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ABSTRACT 

COMPARING MEXICAN SPOTTED OWL HABITAT SUITABILITY IN TWO 

DIFFERENT HABITAT TYPES USING A MULTI-SCALE ENSEMBLE 

LEARNING FRAMEWORK 

 

Danial Nayeri  

 

Habitat fragmentation and loss are major threats to species conservation worldwide. 

Studying species-habitat relationships is a crucial first step toward understanding species 

habitat requirements, which is necessary for conservation and management planning. 

However, some species inhabit a range of habitat types, potentially making the use of 

range-wide habitat models inappropriate due to non-stationarity. The Mexican spotted 

owl (Strix occidentalis lucida) (MSO) is a species that inhabits both forests and rocky 

canyonlands, two habitats with large differences in environmental conditions. It is 

unclear whether the species uses habitat differently in these two habitat types or if 

previously-built habitat models for forest-dwelling owls can be used to understand where 

MSO use habitat in rocky canyonlands. To explore this, we developed the first scale-

optimized habitat suitability model for this subspecies of spotted owl in rocky 

canyonlands using an ensemble framework. I then compared my results with a 

previously-built habitat model for MSO in forested areas. In the rocky canyonland model, 

slope (800 m scale), cumulative degree days (1200 m scale), insolation (1000 m scale), 

and monsoon precipitation (100 m scale) were the most important environmental 

covariates. In contrast, in the forest model, percent canopy cover (100 m scale), percent 
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mixed-conifer (5000 m scale), and slope (500 m scale) were the most important 

environmental covariates. The rocky canyonland model performed well, while the forest 

model performed poorly and predicted low suitability across the entire study area, 

including areas with known nesting locations. These results confirm the non-stationarity 

in habitat use for MSOs between rocky canyonland and forest habitats and underscore the 

importance of accounting for non-stationarity across different geographic regions when 

modeling habitat. Hence, when transferring habitat suitability models from one region to 

another, it is necessary to evaluate the transferability of the model by accounting for non-

stationarity. 
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INTRODUCTION 

Habitat loss and fragmentation are important drivers of the global biodiversity 

crisis (Fahrig 2003, Mohammadi et al. 2021, Zhu et al. 2021). When habitat is less 

available and continuous, many species suffer from connectivity loss (Mohammadi et al. 

2022), weakened genetic structure (Griciuvienė et al. 2021), and decreased demographic 

viability (Kaszta et al. 2019, 2021). To address these issues, many management and 

conservation activities focus on habitat protection and restoration (Miller and Hobbs 

2007). However, location matters for restoration to be effective, requiring scientists to 

first understand how species use habitat, which might be the most widely studied aspect 

of applied ecology (Elith and Leathwick 2009, Lewis et al. 2017, Valavi et al. 2022). 

To investigate habitat suitability, researchers are increasingly using habitat 

suitability models, sometimes interchangeably referred to as species distribution models 

(Guisan and Thuiller 2005, Araújo and Guisan 2006, Hirzel et al. 2006). Habitat 

suitability models are modeling procedures that associate observations of a species 

(presence-only or presence/absence) with environmental conditions (Guisan and 

Zimmerman 2000, Guisan et al. 2017). The theory, background, and application of 

habitat suitability models have been extensively studied, and researchers continue to 

develop new techniques to improve the efficacy of these important tools (Thuiller et al. 

2009, Elith and Leathwick 2009, Naimi and Araújo 2016, Hysen et al. 2022). Habitat 

suitability models have been used for a variety of topics including niche characterization 

and the prediction of a species’ response to different factors from climate change to 

https://esajournals.onlinelibrary.wiley.com/doi/full/10.1890/10-1325.1#i0012-9615-81-2-241-Elith2
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disease dynamics (Guisan and Thuiller 2005, He et al. 2019, Shabani et al. 2020). While 

habitat suitability models are powerful tools, inferences should be drawn cautiously due 

to potential spatial limitations of the models (Araújo et al. 2019).  

Across time and space, the characteristics (e.g., mean, variance) of a covariate 

will change as the location and scale of measurement changes, which is known as non-

stationarity (Turner et al. 2001, Osborne et al. 2007, Newman et al. 2019). This can pose 

a problem for habitat suitability models, whereby covariates that have been determined to 

predict a response at one scale or landscape might incorrectly predict the response when 

projected to a new environment or geographical area (Turner et al. 2001, Cushman et al. 

2011, Dobrowski et al. 2011, Shirk et al 2014). This can happen when the relationship 

between the predictor and response covariates changes both spatially and temporally 

(Dobrowski et al. 2011, Vergara et al. 2017, Kaszta et al. 2021). For example, the scale of 

effect, or the scale at which a covariate is most important, could change between two 

similar habitats in different places (Shirk et al. 2014, McGarigal et al. 2016, Wan et al. 

