λ‖pv‖1 with restriction
√
f2

5 + e2
5 ≤ 1− ε.

8. Using any search optimization method, calculate the vector p = p∗ =
(p∗x, ...,p

∗
v)
T whose subvectors p∗x, ...,p

∗
v minimize the introduced loss func-

tions.

The results of the operation of this algorithm are presented by the following
examples. 

ẋ(t) =
−180.15− 3.03x+ 8.10y + 1.73z + 0.57u

1− 0.80 sin(v)− 0.56 cos(v)
,

ẏ(t) =
−58.21− 10.23x− 3.96y + 13.09z − 2.71u

1− 0.70 sin(v)− 0.66 cos(v)
,

ż(t) =
22.01 + 0.05x− 12.17y + 1.94z + 9.61u

1− 0.90 sin(v)− 0.40 cos(v)
,

u̇(t) =
219.68− 2.11x− 0.01y − 10.98z + 4.24u

1− 0.71 sin(v)− 0.63 cos(v)
,

v̇(t) =
199.01 + 3.27x− 4.23y − 1.31z − 7.52u

1− 0.40 sin(v) + 0.55 cos(v)
.

(4.5)

Here initial values are: x0 = 91.70, y0 = −11.01, z0 = 10.02, u0 = −10.74, v0 = 0.
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ẋ(t) =
138.74− 7.44x+ 15.11y − 0.09z + 2.16u

1 + 0.80 sin(v)− 0.50 cos(v)
,

ẏ(t) =
80.68− 12.12x− 1.48y + 13.22z + 0.50u

1− 0.70 sin(v)− 0.65 cos(v)
,

ż(t) =
−52.62− 0.52x− 12.38y + 2.88z + 9.01u

1− 0.80 sin(v) + 0.40 cos(v)
,

u̇(t) =
−66.91− 0.96x− 2.44y − 12.64z + 2.22u

1− 0.3 sin(v) + 0.88 cos(v)
,

v̇(t) =
10 + 2.92x− 3.79y − 1.16z − 10.79u

1 + 0.30 sin(v)− 0.10 cos(v)
.

(4.6)

Here initial values are: x0 = 11.96, y0 = −11.01, z0 = 10.02, u0 = −10.74, v0 = 0.



ẋ(t) =
145.70− 7.50x+ 15.11y − 0.10z + 2.13u

1 + 0.80 sin(v)− 0.55 cos(v)
,

ẏ(t) =
81.25− 12.12x− 2.52y + 13.25z + 0.50u

1− 0.71 sin(v) + 0.65 cos(v)
,

ż(t) =
−54.11− 0.53x− 12.38y + 2.88z + 9.02u

1− 0.89 sin(v) + 0.42 cos(v)
,

u̇(t) =
232.55− 2.34x+ 0.34y − 10.71z + 2.97u

1− 0.33 sin(v)− 0.88 cos(v)
,

v̇(t) =
10.12 + 2.91x− 3.79y − 1.16z − 10.77u

1− 0.10 sin(v)− 0.30 cos(v)
.

(4.7)

Here initial values are: x0 = 18.70, y0 = −10.00, z0 = 85.01, u0 = −15.00, v0 = 0.
(Examples (4.5)-(4.7) of modeling EEG for a sick patient.)



ẋ(t) =
−1.00 + 0.22x− 7.23y − 5.78z − 8.15u

1− 0.78 sin(v)− 0.56 cos(v)
,

ẏ(t) =
−0.00 + 4.19x− 0.57y − 2.96z − 5.75u

1− 0.77 sin(v) + 0.56 cos(v)
,

ż(t) =
1.22 + 2.73x+ 3.26y − 0.14z − 2.44u

1− 0.29 sin(v) + 0.14 cos(v)
,

u̇(t) =
0.34 + 7.00x+ 6.91y + 5.10z − 0.30u

1− 0.67 sin(v)− 0.43 cos(v)
,

v̇(t) =
17.32− 4.82x+ 0.56y + 0.87z + 3.58u

1 + 0.87 sin(v) + 0.20 cos(v)
.

