LE MATEMATICHE Vol. LXXVIII (2023) – Issue I, pp. 3–22 doi: 10.4418/2023.78.1.1

ON THE COMPLEMENTS OF UNION OF OPEN BALLS OF FIXED RADIUS IN THE EUCLIDEAN SPACE

M. LONGINETTI - P. MANSELLI - A. VENTURI

Let an *R*-body be the complement of the union of open balls of radius *R* in \mathbb{E}^d . The *R*-hulloid of a closed not empty set *A*, the minimal *R*-body containing *A*, is investigated; if *A* is the set of the vertices of a simplex, the *R*-hulloid of *A* is completely described (if d = 2) and if d > 2 special examples are studied. The class of *R*-bodies is compact in the Hausdorff metric if d = 2, but not compact if d > 2.

1. Introduction

Given a closed set $E \subset \mathbb{E}^d$ ($d \ge 2$), the convex hull of *E* is the intersection of all closed half spaces containing *E*; the convex hull can be considered as a regularization of *E*. Given R > 0, a different hull of *E* could be the intersection of all closed sets, containing *E*, complement of open balls of radius *R* not intersecting *E*. Let us call this set the *R*-hulloid of *E*, denoted as $co_R(E)$; the *R*-bodies are the sets coinciding with their *R*-hulloids. *R*-bodies are called 2*R*-convex sets in [10].

The *R*-hulloid $co_R(E)$ has been introduced by Perkal [10] as a regularization of *E*, hinting that $co_R(E)$ is a mild regularization of a closed set. Mani-Levitska [8] hinted that the *R*-bodies cannot be too irregular.

AMS 2010 Subject Classification: 52A01;52A30

Keywords: generalized convexity, generalized convex hull, reach, simplex

Received on October 16, 2022

In our work it is shown that this may not be true: in Theorem 5.7 an example of a connected set is constructed with disconnected *R*-hulloid. A deeper study gave us the possibility to add new properties to the *R*-bodies: a representation of $co_R(E)$ is given in Theorem 3.4 and new properties of $\partial co_R(E)$ are proved in Theorem 3.5, Theorem 3.6 and Corollary 3.7. Moreover contrasting results on regularity are found: every closed set contained in an hyperplane or in a sphere of radius $r \ge R$ is an *R*-body (Theorems 3.10 and 3.11). As a consequence a problem of Borsuk, quoted by Perkal [10], has a negative answer (Remark 3.10). In § 4 it is shown that the *R*-body regularity heavily depends on the dimension. A definition (Definition 4.3) similar to the classic convexity is given for the class of planar *R*-bodies, namely (Theorem 4.5):

A is an *R*-body iff $co_R(\{a_1,a_2,a_3\}) \subset A \quad \forall a_1,a_2,a_3 \in A$.

As consequence, if d = 2: a sequence of compact *R*-bodies converges in the Hausdorff metric to an *R*-body (Corollary 4.7). If d > 2, in Theorem 3.16 it is proved that a sequence of compact *R*-bodies converges to an $(R - \varepsilon)$ -body, for every $0 < \varepsilon < R$; however, the limit body may not be an *R*-body as an example in § 5 shows. If *E* is connected, properties of connectivity of $co_R(E)$ are investigated in § 4.3.

In [7, Definition 2.1] V. Golubyatnikov and V. Rovenski introduced the class $\mathcal{K}_2^{1/R}$. In Theorem 6.1 it is proved that the class of *R*-bodies is strictly included in $\mathcal{K}_2^{1/R}$. If d = 2, under additional assumptions, it is also proved that the two classes coincide.

2. Definitions and Preliminaries

Let $\mathbb{E}^d, d \ge 2$, be the linear Euclidean Space with unit sphere \mathcal{S}^{d-1} ; $A \subset \mathbb{E}^d$ will be called a **body** if *A* is non empty and closed. The minimal affine space containing *A* will be Lin(A). The convex hull of *A* will be co(A); for notations and results of convex bodies, let us refer to [13].

Definition 2.1. Let *A* be a not empty set.

 $A_{\varepsilon} := \{ x \in \mathbb{E}^d : \operatorname{dist}(A, x) < \varepsilon; \}; A'_{\varepsilon} := \{ x \in \mathbb{E}^d : \operatorname{dist}(A, x) \ge \varepsilon \}; A^- := A \cup \partial A; A^c := \mathbb{E}^d \setminus A; Int(A) = A^- \setminus \partial A.$

B(x,r) will be the open ball of center $x \in \mathbb{E}^d$ and radius r > 0; a sphere of radius r is $\partial B(x,r)$.

Let us recall the following facts for reference.

Proposition 2.2. Let *A* be a not empty set.

• 1 A_{ε} is open; $A_{\varepsilon} = (A^{-})_{\varepsilon} \subset (A_{\varepsilon})^{-}$.

• 2 $A_{\varepsilon} = \{x \in \mathbb{E}^d : \exists a \in A, \text{ for which } x \in B(a, \varepsilon)\} = \{x \in \mathbb{E}^d : B(x, \varepsilon) \cap A \neq \emptyset\}$

$$= \cup_{a \in A} B(a, \varepsilon) = A + B(0, \varepsilon).$$

- **3** $A'_{\varepsilon} = \{x \in \mathbb{E}^d : \forall a \in A, x \notin B(a, \varepsilon)\} = \{x \in \mathbb{E}^d : B(x, \varepsilon) \cap A = \emptyset\} = \cap_{a \in A} B(a, \varepsilon)^c.$
- 4 Let A_i , i = 1, 2 be non empty sets. Then

$$A^1 \subset A^2 \Rightarrow (A^1)_{\varepsilon} \subset (A^2)_{\varepsilon}.$$

• 5 If *E* is non empty, then $E \subset (E'_R)'_R \subset E_R$, see [1, lemma 4.3].

Definition 2.3. ([3]) If $A \subset \mathbb{E}^d$, $a \in A$, then reach(A, a) is the supremum of all numbers ρ such that for every $x \in B(a, \rho)$ there exists a unique point $b \in A$ satisfying |b-x| = dist(x, A). Also:

$$reach(A) := \inf\{reach(A, a) : a \in A\}.$$

Let $b_1, b_2 \in \mathbb{E}^d$, $|b_1 - b_2| < 2R$ and let $\mathfrak{h}(b_1, b_2)$ be the intersection of all closed balls of radius *R* containing b_1, b_2 .

Proposition 2.4. ([1, Theorem 3.8], [11]) The body *A* has reach $\ge R$ if and only if $A \cap \mathfrak{h}(b_1, b_2)$ is connected for every $b_1, b_2 \in A, 0 < |b_1 - b_2| < 2R$.

