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TENSOR JOIN OF HYPERGRAPHS AND ITS SPECTRA

R. VISHNUPRIYA - R. RAJKUMAR

In this paper, we introduce three operations on hypergraphs by using
tensors. We show that these three formulations are equivalent and we
commonly call them as the tensor join. We show that any hypergraph can
be viewed as a tensor join of hypergraphs. Tensor join enable us to obtain
several existing and new classes of operations on hypergraphs. We com-
pute the adjacency, the Laplacian, the normalized Laplacian spectrum of
weighted hypergraphs constructed by this tensor join. Also we deduce
some results on the spectra of hypergraphs in the literature. As an ap-
plication, we construct several pairs of the adjacency, the Laplacian, the
normalized Laplacian cospectral hypergraphs by using the tensor join.

1. Introduction

In spectral graph theory, the properties of graphs are investigated by the eigen-
values of various associated matrices, such as adjacency matrix, Laplacian ma-
trix, signless Laplacian matrix, normalized Laplacian matrix etc; see, [5]. Like-
wise, in spectral hypergraph theory, spectra of different connectivity tensors
and matrices associated to hypergraphs were studied in the literature; see, [1–
4, 16, 17, 21]. Recently, Anirban Banerjee [2] introduced some connectivity
matrices namely, the adjacency matrix, the Laplacian matrix and the normalized
Laplacian matrix for unweighted hypergraphs. Therein, some of the properties
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of hypergraphs were studied using the spectrum of these associated matrices.
Subsequently, Amitesh Sarkar and Anirban Banerjee [22] extend the definiton
of the adjacency matrix of a hypergraph introduced in [2] to a weighted hy-
pergraph. In the rest of this paper, we consider the matrix representation of
hypergraphs defined in [22].

In the literature, several graph operations were defined and the spectra of
graphs constructed by these graph operations were determined; see [5, 7, 14,
15, 18–20] and the references therein. Recently, Gayathri and Rajkumar [8]
introduced a graph operation, namely, M-join. Using this operation several
new graph operations were defined and various graph operations in the litera-
ture were generalized. There in, the spectral properties of these graphs were
investigated. In this direction, there are several hypergraph operations were
defined in literature; see the survey paper [12]. In [22], several hypergraph
operations, such as the weighted join, the generalized corona were introduced
and the adjacency spectra of the hypergraphs formed by these operations were
determined. Also some families of cospectral hypergraphs with respect to the
adjacency matrix were constructed using these operations. The adjacency spec-
tra of the Cartesian product of hypergraphs was obtained in [2].

Motivated by these, in this paper, we introduce some operations on hyper-
graphs via tensors. We obtain the spectra of the adjacency, the Laplacian, the
normalized Laplacian matrices of the hypergraphs constructed by these opera-
tions.

The rest of the paper is arranged as follows: In Section 2, we recall some
basic notations, definitions and results of graphs/hypergraphs and matrices. In
Section 3, we introduce a special type of tensor, namely an indicating tensor cor-
responding to a finite sequence of mutually disjoint sets. Also, we define several
particular cases of this tensor. In Section 4, we introduce three hypergraph op-
erations by using indicating tensors. We show that these three formulations are
equivalent and we commonly call them as the tensor join. We show that any
hypergraph can be viewed as a tensor join of hypergraphs. Tensor join enable
us to obtain several existing and new classes of operations on hypergraphs. In
Section 5, we compute the spectrum of the adjacency, the Laplacian and the
normalized Laplacian matrices of weighted hypergraphs constructed by the ten-
sor join operations introduced in the previous section. Also we deduce some
existing results on spectra of hypergraphs. By using the results proved in this
section, we construct infinite families of simultaneously adjacency, Laplacian,
normalized Laplacian cospectral hypergraphs by using this tensor join opera-
tion.
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2. Preliminaries and notations

A hypergraph H(V,E) consists of a non-empty set V and a multiset E of subsets
of V . The elements of V are called vertices and the elements of E are called
hyperedges, or simply edges of H. An edge of cardinality one is called a loop.
The rank and the co-rank of a hypergraph H are defined as r(H) = max

e∈E
{|e|}

and ρ(H) = min
e∈E

{|e|} respectively. A hypergraph is said to be uniform if all of

it’s edges have the same cardinality. If it is m, then the hypergraph is said to be
m-uniform; otherwise, it is called non-uniform. A vertex of a hypergraph is said
to be isolated if it does not belong to any edge of that hypergraph. Throughout
this paper, we consider only hypergraphs having finite number of vertices.

Let P∗(A) denote the set of all non-empty subsets of a set A. A hypergraph
H(V,E) is said to be complete if E = P∗(V ). We denote the complete hyper-
graph on n vertices with no loops as Kn. For, 0 ≤ r ≤ n, the complete r-uniform
hypergraph on n vertices, denoted by Kr

n, is the hypergraph whose edge set is
the set of all possible r-subsets of V .

For a nonempty subset S of positive integers, a S-hypergraph on V is a hy-
pergraph with vertex set V and edge set E =

⋃
s∈S Es, where Es is a non-empty

set of s-subsets of V . The complement of a S-hypergraph H(V,E), denoted by
Hc(V,Ec) is the S-hypergraph on V whose edge set consists of the subsets of V
with cardinality in S which do not lie in E [9]. The degree of a vertex v in a
hypergraph H, denoted by d(v), is the number of edges containing v in H.

Definition 2.1. ([22]) Let H(V,E,W ) be a hypergraph with vertex set V =
{1,2, . . . ,n}, edge set E and a weight function W : E →R≥0 defined by W (e) =
we for all e ∈ E. The adjacency matrix A(H) of H(V,E,W ) is the n× n sym-
metric matrix in which

(i, j)-th entry of A(H) =

 ∑
e∈E;i, j∈e

we
|e|−1 if i ̸= j, i and j are adjacent;

0 otherwise.

If we take we = 1, then A(H) becomes the adjacency matrix of the un-
weighted hypergraph H(V,E) defined in [2]. The valency of a vertex i of H,
denoted by d(i) is defined as d(i) = ∑

e∈E;i∈e
we. The Laplacian matrix L(H) of

H(V,E,W ) is defined by L(H) = D(H)−A(H), where D(H) is the diagonal
matrix whose entries are the valencies d(i) of the vertices i of H. If the hyper-
graph H(V,E,W ) has no isolated vertices, then its normalized Laplacian matrix
L(H) is defined as L(H) = D(H)−1/2L(H)D(H)−1/2.

A weighted/unweighted hypergraph is said to be r-regular if valency/ degree
of each of its vertices is r.
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For a matrix M, we use the notation PM(x) to denote its characteristic poly-
nomial and σ(M) to denote its multiset of eigenvalues (spectrum). The spectrum
of A(H), L(H) and L(H) are said to be the A-spectrum, the L-spectrum and the
L-spectrum of the hypergraph H, respectively. Two hypergraphs are said to
be A−cospectral (resp. L−cospectral, L−cospectral) if they have the same A-
spectrum (resp. L-spectrum, L-spectrum). The largest eigenvalue of A(H) is
said to be the Perron adjacency eigenvalue of H, whereas its other eigenvalues
are said to be the non-Perron adjacency eigenvalues of H.

Let A1,A2, . . . ,Am be square matrices of order n with entries from C. Then
λ1,λ2, . . . ,λm ∈C are said to be co-eigenvalues of A1,A2, . . . ,Am, if there exists
a vector X ∈ Cn such that AiX = λiX for i = 1,2, . . . ,m [6].

Let In denote the identity matrix of size n×n and Jn×m denote the matrix of
size n×m whose all the entries are 1. In particular, we denote Jn×n simply as
Jn. The Kronecker product of two matrices A and B is denoted by A⊗B.

Let G1 and G2 be graphs on m and n vertices, respectively. Let π be a
binary relation, that is π ⊆V (G1)×V (G2). Then the π−graph of G1 and G2, is
the graph whose vertex set is V (G1)∪V (G2) and edge set is E(G1)∪E(G2)∪
π [11]. An equivalent formulation of this definition is given as follows [8]:
Write the binary relation π as a 0− 1 matrix N = (ni j) of size m× n in which
ni j = 1 if and only if the i-th vertex of G1 and the j-th vertex of G2 are related
with respect to π , so the π−graph of G1 and G2 is the graph obtained by taking
one copy of G1 and G2, and joining the i-th vertex of G1 to the j-th vertex of G2
if and only if ni j = 1 for i = 1,2, . . . ,n and j = 1,2, . . . ,m. This graph is denoted
by G1 ∨N G2 and is called the N-join of G and H. This definition is extended as
follows.

Definition 2.2. ([8]) Let Hk be a sequence of k graphs H1,H2, . . . ,Hk with
|V (Hi)| = ni for i = 1,2, . . . ,k and let M = (M12, M13, . . . , M1k, M23, M24,
. . . , M2k, . . . , M(k−1)k), where Mi j is a 0− 1 matrix of size ni × n j. Then the

M-join of the graphs in Hk, denoted by
∨

MHk, is the graph
k⋃

i, j=1,
i< j

(
Hi ∨Mi j H j

)
.

The following results are used in the subsequent sections.

Theorem 2.3. ([13, pp. 483]) Let A and B be two matrices of sizes m × n
and n×m respectively. Then for any invertible m×m matrix X, |X +AB| =
|X |× |In +BX−1A|.

Theorem 2.4. ([10, Corollary 2]) Let a real matrix A be partitioned as
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A =


A11 A12 · · · A1k
A21 A22 · · · A2k

...
...

. . .
...

Ak1 Ak2 . . . Akk

.

For i, j = 1,2, . . . ,k, if Ai j are symmetric matrices of order n such that they
commutes with each other. Then σ(A) = ∑

n
h=1 σ(Eh), where the summation

denotes the union of the multisets and

Eh =


a(h)11 a(h)12 · · · a(h)1k

a(h)21 a(h)22 · · · a(h)2k
...