2017, Atzeni et al. 2020).  

Non-stationarity has been identified as one of the complex problems in landscape 

ecology, and recognizing it in a system can enhance inference and prediction for practical 

management actions (Elith and Leathwick 2009, Newman et al. 2019, Rollinson et al. 

2021). Non-stationarity can be addressed by taking a species’ local adaptations and 

ecology into account when studying their habitat. This makes it tenuous to generalize a 

habitat or behavior for a species and all of its subspecies, or even for all populations of a 

given species or subspecies (Elith and Leathwick 2009, Wan et al. 2017, Atzeni et al. 
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2020). Therefore, a species’ different habitat types and ecology in varied habitats should 

be carefully considered before building a habitat suitability model.  

Due to limited time and resources, researchers often create habitat suitability 

models over large spatial extents. However, it is important to test whether this approach 

is useful for species of conservation concern or if non-stationarity is occurring and 

limiting the inferences that can be made. I tested this issue with the Mexican spotted owl 

(Strix occidentalis lucida), a federally-threatened subspecies of spotted owl (Willey and 

Ward, 2004, Willey and Zambon, 2014). Studies have shown that there is non-stationarity 

occurring in Mexican spotted owl (hereafter MSO) forested habitats (Wan et al. 2017, 

Jones et al. 2022). Mexican spotted owls are unique among the spotted owl subspecies 

because they are residents across a gradient of habitat types, from dense forests to rocky 

canyonlands (Ganey et al. 2011, Bowden et al. 2015, Wan et al. 2017). Given the 

differences between the habitat types such as their proportion of forest cover, tree 

composition, and slope, it is unclear whether MSO in rocky canyonlands select habitats 

differently from MSO living in old-growth forests. This opacity makes it difficult for land 

managers to identify management strategies that would benefit MSO in all portions of 

their range.  

My goal was to uncover potential differences in factors underlying habitat 

suitability between MSO living in forest versus rocky canyonland habitat types. I 

hypothesized that non-stationarity in habitat use exists between the forests and rocky 

canyonlands inhabited by MSO, and therefore predicted that a habitat suitability model 

trained in forest environments would not be general enough to accommodate habitat 
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suitability in rocky canyonlands. To test my hypothesis, I created a multiscale habitat 

suitability model with covariates and scales specific for canyon-dwelling owls and 

compared it with a model that used coefficients from a multiscale model for forest-

dwelling owls developed by Wan et al. (2017). In addition, I sought to address how the 

MSO might respond to biotic and abiotic covariates, and explored at which scales those 

covariates were most important. 
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MATERIALS AND METHODS 

Study Site 

The study area is in southern Utah, spanning a total area of ~139,000 km2 (Figure 

1). It consists of deeply entrenched rocky canyons rimmed by steep cliffs overlooking 

rugged canyon bottoms, and often includes terraced slopes dominated by vegetation of 

desert scrub with scattered Pinyon-juniper (Pinus edulis - Juniperus osteosperma) 

woodland. Desert scrub vegetation is common at arid and exposed mesa tops and south-

facing slopes at lower elevations (Willey and van Riper III 2007). In addition, canyon 

bottoms may contain small patches of riparian habitat, including box elder (Acer 

negundo), bigtooth maple (Acer grandidentatum), various willow species (Salix spp.), 

Douglas-fir (Pseudotsuga menziesii) and ponderosa pine (Pinus ponderosa) (Willey and 

van Riper III 2007, 2015). Two relatively high elevation sites are dominated by aspen 

(Populus tremuloides) and mixed-coniferous forests and subalpine fir (Abies lasiocarpa), 

and Englemans spruce (Picea englemani) at the highest elevations (Hood and Miller 

2007). The peak elevation of the area is 3724 m above sea level. The climate of the area 

can range from warm to cold-temperate, with relatively cold winters and hot summers. 

Freezing cold temperatures commonly take place in winters, including snow at high 

elevations (Spence et al. 2011). Precipitation in the study area has a bimodal pattern with 

a peak in late summer to early fall, and rises with elevation from around 150 mm at the 

lowest elevations to about 250 mm at the highest elevations (Spence 2001).  
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Figure 1. The study area in southern Utah and nest and roost locations of Mexican spotted 

owls (1991-2021) prior to spatial filtering and separation into training and testing 

datasets (all presences before filtering, n = 362). 
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Data Collection and Preparation 

I had a dataset consisting of nest, roost, telemetry and night survey locations for 

MSO (n = 1085). I subset the nest and roost locations of MSO from the dataset (1991-

2021) from rocky canyonland habitats in southern Utah, removing duplicates (n = 362). 