Remark 2.1. The R-hull of a set *E* was introduced in [1, Definition 4.1] as the minimal set \hat{E} of reach $\geq R$ containing *E*. Therefore if $reach(A) \geq R$, then *A* coincides with its *R*-hull. The R-hull of a set E may not exist, see [1, Example 2].

Proposition 2.5. [1, Theorem 4.4] Let $A \subset \mathbb{E}^d$. If $reach(A'_R) \ge R$ then A admits *R*-hull \hat{A} and

$$\hat{A} = (A_R')_R'.$$

Proposition 2.6. [1, Theorem 4.8] If $A \subset \mathbb{E}^2$ is a connected subset of an open ball of radius *R*, then A admits R-hull.

Let us also recall the following result:

Proposition 2.7. [1, Theorem 3.10], [12]) Let $A \subset \mathbb{E}^d$ be a closed set such that $reach(A) \ge R > 0$. If $D \subset \mathbb{E}^d$ is a closed set such that for every $a, b \in D$, $\mathfrak{h}(a,b) \subset D$ and $A \cap D \neq \emptyset$, then $reach(A \cap D) \ge R$.

5

3. R-bodies

Let *R* be a fixed positive real number. *B* will be any open ball of radius *R*. B(x) will be the open ball of center $x \in \mathbb{E}^d$ and radius *R*. Next definitions have been introduced in [10].

Definition 3.1. Let *A* be a body, *A* will be called an R-body if $\forall y \in A^c$, there exists an open ball *B* in E^d (of radius *R*) satisfying $y \in B \subset A^c$. This is equivalent to say

$$A^c = \bigcup \{B : B \cap A = \emptyset\};$$

that is

$$A = \cap \{B^c : B \cap A = \emptyset\}.$$

Let us notice that for any $r \ge R$ and for every x, the body $(B(x,r))^c$ is an *R*-body.

Definition 3.2. Let $E \subset \mathbb{E}^d$ be a non empty set. The set

$$co_R(E) := \cap \{B^c : B \cap E = \emptyset\}$$

will be called the **R-hulloid** of *E*. Let $co_R(E) = \mathbb{E}^d$ if there are no balls $B \subset E^c$.

Remark 3.1. In [10] the sets defined in Definition 3.1 are called 2R convex sets and the sets defined in Definition 3.2 are called 2R convex hulls. On the other hand Meissner [9] and Valentine [15, pp. 99-101] use the names of *R*-convex sets and *R*-convex hulls for different families of sets. An *s*-convex set is also defined in [4, p. 42]. To avoid misunderstandings we decided to call *R*-bodies and *R*-hulloids the sets defined in Definition 3.1 and in Definition 3.2.

Remark 3.2. Let us notice that $co_R(E)$ is an R-body (by definition) and $E \subset co_R(E)$. Moreover A is an R-body if and only if $A = co_R(A)$. The R-hulloid always exists.

Clearly every convex body *E* is an *R*-body (for all positive *R*) and its convex hull co(E) = E coincides with its *R*-hulloid.

Remark 3.3. It was noticed in [1, Corollary 4.7] and proved in [2, Proposition 1] that, when the R-hull exists, it coincides with the R-hulloid. If *A* has *reach* greater or equal than *R*, then (see remark 2.1) *A* has *R*-hull, which coincides with *A* and with its *R*-hulloid, then *A* is an *R*-body.

Proposition 3.3. Let E be a non empty set. The following facts have been proved in [10].

• **a** $co_R(E) = (E'_R)'_R;$

- **b** $E^- \subset co_R(E);$
- c Let $E^1 \subset E^2$; then $co_R(E^1) \subset co_R(E^2)$;
- **d** $co_R(E^1) \cup co_R(E^2) \subset co_R(E^1 \cup E^2);$
- **e** $co_R(co_R(E)) = co_R(E);$
- **f** Let $A^{(\alpha)}, \alpha \in \mathcal{A}$ be R-bodies, then $\bigcap_{\alpha \in \mathcal{A}} A^{(\alpha)}$ is an R-body;
- **g** diamE = diam $co_R(E)$;
- **h** If *A* is an *R*-body then *A* is an *r*-body for 0 < r < R;
- i $co_R(E) \subset co(E)$ for all R > 0.

Remark 3.4. Let *E* be a body. From **c** of Proposition 3.3 it follows that if *A* is an R-body and $A \supset E$, then $A \supset co_R(E)$ and $co_R(E)$ is the minimal *R*-body containing *E*.

Lemma 3.5. A point $k \in co_R(E)$ if and only if there does not exist any open ball $B(x, l) \ni k$ with $l \ge R$, $B(x, l) \subset E^C$.

Proof. As $(B(x,l))^c$ is an *R*-body, the set $co_R(E) \cap (B(x,l))^c \supset E$ would be an *R*-body strictly included in $co_R(E)$, which is the minimal *R*-body containing *E*.

Lemma 3.6. Let E be a body. Then

$$co_R(E) \subset E_R.$$
 (1)

Moreover there exists E such that $(E_R)^-$ is not an R-body.

Proof. By **5** of Proposition 2.2, $(E'_R)'_R \subset E_R$ and by **a** of Proposition 3.3, the inclusion (1) follows. Let $x_0 \in \mathbb{E}^d$, $R < \rho < 2R$ and let $E = (B(x_0, \rho))^c$. Then $(E_R)^-$ is $(B(x_0, \rho - R))^c$, not an R-body.

Theorem 3.4. Let $E \subset \mathbb{E}^d$ be a body. Then

$$co_R(E) = E_R \cap \left(\partial(E_R)\right)'_R.$$
(2)

Proof. Formula (2) can also be written as:

$$(co_R(E))^c = E'_R \cup \left(\partial(E_R)\right)_R.$$
(3)

Let $\Omega = E'_R \cup \left(\partial(E_R)\right)_R$.

Inclusion (1) implies that $E'_R \subset (co_R(E))^c$. Let us notice that:

$$\left(\partial(E_R)\right)_R = \bigcup\{B(x) : x \in \partial(E_R)\} = \bigcup\{B(x) : \text{dist}(x, E) = R\},\$$

then

$$\left(\partial(E_R)\right)_R \subset \cup\{B(x) : \text{dist} (x, E) \ge R\} = (co_R(E))^c.$$
(4)

Then from (4):

$$\Omega \subset (co_R(E))^c$$

holds too.

The open set $(co_R(E))^c$ is the union of the balls B(x), satisfying $B(x) \cap E = \emptyset$; clearly dist $(x, E) \ge R$; if dist (x, E) = R then $x \in \partial(E_R)$ and $B(x) \subset (\partial(E_R))_R$; if dist (x, E) > R, then $B(x) \subset E'_R$. Therefore

$$(co_R(E))^c \subset \Omega$$
.

Then $\Omega = (co_R(E))^c$.