...
. . .

...
a(h)k1 a(h)k2 · · · a(h)kk

 ,

with a(h)i j is an eigenvalue of Ai j corresponding to the same eigenvector X for
each i, j = 1,2, . . . ,k; h = 1,2, . . . ,n.

3. Indicating tensors

Let R(a1,a2, . . . ,am) denote the range set of the sequence (ai)
m
i=1. Let

R▼(a1,a2, . . . ,am) =

{
R(a1,a2, . . . ,am)\{▼} if ▼ ∈ {a1,a2, . . . ,am};
R(a1,a2, . . . ,am) otherwise.

For n ∈ N, let [n] := {1,2, . . . ,n}. We denote P∗([n])\ ∪
y∈[n]

{y} simply by [̂n].

Definition 3.1. For i = 1,2, . . . ,k, let Ai be mutually disjoint sets having ni

elements. Let A be the sequence (Ai)
k
i=1. Then an indicating tensor corre-

sponding to A, denoted by T [A] := (T [A]p1 p2...pN ), is a 0− 1 tensor of order
N := n1 +n2 + · · ·+nk and dimension ( n1 +1, . . . ,n1 +1︸ ︷︷ ︸

n1 times

,n2 +1, . . . ,n2 +1︸ ︷︷ ︸
n2 times

,

. . . , nk +1, . . . ,nk +1︸ ︷︷ ︸
nk times

), where p1, p2, . . . , pn1 ∈ A1 ∪{▼}, pn1+n2+···+ni+1, . . . ,

pn1+n2+···+ni+1 ∈ Ai+1 ∪{▼} for i = 1,2, . . . ,k−1; ▼ is an arbitrary symbol that
is not an element of any Ai, i = 1,2, . . . ,k−1; and is satisfying the following:

(i) If there exists p1, p2, . . . , pN such that R▼(p1, p2, . . . , pN)⊆ Ai for
some i ∈ [k], then T [A]p1 p2...pN = 0.

(ii) If there exists p1, p2, . . . , pN such that T [A]p1 p2...pN = 1, then
T [A]p′1 p′2...p

′
N
= 1 whenever R▼(p′1, p′2, . . . , p′N) =R▼(p1, p2, . . . , pN).
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Notice that if p1 = p2 = · · ·= pN = ▼, then we have R▼(p1, p2, . . . , pN) =
Φ ⊆ Ai and so T [A]p1 p2...pN = 0.

Example 3.2. Let A1 = {1}, A2 = {2,3} and A3 = {4,5,6}. Let A = (Ai)
3
i=1.

Then an indicating tensor T [A] of order 6 and dimension (2,3,3,4,4,4) whose
entries are given by,

T [A]i1i2...i6 =

{
1 if R▼(i1, i2, . . . , i6) = {1,2,4,5,6} or {1,3};
0 otherwise.

More explicitly, the entries T [A]122456, T [A]122465, T [A]122546, T [A]122564, T [A]122645,
T [A]122654, T [A]12▼456, T [A]12▼465, T [A]12▼546, T [A]12▼564,
T [A]12▼645, T [A]12▼654, T [A]1▼2456, T [A]1▼2465, T [A]1▼2546, T [A]1▼2564,
T [A]1▼2645, T [A]1▼2654, T [A]133▼▼▼, T [A]1▼3▼▼▼, T [A]13▼▼▼▼ take the value
1 and the remaining entries are zero.

Definition 3.3. We call an indicating tensor obtained by taking Ai instead of
Ai ∪{▼} for i = 1,2, . . . ,k in Definition 3.1 as an indicating tensor of type-2
corresponding to A and is denoted by T ∗[A].

Example 3.4. Let A1 = {1}, A2 = {2,3} and A3 = {4}. Let A= (Ai)
3
i=1. Then

an indicating tensor T ∗[A] of type-2 of order 4 and dimension
(1,2,2,1) whose entries are given by,

T ∗[A]i1i2i3i4 =

{
1 if R(i1, i2, i3, i4) = {1,2,4} or {1,3,4} or {1,2,3,4};
0 otherwise.

More explicitly, T ∗[A]1224 = T ∗[A]1334 = T ∗[A]1234 = T ∗[A]1324 = 1 and the
remaining entries are zero.

For an indicating tensor T [A] and an indicating tensor T ∗[A] of type-2, we
define the following notations.

(i) E(T [A]) := {R▼(p1, p2, . . . , pN) | T [A]p1 p2...pN = 1}.

(ii) E(T ∗[A]) := {R(p1, p2, . . . , pN) | T ∗[A]p1 p2...pN = 1}.

(iii) For each p ∈ Ai, q ∈ A j (1 ≤ i ≤ j ≤ k), c ∈ [N],

Ec
p,q(T [A]) := {S ∈ E(T [A]) | {p,q} ⊆ S, |S|= c}.

In the following we introduce some special classes of indicating tensors.

(1) For each m ∈ {1,2, . . . ,N}, let T [A;m] denote an indicating tensor corre-
sponding to A in which T [A;m]p1 p2...pN = 0 whenever
|R▼(p1, p2, . . . , pN)| ̸= m.
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(2) For a non empty subset B of {k,k+1, . . . ,N}, let BT [A] denote the indi-
cating tensor corresponding to A in which

BT [A]p1 p2...pN =

1 if |R▼(p1, p2, . . . , pN)| ∈ B and
R▼(p1, p2, . . . , pN)∩Ai ̸= Φ for all i ∈ [k];

0 otherwise.

(3) Let J[A] denote the indicating tensor corresponding to A in which

J[A]p1 p2...pN =

{
0 if R▼(p1, p2, . . . , pN)⊆ Ai for some i ∈ [k];
1 otherwise.

(4) For i = 1,2, . . . ,k, let Ai = {ui1 ,ui2 , . . . ,uin}. For each r ∈ [n], let rT [A]
denote the indicating tensor corresponding to A with

rT [A]p1 p2...pnk =


1 if R▼(p1, p2, . . . , pnk) =

k⋃
i=1

{uil1
,uil2

, . . . ,uilr}
for some {l1, l2, . . . , lr} ⊆ [n];

0 otherwise.

(5) Let I[A] := 1T [A] and we call this as the identity indicating tensor cor-
responding to A.

(6) Let H(V (H),E(H)) be a hypergraph with V (H) = {1,2, . . . ,n}. Let 1 <
k ≤ ρ(H) and let (Gi(Ui,Ei))

k
i=1 be a sequence of hypergraphs with Ui =

{ui1,ui2, . . . ,uin}. Let A = (Ui)
k
i=1. Let NH [A] denote the indicating ten-

sor corresponding to A with

NH [A]p1 p2...pnk =


1 if R▼(p1, p2, . . . , pnk) =

k⋃
i=1

{uil1
,uil2

, . . . ,uilsi
}

where si ≥ 1, Di = {l1, l2, . . . , lsi} ⊆V (H)
such that the set of all Di forms a partition
of e for some e ∈ E(H).

0 otherwise.

(7) For i = 1,2, . . . ,k, let |Ai| = n. We denote the indicating tensor J[A]−
rT [A] by ℑr[A]. When r = 1, we denote it simply by ℑ[A].

(8) We denote the indicating tensor NH [A]+ rT [A] by Hr N[A]. When r = 1,
we denote it simply by HN[A].
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4. Tensor join of hypergraphs

In the rest of the paper, whenever we consider a sequence of weighted/
unweighted hypergraphs (Gi)

k
i=1, without loss of generality, we assume that the

vertex sets of Gis are mutually disjoint for i = 1,2, . . . ,k.

Definition 4.1. Let G = (Gi(Vi,Ei))
k
i=1 be a sequence of k hypergraphs. Let V =

(Vi)
k
i=1. Consider an indicating tensor T [V]. Then the T [V]-join of hypergraphs

in G, denoted by
∨

T [V]
G, is the hypergraph constructed as follows:

• Take one copy of Gi, i = 1,2, . . . ,k;

• For each D ⊆
k⋃

i=1
Vi, join the vertices in D as an edge in

∨
T [V]

G if and only

if D ∈ E(T [V]).

If G = (G1,G2), then we denote the T [V]-join of hypergraphs in G by G1
∨

T [V]
G2.

Example 4.2. Consider the hypergraphs G1(V1,E1), G2(V2,E2) and G3(V3,E3)
as shown in Figures 1(a), 1(b) and 1(c) respectively. Let G = (Gi)

3
i=1 and V =

b b b
8 9 10

b b b
1 2 3

bbb

b

456

7

b b b

8 9 10

(d)

1 2 3
b b b

(a)

b

b b b
4 5 6

(b)

7

(c)

Figure 1: The hypergraphs (a) G1(V1,E1), (b) G2(V2,E2), (c) G3(V3,E3) and (d)∨
T [V]

G
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(Vi)
3
i=1. Consider the indicating tensor T [V] of order 10 and dimension (4,4,4,5,5,5,5,4,4,4)

with

T [V]i1i2...i10 =

{
1 if R▼(i1, i2, . . . , i10) = {1,2,7} or {1,2,8};
0 otherwise.

Notice that, E(T [V]) = {{1,2,7},{1,2,8}}. Then the hypergraph
∨

T [V]
G is as

shown in Figure 1(d).

Definition 4.3. Let G = (Gi(Vi,Ei))
k
i=1 be a sequence of k hypergraphs. For

each S ∈ [̂k], let VS = (Vi)i∈S. Let T ∗ = {T ∗[VS] | S ∈ [̂k]} be a set of indicating
tensors of type-2. Then the T ∗-join of hypergraphs in G, denoted by

∨
T ∗
G, is the

hypergraph obtained by taking a copy of each Gi and for each D ⊆
k⋃

i=1
Vi, join

the set of vertices in D by an edge in
∨
T ∗
G if and only if D ∈ E(T ∗[VS]) for some

S ∈ [̂k].