The data include roost (n = 337), and nest site (n = 25) locations based on a telemetry 

study (Willey 1998, Willey and van Riper 2007), and an occupancy study (Hockenbary 

2011). For the telemetry data, I subsampled to account for independence, where at least 

24 hours between locations was needed to obtain independence. Roost and nest sites were 

obtained weekly, both during telemetry, and later during occupancy visits. In addition to 

the occurrence points, I created 100,000 background points using R statistical software (R 

Core Team 2022) and randomly placed them across the study area. To account for the 

impact of spatial autocorrelation on models, I subsampled the presence points based on 

the average home range size of the species through spatial rarefication. This involves 

filtering the data, to ensure a minimum distance between presence points, allowing me to 

assume independence of locations. After spatially filtering the training data, I retained 87 

nest and roost locations for developing the models. I used 70% of my presence location 

data for model training (n = 61) and the rest for model testing (n = 26). I subset the 

background points into three categories including 1x (same number of presences and 

background points), 10x (number of background points being 10 times the presences), 

and 10k (10,000 background points) following Hysen et al. (2022). Background locations 
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were generated within a 30 km buffer surrounding all nest and roost locations to reflect 

dispersal ability, and to prevent artificial inflation of test statistics due to overdispersion 

(e.g., Chiaverini et al. 2021). This was also based on my largest scale but not within 1.31 

km of nest locations to reflect average home range size of the species (USFWS 2012). 

Although some studies have identified larger home ranges for MSO in rocky canyonlands 

(e.g. Willey and van Riper III 2007, Bowden et al. 2015), I used the range-wide averaged 

home range for the subspecies (USFWS 2012).  

Based on published literature and species ecology, I selected biotic and abiotic 

covariates from three categories: climate, vegetation and topographic (Wan et al. 2017). 

A full list of considered environmental covariates is included in the Appendix. I obtained 

environmental covariates from the Landscape Fire and Resource Management Planning 

Tools Project (LANDFIRE, 2017), USA National Phenology Network (NPN; Crimmins 

et al. 2017), and Parameter-elevation Regressions on Independent Slopes Model (PRISM) 

climate group (Rupp et al. 2022). For the analyses, I first converted my covariates into 

raster layers and then projected them into the NAD 1983 / UTM 12N datum, which is 

geographically appropriate for my study area location. Then, if necessary, I resampled 

my layers to 30 m resolution. I used the software FRAGSTATS (McGarigal et al. 2002) 

to calculate two covariates using a moving window: forest edge density and proximity to 

forest index using the ponderosa pine forest covariates (following Wan et al. 2017). 
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Univariate Scaling  

To identify an optimal scale for each covariate, I ran focal statistics on each using 

a circular moving window of radius equal to each of the 50 scales from 100 m to 5000 m 

with a 100 m interval (after Wan et al. 2017). I then performed univariate scaling to select 

the optimal scale, using two-tailed t-tests to assess the difference between values 

extracted to nesting and roosting locations and background locations for each 

environmental covariate (after Wasserman et al. 2012). I then selected the scale that had 

the largest difference in the means (smallest p-value) as the best scale. 

To account for potential multicollinearity in my models, I compared covariates at 

their optimal scales using a pairwise Pearson’s correlation coefficient. I used a threshold 

of |r| > 0.7 to identify covariates that were highly correlated with each other. For each 

pair of highly correlated covariates, I relied on the literature to determine which covariate 

to remove from the analysis by selecting covariates with more known influence on 

species ecology or covariate that had little impact on the models (1-ρ <0.02). 

 

Multi-Scale Modeling  

I used the biomod2 package in R to train and test models (Thuiller et al. 2016). I 

used seven different modeling algorithms that are common in habitat suitability studies 

and available in the biomod2 package (Valavi et al. 2022): Generalized Additive Model, 

Generalized Linear Model, Multivariate Adaptive Regression Splines, Maximum 
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Entropy, Random Forest, Generalized Boosting Model and Artificial Neural Network 

(Thuiller et al. 2009, 2016). 