Remark 3.7. The previous theorem is the analogous, for the *R*-hulloid, of the property of the convex hull of a body E: co(E) is the intersection of all closed half spaces supporting *E*.

If *E* is a compact set, part of the following theorem has been proved in [2, Proposition 2].

Theorem 3.5. Let *E* be a body, $k \in co_R(E)$, $l = inf_{x \in E'_R} |k - x| = \text{dist}(k, E'_R)$. Then *l* is a minimum and $l \ge R$. Moreover l = R if and only if $k \in \partial co_R(E)$ and there exists $x_0 \in E'_R$ satisfying $B(x_0) \subset E^c$, $\partial B(x_0) \ni k$.

Proof. As $co_R(E) = \cap \{B^c : B^c \supset E\}$, then dist $(E'_R, co_R(E)) \ge R$. Let $x_n \in E'_R$ satisfying $|x_n - k| \to l \ge R$; by possibly passing to a subsequence, one can assume that $x_n \to x_0 \in E'_R$, where $|x_0 - k| = l$. If $|x_0 - k| = R$ then $k \in co_R(E) \cap \partial B(x_0)$. As l = R, it cannot be $k \in Int(co_R(E))$. Therefore the claim of the theorem holds.

Theorem 3.6. Let *E* be a body, $k \in \partial co_R(E)$. Then there exists $B \subset E^c$ satisfying $k \in \partial B$. Moreover if $\mathfrak{F} = \{B \subset E^c : \partial B \cap co_R(E) \neq \emptyset\}$, then \mathfrak{F} is not empty and if $B \in \mathfrak{F}$ then $\partial B \cap E \neq \emptyset$.

Proof. If $k \in \partial co_R(E)$, by previous theorem there exists $x_0 \in E'_R$ with the property $B(x_0) \subset E^c$, $\partial B(x_0) \ni k$. If dist $(x_0, E) = l > R$ then $k \in B^1 = B(x_0, l) \subset E^c$, this is impossible by Lemma 3.5 and \mathfrak{F} is non empty. Let $B(x) \in \mathfrak{F}$ and, by contradiction, let $\partial B \cap E = \emptyset$; then, $R_1 = \text{dist}(x, E) > R$. Thus $B(x, R_1)^c$ is an *R*-body containing *E*, then $co_R(E) \subset B(x, R_1)^c$; as $\partial B(x) \subset B(x, R_1)$ so $\partial B(x) \cap co_R(E) = \emptyset$, contradiction with $B(x) \in \mathfrak{F}$.

 \square

Corollary 3.7. Let *A* be an R-body. Then :

(i) $\Xi(A) := \{x : B(x) \subset A^c\}$ (the set of centers of balls of radius R contained in A^c) is closed;

(ii) $\forall y \in \partial A$, there exists $x_0 \in \Xi(A)$ with the property: $y \in \partial B(x_0)$.

Proof. Let x_0 be an accumulation point of $\Xi(A)$ and $\Xi(A) \ni x_n \to x_0$; let $b \in B(x_0)$, then $\lim_{n\to\infty} |b-x_n| = |b-x_0|$ where $|b-x_0| < R$. Thus for *n* sufficiently large $|b-x_n| < R$, therefore $b \in B(x_n) \subset A^c$, $\forall b \in B(x_0)$. Then $B(x_0) \subset A^c$, $x_0 \in \Xi(A)$ and (i) holds.

(ii) follows by Theorem 3.6.

Lemma 3.8. Let A be a body; if A^c is union of closed balls of radius R, then A is an R-body.

Proof. For every $y \in A^c$ there exists $(B(z))^- \subset A^c$, $y \in (B(z))^-$. As *A* and $(B(z))^-$ are closed and disjoint, there exists $R_1 > R$ so that $B(z,R_1) \subset A^c$. Then there exists a ball $B \subset A^c, B \ni y$. Thus A^c is union of open balls of radius *R* and *A* is an *R*-body.

Let us notice that there exist *R*-bodies *A* such that A^c is not union of closed balls of radius *R*. As example, let $A = B^c$.

Theorem 3.8. Let *A* be a body, which is not an R-body. Then there exists $y_0 \in A^c$ such that y_0 belongs to no closed ball of radius *R*, contained in A^c .

Proof. By contradiction, let us assume that every $y \in A^c$ is contained in a closed ball of radius *R* contained in A^c , then A^c is union of closed balls of radius *R* and satisfies the hypothesis of Lemma 3.8, then *A* is an R-body. Impossible.

Let \mathcal{C}^d be the metric space of the compact bodies in \mathbb{E}^d with the Hausdorff distance $\delta_H(F,G) := \min \{ \varepsilon \ge 0 : F \subset G_{\varepsilon}, G \subset F_{\varepsilon} \}.$

From a bounded sequence in C^d one can select a convergent subsequence in the Hausdorff metric (see e.g. [13, Theorem 1.8.4]).

Let $\mathcal{R}^d = \{A \subset \mathcal{C}^d : A \text{ is an } R\text{-body }\}$. Let $A \subset \mathbb{E}^d$ be a body, $\varepsilon > 0$. Let $A_{\varepsilon}^- := \{x \in E^d : dist(A, x) \le \varepsilon\} = (A_{\varepsilon})^-$. $D = B^-$ will be any closed ball of radius R.

Theorem 3.9. Let $A^{(n)}$ be a sequence of compact R-bodies; let us assume that $A^{(n)} \rightarrow A \in C^d$ in the Hausdorff metric. Then, A is an R_{ε} -body for every $0 < R_{\varepsilon} < R$.

Proof. By contradiction, let us assume that A it is not an R_{ε} -body. Then by Theorem 3.8, there exists $y_0 \in A^c$ with the property

 y_0 belongs to no closed ball, of radius $R_{\mathcal{E}}$, subset of A^c . (5)

As dist $(y_0, A) > 0$, then $y_0 \in (A_{\sigma})^c$ for suitable $\sigma > 0$. As $A^{(n)} \to A$ in the Hausdorff metric, there exists a sequence $\varepsilon_n \to 0^+$ satisfying $A^{(n)} \subset A_{\varepsilon_n}$, $A \subset A_{\varepsilon_n}$. For *n* sufficiently large $(A_{\sigma})^c \subset (A_{\varepsilon_n})^c$ and $y_0 \in (A_{\varepsilon_n})^c \subset (A^{(n)})^c$. As $A^{(n)} \in \mathbb{R}^d$, then there exist open balls $B(x_n)$ satisfying $y_0 \in B(x_n) \subset (A^{(n)})^c$; then dist $(x_n, A^{(n)}) \ge R$, dist $(x_n, A) \ge R - \varepsilon_n$.

