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SOME RESULTS ON A GRAPH ASSOCIATED WITH A
NON-QUASI-LOCAL ATOMIC DOMAIN

S. VISWESWARAN - P. T. LALCHANDANI

Let R be an atomic domain which admits at least two maximal ideals.
Let Irr(R) denote the set of all irreducible elements of R and let A(R) =
{Rπ | π ∈ Irr(R)}. Let I(R) denote the subset of A(R) consisting of
all Rπ ∈ A(R) such that π does not belong to the Jacobson radical of R.
With R, we associate an undirected graph denoted by G(R) whose vertex
set is I(R) and distinct vertices Rπ1 and Rπ2 are adjacent if and only if
Rπ1 ∩Rπ2 = Rπ1π2. The aim of this article is to discuss some results on
the connectedness of G(R) and on the girth of G(R).

1. Introduction

The rings considered in this article are commutative with identity. The graphs
considered in this article are undirected and simple. For a graph G, we denote
the vertex set of G by V (G) and the edge set of G by E(G). Let R be a ring.
This article is motivated by the interesting results that are found in [11], in which
Sharma and Bhatwadekar associated and investigated an undirected graph de-
noted by G(R) such that V (G(R))=R and distinct vertices x and y are adjacent if
and only if Rx+Ry = R. Several inspiring results on the coloring of G(R) were
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proved in [11]. Maimani et al. investigated the graph properties of several sub-
graphs of G(R) in [7]. The graph G(R) is called the comaximal graph of R and it
is denoted by Γ(R) in [7]. We denote the set of all units of R by U(R) and the set
of all non-units of R by NU(R). The set of all maximal ideals of R is denoted by
Max(R) and the set of all prime ideals of R is denoted by Spec(R). We denote
the Jacobson radical of R by J(R). The cardinality of a set A is denoted by |A|.
Many properties of the subgraphs Γ1(R), Γ2(R), and Γ2(R)\J(R) of Γ(R) were
discussed in [7], where Γ1(R) is induced by U(R), Γ2(R) is induced by NU(R),
and with the assumption |Max(R)| ≥ 2, Γ2(R)\J(R) is induced by NU(R)\J(R).
The interplay between the graph-theoretic properties of the comaximal graph of
R and the algebraic properties of R can be found in the literature (see for exam-
ple, [4, 8, 10]).

Let R be an integral domain. We denote the set of all irreducible elements
of R by Irr(R). We recall that R is said to be atomic if any non-zero non-unit of
R can be expressed as the product of a finite number of irreducible elements of
R. It is well-known that any integral domain that satisfies the ascending chain
condition on principal ideals is an atomic domain [6, Proposition 1.1.1, page
156]. Hence, any Noetherian domain is atomic. If a set A is a subset of a set B
and A ̸= B, then we denote it by A ⊂ B (or by B ⊃ A). For any atomic domain
T , we denote {T π | π ∈ Irr(T )} by A(T ).

Let R be an atomic domain with |Max(R)| ≥ 2. Let A(R) = {Rπ | π ∈
Irr(R)}. Let I(R) denote the subset of A(R) consisting of all Rπ ∈ A(R) such
that π /∈ J(R). With R, in this article, we introduce an undirected graph denoted
by G(R) such that V (G(R)) = I(R) and distinct vertices Rπ and Rπ ′ are adja-
cent if and only if Rπ ∩Rπ ′ = Rππ ′. The aim of this article is to discuss some
results on the connectedness of G(R) and on the girth of G(R).

Let G be a graph. A subgraph H of G is said to be a spanning subgraph
of G if V (H) = V (G). Let T be a ring. We recall that the ideals I,J of T
are said to be coprime (or comaximal) if I + J = T [1, page 7]. Let n ≥ 2.
If the ideals I1, I2, . . . , In of T are such that Ii, I j are comaximal for all distinct

i, j ∈ {1,2, . . . ,n}, then
n
∏
i=1

Ii =
n⋂

i=1
Ii [1, Proposition 1.10(i)]. Thus if a,b ∈ T

are such that Ta+T b = T , then Ta∩T b = Tab. For an atomic domain R with
|Max(R)| ≥ 2, in this article, we also consider another undirected graph denoted
by CGI(R) such that V (CGI(R)) = I(R) and distinct vertices Rπ and Rπ ′ are
adjacent if and only if Rπ +Rπ ′ = R. It is clear that CGI(R) is a spanning
subgraph of G(R). We use some graph properties of CGI(R) in our study on
the properties of G(R).

A ring R is said to be quasi-local (respectively, semi-quasi-local) if
|Max(R)| = 1 (respectively, |Max(R)| < ∞). A Noetherian quasi-local (respec-
tively, semi-quasi-local) ring is referred to as a local (respectively, semi-local)
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ring. The Krull dimension of R is simply denoted by dimR. For definitions and
terminologies from commutative ring theory that are not defined in this article,
the reader can refer any of the standard text books in commutative ring theory
(for example, [1, 5, 9]).

It is useful to recall the following definitions from graph theory before we
give an account of the results that are proved in this article. Let G = (V,E)
be a graph. Let a,b ∈ V with a ̸= b. Suppose that there exists a path in G
between a and b. Recall that the distance between a and b, denoted by d(a,b)
is defined as the length of a shortest path in G between a and b. We define
d(a,b) = ∞ if there exists no path in G between a and b. We define d(a,a) = 0
[2, Definition 1.5.5]. A graph G = (V,E) is said to be connected if for any
distinct a,b ∈ V , there exists a path in G between a and b [2, Definition 1.5.4].
For a connected graph G = (V,E), the diameter of G denoted by diam(G) is
defined as diam(G) = sup{d(a,b) | a,b∈V} [2, Definition 4.3.1(1)]. Let a∈V .
The eccentricity of a, denoted by e(a) is defined as e(a) = sup{d(a,b) | b ∈V}
[2, Definition 4.3.1(2)]. The radius of G, denoted by r(G) is defined as r(G) =
min{e(a) | a ∈V} [2, Definition 4.3.1(3)]. A simple graph G = (V,E) is said to
be complete if every pair of distinct vertices of G are adjacent in G [2, Definition
1.2.11].

A graph G = (V,E) is said to be bipartite if V can be partitioned into two
non-empty subsets V1 and V2 such that each edge of G has one end in V1 and
the other in V2. A bipartite graph with vertex partition V1 and V2 is said to be
complete if each element of V1 is adjacent to every element of V2. A complete
bipartite graph with vertex partition V1 and V2 is called a star if either |V1| = 1
or |V2| = 1 [2, Definition 1.2.12]. Suppose that a graph G = (V,E) contains a
cycle. Recall that the girth of G, denoted by gr(G) is defined as the length of a
shortest cycle in G. If G does not contain any cycle, then we set gr(G) = ∞.

Let R be an atomic domain with |Max(R)| ≥ 2. This article consists of
three sections including the introduction. In Section 2 of this article, we discuss
some results on the connectedness of G(R). It is proved in Proposition 2.3 that
CGI(R) is connected and diam(CGI(R))≤ 3 and it is deduced in Corollary 2.4
that G(R) is connected and diam(G(R))≤ 3. If π is a prime element of R (R can
possibly be quasi-local), then it is verified in Lemma 2.5 that Rπ ∩Rπ ′ = Rππ ′

for all Rπ ′ ∈ A(R) such that Rπ ̸= Rπ ′. As a consequence of Lemma 2.5, it
is proved in Corollary 2.6 that if R is a unique factorization domain (UFD)
with |Max(R)| ≥ 2, then G(R) is complete. We do not know whether G(R) is
complete implies that R is a unique factorization domain.

For an atomic domain R (R can possibly be quasi-local), in Remark 2.7, as
suggested by the referee, we consider an undirected graph denoted by A(R) such
that V (A(R)) =A(R) = {Rπ | π ∈ Irr(R)} and distinct vertices Rπ and Rπ ′ are
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adjacent if and only if Rπ ∩Rπ ′ = Rππ ′. It is noted in Remark 2.7 that if R is
a UFD, then A(R) is complete. If π ∈ Irr(R) is such that Rπ ∩Rπ ′ = Rππ ′ for
all π ′ ∈ Irr(R) with Rπ ̸= Rπ ′, then it is proved in Proposition 2.10 that π is a
prime element of R. As a corollary to Proposition 2.10 and Remark 2.7, it is
shown in Corollary 2.11 that A(R) is complete if and only if R is a UFD. Note
that for an atomic domain R with |Max(R)| ≥ 2, A(R) is a supergraph of G(R).
If J(R) = (0), then it is deduced in Corollary 2.12 that if G(R) is complete, then
R is a UFD.