Species presence and background points were used as response covariates in all 

models for rocky canyonlands, and covariates in Appendix were used as explanatory 

covariates. Then I used an ensemble learning approach, which is a method to average 

single model predictions (Araújo and New 2007). I used the output of the ensemble 

model for interpreting MSO habitat use in rocky canyonlands. Covariate contributions for 

each model were calculated following Thuiller et al. (2009), and response curves were 

created and visually examined to understand the relationship of each covariate with MSO 

habitat suitability in rocky canyonlands (Fig. 2). The model was applied spatially to 

develop a habitat suitability map across the study area in rocky canyonlands, with values 

ranging from 0, depicting the lowest habitat suitability, to a value of 1, depicting the 

highest habitat suitability. I applied the forest model to the rocky canyonlands using the 

coefficients in Wan et al. (2017) to build a resource selection function in R. I then 

compared my rocky canyonland habitat model with the forest habitat model (Wan et al 

(2017) to identify any differences between the most important covariates and their 

optimal scales. At the end I averaged both models and tested performance metrics to see 

if averaging both models would improve the model fit.  

 

https://link.springer.com/article/10.1007/s10980-021-01386-5#ref-CR6
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Model Evaluation  

I calculated the Area Under the Curve (AUC) of the Receiver Operating Characteristic 

(ROC) plot (Fielding and Bell, 1997, Scherrer et al. 2019), which is one of the most 

widely used performance metrics in habitat suitability models, to evaluate the models 

(Scherrer et al. 2019) as well as True Skill Statistics (TSS; Allouche et al. 2006, Shabani 

et al. 2016). True Skill Statistics is a threshold-dependent metric, although the selection 

of a threshold is often done arbitrarily. Therefore, I chose a threshold that maximized the 

sum of the specificity and sensitivity metrics for my models (Liu et al. 2013, 2016). I also 

assessed Continuous Boyce Index for both forest and rocky canyonland models using 

enmSdmX package in R (Hirzel et al. 2006, Smith et al. 2023). This metric can be used 

for presence/background data and assesses the correlation between the proportion of sites 

and the expected proportion of predictions in each prediction class based on the 

proportion of the landscape in the class (Hirzel et al. 2006).  
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RESULTS 

I used the eight remaining environmental covariates at their optimal spatial scales 

for training the models (Table 1). The most important environmental covariates in the 

final ensemble rocky canyonland model were slope (800 m scale), cumulative degree 

days (1200 m scale), insolation (1000 m scale), and monsoon precipitation (100 m scale). 

Slope generally had a positive relationship with nesting/roosting suitability and 

contributed the most to model accuracy. Cumulative degree days had a unimodal 

response, with a predicted optimum of 1141 cumulated degree Celsius, while insolation 

showed a negative relationship with habitat suitability with very low habitat suitability at 

high insolation values (Table 1, Figure 2). Habitat suitability increased with increasing 

monsoon precipitation up to ~100 mm and then decreased. The resulting ensemble model 

performed well, with a TSS of 0.5 and an AUC value of 0.851. The rest of the covariates 

in both models had low importance (1-ρ <0.01). Response curves for all environmental 

covariates are provided in Figure 2. Based on the Continuous Boyce Index, the rocky 

canyonland model outperformed the forest model (Figure 3, 4). The predictive 

nesting/roosting habitat map produced by the rocky canyonland model shows that 

suitable habitats are patchily distributed within my study area and largely follow areas 

with steep slopes and low solar exposure (Figure 5A). This model also predicts areas of 

highly suitable habitat in central Utah and southwestern Utah with little suitable habitats 

in southeastern Utah (Figure 5A).  
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Table 1. Covariates included in the rocky canyonland model built in this study and the 

forest model that was built previously (Wan et al. 2017), and scales at which they 

performed best. *the covariate was excluded from the model due to correlation 

with another covariate whereas. ** the covariate was not examined in the model. 

  

Rocky 

Canyonland 

Scale (m) 

Rocky 

Canyonland 

Contribution 

Forest 

Scale (m) 

Forest 

Contribution 

Climatic 

Cumulative 

Degree Days 

1200 0.13 5000 Excluded* 

Climatic 

Monsoon 

Precipitation 

100 0.09 5000 Excluded* 

Vegetation 

Forest Edge 

Density 

5000 Excluded* 3700 0.04 

Vegetation 

Percent 

Canopy 

Cover 

1800 Excluded* 100 0.26 

Vegetation 

Percent 

Mixed 

Conifer 

200 <0.01 5000 0.22 

Vegetation 

Percent 

Ponderosa 

Pine 

200 Excluded* 3600 Excluded* 
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Rocky 

Canyonland 

Scale (m) 

Rocky 

Canyonland 

Contribution 

Forest 

Scale (m) 

Forest 

Contribution 

Vegetation 

Proximity to 

Forest 

1300 0.01 4000 0.05 

Topographic Curvature 800 0.01 Excluded** Excluded** 

Topographic Elevation 100 Excluded* 5000 Excluded* 

Topographic Insolation 1000 0.12 100 0.08 

Topographic Roughness 3000 Excluded* Excluded** Excluded** 

Topographic Slope 800 0.52 500 0.21 

Topographic 

Slope 

Position 

Index 

900 Excluded* Excluded** Excluded** 

Topographic 

Topographic 

Position 

Index 

900 <0.01 300 0.14 

Topographic 

Topographic 

Roughness 

Index 

900 Excluded* Excluded** Excluded** 

  