Definition 4.4. Let H be a hypergraph with V (H) = [k]. Let G = (Gi(Vi,Ei))
k
i=1

be a sequence of hypergraphs with |Vi|= ni for i= 1,2, . . . ,k. For each e∈E(H),
let Ve = (Vi)i∈e, Ne := ∑

i∈e
ni and Ge = {Gi | i ∈ e}. Let T = {T [Ve] | e ∈ E(H)},

where for each e ∈ E(H), T [Ve] is a non-zero indicating tensor with

T [Ve]p1 p2...pNe
= 0 if R▼(p1, p2, . . . , pNe)∩Vi = Φ for some i ∈ e.

Then construct the hypergraph by taking a copy of each Gi and doing the T [Ve]-
join of hypergraphs in Ge for each edge e ∈ E(H). We denote this hypergraph
by G(H,T ) and call it as the (H,T )-join of hypergraphs in G.

Notice that, V (G(H,T ))=
k⋃

i=1
Vi and E(G(H,T ))=

k⋃
i=1

E(Gi)
⋃

e∈E(H)

E(T [Ve]).

Theorem 4.5. Definitions 4.1, 4.3 and 4.4 are equivalent.

Proof. Let G = (Gi(Vi,Ei))
k
i=1 be a sequence of k hypergraphs with |Vi|= ni for

i = 1,2, . . . ,k.

(1) Consider an indicating tensor T [V], where V =(Vi)
k
i=1 and assume that we

have constructed the hypergraph
∨

T [V]
G as per Definition 4.1. We show that

this hypergraph can be viewed as the hypergraph
∨
T ∗
G for some suitable

T ∗ as per Definition 4.3. For each S ∈ [̂k], let VS = (Vi)i∈S and w(S) =
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∑
r∈S

nr. Take T ∗ = {T ∗[VS] | S ∈ [̂k]}, where T ∗[VS] is the indicating tensor

of type-2 with
T ∗[VS]p1 p2...pw(S) = T [V]q1q2...qN ,

where q1,q2, . . . ,qN are such that R▼(q1,q2, . . . ,qN)=R(p1, p2, . . . , pw(S)).
Now construct the hypergraph

∨
T ∗
G as per Definition 4.1. Then this hyper-

graph is the same as the hypergraph
∨

T [V]
G.

(2) Let T ∗ = {T ∗[VS] | S ∈ [̂k]} be a set of indicating tensors of type-2, where
VS = (Vi)i∈S for all S ∈ [̂k]. Assume that we have constructed the hyper-
graph

∨
T ∗
G as per Definition 4.3. We show that this hypergraph is the same

as the hypergraph G(H,T ) for some suitable hypergraph H and a set of
indicating tensors T as per Definition 4.4. First construct the hypergraph
H by using T ∗ as follows: Take V (H) = [k]. For each T ∗[VS] ∈ T ∗, make
S ⊆V (H) as an edge in H if and only if T ∗[VS] is non-zero. Now, for each
e ∈ E(H), let Ne = ∑

r∈e
nr. Take T = {T [Ve] | e ∈ E(H)}, where T [Ve] is

the indicating tensor with

T [Ve]p1 p2...pNe
= T ∗[Ve]q1q2...qNe

,

where q1,q2, . . . ,qNe are such that R(q1,q2, . . . ,qNe)=R▼(p1, p2, . . . , pNe).
Now, construct the hypergraph G(H,T ) as per Definition 4.4. Then this
hypergraph is the same as the hypergraph

∨
T ∗
G.

(3) Let H be a hypergraph with V (H) = [k]. For each e ∈ E(H), let Ve =
(Vi)i∈e. Let T = {T [Ve] | e ∈ E(H)}. Assume that we have constructed
G(H,T ) as per Definition 4.4. We show that this hypergraph can be
viewed as

∨
T [V]

G for some suitable indicating tensor T [V], where V =

(Vi)
k
i=1. Take the indicating tensor T [V] with

T [V]p1 p2...pN =


T [Ve]q1q2...qNe

if there exists e ∈ E(H) such that
R▼(p1, p2, . . . , pN)∩Vi ̸= Φ for all
i ∈ e with R▼(p1, p2, . . . , pN) =R▼(q1,q2, . . . ,qNe);

0 otherwise.

Construct the hypergraph
∨

T [V]
G as per Definition 4.1, which becomes the

same as the hypergraph G(H,T ).
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In view of Theorem 4.5, hereafter we say ‘the tensor join of hypergraphs’
to mean the hypergraph obtained by any one of the operations defined in Defi-
nitions 4.1, 4.3 and 4.4, unless we specifically mentioned otherwise.

Note 4.6. Any hypergraph can be viewed as a tensor join of some hypergraphs.
For, let H be a hypergraph with |V (H)|= n. Take a partition Vi, i = 1,2, . . . ,k of
V (H), where k ≤ n. For each i = 1,2, . . . ,k, let Gi be the subhypergraph of H
induced by the vertex subset Vi. Let G = (Gi)

k
i=1 and V = (Vi)

k
i=1. Now consider

the indicating tensor T [V] with

T [V]p1 p2...pn =

{
1 if R▼(p1, p2, . . . , pn) ∈ E(H);
0 otherwise.

Then it is clear that H is the same as the hypergraph
∨

T [V]
G.

In the following theorem, we assert that for a given sequence M of matrices,
the M-join of graphs in a sequence G defined in Definition 2.2 can be viewed
as a T [A]-join of graphs in G for some suitable T [A] and vice versa.

Theorem 4.7. Let G=(Gi)
k
i=1 be a sequence of graphs with V (Gi)= {ui1,ui2, . . . ,uini}

for i = 1,2, . . . ,k and let V = (Vi)
k
i=1. Then corresponding to a given sequence

M = (M12,M13, . . . ,M1k, M23,M24, . . . ,M2k, . . . ,M(k−1)k), where Mi j is a 0− 1
matrix of size ni × n j, there exist an indicating tensor T [V] such that the graph∨

MG is the same as the graph
∨

T [V]
G and vice versa.

Proof. Assume that the graph
∨

MG is constructed as per Definition 2.2. Let us
denote the (r, t)-th entry of Mi j by (Mi j)rt . Now consider the indicating tensor
T [V] with

T [V]p1 p2...pN =

{
(Mi j)rt if R▼(p1, p2, . . . , pN) = {uir,u jt};
0 otherwise.

Then the graph
∨

T [V]
G constructed as per Definition 4.1 is the same as the graph∨

MG.
Conversely, assume that an indicating tensor T [V] corresponding to V is

given and the hypergraph
∨

T [V]
G is constructed as per Definition 4.1. For, 1 ≤

i ≤ j ≤ k, consider the matrix Mi j whose (r, t)-th entry is defined as (Mi j)rt =
T [V]p1 p2...pN , where pn1+n2+···+ni−1+1 = · · ·= pn1+n2+···+ni = uir, pn1+n2+···+n j−1+1 =
· · · = pn1+n2+···+n j = u jt and all other indices are zero. Then the graph

∨
MG

constructed as per Definition 2.2 is the same as the graph
∨

T [V]
G.
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Naturally, there are several ways of constructing the matrix Mi j from the
given indicating tensor T [V]. In Theorem 4.7, we exhibit a way of constructing
such matrices. Also, notice that the indicating tensor T [V] referred in Theo-
rem 4.7 is especially the indicating tensor T [V;2].

4.1. Some classes of hypergraphs as T [A]-join of hypergraphs

In Table 1, we list some existing and new classes of hypergraphs which can be
expressed as a BT [A]-join of hypergrphs in G = (Hi)

k
i=1, by suitably taking the

hypergraphs His, the set B and the value k as shown in the same table correspond
to each class of hypergaphs, where A= (V (Hi))

k
i=1.

S. No. Name of the hypergraph Hi k B

1.
Complete m-uniform m-partite

hypergraph [23]
Kc

ni
m {m}

2.
Complete m-uniform weak k-partite

hypergraph, k ≤ m [22]
Kc

ni
k {m}

3. Complete weak k-partite hypergraph Kc
ni

k {k,k+1, . . . ,N}

4.
Join of a set G of non-uniform

hypergraphs [22]
Hi k

a subset of
{k,k+1, . . . ,N}

5.
Join of a set G of m-uniform

hypergraphs [22]
Hi k(≤ m) {m}

Table 1: Viewing some existing and new class of hypergraphs as a T [A]-join of
hypergraphs in G

Notice that if m ≥ 2, the complete m-uniform weak 2-partite hypergraph
becomes the complete m-uniform bipartite hypergraph. Also the complete weak
2-partite hypergraph becomes the complete bipartite hypergraph.

4.2. Some unary hypergraph operations as T [A]-join of hypergraphs

First we define a new type of complement of a hypergraph.

Definition 4.8. Let H(V,E) be a hypergraph. We define the total complement
of H, denoted by H(V,E), as the hypergraph with vertex set V and the edge set
E = P∗(V )\(E ∪S), where S is the set of all singletons of V .