As $|x_n - y_0| < R$, by possibly passing to a subsequence, $x_n \to x_0 \in \mathbb{E}^d$. The point x_0 satisfies: $|x_0 - y_0| \le R$, dist $(x_0, A) \ge R$. Then $B(x_0) \subset A^c$ and $D := (B(x_0))^-$ is a closed ball of radius R containing y_0 . If $y_0 \in B(x_0)$, then $D_\rho = B^-(x_0, \rho)$, with $\rho = max\{|y_0 - x_0|, R_\epsilon\}$ is a closed ball which provides a contradiction with (5). In case $y_0 \in \partial B(x_0)$ the closed ball enclosed in D, tangent to $\partial B(x_0)$ at y_0 , with radius R_ϵ , provides a contradiction with property (5).

Remark 3.9. In section 5 it will be shown that in \mathbb{E}^3 a limit (in Hausdorff metric) of a sequence of *R*-bodies may be not an *R*-body. In Corollary 4.7 it will be proved that, in \mathbb{E}^2 , a limit of a sequence of *R*-bodies (in Hausdorff metric) is an *R*-body too.

Theorem 3.10. Let $\Sigma = \partial B(r) \subset \mathbb{E}^d$ be a sphere of radius $r \ge R$ and let *E* be a body subset of Σ . Then *E* is an R-body.

Proof. Σ is a topological space with the topology induced by \mathbb{E}^d and *E* is closed in that topology. Then $\Sigma \setminus E$ is union of (d-1)-dimensional open balls in Σ . Let $D = (B(r))^-$, as $\mathbb{E}^d \setminus \Sigma = B(r) \cup D^c$, then

$$\mathbb{E}^d \setminus E = B(r) \cup D^c \cup (\Sigma \setminus E)$$

is union of the following open balls of radius *R*:

(i) all open balls of radius *R* contained in B(r), which fill B(r) since $r \ge R$;

(ii) all open balls *B* of radius *R* contained in D^c ;

(iii) all open balls *B* of radius *R* satisfying the property: $B \cap \Sigma$ is a (d-1)-dimensional open ball in $\Sigma \setminus E$.

So *E* is an R-body.

With a similar proof, the following fact can be proved.

Theorem 3.11. Let $E \subset \mathbb{E}^d$ be a body, subset of a hyperplane Π . Then *E* is an R-body.

Remark 3.10. In [10], p.9, a question of Borsuk was stated: 'Are the *R*-bodies locally contractible?'.

The Borsuk's question has a negative answer: let Π be an hyperplane in E^d . By Theorem 3.11 every body, subset of Π , is an *R*-body; then there exist not locally contractible bodies subsets of Π .

4. Properties of R-bodies in \mathbb{E}^2 .

4.1. *R*-hulloid of three points in \mathbb{E}^2 .

Let *R* be a fixed positive real number. Let *T* be a not degenerate triangle in \mathbb{E}^2 , $V = \{x_1, x_2, x_3\}$ be the set of its vertices, r(V) be the radius of the circle circumscribed to *T*. By Theorem 3.10, if $r(V) \ge R$, then $co_R(V) = V$.

Proposition 4.1. Let $\{x_1, x_2, x_3\}$ be the vertices of a triangle *T* inscribed in a circumference *C* of radius *r*. Three possible cases may occur:

- i) ([6, pag 16]) if T is acute-angled then the three circumferences of radius r, each one through two vertices of T, different from C, meet in the orthocenter y of T;
- ii) if *T* is obtuse-angled in x_3 then the two circumferences of radius *r* through the vertices $\{x_1, x_3\}$ and $\{x_2, x_3\}$, respectively, different from *C*, meet *C* in x_3 and in a point exterior to T;
- iii) if *T* is right-angled at x_3 then the two circumferences of radius *r* through the vertices $\{x_1, x_3\}$ and $\{x_2, x_3\}$, different from *C*, are tangent at x_3 .

Proof. i) it is related to the Johnson's Theorem [5]; ii) and iii) follows by construction. \Box

Theorem 4.2. Let $V = \{x_1, x_2, x_3\}$ be the set of the vertices of a triangle *T* with circumradius r = r(V). If r(V) < R, then

$$co_R(V) = V \cup \tilde{T},$$

where $\tilde{T} \subset T$ is the curvilinear triangle bordered by three arcs of circumferences of radius *R*; each one through two vertices of *T* and relative to the circle not containing the remaining vertex of *T*. If *T* is a right-angled or obtuse-angled then the vertex of the greatest angle of *T* is also a vertex of \tilde{T} , that is the end point of two consecutive arcs of $\partial \tilde{T}$.

Proof. Let $B(q_i, r), B(c_i, R)$ be the open circles, not containing x_i , with boundary through the two vertices of T different from $x_i, i = 1, 2, 3$. In the case i) of Proposition 4.1, the orthocenter y of T is in the interior of T and $y \in \bigcap_{i=1,2,3} \partial B(q_i, r)$. As $R > r : T \cap B(c_i, R) \subsetneq T \cap B(q_i, r)$, then dist $(y, B(c_i, R)) > 0$, (i = 1, 2, 3). Thus

$$\tilde{T} :\equiv T \cap \left(\bigcup_{j=1}^{3} B(c_j, R)\right)^C \tag{6}$$

is a curvilinear triangle with $y \in Int(\tilde{T})$; moreover $\partial \tilde{T}$ is union of of three arcs of the circumferences $\partial B(c_i, R)$ (i = 1, 2, 3).

If *T* is obtuse-angled at x_3 , case ii) of Proposition 4.1), the two circumferences $\partial B(c_i, R)$ containing x_3 and another vertex of *T* cross each other in x_3 and in a point exterior to *T*. If *T* is right-angled at x_3 the two circumferences $\partial B(q_i, r)$ meet and are tangent to each other in x_3 , then again the circumferences $\partial B(c_i, R)$ cross each other in x_3 and in a point exterior to *T*. In both cases dist $(x_3, B(c_3, R)) > 0$ and \tilde{T} , given by (6), is a curvilinear triangle with a vertex at x_3 .

4.2. Two dimensional *R*-bodies, equivalent definitions

Definition 4.3. Let a_1, a_2 be two points in \mathbb{E}^2 , with $0 < |a_1 - a_2| < 2R$. Let $B(x_1), B(x_2)$ the two open circles with the boundaries through a_1, a_2 . Let us define

$$H(a_1, a_2) = B(x_1) \cup B(x_2),$$

and let $\mathfrak{h}(a_1, a_2)$ be the intersection of all closed balls of radius R containing a_1, a_2 .

Definition 4.4. Let *A* be a planar body. *A* satisfies the property \mathfrak{Q}_R if :

 $\forall a_1, a_2, a_3 \in A$ the *R*-hulloid of the set $\{a_1, a_2, a_3\}$ is a subset of *A*.

When *x*, *y* are points on a circumference ∂B , let us denote with $arc_{\partial B}(x, y)$ the shorter arc on ∂B from *x* to *y*.