15 

 

  

 

Figure 2. Covariates derived from the ensemble model for rocky canyonland and their 

relationship with habitat suitability. 
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Figure 3. Continuous Boyce Index curves for the rocky canyonland model. 
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Figure 4. Continuous Boyce Index curves for the forest model.
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Figure 5. The habitat suitability maps produced by applying the rocky canyonland model 

(A), and applying the forest model (B), both developed using nest/roost data. 

Values closer to one indicate more highly suitable nesting/roosting habitat, while 

values closer to zero indicate less suitable nesting/roosting habitat. 
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The forest model performed poorly in the rocky canyonland environment and 

only had a TSS of 0.03. It also failed to identify any part of the study area as highly 

suitable habitat, and classified most of the study area as low suitability (Figure 5B). The 

forest model showed a fairly high AUC (0.848), suggesting a discrepancy between 

apparent model accuracy and the actual habitat suitability, which is a known bias of AUC 

(Smith 2013).
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DISCUSSION 

Non-stationarity can bias inferences made from spatial models and make it 

difficult to implement management actions effectively (Peterson et al. 2007, Cushman et 

al. 2011, Shirk et al. 2014, Yates et al. 2018). To help managers craft species- and region-

specific actions for at-risk species, non-stationarity should be addressed in species-habitat 

relationships (Kaszta et al. 2019). Given the high contrast between forest and rocky 

canyonland ecosystems of the U.S. Southwest, it is important to understand the spatially 

varying limiting factors that influence the species within its different habitats (e.g., 

Cushman et al. 2011, Short Bull et al. 2011; Shirk et al. 2014, Vergara et al. 2017). 

Mexican spotted owls exhibit different habitat use by selecting different covariates in 

forests and rocky canyonlands, thus necessitating distinct management strategies. This 

paper provides information for how to manage MSOs better in rocky canyonlands as it is 

the first study to explicitly model the multi-scale habitat suitability of MSO in rocky 

canyonlands. My results suggest that there is non-stationarity in the factors that drive 

habitat use of MSO in forests in Arizona and New Mexico (Wan et al. 2017) versus rocky 

canyonland habitats in southern Utah. 

Mexican spotted owls live in a gradient from rocky canyonlands to various forest 

habitats such as wet mixed-conifer and dry pine-oak forests across the subspecies’ range 

(USFWS, 2012, Ganey et al. 2011). However, in southern Utah, they are only found in 

rocky canyonlands, despite the presence of forests. For MSOs living in rocky 

canyonlands, my model identified slope, cumulative degree days, insolation, and 
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monsoon precipitation as the most important covariates related to habitat suitability. In 

the forest habitat, percent canopy cover, percent mixed-conifer, and slope were identified 

as the most important covariates respectively (Wan et al. 2017). The presence of slope in 

the top three most important covariates for each model suggests that this is an important 

environmental condition across the two systems. Slope has been identified as an 

important factor governing habitat suitability of MSO both in forests and rocky 

canyonlands (Willey and Zambon 2014, Willey and van Riper III 2015, Timm et al. 

2016, Wan et al. 2017). This might reflect the fact that steeper slopes offer a refugia for 

avoiding predators, provide topographical and edaphic conditions favorable to moderate 

microclimates, and the occurrence of preferred large tree vegetation conditions in forests. 

In rocky canyonlands, large steep vertical cliffs provide an abundance of caves and 

ledges for both nest and roost sites in the rocky canyonland region, where no nests have 

ever been detected in trees (Willey and van Riper III 2015). High exposure to intense 

solar radiation causes high temperatures that are not tolerated well by MSO and drive 

patterns of vegetation (e.g., small trees or non-tree habitat) that are not preferable to MSO 

occurrence. Insolation plays an important role in determining their habitat, particularly in 

arid rocky canyonland habitats. In treeless habitats in Utah, steep and complex cliffs 

apparently substitute for forest structure (Willey and Zambon 2014).  

No composition or forest-related covariate turned out to be significant for MSOs 

in rocky canyonlands, whereas proportions of canopy cover and mixed-conifer were 

significant predictors in forested habitats. This is consistent with other studies of MSO 

habitat use. For example, MSO in forest environments nest in large trees in areas of high 



22 

 

  

canopy cover and large extents of mixed-conifer forests (Ganey et al. 2016, Timm et al. 