Let R be an atomic domain with |Max(R)| ≥ 2. If J(R) ∈ Spec(R), then it
is proved in Corollary 2.13 that diam(G(R)) ≤ 2 . Let Rπ ∈ I(R). It is shown
in Lemma 2.14 that e(Rπ) = 1 in G(R) if and only if π is a prime element of
R. It is deduced in Corollary 2.15 that diam(G(R)) = 2 if there exist Rπ,Rπ ′ ∈
I(R) such that π is a prime element of R and π ′ is not a prime element of R.
In Example 2.17(1), we provide an atomic domain R with |Max(R)| ≥ 2 such
that diam(G(R)) = 2 and r(G(R)) = 1 and in Example 2.17(2), we provide an
atomic domain R with |Max(R)| ≥ 2 such that diam(G(R)) = r(G(R)) = 2. It
is proved in Proposition 2.18 that diam(CGI(R)) = 3 if and only if there exist
distinct Rπ1,Rπ2 ∈ I(R) such that Rπ1 +Rπ2 ⊆ m for some m ∈ Max(R) and
π1π2 ∈ J(R). In Example 2.19, we provide a UFD R with |Max(R)| = 3 such
that diam(CGI(R)) = 3. It is proved in Proposition 2.21 that diam(G(R)) = 3 if
there exist distinct Rπ1,Rπ2 ∈ I(R) such that Rπ1 +Rπ2 ⊆ p for some maximal
t-deal p of R and π1π2 belongs to every maximal t-ideal of R. We are not able
to provide an example to illustrate Proposition 2.21.

Let R be an atomic domain with |Max(R)| ≥ 2. In Section 3 of this arti-
cle, we discuss some results on the girth of G(R) and some related results. If
|Max(R)| ≥ 3, then it is proved in Proposition 3.1 that gr(CGI(R)) = 3 and it is
deduced in Corollary 3.2 that gr(G(R)) = 3. If |Max(R)| = 2, then it is shown
in Lemma 3.4 that CGI(R) is a complete bipartite graph. For an atomic do-
main R with |Max(R)| ≥ 2, necessary and sufficient conditions are determined
in Proposition 3.5 (respectively, in Proposition 3.7) in order that G(R) to be a
complete bipartite graph (respectively, a star graph). If G(R) contains a cycle
with gr(G(R)) ̸= 3, then it is proved in Proposition 3.8 that gr(G(R)) = 4 and
moreover, in such a case, it is shown that CGI(R) =G(R) is a complete bipar-
tite graph but not a star graph. It is deduced in Corollary 3.9 that gr(G(R)) = ∞

if and only if |Max(R)| = 2 and at least one maximal ideal of R is principal.
If gr(G(R)) = ∞, then it is deduced in Corollary 3.9 that G(R) is a star graph.
Some examples are given to illustrate the results proved in this section (see Ex-
amples 3.11 and 3.12).
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2. Some results on the connectedness of G(R)

Let R be an atomic domain with |Max(R)| ≥ 2. The aim of this section is to
discuss some results on the connectedness of G(R). It is already noted in Section
1 that CGI(R) is a spanning subgraph of G(R). In Proposition 2.3, we show
that CGI(R) is connected and diam(CGI(R))≤ 3. We deduce in Corollary 2.4
that G(R) is connected and diam(G(R)) ≤ 3. We use Lemma 2.1 often in our
discussion. We use Lemma 2.2 in the proof of Proposition 2.3.

Lemma 2.1. Let R be an atomic domain with |Max(R)| ≥ 2 and let p∈ Spec(R)
be such that p ̸⊆ J(R). Then there exists Rπ ∈ I(R) such that π ∈ p.

Proof. Assume that p ∈ Spec(R) is such that p ̸⊆ J(R). Let a ∈ p\J(R). Since
R is atomic, a can be expressed as the product of finite number of irreducible
elements of R. By the choice of a, it follows that no irreducible factor of a
belongs to J(R) and at least one irreducible factor π of a such that π ∈ p. It is
clear that Rπ ∈ I(R) and π ∈ p.

Let R be an atomic domain with |Max(R)| ≥ 2. Let m ∈ Max(R). Then
m ∈ Spec(R) and m ̸⊆ J(R). Hence, it follows from Lemma 2.1 that there exists
Rπ ∈ I(R) such that π ∈m. Given Rπ ∈ I(R), we claim that there exists Rπ ′ ∈
I(R) such that Rπ and Rπ ′ are adjacent in CGI(R). Let m ∈ Max(R) be such
that π ∈m. Note that π /∈m′ for some m′ ∈ Max(R). Hence, Rπ +m′ = R. So,
there exist r ∈ R and a′ ∈m′ such that rπ +a′ = 1. It is clear that a′ /∈m. Since
R is atomic, it follows that there exists Rπ ′ ∈ I(R) such that π ′ is a factor of a′

in R and π ′ ∈ m′. It is now evident that Rπ +Rπ ′ = R. Hence, Rπ and Rπ ′ are
adjacent in CGI(R) and so, they are adjacent in G(R).

Lemma 2.2. Let R be an atomic domain with |Max(R)| ≥ 2 and let Rπ1,Rπ2 ∈
I(R) be distinct. If π1π2 /∈ J(R), then there exists a path of length at most two
between Rπ1 and Rπ2 in CGI(R).

Proof. Assume that Rπ1,Rπ2 ∈ I(R) are such that Rπ1 ̸= Rπ2 and π1π2 /∈ J(R).
We can assume that Rπ1 and Rπ2 are not adjacent in CGI(R). Note that there
exists m ∈ Max(R) such that π1π2 /∈ m and so, Rπ1π2 +m = R. Hence, there
exist r ∈ R and a ∈ m such that rπ1π2 + a = 1. It is clear that a ∈ m\J(R). It
follows that there exists Rπ3 ∈ I(R) such that π3 is a factor of a in R and π3 ∈
m. Observe that Rπ1π2 +Ra = R = Rπi +Rπ3 for each i ∈ {1,2}. Therefore,
Rπ1 −Rπ3 −Rπ2 is a path of length two between Rπ1 and Rπ2 in CGI(R).

The proof of Proposition 2.3 is motivated by the proof of [7, Theorem 3.1].

Proposition 2.3. Let R be an atomic domain with |Max(R)| ≥ 2. Then CGI(R)
is connected and diam(CGI(R))≤ 3.
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Proof. Let Rπ1,Rπ2 ∈ I(R) be such that Rπ1 ̸= Rπ2. We can assume that Rπ1
and Rπ2 are not adjacent in CGI(R). If π1π2 /∈ J(R), then there exists a path
of length two between Rπ1 and Rπ2 in CGI(R) by Lemma 2.2. Assume that
π1π2 ∈ J(R). Note that for each i ∈ {1,2}, there exists mi ∈ Max(R) such that
πi /∈ mi. From π1π2 ∈ J(R), it follows that π1 ∈ m2 and π2 ∈ m1. Observe that
Rπ1 +m1 = R and so, there exist r ∈ R and a1 ∈ m1 such that rπ1 + a1 = 1.
It is clear that a1 /∈ m2. Since R is atomic, there exists a factor π3 of a1 in R
such that Rπ3 ∈ I(R) and π3 ∈m1. It is clear that Rπ1 +Rπ3 = R and π3 /∈m2.
Therefore, π3π2 /∈ m2. Hence, it follows from Lemma 2.2 that there exists a
path P of length at most two between Rπ3 and Rπ2 in CGI(R). As Rπ1 and Rπ3
are adjacent in CGI(R), it follows that the union of the edge Rπ1 −Rπ3 and the
path P gives a path of length at most three between Rπ1 and Rπ2 in CGI(R).

This proves that CGI(R) is connected and diam(CGI(R))≤ 3.

Corollary 2.4. Let R be an atomic domain with |Max(R)| ≥ 2. Then G(R) is
connected and diam(G(R))≤ 3.

Proof. As CGI(R) is a spanning subgraph of G(R), it follows from Proposition
2.3 that G(R) is connected and diam(G(R))≤ 3.

Let R be an atomic domain with |Max(R)| ≥ 2. We next try to characterize R
such that diam(G(R)) is equal to 1,2 or 3. If R is a unique factorization domain
(UFD), then we verify in Corollary 2.6 that G(R) is complete. We use Lemma
2.5 in the proof of Corollary 2.6. Recall that a non-zero non-unit π of an integral
domain T is called a prime element if T π ∈ Spec(T ).

Lemma 2.5. Let R be an atomic domain (R can possibly be quasi-local). If π

is a prime element of R, then Rπ ∩Rπ ′ = Rππ ′ for all π ′ ∈ Irr(R) such that
Rπ ̸= Rπ ′.

Proof. Assume that π is a prime element of R. Let π ′ ∈ Irr(R) be such that
Rπ ̸=Rπ ′. It is clear that Rππ ′ ⊆Rπ∩Rπ ′. Let x∈Rπ∩Rπ ′. Then x= rπ = sπ ′

for some r,s ∈ R. Since π is a prime element of R and π,π ′ are non-associates
in R, it follows that π divides s in R. Hence, s = πs1 for some s1 ∈ R and so,
x = ππ ′s1. This proves that Rπ ∩Rπ ′ ⊆ Rππ ′ and so, Rπ ∩Rπ ′ = Rππ ′.