Lemma 4.1. Let A be a planar body. If A satisfies the property \mathfrak{Q}_R , then

$$\{a_1, a_2\} \subset A, 0 < |a_1 - a_2| < 2R : \mathfrak{h}(a_1, a_2) \setminus \{a_1, a_2\} \subset A^c \Rightarrow H(a_1, a_2) \subset A^c.$$
(7)

Proof. Let $H(a_1, a_2) = B(x_1) \cup B(x_2)$. Let us assume, by contradiction, that there exist $a_3 \in A \cap (B(x_1) \setminus \mathfrak{h}(a_1, a_2))$. Let $T = co(\{a_1, a_2, a_3\})$, then r(T) < R. By Theorem 4.2 there exist $y_1, y_2 \in arc_{\partial B(x_2)}(a_1, a_2)$ satisfying

$$arc_{\partial B(x_2)}(y_1, y_2) \subset co_R(\{a_1, a_2, a_3\}) \subset A.$$

As

$$arc_{\partial B(x_2)}(y_1, y_2) \subset \mathfrak{h}(a_1, a_2) \setminus \{a_1, a_2\} \subset A^c$$

this is impossible. The proof is similar if $a_3 \in B(x_2)$.

Theorem 4.5. Let *A* be a planar body. *A* is an *R*-body if and only if *A* satisfies the property \mathfrak{Q}_R .

Proof. Let A be an R-body then $co_R(\{a_1, a_2, a_3\}) \subset co_R(A) = A$ and \mathfrak{Q}_R holds for A.

On the other hand let assume the property \mathfrak{Q}_R holds for a body *A*. Let us prove that *A* is an *R*-body, by showing:

if
$$y_0 \in A^c$$
 then $\exists B \ni y_0, B \subset A^c$. (8)

Let $y_0 \in A^c$, then there exists $\delta > 0$ such that dist $(y_0, A) = \delta$. If $\delta \ge R$, then $B(y_0, R) \subset B(y_0, \delta)$ and (8) holds. Let $\delta < R$. By definition of δ , there exists $a_1 \in A \cap \partial B(y_0, \delta)$ and $B(y_0, \delta) \subset A^c$. There are two cases:

i) there exists a point $a_2 \neq a_1, a_2 \in A \cap \partial B(y_0, \delta)$; ii) $A \cap \partial B(y_0, \delta) = \{a_1\}.$

In the case i), $\mathfrak{h}(a_1, a_2) \setminus \{a_1, a_2\} \subset B(y_0, \delta) \subset A^c$. Let $H(a_1, a_2) = B(x_1) \cup B(x_2)$; by Lemma 4.1 the following inclusion holds:

$$H(a_1, a_2) \subset A^c. \tag{9}$$

As $y_0 \in B(x_1)$ or $y_0 \in B(x_2)$ and both balls $B(x_1)$, i = 1, 2 have empty intersection with *A*, then y_0 satisfies (8).

In the case ii) on $\partial B(y_0, \delta)$ let a_* be the symmetric point of a_1 with respect to the center y_0 . For t > 2 let $a(t) = a_1 + (t-1)(a_* - a_1)$. Let $t_R > 2$ be such that $|a_1 - a(t_R)| = 2R$. The set function $t \to \mathfrak{h}(a_1, a(t)) \setminus \{a_1\}$, for $2 \le t < t_R$, is strictly increasing with respect to the inclusion. If for all $2 \le t < t_R$ the set $\mathfrak{h}(a_1, a(t)) \setminus \{a_1\} \subset A^c$ then $\lim_{t \to t_R} \mathfrak{h}(a_1, a(t))$ is a closed ball $D \ni y_0$ of radius $R, A^c \supset Int(D) \ni y_0$ and (8) holds. Otherwise, there exists $2 < \tau < t_R$ satisfying $\mathfrak{h}(a_1, a(\tau)) \setminus \{a_1\} \cap A \neq \emptyset$. Let

$$\bar{t} = Inf\{t \in [2, t_R] : \left(\mathfrak{h}(a_1, a(t)) \setminus \{a_1\}\right) \cap A \neq \emptyset\}$$

and let

$$2 \le t \le t_R \to F(t) := \left(\mathfrak{h}(a_1, a(t)) \setminus \{a_1\}\right) \cap (B(y_0, \delta))^c.$$
(10)

By construction $\{F(t)\}$ is a continuous family of bodies, strictly monotone with respect to the inclusion, with dist (F(t),A) > 0 for $t < \overline{t}$. Then $F(\overline{t}) \cap A \neq \emptyset$, $Int(F(\overline{t})) \subset A^c$ and dist $(a_1,F(\overline{t})) > 0$. Therefore there exists $a_2 \in \partial F(\overline{t}) \cap \partial A$ of minimum distance from a_1 . This implies that $arc_{\partial F(\overline{t})}(a_1,a_2)$ has no interior points of the body A. Then, $\mathfrak{h}(a_1,a_2) \setminus \{a_1,a_2\} \subset A^c$; by arguing as in case i), the inclusion (9) holds and y_0 satisfies (8).

Theorem 4.6. Let $A \subset \mathbb{E}^2$ be a body. If *A* is a ρ -body for every positive $\rho < R$ then *A* is an *R*-body.

Proof. If *A* is ρ -body the property \mathfrak{Q}_{ρ} holds for $\rho < R$. Let us show that it holds for $\rho = R$. Let $a_1, a_2, a_3 \in A$, with $r(\{a_1, a_2, a_3\}) \ge R$, then $co_R(\{a_1, a_2, a_3\}) = \{a_1, a_2, a_3\} \subset A$. In case $r(\{a_1, a_2, a_3\}) < R$ let $\rho > r(\{a_1, a_2, a_3\})$; by Theorem 4.2, with ρ instead of *R* and a_1, a_2, a_3 in place of x_1, x_2, x_3 , it follows

$$co_{\rho}(\{a_1, a_2, a_3\}) = \{a_1, a_2, a_3\} \bigcup \tilde{T}_{\rho}.$$

 \tilde{T}_{ρ} a curvilinear triangle subset of *A*, bounded by arcs of radius ρ . As *A* is closed and $\tilde{T}_{\rho} \to \tilde{T}$, then $\tilde{T} \subset A$. Therefore \mathfrak{Q}_R holds too and previous theorem proves that *A* is an *R*-body.

From Theorem 4.6 and Theorem 3.9 it follows

Corollary 4.7. A limit of a sequence of planar *R*-bodies (in Hausdorff metric) is an *R*-body too.

Remark 4.2. With arguments similar to the proof of Theorem 4.5, it can also be proved that for a planar body *A* the property \mathfrak{Q}_R is equivalent to the property (7).