2016, Wan et al. 2017). The same pattern of selecting for greater proportions of forest 

cover and canopy cover has been observed in two other subspecies of spotted owls 

(Carrol 2010, Wan et al. 2017).  

In contrast, MSO in rocky canyonlands select caves and ledge sites in rocky 

canyons with high geo-topographic complexity, where soaring cliffs provide complete 

overhead cover in areas characterized by low or no canopy cover provided by trees 

(Willey and van Riper, 2007, Jones et al. 2022). Furthermore, cumulative degree days 

had a unimodal relationship with MSO habitat suitability, and habitat suitability was 

maximized when cumulative degree days and monsoon precipitation were moderate and 

insolation was low. This unimodal relationship with cumulative degree days suggests that 

environments can be suboptimally cool and suboptimally rainy, even in rocky 

canyonlands. Rocky canyonlands, especially the south-facing slopes of them, can become 

hot and inhospitable for MSOs, but they offer ledges, crevices, and caves that provide 

contrasting temperatures. MSOs can use these microhabitats as refuges against the 

warming climate. However, if insolation is high, even when cumulative degree days are 

moderate, the habitat is also suboptimal for MSO. In Arizona and New Mexico, MSO in 

different subregions selected for lower cumulative degree days in general (Jones et al. 

2022). Mexican spotted owls probably avoid high temperatures especially in more xeric 

locations, which may be accomplished by selecting higher elevations or for complex 

topographic features (Jones et al. 2022). In dry rocky canyonlands, high temperatures, 

exacerbated by a warming climate, might lead to challenges for MSO, or their prey’s 
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water sources (Willey 2013, Ganey et al. 2020). Although currently, little evidence 

suggests that climate change is causing reductions in MSO population size (USFWS 

2012) with increasing temperature, cumulative degree days and monsoons precipitations, 

conditions might become more limiting to MSO habitat suitability.  

The overlap of factors governing MSO habitat suitability in rocky canyonlands 

and forests suggests that some universal predictors (e.g., availability of cool, shady 

microsites with suitable nest structures) limit MSO nesting site suitability in the two 

systems, but that the proximate habitat factors differ (e.g., shaded cliffs with caves and 

potholes versus forests with large trees and high canopy cover) (Willey and van Riper, 

2007, Willey and Zambon 2014, Ganey et al. 2011). In both systems, topography is 

highly important. Indeed, in the Timm et al. (2016) and Wan et al. (2017) forest system 

MSO models, topographical covariates overall had stronger predictive ability of MSO 

nest, and roost site selection than vegetation composition or structure (based on variance 

explained by variable sub-groups). This suggests that MSO habitat use in both forest and 

rocky canyonland systems is highly dependent on topographical features that provide 

shade to moderate microclimate, and edaphic conditions for preferred vegetation 

structure for both MSOs and key prey species (Willey 2013). It also suggests that 

vegetation covariates are not as important in rocky canyonlands as they are in the forests. 

However, a conclusion should be drawn with caution, as the canopy cover, a forest 

covariate, was dropped due to correlation with monsoon precipitation. Therefore, forest 

covariates cold be important still for rocky canyonlands, however the high variable 

importance of topographic covariates is still apparent, suggesting that topographical 
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covariates are highly important for habitat use in rocky canyonlands (USFWS 2012). For 

example, wildfire is probably less of a threat to MSO populations in rocky canyonlands 

compared to forests due to a lack of flammable material (Wan et al. 2019). 

Although habitat use is an inherently multi-scale hierarchical process, many 

habitat studies evaluate species-habitat relationships at a single scale (McGarigal et al. 

2016, Fletcher and Fortin, 2018, Scherrer et al. 2019). The MSO is a unique study species 

because there are multiple studies that have evaluated habitat suitability at multiple 

scales. However, previous studies have primarily focused on forest habitats (Timm et al. 

2016, Wan et al. 2017). Rocky canyonlands also provide important habitat for MSO in 

some regions (Lewis 2014, Willey and Zambon 2014, Willey and van Riper III 2015), 

and my study allowed me to compare the optimal scales for each covariate between my 

model and the previously developed forest model. In the rocky canyonlands model, slope 

had the greatest contribution to habitat use at coarser spatial scales (800 m), while it was 

more important at slightly finer spatial scales (500 m) in the forest model. In comparison, 

a previous study in forest habitat also found that slope had the greatest contribution to 

habitat use at fine (400 m) spatial scales (Timm et al. 2016). One reason for this 

difference could be that MSO selects the overall characteristics of a canyon, such as how 

steep the canyon walls are and how continuous the canyon reach is rather than simply the 

slope at a particular point within a canyon.  