In Table 2, we define several new unary hypergraph operations and name
them analogous to the unary operations on graphs defined in Section 4.1 of [8].
For the operations given in S.Nos. 37-126 of this table, we assume that H
contains no loops.
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S. No. Description Name of the hypergraph
1. H

∨
rT [V]

H r-Mirror hypergraph of H

2. H
∨

rT [V]
Hc r-Mirror complemented neighbourhood hypergraph

of H

3. H
∨

rT [V]
Kn C-r-complete hypergraph of H

4. H
∨

rT [V]
Kc

n C-r-hypergraph of H

5. H
∨

rT [V]
H

r-Mirror total complemented neighbourhood hyper-
graph of H

6. H
∨

J[V]
H Join neighbourhood hypergraph of H

7. H
∨

J[V]
Hc Join complemented neighbourhood hypergraph of H

8. H
∨

J[V]
Kn Join complete hypergraph of H

9. H
∨

J[V]
Kc

n Join hypergraph of H

10. H
∨

J[V]
H

Join total complemented neighbourhood hypergraph
of H

11. H
∨

ℑr[V]
H VC-r-neighbourhood hypergraph of H

12. H
∨

ℑr[V]
Hc VC-r-complemented neighbourhood hypergraph of

H

13. H
∨

ℑr[V]
Kn VC-r-complete hypergraph of H

14. H
∨

ℑr[V]
Kc

n VC-r-hypergraph of H

15. H
∨

ℑr[V]
H

VC-r-total complemented neighbourhood hyper-
graph of H

16. Hc ∨
rT [V]

Hc r-Mirror-complement hypergraph of H

17. Hc ∨
rT [V]

Kn C-r-complete complement hypergraph of H

18. Hc ∨
rT [V]

Kc
n C-r-complement hypergraph of H

19. Hc ∨
J[V]

Hc Join neighbourhood-complement hypergrph of H

20. Hc ∨
J[V]

Kn Join complete-complement hypergrph of H
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21. Hc ∨
J[V]

Kc
n Join-complement hypergrph of H

22. Hc ∨
ℑr[V]

Hc VC-r-neighbourhood-complement hypergraph of H

23. Hc ∨
ℑr[V]

Kn VC-r-complete-complement hypergraph of H

24. Hc ∨
ℑr[V]

Kc
n VC-r-complement hypergraph of H

25. H
∨

rT [V]
Hc Total r-mirror complement hypergraph of H

26. H
∨

rT [V]
Kn C-r-complete total complement hypergraph of H

27. H
∨

rT [V]
Kc

n C-r-total complement hypergraph of H

28. H
∨

rT [V]
H r-Mirror total complemented hypergraph of H

29. H
∨

J[V]
Hc Total join neighbourhood complement hypergraph

of H

30. H
∨

J[V]
Kn Join complete total complement hypergraph of H

31. H
∨

J[V]
Kc

n Join total complement hypergrph of H

32. H
∨

J[V]
H

Join neighbourhood-total complement hypergraph
of H

33. H
∨

ℑr[V]
Hc Total VC-r-neighbourhood complement hypergraph

of H

34. H
∨

ℑr[V]
Kn VC-r-complete total complement hypergraph of H

35. H
∨

ℑr[V]
Kc

n VC-r-total complement hypergraph of H

36. H
∨

ℑr[V]
H

VC-r-neighbourhood total complement hypergraph
of H

37. H
∨

NH [V]
H N-neighbourhood hypergraph of H

38. H
∨

NH [V]
Hc N-complemented neighbourhood hypergraph of H

39. H
∨

NH [V]
Kn N-complete hypergraph of H

40. H
∨

NH [V]
Kc

n N-hypergraph of H

41. H
∨

NH [V]
H

N-total complemented neighbourhood hypergraph
of H
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42. H
∨

Hr N[V]
H N-r-neighbourhood hypergraph of H

43. H
∨

Hr N[V]
Hc N-r-complemented neighbourhood hypergraph of H

44. H
∨

Hr N[V]
Kn N-r-complete hypergraph of H

45. H
∨

Hr N[V]
Kc

n N-r-hypergraph of H

46. H
∨

Hr N[V]
H

N-r-total complemented neighbourhood hypergraph
of H

47. H
∨

NHc [V]
H NC-neighbourhood hypergraph of H

48. H
∨

NHc [V]
Hc NC-complemented neighbourhood hypergraph of H

49. H
∨

NHc [V]
Kn NC-complete hypergraph of H

50. H
∨

NHc [V]
Kc

n NC-hypergraph of H

51. H
∨

NHc [V]
H

NC-total complemented neighbourhood hypergraph
of H

52. H
∨

NH [V]
H NTC-neighbourhood hypergraph of H

53. H
∨

NH [V]
Hc NTC-complemented neighbourhood hypergraph of

H

54. H
∨

NH [V]
Kn NTC-complete hypergraph of H

55. H
∨

NH [V]
Kc

n NTC-hypergraph of H

56. H
∨

NH [V]
H

NTC-total complemented neighbourhood hyper-
graph of H

57. H
∨

Hc
r N[V]

H NC-r-neighbourhood hypergraph of H

58. H
∨

Hc
r N[V]

Hc NC-r-complemented neighbourhood hypergraph of
H

59. H
∨

Hc
r N[V]

Kn NC-r-complete hypergraph of H

60. H
∨

Hc
r N[V]

Kc
n NC-r-hypergraph of H

61. H
∨

Hc
r N[V]

H
NC-r-total complemented neighbourhood hyper-
graph of H
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62. H
∨

Hr N[V]
H NTC-r-neighbourhood hypergraph of H

63. H
∨

Hr N[V]
Hc NTC-r-complemented neighbourhood hypergraph

of H

64. H
∨

Hr N[V]
Kn NTC-r-complete hypergraph of H

65. H
∨

Hr N[V]
Kc

n NTC-r-hypergraph of H

66. H
∨

Hr N[V]
H

NTC-r-total complemented neighbourhood hyper-
graph of H

67. Hc ∨
NH [V]

Hc N-neighbourhood complement hypergraph of H

68. Hc ∨
NH [V]

Kn N-complete complement hypergraph of H

69. Hc ∨
NH [V]

Kc
n N-complement hypergraph of H

70. H
∨

NH [V]
Hc Total N-neighbourhood complement hypergraph of

H

71. H
∨

NH [V]
Kn N-complete total complement hypergraph of H

72. H
∨

NH [V]
Kc

n N-total complement hypergraph of H

73. H
∨

NH [V]
H

N-neighbourhood total complement hypergraph of
H

74. Hc ∨
NH [V]

Hc NTC-neighbourhood-complement hypergraph of H

75. Hc ∨
NH [V]

Kn NTC-complete-complement hypergraph of H

76. Hc ∨
NH [V]

Kc
n NTC-complement hypergraph of H

77. H
∨

NH [V]
Hc Total NTC-neighbourhood-complement hypergraph

of H

78. H
∨

NH [V]
Kn NTC-complete total complement hypergraph of H

79. H
∨

NH [V]
Kc

n NTC-total complement hypergraph of H

80. H
∨

NH [V]
H

NTC-neighbourhood total complement hypergraph
of H

81. Hc ∨
NHc [V]

Hc NC-neighbourhood-complement hypergraph of H
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82. Hc ∨
NHc [V]

Kn NC-complete-complement hypergraph of H

83. Hc ∨
NHc [V]

Kc
n NC-complement hypergraph of H

84. H
∨

NHc [V]
Hc Total NC-neighbourhood-complement hypergraph

of H

85. H
∨

NHc [V]
Kn NC-complete total complement hypergraph of H

86. H
∨

NHc [V]
Kc

n NC-total complement hypergraph of H

87. H
∨

NHc [V]
H

NC-neighbourhood total complement hypergraph of
H

88. Hc ∨
Hr N[V]

Hc N-r-neighbourhood-complement hypergraph of H

89. Hc ∨
Hr N[V]

Kn N-r-complete-complement hypergraph of H

90. Hc ∨
Hr N[V]

Kc
n N-r-complement hypergraph of H

91. H
∨

Hr N[V]
Hc Total N-r-neighbourhood complement hypergraph

of H

92. H
∨

Hr N[V]
Kn N-r-complete total complement hypergraph of H

93. H
∨

Hr N[V]
Kc

n N-r-total complement hypergraph of H

94. H
∨

Hr N[V]
H

N-r-neighbourhood total complement hypergraph of
H

95. Hc ∨
Hc

r N[V]
Hc NC-r-neighbourhood-complement hypergraph of H

96. Hc ∨
Hc

r N[V]
Kn NC-r-complete-complement hypergraph of H

97. Hc ∨
Hc

r N[V]
Kc

n NC-r-complement hypergraph of H

98. H
∨

Hc
r N[V]

Hc Total NC-r-neighbourhood-complement hypergraph
of H

99. H
∨

Hc
r N[V]

Kn NC-r-complete-total complement hypergraph of H

100. H
∨

Hc
r N[V]

Kc
n NC-r-total complement hypergraph of H

101. H
∨

Hc
r N[V]

H
NC-r-neighbourhood total complement hypergraph
of H
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102. Hc ∨
Hr N[V]

Hc NTC-r-neighbourhood-complement hypergraph of
H

103. Hc ∨
Hr N[V]

Kn NTC-r-complete-complement hypergraph of H

104. Hc ∨
Hr N[V]

Kc
n NTC-r-complement hypergraph of H

105. H
∨

Hr N[V]
Hc Total NTC-r-neighbourhood-complement hyper-

graph of H

106. H
∨

Hr N[V]
Kn NTC-r-complete total complement hypergraph of H

107. H
∨

Hr N[V]
Kc

n NTC-r-total complement hypergraph of H

108. H
∨

Hr N[V]
H

NTC-r-neighbourhood-total complement hyper-
graph of H

109. Kc
n

∨
NH [V]

Kc
n Duplicate hypergraph of H

110. Kn
∨

NH [V]
Kc

n Duplicate complete hypergraph of H

111. Kn
∨

NH [V]
Kn Fully complete duplicate hypergraph of H

112. Kc
n

∨
Hr N[V]

Kc
n r-DN-hypergraph of H

113. Kn
∨

Hr N[V]
Kc

n r-DN-complete hypergraph of H

114. Kn
∨

Hr N[V]
Kn Fully complete r-DN-hypergraph of H

115. Kc
n

∨
NHc [V]

Kc
n Complemented duplicate hypergraph of H

116. Kn
∨

NHc [V]
Kc

n Complemented duplicate complete hypergraph of H

117. Kn
∨

NHc [V]
Kn

Fully complete complemented duplicate hypergraph
of H

118. Kc
n

∨
NH [V]

Kc
n Total complemented duplicate hypergraph of H

119. Kn
∨

NH [V]
Kc

n
Total complemented duplicate complete hypergraph
of H

120. Kn
∨

NH [V]
Kn

Fully complete total complemented duplicate hyper-
graph of H

121. Kc
n

∨
Hr N[V]

Kc
n

Closed duplicate r-total complemented hypergraph
of H
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122. Kn
∨

Hr N[V]
Kc

n
Closed duplicate complete r-total complemented
hypergraph of H

123. Kn
∨

Hr N[V]
Kn

Fully complete closed duplicate r-total comple-
mented hypergraph of H

124. Kc
n

∨
Hc

r N[V]
Kc

n Closed r-duplicate hypergraph of H

125. Kn
∨

Hc
r N[V]

Kc
n Closed r-duplicate complete hypergraph of H

126. Kn
∨

Hc
r N[V]

Kn Fully complete closed r-duplicate hypergraph of H

Table 2: New unary hypergraph operations defined as tensor join of two hyper-
graphs

When r = 1, the hypergraph given in S.No.1 of Table 2 becomes H
∨

I[V]
H

and we call it simply as the mirror hypergraph of H. Similarly, the rest of the
hypergraph operations defined in Table 2 in which rT [V] is involved can be
renamed.