4.3. Connected and disconnected *R*-bodies in \mathbb{E}^2

Theorem 4.8. Let *E* be a connected body in \mathbb{E}^2 , contained in an open ball *B* of radius *R*; then $co_R(E)$ is connected.

Proof. As *E* is connected, by Proposition 2.6, *E* admits *R*-hull *A* of *reach* \ge *R*; then, by Remark 3.2, *A* = $co_R(E)$. By Proposition 2.4 the set *A* is connected. \Box

In the previous theorem the assumption that E is contained in an open ball of radius R is needed as the following example shows.

Example 1. In E^2 let $\Sigma_0 := \partial B(0, R_0)$, with

$$\frac{R}{\sqrt{3}} < R_o < R.$$

Let $k_i \in \Sigma_0$, i = 1, 2, 3 be the vertices of an equilateral triangle *T* and let $\partial B(o_j, R)$ the circumference, through the two points $k_i, i \neq j$, with $k_j \notin B(o_j, R)$. Let $D := (B(0, 4R))^-$ and

$$E := D \cap \left(B(0,R_0) \bigcup_{j=1}^3 B(o_j,R) \right)^c$$

Then E is a planar connected body with disconnected R-hulloid.

Proof. It is obvious that *E* is connected since it is homotopic to a ring. E^c is an open set since E^c is the union of D^c and open balls. As $R_0 < R$ and $\forall i \neq j, k_i \in \partial B(o_j), k_j \notin B(o_j)$ the set E^c does not contain the set of the vertices k_i . Let

$$\tilde{T} :\equiv \left(\bigcup_{j=1}^{3} B(o_j, R) \cup B(0, R_0)\right) \setminus \left(\bigcup_{j=1}^{3} B(o_j, R)\right).$$

 \tilde{T} is a curvilinear triangle and it is a closed connected set disjoint from E; moreover any point of \tilde{T} can not lie in an open circle of radius R avoiding all the vertices k_i of the equilateral triangle T. Then, by Lemma 3.5, $E \cup \tilde{T} \subset co_R(E)$; as the complementary of $E \cup \tilde{T}$ is $D^c \cup_j B(o_j, R)$, union of open balls of radius R, then $E \cup \tilde{T}$ is an R-body, that is

$$co_R(E) = E \cup \tilde{T}$$

which is a disconnected *R*-body.

The previous example can be modified to get a simply connected set E_* such that $co_R(E_*)$ is disconnected. Let us consider $E_* = E \cap W^c$, where W is a small strip from $\partial B(o_1, R)$ to $\partial D(4, R)$. Clearly $co_R(E_*) = co_R(E)$ is disconnected and E_* is a simply connected set.

5. *R*-hulloid of the vertices of a simplex in \mathbb{R}^d

Definition 5.1. Let $d \ge 2$, $1 \le n \le d$. Let $\{v_1, \ldots, v_{n+1}\} \subset \mathbb{R}^d$ be a family of affinely indipendent points and let $V = \{v_1, \ldots, v_{n+1}\} \subset \mathbb{R}^d$. An *n*-simplex is the set T = co(V).

Let T = co(V); the (d-1)-simplexes $T_i = co(V \setminus \{v_i\}), (i = 1, ..., d+1)$ are called the facets of T. If V lies on a sphere, centered in Lin(T), and its points are equidistant, then T will be called a regular simplex.

It is well known the following fact: let *V* the set of the vertices of a *d*-simplex *T* in \mathbb{E}^d . There exists a unique open ball B(V) such that all the vertices in *V* belong to $\partial B(V)$, called the circumball to co(V). Let us notice that $D(V) = (B(V))^-$ does not coincide (in general) with the closed ball of minimum radius containing *V*, as an obtuse isosceles triangle shows.

Definition 5.2. Let $1 < n \le d$; if *T* is a *n*-simplex, the circumcenter c(T) and the circumradius r(T) are the center and the radius respectively, of the unique open ball B(c(T), r(T)), called circumball of *T*, such that: i) $c(T) \in Lin(T)$; ii) $\partial B(c(T), r(T)) \supset V$.

Let us denote

$$r(V) :\equiv r(co(V)), c(V) :\equiv c(co(V)), B(V) :\equiv B(c(V), r(V)).$$

From Theorem 3.10 it follows that

Corollary 5.3. If $r(V) \ge R$ then

$$co_R(V) = V. \tag{11}$$

Definition 5.4. Let R > 0. The *R*-hulloid of *V* will be called full if its interior is not empty.

If d = 2, let V be the set of the vertices of a triangle with circumradius less than R; by Theorem 4.2, $co_R(V)$ is full.

5.1. Examples of *R*-hulloid of the vertices of a simplex in \mathbb{E}^d

Convex sets on S^{d-1} have been studied in [14]. Here properties of regular simplexes on S^{d-1} are recalled and used. If *S* is a regular simplex, centroid and circumcenter coincide.

Lemma 5.1. Let $d > 1, R_0 > 0, \Sigma_0 := \partial B(0, R_0)$ in \mathbb{E}^d . Let $W = \{k_1, \dots, k_{d+1}\} \subset \Sigma_0$ be the set of the vertices of a regular *d*-simplex *S* on Σ_0 . Then

$$\langle k_i, k_j \rangle = -R_0^2/d, \quad i \neq j$$
 (12)

and

$$|k_i - k_j| = \sqrt{2\frac{d+1}{d}}R_0.$$
 (13)

Let $W_i = W \setminus \{k_i\}$ and let $\Sigma_i \subset \Sigma_0$ be the (d-1)-dimensional sphere through the points of W_i . Then Σ_i has center $-k_i/d$; moreover $\forall p \in \Sigma_0$

the spherical distance on Σ_0 from p to W is less or equal to $R_0 \arccos 1/d$. (14)

Proof. As the centroid of S is 0, then

$$\sum_{i=1}^{d+1} k_i = 0, \quad |k_i|^2 = R_0^2, \quad \langle k_i, k_j \rangle = R_0^2 \cos \phi \quad (i, j = 1, \dots, d+1), i \neq j$$

and

$$0 = \langle k_j, \sum_{i=1}^{d+1} k_i \rangle = (R_0)^2 + d(R_0)^2 \cos \phi \quad (j = 1, \dots, d+1).$$

Therefore $\cos \phi = -\frac{1}{d}$; so (12) and (13) hold.

As $S_i = co(W_i)$ is an equilateral (d-1)-simplex, the centroid of S_i will be $\frac{1}{d}\sum_{j\neq i}k_j = -k_i/d$ and coincides with the center of Σ_i . Let \tilde{F}_j the spherical (d-1)-dimensional ball on Σ_0 of center $-k_j$ bounded by Σ_j . Then \tilde{F}_j has spherical radius

$$R_0 \arccos \frac{\langle -k_i, k_j \rangle}{R_0^2} = R_0 \arccos 1/d.$$

As $\cup_{j=1}^{d+1} \tilde{F}_j = \Sigma_0$ the thesis follows.