Cumulative degree days, the second most important covariate in the rocky 

canyonland model, was most important at a moderately-coarse spatial scale (1200 m), 

while it was most important at a very coarse spatial scale (5000 m) in the forest model. 
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One reason for this pattern could be the presence of microclimates in rocky canyonlands 

that will vary more over finer spatial scales than climatic conditions in less 

topographically diverse areas. However, the scales could also be coarse due to the 

limitations with interpolated climate data, which often have low confidence at fine scales. 

Insolation was the third most important covariate in the rocky canyonland model 

at a moderately-coarse spatial scale (1000 m), while it was most important at a very fine 

spatial scale (100 m) in the forest model. This could suggest that owls in forests find 

topographic microsites that minimize insolation, versus larger canyon stretches to 

accomplish that in rocky canyonlands.  

In the forest model, percent canopy cover contributed most to the model at a 

relatively fine (200 m) spatial scale. While I ultimately did not include percent canopy 

cover in the rocky canyonland model due to high correlation with monsoon precipitation, 

its optimal scale was much coarser (1800 m). In rocky canyonlands, tree cover tends to 

be limited and intermittent along canyon bottoms than in forests, likely requiring MSO to 

consider canopy cover across broader areas, if they consider it at all, where instead it is 

likely that cliffs provide overhead cover for MSO. Finally, the percentage of ponderosa 

pine forest was included in the forest model at a coarse optimal spatial scale (3600 m), 

while it was included in the rocky canyonlands model at a very fine optimal spatial scale 

(200 m). The reason might be due to the sparsely distributed patches of forests in rocky 

canyonlands, whereas the proportion of ponderosa pine forests appears to be more 

abundant and visible from coarser scales in forests. It has also been found that small, 
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isolated stands of large old trees were remarkably important roost sites, and likely 

promote prey species (Willey and Willey 2010). 

My rocky canyonland model, although built with a low number of presence points 

(n = 61), performed well and outperformed the forest model. The forest model performed 

poorly as suggested by low TSS and Continuous Boyce Index, and more importantly, by 

the fact that none of the study area was predicted as suitable habitat on the map. 

Continuous Boyce Index is a better index for presence-only data as unlike most measures 

that assess if models are good at predicting presences and absences, it evaluates the 

model ability to forecast multiple levels of suitability (Hirzel et al. 2006). My results also 

suggest that AUC can be a biased performance metric because the forest model shows a 

high AUC value. This was probably due to AUC being threshold-independent, which can 

lead to discrepancies between apparent model accuracy and the actual suitability (Smith 

2013). TSS is threshold-dependent and showed poor prediction of forest model, meaning 

that the forest model failed to discern non-habitat from habitat and identified almost no 

suitable habitat. My Continuous Boyce index results also showed that the rocky 

canyonland model’s output had a higher positive correlation with the true probability of 

presences and performed better.  

Taking all of these metrics into account, it is clear that the canyonland-specific 

model performed better in the rocky canyonland habitat than the forest model, despite 

being based on a much smaller sample of owl locations (Forest model, n = 2070, Wan et 

al. 2017; Rocky canyonlands model, n = 61). My finding that the local model 

outperformed the non-local model is consistent with the results of previous studies 
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(Torres et al. 2015, Wan et al. 2017, 2019). These studies have shown that models tend to 

perform poorly when projected outside of the geographic range for which they were 

originally fitted (Charney et al. 2021). Specifically, Wan et al. (2019) found that non-

local models performed worse in areas that were outside of the range of the trained data 

for MSOs in two different geographical regions. Another study also revealed the 

decreased transferability of non-local models for grey petrel (Procellaria cinerea) in 

different islands (Torres et al. 2015). Similarly, Péron et al. (2017) demonstrated limited 

model transferability and non-stationarity between habitats for Scopoli's shearwater 

(Calonectris diomedea), in two contrasted regions of the Northwestern Mediterranean 

Sea. These previous findings combined with my results serve as a cautionary tale for 

researchers considering using habitat suitability models across areas with diverse 

environmental conditions.  

In line with my expectation, high levels of non-stationarity were observed both in 

environmental covariates and scales concerning MSO habitat selection between the two 

regions. Such non-stationarity offers insight into model transferability. High levels of 

non-stationarity are not uncommon for other species in other systems (e.g., Short Bull et 

al. 2011, Cushman et al. 2011, Vergara et al. 2016, 2017, Atzeni et al. 2020, Kaszta et al. 