(4.8)

Here initial values are: x0 = 1.70, y0 = 6.06, z0 = 11.41, u0 = −10.21, v0 = 0.
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ẋ(t) =
9.61− 0.74x+ 2.74y + 2.51z − 3.73u

1 + 0.78 sin(v) + 0.46 cos(v)
,

ẏ(t) =
17.22− 3.04x− 0.187y + 2.61z + 2.05u

1− 0.64 sin(v) + 0.36 cos(v)
,

ż(t) =
−0.04− 2.52x− 2.05y + 0.36z + 3.49u

1− 0.79 sin(v) + 0.14 cos(v)
,

u̇(t) =
−9.04 + 3.43x− 2.06y − 2.90z − 0.04u

1− 0.82 sin(v)− 0.43 cos(v)
,

v̇(t) =
−2.18− 4.05x+ 4.08y − 1.91z − 2.27u

1 + 0.30 sin(v)− 0.40 cos(v)
.

(4.9)

Here initial values are: x0 = −21.70, y0 = −1.26, z0 = 10.07, u0 = −10.21, v0 = 0.

ẋ(t) =
24.51− 0.92x+ 2.45y + 2.93z − 4.37u

1− 0.48 sin(v)− 0.56 cos(v)
,

ẏ(t) =
31.81− 2.80x− 1.35y + 2.50z + 2.06u

1− 0.47 sin(v) + 0.56 cos(v)
,

ż(t) =
7.74− 3.70x− 0.53y + 0.58z + 3.50u

1− 0.90 sin(v) + 0.40 cos(v)
,

u̇(t) =
−3.40 + 3.44x− 1.02y − 2.70z − 3.86u

1− 0.71 sin(v)− 0.63 cos(v)
,

v̇(t) =
−23.18− 4.12x+ 3.22y − 1.70z − 1.99u

1− 0.0 sin(v)− 0.0 cos(v)
.

(4.10)

Here initial values are: x0 = 40.02, y0 = 33.43, z0 = −11.21, u0 = 7.62, v0 = 0.
(Examples (4.8)-(4.10) of modeling the EEG for a healthy patient.)

It should be said that in all the above examples, the solution v(t) is un-
bounded (it oscillates around the straight line v = a50t). In this case, we get a
contradiction with the time series v0, v1, v2, ..., which is built from the bounded
series x0, x1, x2, ..., and therefore must also be bounded.

This contradiction can be removed in the following way. For example, let’s
replace the fifth equation of system (4.9) with the equation

v̇(t) =
−2.18− 4.05x+ 4.08y − 1.91z − 2.27u+ a55v

1 + 0.30 sin(v)− 0.40 cos(v)
. (4.11)

Consider the graphs of the trajectory v(t) at a55 = 0 and a55 6= 0:
Comparing graphs Fig.4.2(b2) and Fig.4.3(a4) , it can be seen that the behav-

ior of the curves presented in these graphs is similar. We add that the behavior
of the curves x(t), y(t), z(t) and u(t) obtained from the system (4.9) and the be-
havior of the same curves obtained from the system (4.9), taking into account
(4.11), is also similar. As for quantitative differences, we note that the variable
v(t) is included in the first four equations of system (4.9) (and the same system,
but with equation (4.11)) only in complex αi(t) = 1 − fi sin(v(t)) − ei cos(v(t)),
where 0 < αi(t) < 2; i = 1, ..., 5. The last restriction gives quantitative differences
in the solutions of system (4.9) (and the same system, but with equation (4.11)).
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(a1) (a2)

(b1) (b2)

(c1) (c2)

Fig. 4.1. The electroencephalogram taken from a specific point in the cerebral cortex of the
patient with an epileptic disease: at points 1-500 of time series (1.1), (a1) in coordinates (x(t), t)
and (a2) in coordinates (x(t), x(t+τ)); at points 501-1000 of time series (1.1), (b1) in coordinates
(x(t), t) and (b2) in coordinates (x(t), x(t+ τ)); at points 2001-2500 of time series (1.1), (c1) in
coordinates (x(t), t) and (c2) in coordinates (x(t), x(t+ τ)).
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(a1) (a2)