Corollary 2.6. Let R be a UFD with |Max(R)| ≥ 2. Then G(R) is complete.

Proof. Assume that R is a UFD with |Max(R)| ≥ 2. Let Rπ,Rπ ′ ∈ I(R) be such
that Rπ ̸= Rπ ′. As any irreducible element of a UFD is a prime element by [6,
Proposition 1.2.1, page 158], it follows from Lemma 2.5 that Rπ and Rπ ′ are
adjacent in G(R) and so, G(R) is complete.
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Let R be an atomic domain with |Max(R)| ≥ 2. We do not know the status
of the converse of Corollary 2.6. If J(R) = (0) and G(R) is complete, then we
prove in Corollary 2.12 that R is a UFD. The following Remark 2.7 is due to the
referee.

Remark 2.7. Let R be an atomic domain (R can possibly be quasi-local). Let
A(R) = {Rπ | π ∈ Irr(R)}. With A(R), we can associate an undirected graph
denoted by A(R) such that V (A(R)) = A(R) and distinct vertices Rπ and Rπ ′

are adjacent in A(R) if and only if Rπ ∩Rπ ′ = Rππ ′. Let R be a UFD. As any
π ∈ Irr(R) is a prime element of R, we obtain from Lemma 2.5 that A(R) is
complete. We regard graph with a single vertex to be complete. We mention an
example of a principal ideal domain (PID) R such that |A(R)|= 1. If R=K[[X ]],
the power series ring in one variable X over a field K, then R is a local PID and
A(R) = {RX}. If R is an atomic domain with |A(R)|= 1, then we verify in the
proof of Corollary 2.11 that R is a local PID. Let R be an atomic domain (R can
possibly be quasi-local). We prove in Corollary 2.11 that A(R) is complete if
and only if R is a UFD.

Let R be an atomic domain (R can possibly be quasi-local). We prove in
Proposition 2.10 that the converse of Lemma 2.5 is true. We use Lemma 2.8
in the proof of Proposition 2.10. We are very much grateful to the referee for
pointing out Proposition 2.10 and its proof.

First, it is useful to recall the following definition from [3] before we men-
tion the result from [12] relevant to this article. Let D be an integral domain with
quotient field K. Let A be a D-submodule of K. A is said to be a fractional ideal
of D if there exists d ∈ D\{0} such that dA ⊆ D [3, page 24]. Let us denote the
set of all non-zero fractional ideals of D by F(D). We recall that a mapping F →
F∗ of F(D) into F(D) is called a ∗-operation on D if the following conditions
(1)− (3) hold for each non-zero a ∈ K and all A,B ∈ F(D): (1) (Da)∗ = Da;
(aA)∗ = aA∗, (2) A ⊆ A∗; if A ⊆ B, then A∗ ⊆ B∗, and (3) (A∗)∗ = A∗ [3, page
392]. For any A ∈ F(D), recall that (D :K A) = {α ∈ K | αA ⊆ D} is denoted by
A−1 [3, page 416]. It is not hard to verify that A−1 ∈ F(D). For any A ∈ F(D),
(A−1)−1 is denoted by Av. For any F ∈ F(D), let us denote {α ∈ K | Dα ⊇ F}
by A. It is known that Fv =

⋂
α∈A Dα [3, Theorem 34.1(1)]. The mapping

F → Fv from F(D) into F(D) is called the v-operation on D [3, page 416]. It is
known that the v-operation on D is a ∗-operation [3, Theorem 34.1(2)]. We re-
call that two non-zero elements x,y ∈ D are called v-coprime if (Dx+Dy)v = D
(i.e. Dx∩Dy = Dxy or equivalently (Dx+Dy)−1 = D) [12, Definition 2.1].

Lemma 2.8. Let R be an integral domain. Let a,b1, . . . ,bk ∈ R\{0} be such that
Ra∩Rbi = Rabi for each i ∈ {1, . . . ,k}. Then Ra∩R(∏k

i=1 bi) = R(a∏
k
i=1 bi).
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Proof. For a proof of this lemma, one can refer the remark mentioned in [12,
Definition 2.1] and [12, Proposition 2.2(2)].

We include Remark 2.9 which we need in the proof of Lemma 2.14.

Remark 2.9. Let R be an integral domain. Let a,b ∈ R\{0}. As (Ra+Rb)v =
(Ra+R(a+ b))v, it follows from the remark mentioned in [12, Definition 2.1]
that Ra∩Rb = Rab if and only if Ra∩R(a+b) = R(a(a+b)).

Proposition 2.10. Let R be an atomic domain (R can possibly be quasi-local).
Let π ∈ Irr(R) be such that Rπ ∩Rπ ′ = Rππ ′ for all π ′ ∈ Irr(R) with Rπ ̸= Rπ ′.
Then π is a prime element of R.

Proof. Assume that π ∈ Irr(R) is such that Rπ ∩Rπ ′ = Rππ ′ for all π ′ ∈ Irr(R)
such that Rπ ̸= Rπ ′. Let a,b ∈ R be such that π divides ab in R. We verify that
either π divides a in R or π divides b in R. We can assume that both a and b are
non-zero non-units of R.

Now, ab = πr for some r ∈ R. Suppose that π does not divide a in R.
Since R is an atomic domain, there exist atoms π1, . . . ,πk of R such that a =

∏
k
i=1 πi. Hence, (∏k

i=1 πi)b = πr. Let i ∈ {1, . . . ,k}. As π does not divide a
in R by assumption, we obtain that Rπ ̸= Rπi. Hence, Rπ ∩Rπi = Rππi. So,
Rπ ∩Ra = Rπ ∩R(∏k

i=1 πi) = Rπa by Lemma 2.8. Now, from ab = πr, we get
that ab ∈ Rπ ∩Ra = Rπa and so, ab = πas for some s ∈ R. Therefore, b = πs.
This shows that π divides b in R. Hence, π is a prime element of R.

Corollary 2.11. Let R be an atomic domain (R can possibly be quasi-local).
Then A(R) is complete if and only if R is a UFD.

Proof. By hypothesis, R is an atomic domain. Assume that A(R) is complete.
Suppose that |A(R)|= 1. Let A(R) = {Rπ}. Hence, if π ′ is any irreducible

element of R, then Rπ =Rπ ′ and so, π and π ′ are associates in R. If a is any non-
zero non-unit of R, then a ∈ Rπ , since R is an atomic domain. Therefore, Rπ =
NU(R) and so, Max(R)= {Rπ}. Since any non-zero prime ideal of R contains at
least one irreducible element, it follows that Spec(R)\{(0)}= Max(R) = {Rπ}.
It follows from [5, Exercise 10, page 8] that R is a PID and so, R is a local PID.

Suppose that |A(R)| ≥ 2. Let π ∈ R be irreducible. Let Rπ ′ ∈ A(R) be
such that Rπ ̸= Rπ ′. Since A(R) is complete by assumption, Rπ ∩Rπ ′ = Rππ ′.
Hence, π is a prime element of R by Proposition 2.10. This shows that any
π ∈ Irr(R) is a prime element of R. Since any non-zero non-unit of R can
be expressed as the product of a finite number of irreducible elements of R, it
follows that R is a UFD by [6, Proposition 1.2.1, page 158].

Conversely, assume that R is a UFD. It is already noted in Remark 2.7 that
A(R) is complete.
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Let R be an atomic domain with J(R) = (0). Then Max(R) is necessarily
infinite. If G(R) is complete, then with the help of Corollary 2.11, we deduce in
Corollary 2.12 that R is a UFD.

Corollary 2.12. Let R be an atomic domain with J(R) = (0). If G(R) is com-
plete, then R is a UFD.

Proof. By hypothesis, R is an atomic domain with J(R) = (0). Then it is clear
that A(R) = I(R) and G(R) = A(R).

Assume that G(R) is complete. Then A(R) is complete and so, we obtain
from Corollary 2.11 that R is a UFD.

Let R be an atomic domain with |Max(R)| ≥ 2. If J(R) ∈ Spec(R), then we
prove in Corollary 2.13 that diam(G(R)) ≤ 2. We use Lemma 2.2 in the proof
of Corollary 2.13.

Corollary 2.13. Let R be an atomic domain with |Max(R)| ≥ 2. If J(R) ∈
Spec(R), then diam(G(R))≤ 2. In particular if J(R) = (0), then diam(G(R))≤
2.

Proof. Assume that J(R) ∈ Spec(R). Let Rπ1,Rπ2 ∈ I(R) with Rπ1 ̸= Rπ2.
Since πi /∈ J(R) for each i ∈ {1,2}, it follows that π1π2 /∈ J(R). Hence, there
exists a path of length at most two between Rπ1 and Rπ2 in CGI(R) by Lemma
2.2 and so, diam(CGI(R))≤ 2. Therefore, diam(G(R))≤ 2, since CGI(R) is a
spanning subgraph of G(R).