Theorem 5.5. Let d > 2 and let *S* be the regular simplex introduced in Lemma 5.1; let $R = \frac{d}{2}R_0$. Then the set *W* of its vertices is not an *R*-body and $co_R(W) = W \cup \{0\}$ is not full.

Proof. Let $B(o_i, \rho_i)$ with the property that

$$\partial B(o_j, \rho_j) \supset \{0, k_1, \dots, k_{j-1}, k_{j+1}, \dots, k_{d+1}\}.$$

Clearly $o_j = -\lambda k_j, (\lambda > 0)$. As $|o_j - 0|^2 = |o_j - k_i|^2, i \neq j$ then
 $(\lambda R_0)^2 = (\lambda R_0)^2 + (R_0)^2 + 2\lambda (R_0)^2 \cos \phi,$

therefore $\lambda = \frac{d}{2}$, $o_j = -\frac{d}{2}k_j$ and $\rho_j = |o_j - 0| = \frac{dR_0}{2} = R$. From (13) it follows

From (13) it follows

$$|o_i - o_j| = 2R\sqrt{\frac{1}{2} + \frac{1}{2d}}, \quad j \neq i.$$
 (15)

Claim Q: Let $R - R_0 < |z| \le R$, $Q_z := B(0, R_0) \cap B(z, R)$. Then $\partial Q_z \cap \Sigma_0$ is a spherical (d-1) dimensional ball on Σ_0 of radius r. If |z| < R then

$$r > R_0 \arccos 1/d$$
.

Proof: let v = z/|z|, the family of $Q_{\lambda v}$ is ordered by inclusion for $R - R_0 < \lambda \leq R$, with minimum set for $\lambda = R$; for $\lambda = R$ the spherical (d-1) dimensional ball $\partial Q_{R_0 z/|z|}$ has radius $R_0 \arccos 1/d$.

If $R - R_0 < |z| < R$, then from Claim Q and (14), any open ball B(z,R), which contains the point 0 contains at least one of the vertices k_i , i = 1, ..., d + 1. As $0 \notin W$ the set W is not an R-body. Moreover since

$$(W \cup \{0\})^c = \bigcup_{j=1}^{d+1} B(o_j, R) \bigcup (co(W))^c,$$

then $W \cup \{0\}$ is an *R*-body containing *W*; then $W \cup \{0\}$ is the *R*-hulloid of *W* and it has empty interior.

Theorem 5.6. In \mathbb{E}^3 there exist sequences of *R*-bodies with limit, in the Hausdorff metric, a body that is not an *R*-body.

Proof. Let us use the notations of Lemma 5.1 in the special case d = 3.

Let $k_i, i = 1, ..., 4$ the vertices of a regular simplex in \mathbb{E}^3 on the sphere $\Sigma_0 := \partial B(0, R_0), R_0 = \frac{2R}{3}$.

For any fixed i = 1, ..., 4 the vertices $k_j, j \neq i$ belong to the boundary of the ball $B(o_i, R)$, with $o_i = -\frac{3}{2}k_i$.

From (12) it follows that

$$< o_j, k_i > = \frac{2}{9}R^2, \quad i \neq j, \quad i, j = 1, \dots, 4$$

Let $\varepsilon \to 0^+$ and let $x_i^{(n)} = k_i + \varepsilon_n \frac{k_i}{|k_i|}, i = 1, \dots, 4$. The points $x_i^{(n)}$ are the vertices of a regular simplex $T^{(n)}$ in \mathbb{E}^3 . For $i \neq j$ let $R_n = |o_i - x_j^{(n)}|$, then

$$R_n^2 = R^2 + \varepsilon_n^2 + 2 < k_i - o_j, k_i / |k_i| > \varepsilon_n = R^2 + \varepsilon_n^2 + \frac{2}{3}R\varepsilon_n > R^2.$$

For all $n \in \mathbb{N}$ let

$$W^{(n)} := \{x_1^{(n)}, \dots, x_4^{(n)}\} = T^{(n)} \cap (\bigcup_{i=1}^4 B(o_i, R_n))^c$$

As the complementary of the union of open balls of radius greater than *R* is an *R*-body and $T^{(n)}$ is convex then $V^{(n)}$ is an *R*-body too. The limit of $W^{(n)}$ is $W = \{x_1, \ldots, x_4\}$ which is not an *R*-body as proved in Theorem 5.5.

Theorem 5.7. Let $d \ge 3$; in \mathbb{E}^d there exist connected bodies in a ball of radius $\sqrt{2R}$ with disconnected R-hulloid.

Proof. Let us consider the regular simplex *S* in \mathbb{E}^d , defined in Theorem 5.5, with vertices on $\Sigma_0 := \partial B(0, R_0), R_0 := \frac{2R}{d}$.

The (d-2) spherical surface $L_{i,j} := \overline{\partial} B(o_i, R) \cap \partial B(o_j, R), i \neq j$, has center at $\frac{o_i + o_j}{2}$ and contains 0. Then, by (15), $L_{i,j}$ has radius

$$|(o_i + o_j)/2| = \sqrt{R^2 - R^2(\frac{1}{2} + \frac{1}{2d})} = R\sqrt{\frac{1}{2} - \frac{1}{2d}}.$$

Then, the maximum distance of $L_{i,j}$ from 0 is

$$2R\sqrt{\frac{1}{2}-\frac{1}{2d}}<\sqrt{2}R.$$

Let $D := (B(0, \sqrt{2R}))^{-}$ and let

$$E := D \cap \left(\bigcup_{j=1}^{d+1} B(o_j, R) \cup \{0\}\right)^c.$$

$$(16)$$

Claim 1: E is connected.

First let us consider the (d-1) spherical balls $U_i = B(o_i) \cap \partial B(0, \sqrt{2R})$ centered at $c_i = \sqrt{2}o_i$. As $0 \in \partial B(o_i, R)$, then by elementary geometric arguments, the spherical radius of U_i is $\frac{\pi}{4}\sqrt{2R}$. By (15), the spherical distance between o_i and o_i on $\partial B(0, R)$ is

$$2R\arcsin\sqrt{\frac{1}{2}+\frac{1}{2d}}>\frac{\pi}{2}R.$$

Then, the spherical distance between c_i and c_j is greater than $\frac{\pi}{2}\sqrt{2R}$. Since the (d-1) spherical balls U_i have radius $\frac{\pi}{4}\sqrt{2R}$, they are disjoints and

$$\mathcal{E} = \partial B(0, \sqrt{2R}) \setminus \bigcup_{i=1}^{d+1} S_i$$

is a connected subset of ∂E . Let us consider now $x \in E$, then $x \notin B(o_i, R)$; since $0 \in \partial B(o_i, R)$, then $\lambda x \notin B(o_i)$ for $\lambda \ge 1$. Therefore the segment connecting x to $\sqrt{2} \frac{x}{|x|} R \in \mathcal{E}$ is a subset of E. Claim 1 follows.