(b1) (b2)

(c1) (c2)

Fig. 4.2. The electroencephalogram taken from a specific point in the cerebral cortex of a healthy
patient: at points 1-500 of time series (1.1), (a1) in coordinates (x(t), t) and (a2) in coordinates
(x(t), x(t+ τ)); at points 501-1000 of time series (1.1), (b1) in coordinates (x(t), t) and (b2) in
coordinates (x(t), x(t+ τ)); at points 1-4065 of time series (1.1), (c1) in coordinates (x(t), t) and
(c2) in coordinates (x(t), x(t+ τ)).
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(a1) (a2)

(a3) (a4)

Fig. 4.3. Graphs of the variable v(t) from equation (4.11): (a1) a55 = 0; (a2) a55 = −1; (a3)
a55 = −2. Graph of the projection of the phase trajectory of system (4.9) with equation (4.11)
onto plane (x, y) at a55 = −2 (a4).

To complete the simulation, it is necessary to analyze the Lyapunov exponents
for the time series presented in Fig.2.1(a1,a2) [21].

Before starting the calculations of Lyapunov exponents, sectioning of each of
the time series shown in Fig.2.1(a1) and Fig.2.1(a2) was carried out.

Each time series consists of 4065 points. This set of points was divided into 4
disjoint subsets (≈ 1000 points each). Thus, we get the following differences.

1. The Lyapunov exponents for a sick patient have greater modulo values than
the same exponents for a healthy patient. (The number of positive Lyapunov
exponents for a sick patient is 2. For a healthy patient, the same number
varies from 2 to 3. Thus, both processes shown in Fig.2.1 are hyperchaotic.)

2. The dimension of the embedding space of a sick patient for each section is
m = 4 or m = 5. At the same time, the dimension of the embedding space
of a healthy patient for similar sections varies from m = 4 to m = 6.
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Fig. 4.4. The electroencephalogram Fig.2.1(a1) and the distribution of its Lyapunov exponents
for time series (1.1)

3. Now let’s compare the experimental Lyapunov exponents (Fig.4.4, Fig.4.5)
and the Lyapunov exponents of dynamic systems (4.6) and (4.9) simulating
the corresponding time series (see Fig.4.6).

Let Λ1 ≥ ... ≥ Λn are the Lyapunov exponents for a dynamical system in Rn.
Assume that j is the largest integer for which Λ1+· · ·+Λj ≥ 0. The Kaplan-Yorke
dimension is given by the formula [30,31]:

dKL = j +
Λ1 + · · ·+ Λj
|Λj+1|

. (4.12)

In the equations (4.5)-(4.10), for coordinate v(t), we have v(t) → ∞ or
v(t) → −∞ as t → ∞ (see Fig.4.3). This means that systems (4.5)-(4.10)
behave as nonstationary. Therefore, it is necessary to consider the attractors
of these systems as projections along the axis v onto a 4-dimensional subspace
(x, y, z, u) ∈ R5. In this case, the dimension of the attractor in this case will be
less than 4.

Let’s compare the fractal dimensions of the attractors presented in Fig.2.2 and
Fig.4.1, Fig.4.2 calculated by formula (4.12).

Taking into account Fig.4.4, we have two situations: 1) Λ1 ≈ 0.3,Λ2 ≈ 0.25,
Λ3 ≈ 0.2,Λ4 ≈ 0.0,Λ5 ≈ −1.0; from here it follows that dKL ≈ 4.75. 2) Λ1 ≈
0.25,Λ2 ≈ 0.15,Λ3 ≈ 0.0,Λ4 ≈ −0.25,Λ5 ≈ −0.5,Λ6 ≈ −1.0; here we have
dKL ≈ 4.6.
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Fig. 4.5. The electroencephalogram Fig.2.1(a2) and the distribution of its Lyapunov exponents
for time series (1.1)

Taking into account Fig.4.5, we have: 1) Λ1 ≈ 0.6,Λ2 ≈ 0.03,Λ3 ≈ 0.0,Λ4 ≈
−0.7; from here it follows that dKL ≈ 3.9 or 2) Λ1 ≈ 0.6,Λ2 ≈ 0.2,Λ3 ≈ 0.0,Λ4 ≈
−0.2,Λ5 ≈ −0.7; from here it follows that dKL ≈ 7.0.