Now, we show that the hypergraph operations listed in Table 8 are unary.
Consider the r-Mirror hypergraph of H. It is constructed from the hypergraph H
as follows: First take H and corresponds to each of its vertex, add a new vertex.
Now, make each set S of new vertices as an edge in the r-Mirror hypergraph of
H if and only if the set of vertices in H corresponding to the vertices of S forms
an edge in H. Then for each r-subset Sr of vertices of H, make the set of all
vertices in Sr together with all the new vertices corresponding to each vertices
in Sr as an edge in the r-Mirror hypergraph of H. The resulting hypergraph is
the desired one. Similarly, the rest of the operations can be viewed.

4.3. Some unary hypergraph operations as T ∗-join of hypergraphs
in G

Let Gi(Vi,Ei), i = 1,2, . . . ,k be k(> 1) copies of a hypergraph H with|V (H)| =
n. Let G = (Gi(Vi,Ei,Wi))

k
i=1. For each S ∈ [̂k], let VS = (Vi)i∈S. Let T ∗ =

{T ∗[VS] | S ∈ [̂k]} be a set of indicating tensors of type-2. In Table 3, we list
some new classes of unary hypergraph operations as T ∗-join of hypergraphs in
G, for some suitable T ∗ as mentioned in the same table. In this table, we take
1 < l ≤ k and 0 denotes a zero tensor of appropriate order and dimension.

S. No. Name of the hypergraph T ∗[VS]
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1. (l,r)-mirror hypergraph of H
{

rT [VS] if |S|= l,

0 otherwise

2. Join l-neighbourhood hypergraph of H
{

J[VS] if |S|= l,

0 otherwise

3.
VC-(l,r)-neighbourhood hypergraph

of H

{
ℑr[VS] if |S|= l,

0 otherwise

Table 3: Viewing some new unary hypergraph operations as T ∗-join of hyper-
graphs in G.

4.4. Some classes of hypergraphs as (H,T )-join of hypergraphs

Whenever we consider the (H,T )-weighted/unweighted join of weighted/ un-
weighted hypergraphs, without loss of generality, we take the vertex set of H of
cardinality k as [k].

Let H be a hypergraph with |V (H)|= k and let G = (Gi(Vi,Ei))
k
i=1 be a se-

quence of k hypergraphs. For each e ∈ E(H), let Ve = (Vi)i∈e. In Table 4, we list
some classes of hypergraphs that can be viewed as a (H,T )-join of hypergraphs
in G, for some suitable H, Gi and T .

S.
No. Name of the hypergraph H Gi T

1.

Join of set G of m-uniform
hypergraphs on a backbone
hypergraph H, r(H)≤ m

[22]

H Gi
{BeT [Ve] | e ∈ E(H)},

where Be = {m}.

2.
Join of set G of non-uniform
hypergraphs on a backbone

hypergraph H [22]
H Gi

{BeT [Ve] | e ∈ E(H)},
where

Be ⊆ {|e|, |e|+1, . . . ,Ne}.

3.
Complete m-uniform strong

k-partite hypergraph
(k ≥ m)[22]

Km
k Kc

ni

{BeT [Ve] | e ∈ E(H)},
where Be = {m}.

4.
Complete strong k-partite

hypergraph
Kk Kc

ni

{BeT [Ve] | e ∈ E(H)},
where Be = {|e|}.

5.
Lexicographic product of the
hypergraphs H1 and H2 [12]

H1 H2
{BeT [Ve] | e ∈ E(H)},

where Be = {|e|}.
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6.
Cartesian product of the

hypergraphs H1 and H2 [2]
H1 H2 {I[Ve] | e ∈ E(H)}

Table 4: Viewing some existing and new class of hypergraphs as (H,T )-join of
hypergraphs.

5. Spectra of the tensor join of weighted hypergraphs

In this section, we obtain the characteristic polynomial of the adjacency, the
Laplacian, the normalized Laplacian matrices of some classes of hypergraphs
constructed by the tensor join operations defined in Section 4. For the compu-
tation of the normalized Laplacian spectrum of the tensor join of hypergraphs,
it is assumed that the constituting hypergraphs do not have isolated vertices.

5.1. Spectra of the T [A]-join of hypergraphs

Let G = (Gi(Vi,Ei,Wi))
k
i=1 be a sequence of k weighted hypergraphs. Consider

an indicating tensor T [V], where V = (Vi)
k
i=1. We construct the hypergraph∨

T [V]
G(V,E,W ) with a weight function W : E → R≥0 defined by,

W (e) =

{
Wi(e) if e ∈ Ei;

wc if e /∈ Ei with |e|= c, for i = 1,2, . . . ,k.
, (1)

where wc is a non-negative real number corresponding to a new edge of cardi-
nality c.

Throughout this section, we consider the weight function as defined above
for any T [V]-join of weighted hypergraphs, unless, we specifically mentioned
otherwise.

Theorem 5.1. Let G = (Gi(Vi,Ei,Wi))
k
i=1 be a sequence of weighted ri-regular

hypergraphs Gi with |Vi| = ni, let V = (Vi)
k
i=1 and let X = {2,3, . . . ,N}. Con-

sider an indicating tensor T [V] such that for every p ∈ Vi, q ∈ Vj and c ∈ X,
|Ec

p,q(T [V])| is a constant, say n(c)i j for all 1 ≤ i ≤ j ≤ k. Then the characteristic
polynomial of the adjacency (resp. the Laplacian, the normalized Laplacian)
matrix of the weighted hypergraph

∨
T [V]

G is

{
k
∏
i=1

ni

∏
j=1; j ̸=i

(x−αiλi j −βi)

}
×PR(x),
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where λi j is a non-Perron adjacency eigenvalue of Gi for i = 1,2, . . . ,k; j =
1,2, . . . ,ni and

R =



r1α1 +β1 +n1γ1 n2δ12 ∑
c∈X

wc ·n(c)12
c−1

· · · nkδ1k ∑
c∈X

wc ·n(c)1k
c−1

n1δ12 ∑
c∈X

wc ·n(c)12
c−1

r2α2 +β2 +n2γ2 · · · nkδ2k ∑
c∈X

wc ·n(c)2k
c−1

...
...

. . .
...

n1δ1k ∑
c∈X

wc ·n(c)1k
c−1

n2δ2k ∑
c∈X

wc ·n(c)2k
c−1

· · · rkαk +βk +nkγk


k×k

and for 1≤ i≤ j ≤ k, the values αi, βi, γi, δi j are given in Table 5 corresponding
to the respective matrices, where

zi = ri +(ni −1) ∑
c∈X

n(c)ii ·wc

c−1
+

k

∑
j=1, j ̸=i

n j ∑
c∈X

n(c)i j ·wc

c−1

with n(c)i j = n(c)ji for i, j = 1,2, . . . ,k.

Name of the matrix αi γi βi δi j

Adjacency matrix 1 ∑
c∈X

wc·n(c)ii
c−1

−γi 1

Laplacian matrix −1 − ∑
c∈X

wc·n(c)ii
c−1

zi − γi −1

Normalized Laplacian
matrix

−1
zi αi ∑

c∈X

wc·n(c)ii
c−1

1− γi
−1√ziz j

Table 5: Necessary values to compute the spectrum of the matrices associated
with

∨
T [V]

G

Proof. The adjacency (resp. the Laplacian, the normalized Laplacian) matrix of∨
T [V]

G is a k×k symmetric block matrix of order N×N in which the (i, i)th block

is
αiA(Gi)+βiIni + γiJni
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and for i ̸= j, the (i, j)th block is

δi j ∑
c∈X

wc ·n(c)i j

c−1
Jni×n j ,

where N :=
k
∑

i=1
ni and the values αi,βi,γi,δi j for i, j = 1,2, . . . ,k are given in

Table 5
Notice that for each i = 1,2, . . . ,k, the adjacency matrix A(Gi) of Gi is

real symmetric of order ni with the constant row sum ri. Thus each A(Gi)
has an orthogonal basis of Rni consisting of its eigenvectors, including the all-
one vector Jni×1 corresponds to the eigenvalue ri. Let us denote the eigen-
vectors of A(Gi) by Xi1(= Jni×1),Xi2, · · · ,Xini corresponds to the eigenvalues
λi1(= ri),λi2, · · · ,λini , for all i = 1,2, . . . ,ni. Let

Xij := [0,0, · · · , Xi j︸︷︷︸
i-th place

,0, · · ·0]T
1×N

for all i = 1,2, . . . ,k, j = 2, . . . ,ni. Then for each i = 1,2, . . . ,k, j = 2, . . . ,ni,
αiλi j +βi is an eigenvalue of A corresponds to the eigenvector Xij. Since, the
span of the remaining k eigenvectors of A is same as the span of vectors

[0,0, . . . , Jni×1︸︷︷︸
i-th place

,0, . . . ,0]T
1×N

, i = 1,2, . . . ,k,

so let µ be an eigenvalue of A corresponds to the eigenvector

Y = [a1Jn1×1,a2Jn2×1, · · · ,akJnk×1],

where (a1,a2, . . . ,ak) is a non-zero vector in Rk. Then the system of equations
(A− µ)Y = 0 reduces to the system of equations (R− µ)y′ = 0, where y′ =
(a1,a2, . . . ,ak) and the matrix R is as mentioned in the statement of this theorem.
Thus the remaining eigenvalues of A are the eigenvalues of the matrix R. This
completes the proof.