If J(R) = (0), then it is clear that J(R) ∈ Spec(R) and hence, we obtain that
diam(G(R))≤ 2.

Let R be an atomic domain with |Max(R)| ≥ 2. We next try to character-
ize R such that diam(G(R)) = 2. It is clear that diam(G(R)) ≥ 2 if and only
if there exist distinct Rπ,Rπ ′ ∈ I(R) such that Rπ and Rπ ′ are not adjacent
in G(R). That is, Rπ ∩ Rπ ′ ̸= Rππ ′. Hence, by Lemma 2.5, it follows that
diam(G(R)) ≥ 2 if and only if there exist at least two distinct Rπ,Rπ ′ ∈ I(R)
such that π and π ′ are not prime elements of R. In Corollary 2.15, we provide a
sufficient condition on the behaviour of I(R) such that diam(G(R)) = 2. We use
Proposition 2.10 and Lemma 2.14 in the proof of Corollary 2.15. It is already
noted in the paragraph which appears just preceding the statement of Lemma
2.2 that |I(R)| ≥ 2.

Lemma 2.14. Let R be an atomic domain with |Max(R)| ≥ 2. Let Rπ ∈ I(R).
Then the following statements are equivalent:
(1) e(Rπ) = 1 in G(R).
(2) π is a prime element of R.
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Proof. (1)⇒ (2) Assume that e(Rπ) = 1 in G(R). We claim that Rπ ∩Rπ ′ =
Rππ ′ for all Rπ ′ ∈ A(R) such that Rπ ̸= Rπ ′. This is clear if Rπ ′ ∈ I(R), since
e(Rπ) = 1 in G(R). Suppose that π ′ ∈ Irr(R) be such that π ′ ∈ J(R). Note that
π +π ′ ∈ NU(R)\J(R). Since R is an atomic domain, it follows that there exist
k ∈ N and π1, . . . ,πk ∈ Irr(R) such that π + π ′ = ∏

k
i=1 πi. Let i ∈ {1, . . . ,k}.

Note that πi /∈ J(R) and Rπ ̸= Rπi. Hence, Rπ ∩Rπi = Rππi. Hence, we obtain
from Lemma 2.8 that Rπ ∩ R(π + π ′) = Rπ ∩ R(∏k

i=1 πi) = R(π(∏k
i=1 πi)) =

Rπ(π +π ′). Hence, we obtain from Remark 2.9 that Rπ ∩Rπ ′ = Rππ ′. Thus
Rπ ∩Rπ ′ = Rππ ′ for all Rπ ′ ∈ I(R) such that Rπ ̸= Rπ ′. Therefore, we obtain
from Proposition 2.10 that π is a prime element of R.
(2)⇒ (1) Assume that π is a prime element of R. Then Rπ and Rπ ′ are adjacent
in G(R) for all Rπ ′ ∈ I(R)\{Rπ} by Lemma 2.5. Hence, e(Rπ) = 1 in G(R).

Corollary 2.15. Let R be an atomic domain with |Max(R)| ≥ 2. If there are
elements Rπ,Rπ ′ ∈ I(R) such that π is a prime element of R and π ′ is not a
prime element of R, then diam(G(R)) = 2.

Proof. Assume that there are Rπ,Rπ ′ ∈I(R) such that π is a prime element of R
and π ′ is not a prime element of R. Note that e(Rπ) = 1 in G(R) by (2)⇒ (1) of
Lemma 2.14 and so, r(G(R)) = 1. Therefore, diam(G(R))≤ 2. Since π ′ is not
a prime element of R, it follows from (1)⇒ (2) of Lemma 2.14 that e(Rπ ′)≥ 2
in G(R) and so, diam(G(R))≥ 2. Therefore, diam(G(R)) = 2.

In Example 2.17(1), we provide an atomic domain R such that diam(G(R))
= 2 and r(G(R)) = 1 and in Example 2.17(2), we provide an atomic domain
R such that diam(G(R)) = 2 = r(G(R)). We use Lemma 2.16 in the proof of
Example 2.17(1) and (2).

Lemma 2.16. Let T = K[X ] be the polynomial ring in one variable X over a
field K and let R be the subring of T given by R = K[X2,X3]. Then R is a
Noetherian domain with dimR = 1 and diam(G(R)) = 2.

Proof. Since R is a subring of an integral domain T , it follows that R is an
integral domain. Note that R is Noetherian by [1, Corollary 7.7]. It is clear that
T = K[X ] = R+RX is a finitely generated R-module. Therefore, T is integral
over R. As dimT = 1, dimR = 1 by [3, 11.8]. Since J(T ) = (0), it follows from
the lying-over theorem that J(R) = (0) and so, diam(G(R)) ≤ 2 by Corollary
2.13. Since X /∈ R, T is a UFD (indeed, a principal ideal domain), and U(T ) =
U(R), it follows that X2 is an irreducible element of R. Similarly, it follows that
X3 is an irreducible element of R. It is clear that X2 and X3 are not associates
in R. Therefore, RX2,RX3 ∈ I(R) with RX2 ̸= RX3. Note that X6 ∈ RX2 ∩RX3
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but X6 /∈ RX5. Therefore, RX2 ∩RX3 ̸= RX5 and so, d(RX2,RX3)≥ 2 in G(R).
This proves that diam(G(R))≥ 2. Hence, diam(G(R)) = 2.

Example 2.17. (1) Let R be as in Lemma 2.16 with K =R. Then diam(G(R))=
2 and r(G(R)) = 1.
(2) Let R be as in Lemma 2.16 with K = C. Then diam(G(R)) = 2 = r(G(R)).

Proof. (1) Note that diam(G(R)) = 2 by Lemma 2.16. Observe that X2 + 1 is
irreducible over R and so, m = (X2 + 1)R[X ] ∈ Max(R[X ]). It is not hard to
verify that m∩R = (X2 + 1)R. Thus (X2 + 1)R ∈ Spec(R) (indeed, it belongs
to Max(R), since dimR = 1). Therefore, X2 + 1 is a prime element of R. It is
noted in the proof of Lemma 2.16 that J(R) = (0). Hence, R(X2 +1) ∈ I(R) is
such that X2 +1 is a prime element of R. Therefore, e(R(X2 +1)) = 1 in G(R)
by (2)⇒ (1) of Lemma 2.14 and so, r(G(R)) = 1.
(2) Observe that diam(G(R)) = 2 by Lemma 2.16. We claim that no maximal
ideal of R is principal. Let m ∈ Max(R). Then there exists p ∈ Spec(C[X ])
such that p∩R = m by [1, Theorem 5.10]. As dimC[X ] = 1, p ∈ Max(C[X ]).
Since C is algebraically closed, it follows that p = (X −α)C[X ] for some α ∈
C. If α = 0, then m = X2C[X ]. Since X2,X3 are non-associate irreducible
elements belonging to m, it follows that m is not principal. Suppose that α ̸=
0. Then as X −α /∈ R, C[X ] is a UFD, and U(R) = U(C[X ]), it follows that
(X −α)X2,(X −α)X3 are irreducible elements of R and it is clear that they
are non-associates in R. Since (X −α)X2,(X −α)X3 ∈ m, we get that m is
not principal. This shows that no maximal ideal of R is principal. As any prime
element of R generates a prime ideal of R and dimR = 1, we obtain that R has no
prime element. Therefore, by (1)⇒ (2) of Lemma 2.14, we get that e(Rπ)≥ 2
in G(R) for each Rπ ∈ I(R) and so, r(G(R)) ≥ 2. Since diam(G(R)) = 2, it
follows that diam(G(R)) = 2 = r(G(R)).

Let R be an atomic domain with |Max(R)| ≥ 2. It is shown in Corollary 2.4
that G(R) is connected and diam(G(R))≤ 3. We next try to characterize R such
that diam(G(R)) = 3. In Proposition 2.21, we are able to provide a sufficient
condition on the behaviour of I(R) such that diam(G(R)) = 3. Since CGI(R)
is a spanning subgraph of G(R), it follows that diam(CGI(R)) ≥ 3 and hence
by Proposition 2.3, we get that diam(CGI(R)) = 3. This happens if and only
if there exist distinct Rπ1,Rπ2 ∈ I(R) such that d(Rπ1,Rπ2) = 3 in CGI(R). In
Proposition 2.18, we determine necessary and sufficient conditions in order that
diam(CGI(R)) to be equal to 3.

Proposition 2.18. Let R be an atomic domain with |Max(R)| ≥ 2. Then
diam(CGI(R)) = 3 if and only if there exist distinct Rπ1,Rπ2 ∈ I(R) such that
Rπ1 +Rπ2 ⊆m for some m ∈ Max(R) and π1π2 ∈ J(R).
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Proof. Assume that diam(CGI(R)) = 3. Hence, there exist distinct Rπ1,Rπ2 ∈
I(R) such that d(Rπ1,Rπ2) = 3 in CGI(R). Therefore, Rπ1 and Rπ2 are not
adjacent in CGI(R). Hence, Rπ1 +Rπ2 ̸= R and so, there exists m ∈ Max(R)
such that Rπ1 +Rπ2 ⊆m by [1, Corollary 1.4]. It follows from Lemma 2.2 that
π1π2 ∈ J(R).