Thus, the fractal dimension of the healthy patient attractor is greater than
that of the sick one. This statement also holds for the attractors of model system
(4.6) (for Fig.4.6(a1), we have Λ1 ≈ 0.11, Λ2 ≈ −0.07,Λ3 ≈ −0.31,Λ4 ≈ −0.82;
here dKL ≈ 2.8) and model system (4.9) (for Fig.4.6 (a2), we have Λ1 ≈ 0.19,Λ2 ≈
0.03, Λ3 = −0.13,Λ4 = −0.51; here dKL ≈ 3.7). The only question is: why is
the dimension of the sick patient attractor greater than m = 5? The fact is that
when calculating the Lyapunov exponents for time series, the noise component
plays an important role. Its presence gives an overestimated value of the fractal
dimension (especially for the attractor of a sick patient).

This suggests that the chaos generated by the signals of the cerebral cortex
of a healthy patient has a more complex structure than the chaos generated by
the signals of the cerebral cortex of a sick patient. The same statement can be
confirmed by comparing Fig.4.1(a2),(b2),(c2) and Fig.4.2(a2),(b2),(c2).

In addition, we note that attractors are not explicitly represented in these
figures, but can be constructed from trajectories (see [2]). In both cases, the
normal activity is the internal trajectory (solid black area; see Fig.4.1 and Fig.4.2),
and the seizure is the external trajectory (higher amplitude activity; sparse area
formed by a single trajectory; see Fig.4.1).
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(a1) (a2)

Fig. 4.6. Distribution of Lyapunov exponents for model (4.6) (a1) and model (4.9) (a2). Here
m = 4 is less than the dimension m = 5 of the real embedding space (see Fig.4.5). This means
that different models (see Fig.4.3) must be used for different measurement intervals.

5. On the existence of limit cycles in system (4.2)

It is known that chaotic processes in dynamical systems usually begin with
a cascade of bifurcations of limit cycles (Feigenbaum’s scenario of doubling the
period [32]). Since the processes presented on any EEG are clearly chaotic (see
the figures of this article), it is necessary to show that model (4.2) , at certain
values of the coefficients, generates a limit cycle.

Consider the following simplest version of system (4.2) for n = 2:

ẋ1(t) =
a11x1 + a12x2

1− ε1 cos(x1)
, ẋ2(t) =

a21x1 + a22x2

1− ε2 cos(x2)
. (5.1)

We introduce a matrix S = {sij} ∈ R2×2 such that either

S−1AS =

(
λ1 0
0 λ2

)
or S−1AS =

(
λ µ
−µ λ

)
, (5.2)

where A = {aij} ∈ R2×2 and detA 6= 0.
Now we introduce a change of variables x1 = s11y1 + s12y2, x2 = s21y1 + s22y2

in system (5.1) and construct the following function

V =
y2

1 + y2
2

2
.

Then, taking into account (5.2), we get

V̇t = λ1y
2
1 + λ2y

2
2 +

φ1(y1, y2) cos(s11y1 + s12y2) + φ2(y1, y2) cos(s21y1 + s22y2)

|ε1|−1 − cos(s11y1 + s12y2)
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+
ψ1(y1, y2) cos(s11y1 + s12y2) + ψ2(y1, y2) cos(s21y1 + s22y2)

|ε2|−1 − cos(s21y1 + s22y2)
.

(Here φi(y1, y2), ψi(y1, y2) are quadratic forms, |εi| < 1; i = 1, 2. The situation
λ1 = λ2 = λ is not excluded.)