2021). For example, Short Bull et al. (2021) with a case study of American black bear 

(Ursus americanus) showed that inability to explore multiple study areas with variable 

landscape features might lead to erroneous interpretation of models. Another study also 

showed that covariates explaining stone marten (Martes foina) distribution differed 

among areas and generalizing one model to multiple areas is misleading (Vergara et al. 
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2017). Non-stationarity can exist among similar habitat types, too. For example, it was 

reported that MSO in northern Arizona selects habitat differently from those in New 

Mexico despite both dwelling in forests (Wan et al. 2017). I suspect that the same case 

might be true for MSO habitats that are collectively labeled as rocky canyonland. For 

example, the topography, climate, and vegetation of my southern Utah study area is quite 

different from the conditions in Grand Canyon, but both areas are typically classified as 

rocky canyonland habitat for the MSO. Therefore, I speculate that my model will not 

perform well for predicting MSO habitat in the Grand Canyon, and I call for future 

research to confirm my speculation. 

  



29 

 

  

CONCLUSIONS 

My study is particularly important for the conservation of MSO that inhabit rocky 

canyonlands, a unique habitat that contrasts with more explored forests (Willey and van 

Riper III 2007, USFWS 2012). My study demonstrates that using a forest model to infer 

MSO habitat use in rocky canyonland is inappropriate. Given that most MSO studies are 

conducted in forest habitat with only a handful conducted in rocky canyonland, we call 

for more MSO research efforts in the rocky canyonland. Furthermore, my model provides 

spatially-explicit information for managers to make informed decisions, such as to 

prioritize areas for monitoring and management. My study of the MSO in two different 

habitat types highlights the potential problems that can arise from neglecting non-

stationarity. Understanding local habitat peculiarities and limiting factors is crucial for 

accurately predicting region-specific habitat models. My findings confirm that model 

transferability cannot be taken for granted and requires careful assessment. Failing to do 

so may lead to misinformed conservation decisions resulting from the casual use of 

habitat models with poor transferability (Péron et al. 2017). From a broader perspective, 

this study underscores the importance of considering non-stationarity in habitat modeling 

and the potential problem of over-extrapolating model results for any species (Osborne et 

al. 2007, Wan et al. 2017). Model transferability is a critical concept in ecological 

modeling, as it enables researchers to expand their models and improve their predictive 

power (Randin et al. 2006, Yates et al. 2018). Transferring models to novel conditions 

can provide predictions in situations with limited data, leading to better-informed 
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management decisions (Péron et al. 2017, Yates et al. 2018). However, ignoring non-

stationarity, an important driver of model transferability, can introduce biases and impair 

prediction accuracy (Yates et al. 2018). When possible, I recommend habitat models be 

made with local data to achieve the most reliable information for conservation and 

management. 
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APPENDIX 

Appendix. Environmental covariates included in the study for Mexican spotted owl 

nesting and roosting habitat suitability modeling, with the class of each covariate and the 

source of data.  

 

Number Covariate Description Class Source 

1 

Cumulative 

Degree-

Days* 

Cumulative 

temperature 

(Celsius) 

Climatic NPN 

2 

Monsoon 

Season 

Precipitation 

Average 

precipitation 

from June to 

September (mm) 

Climatic PRISM 

3 Edge Density 

Ratio of sum of 

edge lengths to 

minimum total 

length of edge of 

a constant 

reference area 

Composition LANDFIRE 

4 Proximity 

Spatial context 

of a habitat 

Composition LANDFIRE 
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Number Covariate Description Class Source 

patch in relation 

to its neighbors 

5 Canopy 

Percent canopy 

cover 

Composition LANDFIRE  

6 

Mixed 

Ponderosa 

Pine 

Proportion of 

mixed 

ponderosa pines 

Composition LANDFIRE 

7 

Slope 

Position 

Index 

Steepness at 

each cell of a 

raster surface 

Topographic LANDFIRE 

8 Insolation 

Amount of solar 

radiation 

reaching a given 

area (Wh/m2) 

Topographic LANDFIRE 

9 Roughness 

Degree of 

irregularity of 

the surface 

Topographic LANDFIRE 

10 Slope Slope (degrees) Topographic LANDFIRE 

11 

TPI 

(Topographic 

A measure of 

the relative 

Topographic LANDFIRE 
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Number Covariate Description Class Source 

position 

index) 

elevation of a 

point on a 

topographic 

surface 

compared to its 

surrounding 

area. 

12 

TRI 

(Topographic 

roughness 

index) 

 A measure of 

the complexity 

of a topographic 

surface, such as 

a landscape 

Topographic LANDFIRE 

13 Curvature 

A measurement 

for 

understanding to 

what extent the 

landscape is 

curved 

Topographic LANDFIRE 

 

*We divided values of the accumulated degree days by 1.8 to convert it from fahrenheit 

to celsius. 

 