Conversely, assume that there exist distinct Rπ1,Rπ2 ∈I(R) such that Rπ1+
Rπ2 ⊆ m for some m ∈ Max(R) and π1π2 ∈ J(R). It is clear that Rπ1 and Rπ2
are not adjacent in CGI(R). We claim that there exists no path of length two
between Rπ1 and Rπ2 in CGI(R). Let Rπ3 ∈ I(R) with Rπ3 ̸= Rπ1 be such that
Rπ1 and Rπ3 are adjacent in CGI(R). Hence, Rπ1 +Rπ3 = R. This implies that
Rπ1π2 +Rπ3π2 = Rπ2. Let m′ ∈ Max(R) be such that π3 ∈ m′. As π1π2,π3 ∈
m′, we get that π2 ∈ m′. Therefore, Rπ3 +Rπ2 ̸= R and so, Rπ3 and Rπ2 are
not adjacent in CGI(R). This shows that there exists no path of length two
between Rπ1 and Rπ2 in CGI(R) and so, d(Rπ1,Rπ2) ≥ 3 in CGI(R). Hence,
diam(CGI(R)) = 3 by Proposition 2.3.

In Example 2.19, we provide a UFD R with |Max(R)|= 3 to illustrate Propo-
sition 2.18.

Example 2.19. Let T = Z[X ] be the polynomial ring in one variable X over
Z. Let m1 = T 2 + T X ,m2 = T 2 + T (X − 1), and m3 = T 3 + T X . Let S =
T\(

⋃3
i=1mi) and let R = S−1T . Then R is a UFD, |Max(R)|= 3, diam(CGI(R))

= 3, and diam(G(R)) = 1.

Proof. It is clear that mi ∈ Max(T ) for all i ∈ {1,2,3} and mi ̸= m j for all
distinct i, j ∈ {1,2,3}. Observe that T\(

⋃3
i=1mi) is a multiplicatively closed

subset (m.c. subset) of T . Since T is UFD, it follows from [5, Theorem 5] and
[1, Proposition 3.11(iv)] that R= S−1T is a UFD. It follows from [1, Proposition
3.11(iv)] and [1, Proposition 1.11(i)] that Max(R) = {S−1mi | i ∈ {1,2,3}}. It
is clear that 2,X are prime elements of R, they are non-associate in R, they do
not belong to J(R). and 2X ∈ J(R). Note that R2,RX ∈ I(R). Observe that
R2+RX = S−1m1 and 2X ∈ J(R). Hence, we obtain from Proposition 2.18
that diam(CGI(R)) = 3. Since R is a UFD, it follows from Corollary 2.6 that
diam(G(R)) = 1.

For an atomic domain R with |Max(R)| ≥ 2, in Proposition 2.21, we provide
a sufficient condition on the behaviour of I(R) such that diam(G(R)) = 3. First,
it is useful to recall the following definitions and results from multiplicative
ideal theory.

Let ∗ be a star operation on an integral domain D with quotient field K.
Recall that with ∗, we can associate ∗ f defined by A∗ f =

⋃
F∈B F∗, where B =

{F | F is a non-zero finitely generated D-submodule of A} [12, page 387]. It is
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not hard to verify that ∗ f is a star operation on D. The well-known t-operation
on D is given by t = v f . A star operation ∗ on D is said to be of finite type if
A∗ = A∗ f for each A ∈ F(D). Observe that for any star operation ∗ on D, ∗ f is of
finite type. If ∗ is a star operation on D, then A ∈ F(D) is said to be a ∗-ideal if
A = A∗. The ideals of D are referred to as integral ideals. If ∗ is a finite type star
operation on D, then a proper integral ideal of D that is maximal with respect to
being a ∗-ideal is called a maximal ∗-ideal and is necessarily a prime ideal of D.
Moreover, every proper ∗-ideal is contained in at least one maximal ∗-ideal. As
the t-operation on D is a star operation of finite type, it follows that any proper
t-ideal of D is contained in at least one maximal t-ideal [12, pages 387-388].
We denote the set of all maximal t- ideals of D by t −Max(D).

Let R be an atomic domain with |Max(R)| ≥ 2. Let Rπ1,Rπ2 ∈ I(R) be dis-
tinct. As suggested by the referee, we include Proposition 2.20 which describes
when Rπ1 and Rπ2 are adjacent in G(R), in terms of the v-operation on R.

Proposition 2.20. Let R be an atomic domain with |Max(R)| ≥ 2. Let Rπ1,Rπ2
∈ I(R) be distinct. Then Rπ1 and Rπ2 are adjacent in G(R) if and only if
(Rπ1 +Rπ2)v = R.

Proof. We include a proof of this proposition for the sake of completeness. Note
that for any non-zero ideal A of R, A−1 = (Av)

−1 and so, A−1 = R if and only if
Av = R. Let Rπ1,Rπ2 ∈ I(R) be distinct. Let us denote the ideal Rπ1 +Rπ2 by
I. Note that I−1 = 1

π1π2
(Rπ1 ∩Rπ2). Observe that Rπ1 and Rπ2 are adjacent in

G(R) if and only if Rπ1∩Rπ2 = Rπ1π2 if and only if 1
π1π2

(Rπ1∩Rπ2) = R if and
only if I−1 = R if and only if Iv = R. This shows that Rπ1 and Rπ2 are adjacent
in G(R) if and only if (Rπ1 +Rπ2)v = R.

Proposition 2.21. Let R be an atomic domain with |Max(R)| ≥ 2. If there exist
distinct Rπ1,Rπ2 ∈ I(R) such that Rπ1+Rπ2 ⊆ p for some maximal t-ideal p of
R and π1π2 belongs to every maximal t-ideal of R, then diam(G(R)) = 3.

Proof. Assume that there exist distinct Rπ1,Rπ2 ∈ I(R) such that Rπ1 +Rπ2 ⊆
p, where p is a maximal t-ideal of R and π1π2 belongs to every maximal t-
ideal of R. Observe that (Rπ1 +Rπ2)v = (Rπ1 +Rπ2)t ⊆ pt = p. Therefore,
(Rπ1 +Rπ2)v ̸= R and so, it follows from Proposition 2.20 that Rπ1 and Rπ2
are not adjacent in G(R). We claim that there exists no path of length two
between Rπ1 and Rπ2 in G(R). Suppose that there exists a path of length two
between Rπ1 and Rπ2 in G(R). Let Rπ ∈ I(R) be such that Rπ1 −Rπ −Rπ2
is a path of length two between Rπ1 and Rπ2 in G(R). Hence, we obtain that
(Rπ1 +Rπ)v = R = (Rπ2 +Rπ)v. Note that (Rπ)v = (Rπ)t = Rπ and so, there
exists a maximal t-ideal q of R such that Rπ ⊆ q. By assumption, π1π2 ∈ q
and as any maximal t-ideal of R is a prime ideal of R, we obtain that πi ∈ q
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for some i ∈ {1,2}. In such a case, (Rπi +Rπ)v = (Rπi +Rπ)t ⊆ qt = q. This
is impossible, since (Rπi +Rπ)v = R. This proves that there exists no path of
length two between Rπ1 and Rπ2 in G(R). Hence, d(Rπ1,Rπ2)≥ 3 in G(R) and
as diam(G(R))≤ 3 by Corollary 2.4, we obtain that diam(G(R)) = 3.

We are not able to provide an atomic domain R such that diam(G(R)) = 3
and we are not able to decide whether the sufficient condition mentioned in
Proposition 2.21 is also necessary.

3. Some results on the girth of G(R)

Let R be an atomic domain with |Max(R)| ≥ 2. The aim of this section is to dis-
cuss some results on the girth of G(R) and some related results. If |Max(R)| ≥ 3,
then we prove in Proposition 3.1 that gr(CGI(R)) = 3 and deduce in Corollary
3.2 that gr(G(R)) = 3.

Proposition 3.1. Let R be an atomic domain. If |Max(R)| ≥ 3, then gr(CGI(R))
= 3.