Let us introduce the set H = {(y1, y2)T ∈ R2|V̇t ≥ 0} and the boundary L =
{(y1, y2)T ∈ R2|V̇t = 0} of this set. Now we use Theorem 2.5. Since the matrix A
is Hurwitz, then λ1 < 0, λ2 < 0. Consider the behavior of the function V (y1, y2)
on the line s11y1 + s12y2 = s21y1 + s22y2 = (2k + 1)π/2, where k = 0± 1,±2, ....
Obviously, if k →∞, then s11y1 + s12y2 = s21y1 + s22y2 = (2k + 1)π/2→∞. In
this case V̇t(y1, y2) → λ1y

2
1 + λ2y

2
2 < 0 and the nonnegative function V (y1, y2) is

decreasing along the mentioned straight line.
It is clear that there must be a moment tc > 0 such that V̇t(y1(tc), y2(tc)) = 0.

From here it follows that the boundary L of the set H is closed and the set itself is
a compact positively invariant set with respect to (5.1). Thus, all the conditions
of Theorem 2.2 [25] are satisfied and the set L contains a stable limit cycle (see
Fig.5.1). (If (y1, y2)T ∈ H, then V̇t(y1, y2) ≥ 0 and the unique equilibrium point
(0, 0)T ∈ H is a repeller. Therefore, the trajectory (y1(t), y2(t))T is attracted to
some set C ⊂ L, which must be the limit cycle.)

(a1) (a2)

Fig. 5.1. Limit cycles of system (5.1) at the following parameter values: (a1) a11 = 0.52, a12 =

−7.23, a21 = 1.19, a22 = −0.57, ε1 = 0.99, ε2 = −0.85; (a2) a11 = 0.36, a12 = −10.21, a21 =

15.22, a22 = −0.37, ε1 = 0.97, ε2 = −0.87. Here x(t) = x1(t), y(t) = x2(t).

6. Conclusion

The paper presents new models (2.2), (2.3), (2.4), (4.1), and (4.2) describing
strongly oscillating processes. As an application of one of these models (this
is system (4.2)), the problem of modeling signals arising in the cerebral cortex,
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in particular, signals arising in epilepsy, was considered. It is shown that the
constructed model distinguishes quite well the signals generated by the brain of
a healthy patient and a patient with epilepsy.

However, the question of using model (4.2) for the diagnosis of epilepsy re-
mains open. The fact is that the model (4.2) does not give accurate quantitative
characteristics of epileptic seizures occurring in the cerebral cortex of a sick pa-
tient. In our opinion, this is due to the fact that rather crude computational tools
are used to tune the model parameters (4.2): least squares method, methods
LASSO, SIND [14,29], and so on. Therefore, to improve the quality of modeling,
it is necessary to use a more powerful tool. This tool is recurrent neural networks.

The use of neural networks will bring the quality of modeling to such a state in
which it will be possible to take bifurcation analysis [9,16] to study system (4.2).
In this case, we will be able to connect the values of the coefficients of model (4.2)
with the parameters of EEG, and hence with the real state of the sick patient.

At the moment, model (4.2) makes it possible to distinguish between healthy
and sick patients only (without detailing their states): in a sick patient, the
amplitude of signal oscillations is several times greater than in a healthy patient.

Why model (4.2) is presented in this form? There are three main reasons:

1. The electroencephalogram x(t) shows that the electrical processes occurring
in the cerebral cortex have a strongly oscillating, almost periodic nature.
This means that there is a sequence of times t1, t2, ... such that the modules
of the derivatives |ẋ(t1)|, |ẋ(t2)|, ... increase sharply. It is this fact that is
taken into account in the proposed form of denominators in systems (2.2)
and (4.2).