In the following corollary, we establish infinite families of cospectral hyper-
graphs by using the T [A]-join operation on hypergraphs.

Corollary 5.2. Let Gi(Vi,Ei,Wi) and G′
i(V

′
i ,E

′
i ,W

′
i ) be ri-regular A−cospectral

weighted hypergraphs for i= 1,2, . . . ,k. Let G=(Gi(Vi,Ei,Wi))
k
i=1, G′=(G′

i(V
′
i ,E

′
i ,W

′
i ))

k
i=1

and let X = {2,3, . . . ,N}. Let V = (Vi)
k
i=1 and V ′ = (V ′

i )
k
i=1. Consider an indi-

cating tensor T [V] such that for every p ∈Vi and q ∈Vj, |Ec
p,q(T [V])|= n(c)i j for
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all c ∈ X , 1 ≤ i ≤ j ≤ k. Let T [V ′] be an indicating tensor such that T [V ′] =
T [V]. Then the weighted T [V]-join of hypergraphs in G and the weighted T [V ′]-
join of hypergraphs in G′ are simultaneously A−cospectral, L−cospectral and
L−cospectral.

Proof. Since Gi and G′
i are ri-regular and have the same adjaceny spectrum, the

result directly follows from Theorem 5.1.

Corollary 5.3. Let G = (Gi(Vi,Ei,Wi))
k
i=1, where Gi is a weighted ri-regular m-

uniform hypergraph with |Vi|= ni for i = 1,2, . . . ,k. Let V = (Vi)
k
i=1. Consider

an indicating tensor T [V;m] such that for every p∈Vi and q∈Vj, |Em
p,q(T [V;m])|

is a constant, say n(m)
i j , for 1 ≤ i ≤ j ≤ k. Then the characteristic polynomial of

the adjacency (resp. the Laplacian, the normalized Laplacian) matrix of the
weighted hypergraph

∨
T [V;m]

G is

{
k
∏
i=1

ni

∏
j=1; j ̸=i

(x−αiλi j −βi)

}
×PR(x),

where λi j is a non-Perron adjacency eigenvalue of Gi for i = 1,2, . . . ,k; j =
1,2, . . . ,ni and

R =


r1α1 +β1 +n1γ1 δ12 ·n2

wm·n(m)
12

m−1 · · · δ1k ·nk
wm·n(m)

1k
m−1

δ12 ·n1
wm·n(m)

12
m−1 r2α2 +β2 +n2γ2 · · · δ2k ·nk

wm·n(m)
2k

m−1
...

...
. . .

...

δ1k ·n1
wm·n(m)

1k
m−1 δ2k ·n2

wm·n(m)
2k

m−1 · · · rkαk +βk +nkγk


k×k

and for 1 ≤ i ≤ j ≤ k, the values αi, βi, γi, δi j are given in Table 6;

zi = ri +(ni −1)
n(m)

ii wm

m−1
+

k

∑
j=1, j ̸=i

n j
n(m)

i j wm

m−1

with n(m)
i j = n(m)

ji for i, j = 1,2, . . . ,k.

Name of the matrix αi γi βi δi j

Adjacency matrix 1 wm·n(m)
ii

m−1
−γi 1

Laplacian matrix −1 −wm·n(m)
ii

m−1
zi − γi −1
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Normalized Laplacian
matrix

−1
zi αi

wm·n(m)
ii

m−1
1− γi

−1√ziz j

Table 6: Necessary values to compute the spectrum of the matrices associated
with

∨
T [V;m]

G.

Proof. If we take X = {m} in Theorem 5.1, then

zi = ri +(ni −1)
n(m)

ii ·wm

m−1
+

k

∑
j=1, j ̸=i

n j
n(m)

i j ·wm

m−1

for all i = 1,2, . . . ,k and so the proof follows.

Notation 5.1. Let S be a family of k finite sets A1,A2, . . . ,Ak and let c∈{2,3, . . . , |A1|+
|A2|+ · · ·+ |Ak|}. For 1 ≤ i ≤ j ≤ k, we denote,

nc
i j(S)=



∑
li≥0, lt>0 (t ̸=i)

l1+l2+···+lk=c−2

(
|A1|

l1

)(
|A2|

l2

)
· · ·

(
|Ai−1|

li−1

)(
|Ai|−2

li

)
· · ·

(
|Ak |

lk

)
if i = j;

∑
li,l j≥0, lt>0 (t ̸=i, j)
l1+l2+···+lk=c−2

(
|A1|

l1

)
· · ·

(
|Ai−1|

li−1

)(
|Ai|−1

li

)
· · ·

(
|A j−1|

l j−1

)(
|A j |−1

l j

)
· · ·

(
|Ak |

lk

)
if i ̸= j;

0 otherwise.

Corollary 5.4. Assume additionally that the hypergraphs given in S.Nos. 4 and
5 of Table 1 be constructed by ri-regular weighted hypergraph Hi(Vi,Ei,Wi) for
all i = 1,2, . . . ,k. Then the characteristic polynomial of the adjacency (resp. the
Laplacian, the normalized Laplacian) matrix of the weighted hypergraphs given
in Table 1 are obtained from Theorem 5.1 by taking the values αi,βi,γi,δi as in
that theorem, the values n(c)i j , ri as given in Table 7 and taking X = B given in
Table 1 for the respective hypergraph.

S.
No. Name of the hypergraph ri c n(c)i j

1.
Complete m-uniform

m-partite hypergraph [22]
0 m

n(m)
i j =

0 if i = j
m
∏

p=1,p̸=i, j
np if i ̸= j
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2.
Complete m-uniform weak
k-partite hypergraph, k ≤ m

[22, Example 3.1.2]
0 m

nm
i j(S), where

S = {V (Kc
ni
)}k

i=1.

3.
Complete weak k-partite

hypergraph
0 c

nc
i j(S), where

S = {V (Kc
ni
)}k

i=1.

4.
Join of a collection G of

non-uniform hypergraphs
[22, Theorem 3.2.1]

ri c nc
i j(S), where S = {Vi}k

i=1.

5.
Join of a collection G of

m-uniform hypergraphs [22]
ri m nm

i j(S), where S = {Vi}k
i=1.

Table 7: Necessary values for determining the spectrum of the matrices associ-
ated with the hypergraphs given in Table 1.

5.2. Spectra of hypergraphs constructed by unary hypergraph op-
erations

Notations 5.1. Let X = {2,3, . . . ,nl} and r ∈{1,2, . . . ,n}, where l,k∈N\{1}, l ≤
k; n ∈ N.

(i) For c ∈ X , let us denote

p(c)1 =


∑

t1+t2+···+tl=c−2,
t j≥0, tp>0

for some p(p̸=1)

(n−2
t1

)(n
t2

)
· · ·

(n
ti

)
· · ·

(n
tl

)
if c−2 > 0

0 otherwise.

(2)

and

p(c)2 =


∑

t1+t2+···+tl=c−2,
t j≥0

(n−1
t1

)(n−1
t2

)(n
t3

)(n
t4

)
· · ·

(n
tl

)
if c−2 ≥ 0

0 otherwise.

(3)

(iii) Let x1 := 1
2r−1

(n−1
r−1

)
;

Let x2 :=

{
0 if r = 1;

1
2r−1

(n−2
r−2

)
otherwise.

Let H(V (H),E(H)) be a hypergraph. Consider a weight function W : E(H)→
R≥0 defined by,

W (e) = w|e| for all e ∈ E(H). (4)
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In the following theorem, we obtain the characteristic polynomial of the adja-
cency, the Laplacian, the normalized Laplacian matrices of the weighted hyper-
graphs given in S.Nos.1-36 of Table 2 by assuming a weight function given in
(4) on each of the constituting hypergraphs.

Theorem 5.5. Let H be a hypergraph on n vertices. Consider the hypergraphs
H,Hc,Kn,H with the weight function given in (4). Let G1,G2 ∈{H,Hc,Kn,Kc

n ,H}.
Let V = (V (Gi))

2
i=1 and T ∈ {rT [V], I[V],J[V],ℑr[V],ℑ[V]}. If H is r′-regular,

then the characteristic polynomial of the adjacency (resp. the Laplacian, the
normalized Laplacian) matrix of the weighted hypergraph G1

∨
T

G2 is

n

∏
t=1

(
x2 − x[λt(M(G1)+θ1β In +θ

′
1γJn)+λt(M(G2)+θ2β In +θ

′
2γJn)]

+λt(M(G1)+θ1β In +θ
′
1γJn)×λt(M(G2)+θ2β In +θ

′
2γJn)

−(λt(δaIn +δbJn))
2) ,

where for i = 1,2, t = 1,2, . . . ,n, λt(M(Gi) + θiβ In + θ ′
i γJn) and λt(δaIn +

δbJn) are the co-eigenvalues of the matrices M(Gi)+θiβ In +θ ′
i γJn and δaIn +

δbJn, respectively and the values θi,θ
′
i ,δ and M(Gi) are given in Table 8;

ri =



r′ if Gi = H;

m′− r′ if Gi = Hc;

m− r′ if Gi = H;

m if Gi = Kn;

0 if Gi = Kc
n ,

where m′ = ∑
i∈K

wi
(n−1

i−1

)
, K = {|e| | e ∈ E(H)} and m =

n
∑

i=2
wi

(n−1
i−1

)
.