Proof. Assume that R is an atomic domain with |Max(R)| ≥ 3. It is already
noted in the paragraph which appears just preceding the statement of Lemma 2.2
that there exist Rπ1,Rπ2 ∈ I(R) such that Rπ1 +Rπ2 = R. Let mi ∈ Max(R) be
such that πi ∈mi for each i ∈ {1,2}. It is clear that m1 ̸=m2. Since |Max(R)| ≥
3, there exists m3 ∈ Max(R) such that m3 ̸=mi for each i ∈ {1,2}. If π1π2 /∈m3,
then Rπ1π2 +m3 = R. It can be shown as in the proof of Lemma 2.2 that there
exists Rπ3 ∈ I(R) such that π3 ∈ m3 and Rπ1π2 + Rπ3 = R. It is then clear
that Rπ1 −Rπ2 −Rπ3 −Rπ1 is a cycle of length three in CGI(R). Suppose that
π1π2 ∈ m3. As Rπ1 +Rπ2 = R, it follows that exactly one between π1 and π2
can belong to m3. Without loss of generality, we can assume that π1 ∈m3. Then
m1π2 ̸⊆ m3 and so, m1π2 +m3 = R. There exist a1 ∈ m1,a3 ∈ m3 such that
Ra1π2 +Ra3 = R. It is clear that a1,a3 /∈ J(R). Since R is atomic, there exist
Rπ ′

1 ∈ I(R) and Rπ3 ∈ I(R), π ′
1 ∈ m1, π3 ∈ m3 such that π ′

1 is a divisor of a1
and π3 is a divisor of a3 in R. It is now clear that Rπ ′

1 +Rπ3 = R = Rπ2 +Rπ3.
Observe that π2π3 /∈ m1. Hence, Rπ2π3 +m1 = R and so, there exists Rπ ′′

1 ∈
I(R) such that π ′′ ∈m1 and Rπ2π3+Rπ ′′

1 =R. Note that Rπ ′′
1 −Rπ2−Rπ3−Rπ ′′

1
is a cycle of length three in CGI(R).

This proves that gr(CGI(R)) = 3.

Corollary 3.2. Let R be an atomic domain with |Max(R)| ≥ 3. Then gr(G(R))=
3.
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Proof. Assume that R is an atomic domain with |Max(R)| ≥ 3. Since
gr(CGI(R)) = 3 by Proposition 3.1 and CGI(R) is a spanning subgraph of
G(R), it follows that gr(G(R)) = 3.

Let R be an atomic domain with |Max(R)| ≥ 2 and suppose that gr(G(R)) ̸=
3. It then follows from Corollary 3.2 that |Max(R)| = 2. With the assumption
that |Max(R)|= 2, we next try to determine gr(G(R)). If G(R) contains a cycle
and gr(G(R)) ̸= 3, then we prove in Proposition 3.8 that gr(G(R)) = 4 and in
this case, we verify that CGI(R) =G(R) is a complete bipartite graph but not a
star graph.

Let R be an atomic domain with |Max(R)| ≥ 2. In Proposition 3.5, we de-
termine necessary and sufficient conditions in order that G(R) to be a complete
bipartite graph. We use Lemmas 3.3 and 3.4 in the proof of Proposition 3.5.

Lemma 3.3. Let G = (V,E) be a graph and let H be a spanning subgraph of G
such that H is a complete bipartite graph. If G is bipartite, then H = G.

Proof. Assume that G is a bipartite graph with vertex partition V = V1 ∪V2
and its spanning subgraph H is a complete bipartite graph with vertex partition
V = W1 ∪W2. Let x ∈ V1. It follows from V = W1 ∪W2 and W1 ∩W2 = /0 that
x is in exactly one between W1 and W2. Without loss of generality, we can
assume that x ∈ W1. Let x′ ∈ V1 be such that x′ ̸= x. Now, x and x′ are not
adjacent in G and so, they are not adjacent in H. As any element of W1 is
adjacent to every element of W2 in H, it follows that x′ ∈ W1. This shows that
V1 ⊆ W1. Let y ∈ W2 ⊂ V = V1 ∪V2. As V1 ⊆ W1 and W1 ∩W2 = /0, it follows
that y ∈ V2. This shows that W2 ⊆ V2. Let a ∈ W1. Fix an element b ∈ W2.
Since a and b are adjacent in H, we obtain that a and b are adjacent in G. As
b ∈ V2, we get that a ∈ V1. This proves that W1 ⊆ V1 and so, it follows that
V1 = W1. Let y ∈ V2 ⊂ V = W1 ∪W2 and from V1 = W1, we obtain that y ∈ W2.
Therefore, V2 ⊆ W2 and so, V2 = W2. Since H is a subgraph of G, it is clear
that E(H) ⊆ E(G). Let x− y be an edge of G. We can assume without loss
of generality that x ∈ V1 = W1 and y ∈ V2 = W2. As H is a complete bipartite
graph with vertex partition V = W1 ∪W2, it follows that x− y is an edge of H.
This shows that E(G)⊆ E(H) and so, E(G) = E(H). Therefore, we obtain that
H = G.

Lemma 3.4. Let R be an atomic domain with |Max(R)|= 2. Let Max(R)= {mi |
i ∈ {1,2}}. Then CGI(R) is a complete bipartite graph with vertex partition
I(R) =V1 ∪V2, where V1 = {Rπ ∈ I(R) | π ∈m1\m2} and V2 = {Rπ ′ ∈ I(R) |
π ′ ∈m2\m1}.

Proof. Assume that Max(R) = {mi | i ∈ {1,2}}. It is clear that V (CGI(R)) =
I(R) =V1 ∪V2, where V1 = {Rπ ∈ I(R) | π ∈m1\m2} and V2 = {Rπ ′ ∈ I(R) |
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π ′ ∈ m2\m1}. Note that no two vertices of Vi are adjacent in CGI(R) for each
i ∈ {1,2}. If Rπ ∈ V1 and Rπ ′ ∈ V2, then Rπ +Rπ ′ = R and so, Rπ and Rπ ′

are adjacent in CGI(R). Therefore, CGI(R) is a complete bipartite graph with
vertex partition I(R) = V1 ∪V2, where V1 = {Rπ ∈ I(R) | π ∈ m1\m2} and
V2 = {Rπ ′ ∈ I(R) | π ′ ∈m2\m1}.

Proposition 3.5. Let R be an atomic domain with |Max(R)| ≥ 2. The following
statements are equivalent:
(1) G(R) is a complete bipartite graph.
(2) G(R) is a bipartite graph.
(3) |Max(R)|= 2 and G(R) is a bipartite graph.
(4) CGI(R) =G(R) is a complete bipartite graph with vertex partition I(R) =
V1∪V2, where Max(R) = {mi | i ∈ {1,2}}, V1 = {Rπ ∈ I(R) | π ∈m1\m2}, and
V2 = {Rπ ′ ∈ I(R) | π ′ ∈m2\m1}.

Proof. (1) ⇒ (2) Assume that G(R) is a complete bipartite graph. It is then
clear that G(R) is a bipartite graph.
(2) ⇒ (3) Assume that G(R) is a bipartite graph. As a bipartite graph does
not contain any cycle of odd length by [2, Theorem 1.5.10], it follows from
Corollary 3.2 that |Max(R)|= 2.
(3)⇒ (4) Assume that G(R) is a bipartite graph and |Max(R)|= 2. Let Max(R)
= {mi | i ∈ {1,2}}. We know from Lemma 3.4 that CGI(R) is a complete
bipartite graph with vertex partition I(R) = V1 ∪V2, where V1 = {Rπ ∈ I(R) |
π ∈m1\m2} and V2 = {Rπ ′ ∈ I(R) | π ′ ∈m2\m1}. Since CGI(R) is a spanning
subgraph of G(R), it follows from Lemma 3.3 that CGI(R) =G(R). Therefore,
CGI(R) =G(R) is a complete bipartite graph with vertex partition I(R) =V1 ∪
V2, where V1 = {Rπ ∈ I(R) | π ∈m1\m2} and V2 = {Rπ ′ ∈ I(R) | π ′ ∈m2\m1}.
(4)⇒ (1) This is clear.

Let R be an atomic domain with |Max(R)| ≥ 2. In Proposition 3.7, we deter-
mine necessary and sufficient conditions in order that G(R) to be a star graph.
We use Lemma 3.6 in the proof of Proposition 3.7.

Lemma 3.6. Let R be an atomic domain with |Max(R)| = 2. Let Max(R) =
{mi | i ∈ {1,2}}. Let V1,V2 be as in the statement of Lemma 3.4. If |Vi|= 1 for
some i ∈ {1,2}, then mi is principal.

Proof. Assume that Max(R) = {mi | i ∈ {1,2}}. Let V1 = {Rπ ∈ I(R) | π ∈
m1\m2} and V2 = {Rπ ′ ∈ I(R) | π ′ ∈ m2\m1}. Note that I(R) = V1 ∪V2 and
V1∩V2 = /0. Suppose that |V1|= 1. Let V1 = {Rπ}. Note that Rπ ⊆m1. We claim
that m1 = Rπ . Let a ∈ m1\m2. Since R is an atomic domain, there exist k ∈ N
and π1, . . . ,πk ∈ Irr(R) such that a = ∏

k
i=1 πi. From the choice of a, it is clear

that π j /∈ m2 for each j ∈ {1, . . . ,k} and πi ∈ m1 for at least one i ∈ {1, . . . ,k}.
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Hence, Rπi ∈ I(R) is such that πi ∈ m1\m2. Hence, Rπi ∈ V1 = {Rπ} and so,
Rπi = Rπ . Therefore, a ∈ Rπ . This shows that m1 ⊆m2 ∪Rπ . Hence, m1 ⊆ Rπ

and so, m1 = Rπ is principal. Similarly, if |V2|= 1, then it can be shown that m2
is principal.