2. The calculated variables x2(t), x3(t), ... are obtained from the experimental
dependence xi(t) = x(t) using the delay method [6, 9] (here i = 1). This
means that the jump moments of the derivatives ẋ(t1), ẋ(t2), of the function
x1(t) must be shifted for the functions x2(t) = x1(t+τ), x3(t) = x1(t+2τ), ...
by τ : t1 + τ, t1 + 2τ, ..., t2 + τ, t2 + 2τ, ... That is why the terms in the
denominators of the equations of system (4.2) are linear combinations of
the terms of only one denominator 1 − f1 sin(x1(t)) − e1 cos(x1(t)). (In
system (4.2), any function xi(t) can be taken as an experimental variable;
i ∈ {1, ..., n}. In examples (4.5)–(4.10) i = 5.)

3. In all denominators of equations (2.4) in the role of the function cos(t)
any periodic function can be taken. Let us assume that the amplitude of
oscillations of this function is A. Then in all equations (2.4) parameter εi
must be replaced by parameter εi/A; i = 1, ..., n.

In conclusion, let us say a few words about future studies of epilepsy models.
First of all, we note one important circumstance. All real EEGs are usually

very noisy. Therefore, before modeling, it will be necessary to filter the data
obtained from these EEGs.
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The standard filtering process is to cut large amplitudes (jumps). However,
in our situation, such a process must be carried out very carefully: filtering can
remove amplitudes that are critical for diagnosis. (In this case, the introduction
of functions (2.1) would be unjustified.)

As previous studies have shown, it is impossible to build one model that would
approximate the entire time series. Therefore, along with filtering, the question
of sectioning the time series also arises. This sectioning should be done in such a
way that only one model is used to model each section of the series.

Let i be any number from the set {1, ..., n}. In the present work, model

ẋ1(t) =
a10 + a11x1 + · · ·+ a1nxn

1 + ε1 · cos(xi + α1)
,

. . . . . . . . . . . . . . . ,

ẋi(t) =
ai0 + ai1x1 + · · ·+ ainxn

1 + εi · cos(xi + αi)
,

. . . . . . . . . . . . . . . ,

ẋn(t) =
an0 + an1x1 + · · ·+ annxn

1 + εn · cos(xi + αn)

(6.1)

was investigated. (There are n2 + 3n parameters a10, a1n..., ann, ε1, α1, ..., εn, αn.)
The next step is to explore the universal model

ẋ1(t) =
a10 + a11x1 + · · ·+ a1nxn

1 + ε1 · cos(b11x1 + · · ·+ b1nxn + γ1)
,

. . . . . . . . . . . . . . . . . . . . . ,

ẋn(t) =
an0 + an1x1 + · · ·+ annxn

1 + εn · cos(bn1xn + · · ·+ bnnxn + γn)

(6.2)

(There are 2n2 + 3n parameters a10, a1n..., ann, b11, ..., bnn, ε1, γ1, ..., εn, γn.)
Finally, we note that it is possible to propose a model that generalizes models

(6.1) and (6.2): 
ẋ1(t) =

a10 + a11x1 + · · ·+ a1nxn
1 + ε1 · cos(h1(x1, ..., xn))

,

. . . . . . . . . . . . . . . . ,

ẋn(t) =
an0 + an1x1 + · · ·+ annxn
1 + εn · cos(hn(xn, ..., xn))

,

(6.3)

where hi(xn, ..., xn); i = 1, ..., n, are continuous functions of their arguments.
In order to guarantee the boundedness of solutions of systems (6.1), (6.2), and

(6.3) the following conditions:

1. The matrix A = {aij}; i, j = 1, ..., n, is Hurwitz;

2. The parameters |εi| < 1; i = 1, ..., n,

must be satisfied. (The proof of the last assertion almost completely repeats the
proof of Theorem 2.5. Therefore, there is no need to give it again.)
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The fulfillment of these conditions makes it possible to vary the parameters
of systems (6.1), (6.2), and (6.3) within a very wide range, which guarantees the
absence of unbounded solutions (a mandatory condition for any simulation).

We hope that the use of recurrent neural networks to adjust the coefficients
of systems (6.1) and (6.2) will lead to more adequate models of epilepsy than the
models discussed in this article.
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