For i = 1,2, let zi = ri +β + z; z = nγ + a+ nb. The values β ,γ,a and b are
given in Table 9 corresponding to the tensor T and the values p(c)1 and p(c)2 are
given in (2) and (3), respectively when k = l = 2.

Name of the matrix θi θ ′
i δ M(Gi)

Adjacency matrix 1 1 1 A(Gi)

Laplacian matrix
{

z
β

if β ̸= 0,

z if β = 0.
−1 −1 L(Gi)

normalized Laplacian
matrix

{
1
β
− 1

zi
if β ̸= 0,

− 1
zi

if β = 0.
− 1

zi
− 1√

z1z2
− 1

zi
A(Gi)
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Table 8: Necessary values for determining the spectrum of the matrices associ-
ated with the hypergraphs given in Table 2.

Tensor T β γ a b

rT [V] −x2 ·w2r x2 ·w2r w2r(x1 − x2) x2

I[V] 0 0 1 0

J[V] −
2n
∑

c=2

p(c)1 ·wc
c−1

2n
∑

c=2

p(c)1 ·wc
c−1

0
2n
∑

c=2

p(c)2 ·wc
c−1

ℑr[V]
x2 ·w2r −
2n
∑

c=2

p(c)1 ·wc
c−1

−x2 ·w2r +
2n
∑

c=2

p(c)1 ·wc
c−1

w2r(x2 − x1)
−x2 ·w2r +

2n
∑

c=2

p(c)2 ·wc
c−1

ℑ[V] −
2n
∑

c=2

p(c)1 ·wc
c−1

2n
∑

c=2

p(c)1 ·wc
c−1

−x1 ·w2
−x2 ·w2 +

2n
∑

c=2

p(c)2 ·wc
c−1

Table 9: The values of β ,γ,a and b corresponding to the indicating tensor T .

Proof. The adjacency (resp. the Laplacian, the normalized Laplacian) matrix of
G1

∨
T

G2 is of the form,

A=

[
M(G1)+θ1β In +θ ′

1γJn δ (aIn +bJn)

δ (aIn +bJn) M(G2)+θ2β In +θ ′
2γJn

]
2n×2n

where for i = 1,2 the values β ,γ,a and b corresponding to the indicating tensor
T are given in Table 9 and M(Gi), θi, θ ′

i , δ are given in the statement of The-
orem 5.5. Since, Gis are regular hypergraphs, any pair of blocks of A commute
with each other. Thus, the proof follows from Theorem 2.4.

Corollary 5.6. In Theorem 5.5, let G1 = G2 (= G, say) be r-regular and let µ1 =
c,µ2, . . . ,µn be the eigenvalues of M(G). Then the characteristic polynomial of
the adjacency (resp. the Laplacian, the normalized Laplacian) matrix of G

∨
T

G

is

(x2 − (2x− (c+θβ +nθ
′
γ))(c+θβ +nθ

′
γ)−δ

2(a+nb)2)

×
n

∏
i=2

(
x2 −2(µi +θβ )x+(µi +θβ )2 −δ

2a2) ,
where



TENSOR JOIN OF HYPERGRAPHS AND ITS SPECTRA 139

c =



r for the characteristic polynomial of A
(

G
∨
T

G
)

;

0 for the characteristic polynomial of L
(

G
∨
T

G
)

;

− r
z′ for the characteristic polynomial of L

(
G
∨
T

G
)
.

and the values β ,γ,δ ,a,b,θ(= θ1 = θ2),θ
′(= θ ′

1 = θ ′
2),r(= r1 = r2),z′(= z′1 =

z′2) are as given in Theorem 5.5.

Proof. From Theorem 5.5, the characteristic polynomial of the adjacency (resp.
the Laplacian, the normalized Laplacian) matrix of the weighted hypergraph
G
∨
T

G is

n

∏
t=1

(
x2 −2x[λt(M(G)+θβ In +θ

′
γJn)]

+(λt(M(G)+θβ In +θ
′
γJn))

2 − (λt(δaIn +δbJn))
2) , (5)

where θ(= θ1 = θ2),θ
′(= θ ′

1 = θ ′
2),r(= r1 = r2),z′(= z′1 = z′2) are as given in

Theorem 5.5 Since M(G) is a real symmetric matrix of order n with the row
sum c, there exists an orthogonal basis of Rn consisting of its eigenvectors, in-
cluding the all-one vector Jn×1 corresponds to the eigenvalue c. Let us denote
the eigenvectors of M(G) by X1(= Jn×1),X2, . . . ,Xn corresponding to the eigen-
values µ1(= c),µ2, . . . ,µn.

Notice that, λ1(M(G)+θβ In+θ ′γJn)= c+θβ +nθ ′γ and λ1(δaIn+δbJn)=
δ (a+nb) are the co-eigenvalues corresponding to the common eigenvector X1.

For i = 2, . . . ,n, λi(M(G)+θβ In+θ ′γJn) = µi+θβ and λi(δaIn+δbJn) =
δa are the co-eigenvalues corresponding to the common eigenvector Xi. Thus
from equation (5), we have

(
x2 −2x(c+θβ +nθ

′
γ)+(c+θβ +nθ

′
γ)2 −δ

2(a+nb)2)
×

n

∏
i=2

(
x2 −2x(µi +θβ )+(µi +θβ )2 −δ

2a2) .
This completes the proof.

Theorem 5.7. Let Gi(Vi,Ei,Wi), i = 1,2, . . . ,k be k(> 1) copies of a weighted
r′-regular hypergraph H with |V (H)| = n. Then the characteristic polynomial
of the adjacency (resp. the Laplacian, the normalized Laplacian) matrix of the
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weighted hypergraphs given in Table 3 is

n

∏
t=1

[
k (x−λt(αA(H)+β In + γJn)+λt(aIn +bJn))

k

−λt(aIn +bJn)(x−λt(αA(H)+β In + γJn)+λt(aIn +bJn))
k−1

]
,

(6)

where the values α,β ,γ,a,b are given in Table 10 and for t = 1,2, . . . ,n, λt(αA(H)+
β In + γJn), λt(aIn +bJn) are the co-eigenvalues of the matrices αA(H)+β In +
γJn, aIn +bJn, respectively. Let z = r′α +β +nγ +(k−1)a+ k(n−1)b, where
α,β ,γ,a,b are taken corresponding to the matrix of the respective graphs given
in Table 10.
Also, for X = {2,3, . . . , ln}, r ∈ {1,2, . . . ,n}, let

p′1 =
(

k−1
l−1

)
∑
c∈X

wc · p(c)1
c−1

, p′2 =
(

k−2
l−2

)
∑
c∈X

wc · p(c)2
c−1

,

p21 =
wlr

lr−1

(k−2
l−2

)(n−1
r−1

)
, p22 =

{
0 if r = 1;

wlr
lr−1

(k−2
l−2

)(n−2
r−2

)
otherwise,

and p12 =

{
0 if r = 1;

wlr
lr−1

(k−1
l−1

)(n−2
r−2

)
otherwise.

Name of the
hypergraph

Name of
the matrix α β γ a b

Adjacency
matrix

1 −p12 p12 p21 − p22 p22

(l,r)-mirror
hypergraph of H

Laplacian
matrix

−1 z+ p12 −p12 p22 − p21 −p22

normalized
Laplacian

matrix
−1

z 1+ p12
z − p12

z
p22−p21

z
−p22

z

Adjacency
matrix

1 −p′1 p′1 0 p′2

Join
l-neighbourhood
hypergraph of H

Laplacian
matrix

−1 z+ p′1 −p′1 0 −p′2

normalized
Laplacian

matrix
−1

z 1+ p′1
z − p′1

z 0 −p′2
z
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Adjacency
matrix

1 p12 − p′1 p′1 − p12 p22 − p21 p′2 − p22

VC-(l,r)-
neighbourhood

hypergraph of H

Laplacian
matrix

−1 z+ p′1− p12 p12 − p′1 p21 − p22 p22 − p′2

normalized
Laplacian

matrix
−1

z 1+ p′1−p12
z

p12−p′1
z

p21−p22
z

p22−p′2
z

Table 10: Necessary values for determining the spectrum of the matrices asso-
ciated with the hypergraphs given in Table 3

Proof. The adjacency (resp. The Laplacian, The normalized Laplacian) matrix
of the hypergraphs given in Table 10 is of the form

A= Ik ⊗ (αA(H)+β In + γJn)+(Jk − Ik)⊗ (aIn +bJn)

with the values α,β ,γ,a,b corresponding to the hypergraphs as given in Ta-
ble 10. Let

D = Ik ⊗ [λt(αA(H)+β In + γJn)−λt(aIn +bJn)];

Mt =D+[λt(aIn +bJn)× Jk×1 × J1×k].

By Theorem 2.3,

PMt (x) = det(xIk −D−λt(aIn +bJn)Jk×1J1×k)

= det(xIk −D)det(1−λt(aIn +bJn)J1×k(xIk −D)−1Jk×1)

= PD(x)det
(

1− λt(aIn +bJn) · k
x−λt(αA(H)+β In + γJn)+λt(aIn +bJn)

)
,

where PD(x) = (x−λt(αA(H)+β In + γJn)+λt(aIn +bJn))
k . Therefore,

PMt (x) = k(x−λt(αA(H)+β In + γJn)+λt(aIn +bJn))
k

−λt(aIn +bJn)(x−λt(αA(H)+β In + γJn)+λt(aIn +bJn))
k−1.