Proposition 3.7. Let R be an atomic domain with |Max(R)| ≥ 2. The following
statements are equivalent:
(1) G(R) is a star graph.
(2) G(R) is a bipartite graph, |Max(R)|= 2, and at least one maximal ideal of
R is principal.
(3) CGI(R) =G(R) is a star graph.

Proof. (1)⇒ (2) Assume that G(R) is a star graph. Then it is clear that G(R) is
a complete bipartite graph and so, we obtain from (1)⇒ (4) of Proposition 3.5
that CGI(R) =G(R) is a complete bipartite graph with vertex partition I(R) =
V1∪V2, where Max(R) = {mi | i ∈ {1,2}}, V1 = {Rπ ∈ I(R) | π ∈m1\m2}, and
V2 = {Rπ ′ ∈ I(R) | π ′ ∈ m2\m1}. Since G(R) is a star graph by assumption, it
follows that |Vi| = 1 for at least one i ∈ {1,2}. Without loss of generality, we
can assume that |V1|= 1. Then, we obtain from Lemma 3.6 that m1 is principal.
(2)⇒ (3) Assume that G(R) is a bipartite graph, |Max(R)|= 2, and at least one
maximal ideal of R is principal. Let Max(R) = {mi | i ∈ {1,2}}. Without loss of
generality, we can assume that m1 is principal. It is already noted in the proof of
(3)⇒ (4) of Proposition 3.5 that CGI(R) =G(R) is a complete bipartite graph
with vertex partition I(R) =

⋃2
i=1Vi, where V1 = {Rπ ∈ I(R) | π ∈ m1\m2}

and V2 = {Rπ ′ ∈ I(R) | π ′ ∈ m2\m1}. Let Rπ1 ∈ I(R) be such that m1 = Rπ1.
If Rπ ∈ V1, then π = rπ1 for some r ∈ R. It is clear that r ∈ U(R). Hence,
Rπ = Rπ1 and so, V1 = {Rπ1}. Therefore, CGI(R) =G(R) is a star graph.
(3)⇒ (1) This is clear.

Proposition 3.8. Let R be an atomic domain with |Max(R)|= 2 such that G(R)
contains a cycle. If gr(G(R)) ̸= 3, then gr(G(R)) = 4. Moreover, CGI(R) =
G(R) is a complete bipartite graph but not a star graph.

Proof. Let Max(R) = {m1,m2}. We know from Lemma 3.4 that CGI(R) is a
complete bipartite graph with vertex partition I(R) = V (CGI(R)) = V1 ∪V2,
where V1 = {Rπ ∈ I(R) | π ∈ m1\m2} and V2 = {Rπ ′ ∈ I(R) | π ′ ∈ m2\m1}.
Since CGI(R) is a spanning subgraph of G(R), it follows that each element
of V1 is adjacent to every element of V2 in G(R). We claim that |Vi| ≥ 2 for
each i ∈ {1,2}. By hypothesis, G(R) contains a cycle. Hence, |Vi| ≥ 2 for at
least one i ∈ {1,2}. Without loss of generality, we can assume that |V2| ≥ 2.
Suppose that |V1| = 1. If no two elements of V2 are adjacent in G(R), then we
get that G(R) does not contain any cycle. This contradicts the assumption G(R)
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contains a cycle. Therefore, there exist Rπ ′
1,Rπ ′

2 ∈ V2 such that Rπ ′
1 and Rπ ′

2
are adjacent in G(R). Let V1 = {Rπ}. Observe that Rπ −Rπ ′

1 −Rπ ′
2 −Rπ is

a cycle of length 3 in G(R) and this contradicts the assumption gr(G(R)) ̸= 3.
Therefore, we obtain that |Vi| ≥ 2 for each i ∈ {1,2}. Let {Rπ1,Rπ2} ⊆V1 and
let {Rξ1,Rξ2} ⊆ V2. Observe that Rπ1 −Rξ1 −Rπ2 −Rξ2 −Rπ1 is a cycle of
length 4 in CGI(R) and hence, it is a cycle of length 4 in G(R). Therefore, we
get that gr(G(R)) = 4.

As gr(G(R)) ̸= 3, it follows that no two members of Vi are adjacent in G(R)
for each i∈ {1,2} and so, we obtain that CGI(R) =G(R) is a complete bipartite
graph but not a star graph.

The proof of Corollary 3.9 follows immediately from the results proved so
far in this section. Yet for the sake of completeness, we include a proof of
Corollary 3.9.

Corollary 3.9. Let R be an atomic domain with |Max(R)| ≥ 2. Then gr(G(R))∈
{3,4,∞}. And gr(G(R)) = ∞ if and only if |Max(R)|= 2 with at least one of the
maximal ideals of R is principal and in the case gr(G(R)) = ∞, G(R) is a star
graph.

Proof. Suppose that |Max(R)| ≥ 3. Then we obtain from Corollary 3.2 that
gr(G(R)) = 3. Suppose that |Max(R)|= 2. Assume that G(R) contains a cycle
and gr(G(R)) ̸= 3. Then it follows from Proposition 3.8 that gr(G(R)) = 4 and
moreover, in this case, CGI(R) = G(R) is a complete bipartite graph but not a
star graph. Assume that G(R) does not contain any cycle. Then gr(G(R)) = ∞

and by [2, Theorem 1.5.10], we get that G(R) is a bipartite graph and hence,
CGI(R) =G(R) is a complete bipartite graph by (3)⇒ (4) of Proposition 3.5.
As G(R) does not contain any cycle by assumption, it follows that CGI(R) =
G(R) is a star graph. It follows from (3)⇒ (2) of Proposition 3.7 that at least
one maximal ideal of R is principal.

We provide Examples 3.11 and 3.12 to illustrate the results proved in this
section. We use Lemma 3.10 in the verification of Example 3.11(3) and Ex-
ample 3.12. We are thankful to the referee for the following version of Lemma
3.10 and its proof.

Lemma 3.10. Let R be an atomic domain with |Max(R)| ≥ 2 and Max(R) =
t −Max(R). Then CGI(R) =G(R). In particular, if dimR = 1, then CGI(R) =
G(R).

Proof. Assume that R is an atomic domain, |Max(R)| ≥ 2, and Max(R) = t −
Max(R). For any atomic domain T with |Max(T )| ≥ 2, CGI(T ) is a span-
ning subgraph of G(T ) and so, CGI(R) is a spanning subgraph of G(R). Let
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Rπ,Rπ ′ ∈ I(R) be such that Rπ and Rπ ′ are adjacent in G(R). Then (Rπ +
Rπ ′)v = R by Proposition 2.20. As t = v f , it follows that (Rπ+Rπ ′)t = R. Since
Max(R) = t −Max(R) by hypothesis, we obtain that Rπ +Rπ ′ = R. Hence, Rπ

and Rπ ′ are adjacent in CGI(R). This shows that G(R) is a spanning subgraph
of CGI(R) and so, CGI(R) =G(R).

Assume that dimR = 1. Let p ∈ t −Max(R). Then p ∈ Spec(R)\{(0)} =
Max(R). Hence, t −Max(R) ⊆ Max(R). Let m ∈ Max(R). Let m ∈ m\{0}.
Then Rm is a t-ideal of R and m is minimal over Rm. Therefore, m is a t-ideal
of R and so, m ∈ t −Max(R). Therefore, Max(R) ⊆ t −Max(R) and hence,
Max(R) = t−Max(R). It follows from the proof given in the previous paragraph
that CGI(R) =G(R).

Let R be a ring and p ∈ Spec(R). Recall that the height of p is defined to
be the supermum of the length of chains of prime ideals p0 ⊂ p1 ⊂ ·· · ⊂ pn = p
which end at p [1, page 120]. Let R be a Noetherian domain. If p ∈ Spec(R) is
such that the height of p is greater than equal to 2, then p cannot be principal by
Krull’s principal ideal theorem [1, Corollary 11.17].

Example 3.11. (1) Consider T = K[X ], the polynomial ring in one variable X
over a field K. Let R = K +X2K[X ]. Then gr(G(R)) = 3.
(2) Let K =R and let R be as in (1). Let A = R[Y ] be the polynomial ring in one
variable Y over R. Let m1 = A(1+X2)+AY and m2 = A(X2R[X ])+A(Y −1).
Let B = S−1A, where S = A\(m1 ∪m2). Then gr(G(B)) = 3, whereas CGI(B)
is a complete bipartite graph but not a star graph.
(3) Let K = R and let R be as in (1). Let m1 = (1+X2)R[X ]∩R and m2 =
X2R[X ]. Let R1 = S−1R, where S = R\(m1 ∪m2). Then gr(G(R1)) = ∞.

Proof. (1) It is already noted in the proof of Lemma 2.16 that R is Noetherian,
dimR = 1, and J(R) = (0). Hence, R has an infinite number of maximal ideals.
Therefore, gr(G(R)) = 3 by Corollary 3.2.
(2) It is already noted in the proof of Example 2.17(1) that 1+X2 is a prime
element of R. Therefore, 1+X2 is a prime element of A = R[Y ]. Observe that
X2R[X ] ∈ Max(R). It is clear that {m1 = A(1+X2)+AY,m2 = A(X2R[X ])+
A(Y − 1)} ⊆ Max(A). Note that S = A\(m1 ∪m2) is a multiplicatively closed
subset of A. Since R is Noetherian, it follows from Hilbert’s Basis Theorem [1,
Theorem 7.5] that A=R[Y ] is Noetherian and so, we obtain from [1, Proposition
7.3] that B = S−1A is Noetherian. Hence, B is an atomic domain. Now, as
B = S−1A, {mi | i ∈ {1,2}} is the set of all prime ideals of A maximal with
respect to the property of not meeting S, it follows from [3, Corollary 4.6] that
Max(B) = {m1B,m2B}. Note that U(A) =U(R) by [1, Exercise 2(i), page 11]
and so, U(A) = R\{0}. Observe that 1+X2,Y,Y − 1 are non-associate prime
elements of A. As A(1+X2)∩S =AY ∩S =A(Y −1)∩S = /0, we obtain from [1,
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Proposition 3.11(iv)] that (1+X2),Y,Y −1 are non-associate prime elements of
B. It is clear that B(1+X2),BY,B(Y − 1) ∈ I(B) are pairwise distinct and we
obtain from Lemma 2.5 that B(1+X2)−BY −B(Y −1)−B(1+X2) is a cycle
of length 3 in G(B). This proves that gr(G(B)) = 3.

Now, |Max(B)|= 2. We know from Lemma 3.4 that CGI(B) is a complete
bipartite graph with vertex partition I(B) =

⋃2
i=1Vi, where V1 = {Bπ ∈ I(B) |

π ∈m1B\m2B} and V2 = {Bπ ′ ∈ I(B) | π ′ ∈m2B\m1B}. Since R is a Noethe-
rian domain with dimR = 1 and A = R[Y ], it follows from [3, Theorem 30.5]
that dimA = 2. Note that height of mi is equal to 2 for each i ∈ {1,2}. Hence,
height of miB is equal to 2 for each i ∈ {1,2} and as B is Noetherian, it follows
that miB cannot be principal for each i ∈ {1,2}. Hence, we obtain from Lemma
3.6 that |Vi| ≥ 2 for each i ∈ {1,2} and so, gr(CGI(B)) = 4. Therefore, CGI(B)
is a complete bipartite graph but not a star graph.
(3) It is already noted in the proof of (1) that R is Noetherian and dimR =
1. It is noted in the proof of Example 2.17(1) that m1 = (1+X2)R[X ]∩R ∈
Max(R) and m1 = (1 + X2)R. Since R

X2R[X ]
∼= R, the field of real numbers,

it follows that m2 = X2R[X ] ∈ Max(R). It is clear that m1 ̸= m2. Note that
S = R\(m1 ∪m2) is a multiplicatively closed subset of R. As R is Noetherian,
we obtain from [1, Proposition 7.3] that R1 = S−1R is Noetherian. Hence, R1
is an atomic domain . Since {mi | i ∈ {1,2}} is the set of all prime ideals of
R maximal with respect to the property of not meeting S, it follows from [3,
Corollary 4.6] that Max(R1) = {m1R1,m2R1}. It follows from [1, Proposition
3.11(iv)] that dimS−1R ≤ dimR = 1. Therefore, we obtain that dimS−1R =
1 and moreover, Spec(S−1R)\{(0)} = {m1R1,m2R1} = Max(R1). Note that
CGI(R1) =G(R1) by Lemma 3.10. As |Max(R1)|= 2, it follows from Lemma
3.4 that CGI(R1) is a complete bipartite graph and so, G(R1) is a complete
bipartite graph. Observe that m1R1 = (1 + X2)R1 is a principal ideal of R1.
Hence, we obtain from (2)⇒ (3) of Proposition 3.7 that CGI(R1) = G(R1) is
a star graph and so, gr(G(R1)) = ∞.

We provide in Example 3.12, a Noetherian domain R with |Max(R)|= 2 and
dimR = 1 such that CGI(R) =G(R) is a complete bipartite graph but not a star
graph. We are thankful to the referee for suggesting Example 3.12 and its proof.

Example 3.12. Let T = C[X ] be the polynomial ring in one variable X over
C. Let D1 = R+XC[X ] and D2 = R+(X − 1)C[X ]. Let D = D1 ∩D2. Let
p1 = XC[X ]∩D and p2 = (X −1)C[X ]∩D. Let R = S−1D, where S = D\(p1 ∪
p2). Then R is a Noetherian domain, dimR = 1, and |Max(R)| = 2 such that
CGI(R) =G(R) is a complete bipartite graph but not a star graph.

Proof. Note that R[X ] is a subring of D = D1 ∩D2 and D is a subring of T =
C[X ]. As the Noetherian domain T =C[X ] is a finitely generated R[X ]-module,
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it follows that D is a finitely generated R[X ]-module and so, D is Noetherian.
Note that D is integral over R[X ] and so, dimD = dimR[X ] = 1. It is clear that
p1 = XC[X ]∩D,p2 = (X −1)C[X ]∩D ∈ Spec(D)\{(0)} = Max(D). Observe
that X ∈ p1\p2 and X − 1 ∈ p2\p1 and so, p1 ̸= p2. Note that S = D\(p1 ∪ p2)
is a multiplicatively closed subset of D. Let R = S−1D. Since {p1,p2} is the set
of all prime ideals of D maximal with respect to the property of not meeting S,
it follows that Max(R) = {S−1p1,S−1p2}. It is convenient to denote S−1pi by
mi for each i ∈ {1,2}. As D is Noetherian and dimD = 1, it follows that R is
Noetherian and dimR = 1. Thus R is an atomic domain and |Max(R)|= 2. We
know from Lemma 3.4 that CGI(R) is a complete bipartite graph with vertex
partition I(R)=V1∪V2, where V1 = {Rπ ∈I(R) | π ∈m1\m2} and V2 = {Rπ ′ ∈
I(R) | π ′ ∈ m2\m1}. It follows from Lemma 3.10 that CGI(R) = G(R). We
claim that |Vi| ≥ 2 for each i ∈ {1,2}. To prove this claim, in view of Lemma
3.6, it is enough to show that mi is not principal for each i ∈ {1,2}.

We first verify that m1 is not principal. Suppose that m1 is principal. Then
m1Rm1 is principal. Note that Max(Rm1) = {m1Rm1} by [1, Example (1), page
38]. As R is a Noetherian domain with dimR = 1, it follows that Rm1 is a lo-
cal Noetherian domain and dimRm1 = 1 and its unique maximal ideal m1Rm1

is principal by assumption. Hence, Rm1 is integrally closed by (iii) ⇒ (ii) of
[1, Proposition 9.2]. Since Rm1 = (S−1D)S−1p1

∼= Dp1 as rings by [9, Proposi-
tion 19, page 165], we get that Dp1 is integrally closed. Observe that X(X −
1),

√
−1X(X − 1) = iX(X − 1) ∈ D1 ∩D2 = D and so, i = iX(X−1)

X(X−1) belongs to
the quotient field of D. Hence, i belongs to the quotient field of Dp1 . From
i2 = −1 ∈ Dp1 , we obtain that i ∈ Dp1 . Since Dp1 ⊆ (D1)XC[X ], we get that
i ∈ (D1)XC[X ]. Note that XC[X ] ∈ Max(D1) and i /∈ D1 and so, the conductor
(D1 :D1 i) = XC[X ]. Therefore, i ∈ (D1)X)C[X ] is impossible and hence, m1 is
not principal.

We next verify that m2 is not principal. Suppose that m2 is principal. Then
m2Rm2 is principal. Now, it follows as in the previous paragraph that Rm2 is
integrally closed. Since Rm2 = (S−1D)S−1p2

∼= Dp2 as rings, we get that Dp2

is integrally closed. Hence, i ∈ Dp2 . As Dp2 ⊆ (D2)(X−1)C[X ], we get that
i ∈ (D2)(X−1)C[X ]. As (X − 1)C[X ] ∈ Max(D2) and i /∈ D2, it follows that the
conductor (D2 :D2 i) = (X −1)C[X ]. Therefore, i ∈ (D2)(X−1)C[X ] is impossible
and hence, m2 is not principal.

Thus mi is not principal for each i∈{1,2} and so, |Vi| ≥ 2 for each i∈{1,2}.
Therefore, CGI(R) = G(R) is a complete bipartite graph but not a star graph.
Hence, gr(CGI(R)) = gr(G(R)) = 4.
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