Applying Theorem 2.4, we have PA(x) =
n

∏
t=1

PMt (x), as desired.

5.3. Spectra of the (H,T )-join of hypergraphs

Let H be a hypergraph and let G = (Gi(Vi,Ei,Wi))
k
i=1 be a sequence of weighted

hypergraphs. Let E be the edge set of the hypergraph G(H,T ). We define a



142 R. VISHNUPRIYA - R. RAJKUMAR

weight function W : E → R≥0 as follows:

W (e′) =

{
Wi(e′) if e′ ∈ Ei;

w|e| if e′ ∈ E(T [Ve]),
(7)

where Ve = (Vi)i∈e for each e ∈ E(H). We denote the hypergraph G(H,T )
together with a weight function W given in (7) by G(H,T ,W ).

Throughout this subsection, we consider a weight function as defined above
for any (H,T )-join of hypergraphs in G.

Theorem 5.8. Let H be a hypergraph on k vertices. Let G = (Gi(Vi,Ei,Wi))
k
i=1

be a sequence of ri-regular weighted hypergraphs Gi with |Vi|= ni and let X =
{2,3, . . . ,N}. For each e ∈ E(H), let Ve = (Vi)i∈e and let T = {T [Ve] | e ∈
E(H)} be such that for each p∈Vi, q∈Vj and c∈X, |Ec

p,q(T [Ve])| is a constant,
say nc

i j(e) for all i, j ∈ e and 1 ≤ i ≤ j ≤ k. Then the characteristic polynomial
of the adjacency (resp. the Laplacian, the normalized Laplacian) matrix of the
weighted hypergraph G(H,T ,W ) is

k
∏
i=1

ni

∏
j=1; j ̸=i

(x−αiλi j −βi)×PR(x),

where λi j is a non-Perron adjacency eigenvalue of Gi for all j = 1,2, . . . ,ni,
i = 1,2, . . . ,k and

R =


r1α1 +β1 +n1γ1 n2δ12∆12 · · · nkδ1k∆1k

n1δ12∆12 r2α2 +β2 +n2γ2 · · · nkδ2k∆2k
...

...
. . .

...
n1δ1k∆1k n2δ2k∆2k · · · rkαk +βk +nkγk


where, ∆i j = ∑

c∈X
∑

i, j∈e,
e∈E(H)

wc ·nc
i j(e)

c−1
and the values αi,βi,γi, δi j can be computed

using Table 5 by taking n(c)i j = ∑
i, j∈e,
e∈E(H)

nc
i j(e) for all 1 ≤ i ≤ j ≤ k in Theorem 5.1.

Proof. As in Theorem 4.5, (H,T )-join of hypergraphs in G can be viewed as a
T [V]-join of hypergraphs in G for some suitable indicating tensor T [V], where
V = (Vi)

k
i=1. Since, p ∈ Vi, q ∈ Vj and c ∈ X , |Ec

p,q(T [Ve])| = nc
i j(e), for all

i, j ∈ e and 1 ≤ i ≤ j ≤ k, we have n(c)i j is a constant and is equal to ∑
i, j∈e,
e∈E(H)

nc
i j(e).

Thus the proof follows from Theorem 5.1.
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In the following corollary, we construct infinite families of cospectral hy-
pergraphs by using the (H,T )-join operation on hypergraphs.

Corollary 5.9. Let H be a hypergraph on k vertices and let Gi(Vi,Ei,Wi), G′
i(V

′
i ,E

′
i ,W

′
i )

be A−cospectral ri-regular weighted hypergraphs for i = 1,2, . . . ,k. Let G =
(Gi)

k
i=1, G′ = (G′

i)
k
i=1 and X = {2,3, . . . ,N}. For each e∈ E(H), let Ve = (Vi)i∈e,

V ′
e = (V ′

i )i∈e. Let T = {T [Ve] | e ∈ E(H)} be such that, for each p ∈Vi, q ∈Vj

and c∈X , |Ec
p,q(T [Ve])| is a constant, say nc

i j(e), for all i, j ∈ e and 1≤ i≤ j ≤ k.
Let T ′ = {T [V ′

e] | e ∈ E(H)}, where T [V ′
e] = T [Ve]. Then the hypergraphs

G(H,T ,W ) and G′(H,T ′,W ) are simultaneously A−cospectral, L−cospectral
and L−cospectral.

Proof. Since Gi and G′
i are ri regular and the values αi, βi, γi, δi depend only

upon the indicating tensor T [Ve], from Theorem 5.8, the matrix R is the same for
the hypergraphs G(H,T ,W ) and G′(H,T ′,W ). Since Gi and G′

i have the same
A-spectrum, the result follows.

Now we proceed to obtain various spectrum of the hypergraphs given in
Table 4 by viewing them as a (H,T )-join of hypergraphs. In the following
corollary, we deduce some results on the spectra of hypergraphs in the literature.

Corollary 5.10. ([22, Theorems 3.2.1, 3.1.1])

(i) Let H be a hypergraph with |V (H)| = k and G = (Gi(Vi,Ei,Wi))
k
i=1 be a

sequence of ri-regular weighted hypergraphs Gi. Then the characteristic
polynomial of the adjacency matrix of the weighted join of set G of non-
uniform hypergraphs on a backbone hypergraph H given in Table 4 is
obtained from Theorem 5.1 by taking the values of zi,αi,βi,γi and δi j as
given in Theorem 5.1 and taking

n(c)i j =


∑

i, j∈e
e∈E(H)

nc
i j(Se) if c ∈ Be;

0 otherwise.

(8)

(ii) Let H be a hypergraph with |V (H)|= k and let G = (Gi(Vi,Ei,Wi))
k
i=1 be

a sequence of ri-regular m-uniform weighted hypergraphs
Gi(Vi,Ei,Wi). Then the characteristic polynomial of the adjacency matrix
of the weighted join of set G of m-uniform hypergraphs on a backbone
hypergraph H given in Table 4 is obtained from Corollary 5.3 by taking
the values of zi,αi,βi,γi and δi j as in Corollary 5.3 and the value of n(c)i j
as given in (8) with c = m.
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Corollary 5.11. The characteristic polynomial of the Laplacian matrix and the
normalized Laplacian matrix of the weighted join of set G of weighted non-
uniform hypergraphs on a backbone hypergraph H given in S.No.1 of Table 4
with the weight function given in (7) can be obtained from Theorem 5.1 by tak-
ing the values zi,αi,βi,γi and δi j corresponds to the Laplacian, the normalized
Laplacian matrices given in Theorem 5.1 and the value n(c)i j as given in (8).

Corollary 5.12. The characteristic polynomial of the Laplacian matrix, the nor-
malized Laplacian matrix of the weighted join of set G of weighted m-uniform
hypergraphs on a backbone hypergraph H given in S.No.2 of Table 4 with the
weight function given in (7) can be obtained from Corollary 5.3 by taking the
values zi,αi,βi,γi and δi j corresponds to the Laplacian, the normalized Lapla-
cian matrices given in Corollary 5.3 and the value n(c)i j as given in (8) with
c = m.

Notation 5.2. For 1 ≤ i ≤ j ≤ k, let

q(c)i j =


∑

{p1,p2,...,pc−2}⊆{1,2,...,k}\{i, j},
|{p1 ,p2 ,...,pc−2}|=c−2

np1np2 . . .npc−2 if i ̸= j;

0 otherwise.

Corollary 5.13. (i) The characteristic polynomials of the adjacency, the Lapla-
cian, the normalized Laplacian matrices of the weighted complete m-
uniform strong k-partite hypergraph and weighted
complete strong k-partite hypergraph mentioned in Table 4 are derived
from Theorem 5.1 by using the necessary values given in Table 11 and αi,
βi, γi, δi are taken as given in Theorem 5.1.

(ii) The characteristic polynomials of the adjacency, the Laplacian, the nor-
malized Laplacian matrices of the weighted lexicographic product of a
hypergraph H and a r-regular weighted hypergraph H ′ mentioned in Ta-
ble 4 are obtained from Theorem 5.8 by taking the values given in S.No.3
of Table 11.

S. No. Name of the hypergraph Values

1.
Complete m-uniform strong

k-partite hypergraph X = {m}; n(m)
i j = q(m)

i j

2.
Complete strong k-partite

hypergraph X = {2,3, . . . ,k}; n(c)i j = q(c)i j
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3.
Lexicographic product of
H(V,E) and H ′(V ′,E ′)

ri = r; ni = n; αi = 1, βi = γi = 0;
X = {|e| |e ∈ E};

nc
i j(e) =

{
|V ′||e|−2 if i ̸= j

0 otherwise.

Table 11: Necessary values to compute the spectrum of the hypergraphs given
in Table 4

Corollary 5.14. If H,H ′ are k-uniform hypergraphs with |V |= n, |V ′|= m and
if H ′ is weighted r-regular, then the characteristic polynomial of the adjacency
matrix of the weighted lexicographic product of H and H ′ is

∏
λ

(x−λ )n
∏
µ

(x− r−µmk−1wk),

where the products run over all the non-Perron eigenvalues λ of A(H ′) and all
the eigenvalues µ of A(H) respectively. The weight function considered in this
lexicographic product is as given in (7).

Proof. The lexicographic product of H and H ′ can be viewed as a (H,T )-join of
hypergraphs as mentioned in Table 4. So we take Gi =H ′, ni =m, ri = r, αi = 1,
βi = γi = 0, δi j = 1 and nk

i j(e) = mk−2 for all 1 ≤ i ≤ j ≤ k in Theorem 5.8. Then
the matrix R becomes rIn +(wkmk−1)A(H). Since it is a polynomial in A(H),
the proof follows.
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