Claim 2: E^c is an open set.

As

$$E^{c} = D^{c} \cup \left(\bigcup_{j=1}^{d+1} B(o_{j}, R) \cup \{0\}\right),$$

it is enough to show that $\{0\} \subset Int(E^c)$. This follows from the fact that $\{0\}$ is in the interior of the simplex *S*, and $Int(S) \subset E^c$.

Claim 3: The set of the vertices of S is contained in E.

For each *i* the vertex $k_i \in \partial B(o_j, R), j \neq i$ and $k_i \notin B(o_i, R)^-$.

E is a closed set from Claim 2; from Claim 3 and (16) it follows that *E* is not an *R*-body, since any open ball of radius *R*, containing $0 \in E^c$, cannot be contained in E^c .

Claim 4: *The point* 0 *has a positive distance from E*. Let us consider for i = 1, ..., d + 1 the simplexes

$$S_i = co(\{0, k_1, \dots, k_{i-1}, k_{i+1}, k_{d+1}\}).$$

Then $S = \bigcup_i S_i$. Let $0 < \varepsilon < \text{dist } (0, S_i)$, where S_i are the facets of S; as $B(0, \varepsilon) \subset \bigcup_i B(0, \varepsilon) \cap S_i$, then

dist
$$(0,E) \geq \varepsilon$$
.

Let us consider now the body $E \cup \{0\}$. Since

$$(E \cup \{0\})^c = D^c \cup \left(\bigcup_{j=1}^{d+1} B(c_j, R)\right),$$

then $E \cup \{0\}$ is by definition an *R*-body and is the minimal *R*-body containing *E*. Then $co_R(E) = E \cup \{0\}$ which is a not connected set, since is the union of two closed disjoint sets.

6. R-bodies and other classes of bodies

In Remark 3.3 it is noticed that the class of R-bodies contains the class of bodies which have reach greater or equal than R.

The following class has been introduced in [7]: the class $\mathcal{K}_2^{1/R}$ of bodies *A* satisfying the following property:

$$\forall x \in A^c$$
 there exists a closed ball $D(R) \ni x : D(R) \cap Int(A) = \emptyset.$ (17)

Theorem 6.1. The following strict inclusion holds:

$$R\text{-bodies} \subsetneq \mathcal{K}_2^{1/R}.$$
(18)

Moreover let $A \in \mathcal{K}_2^{1/R}$ and $A = (Int(A))^-$, then:

i) if d = 2, then A is an R-body;

ii) if d > 2, then A can be not an R-body.

Proof. The inclusion (18) is obvious: since if A is an R-body and $x \in A^c$, then $x \in B(R)$ and $B(R) \cap A = \emptyset$; therefore $\partial B(R) \cap Int(A) = \emptyset$. Then, if $x \in D(R) = \partial B(R) \cup B(R)$ thus $D(R) \cap Int(A) = \emptyset$. The inclusion is strict: let $E = D(0, r) \cap B(0, R)^c \cup \partial B(0, r_1)$, with $r_1 < R < r$. Then E is not an R-body as if $x \in B(0, R) \setminus \partial B(0, r_1)$ there is no ball $B \subset E^c$ containing x; on the other hand $E \in \mathcal{K}_2^{1/R}$.

Let d = 2 and $A \in \mathcal{K}_2^{1/R}$, $A = (Int(A))^-$. By contradiction, if A is not an R-body, then, by Theorem 4.5, there exist $a_1, a_2, a_3 \in A$ such that there exists $z \in co_R(\{a_1, a_2, a_3\}) \cap A^c$. Since $z \neq a_i, i = 1, 2, 3$, then $co_R(\{a_1, a_2, a_3\})$ strictly contains $\{a_1, a_2, a_3\}$; by Corollary 5.3 with $V = \{a_1, a_2, a_3\}$, it follows that r(V) < R. Thus by Theorem 4.2, it follows that

$$co_R(V) = V \cup \tilde{T}.$$

 \tilde{T} is a curvilinear triangle with $(int(\tilde{T}))^- = \tilde{T}$. Since $z \in \tilde{T} \cap A^c$ and A^c is open, then there exists $\tilde{z} \in Int(\tilde{T}) \cap A^c$. As

$$\tilde{z} \in Int(\tilde{T}) \subset int(co_R(V)),$$

every ball $D(R) \ni \tilde{z}$ contains at least one of the vertices a_i in its interior, let a_1 . Then D(R) contains a neighborhood U of $a_1 \in A$. Since $A = (Int(A))^-$, a_1 can not be an isolated point of A, and in U there are points of int(A). Therefore property (17) does not hold for $\tilde{z} \in A^c$ and $A \notin \mathcal{K}_2^{1/R}$, contradiction.

In case ii), let us consider the set *E* defined by (16) of Theorem 5.7. *E* is not an *R*-body but $E \cup \{0\}$ is it. Then any point of E^c , different from 0 satisfies property (17); moreover

$$Int(E) = Int(D) \cap_{j=1}^{d+1} D(o_j, R)^c \cap \{0\}^c,$$

then 0 satisfies property (17) too, since the closed ball $D(o_1, R)$ does not intersect Int(E). Then $E \in \mathcal{K}_2^{1/R}$ and E is not an R-body. Moreover it easy to see that $E = (Int(E))^-$.

Acknowledgment

This work has been partially supported by INDAM-GNAMPA(2022) and dedicated to our unforgettable friend Orazio Arena.

REFERENCES

- [1] A. Colesanti, P. Manselli, *Geometric and Isoperimetric properties of sets of positive reach in* \mathbb{E}^d , Atti Sem. Math. Fis. Univ. Modena. 57(2010), 97-113.
- [2] A. Cuevas, R. Fraiman, B. Pateiro-López, *On statistical properties of sets fulfilling rolling-type conditions*, Adv. App. Probab. (S.G.S.A.) 44(2012), 311-329.
- [3] H. Federer, Curvature measures, Trans. Amer. Math. Soc. 93(1959), 418-481.
- [4] W. Fenchel, Convex Cones, Sets and Functions, Princeton Univ. Press, 1953.
- [5] R.A. Johnson, A Circle Theorem, Amer. Math. Monthly 23(1916), 161-162.
- [6] R. A. Johnson, Advanced Euclidean Geometry, Dover Publication, 1960.
- [7] V. Golubyatnikov, V. Rovenski, *Determination of sets with positive reach by their projection type images*, Inv. Ill-Posed Problems 19 (2011), 407–428.
- [8] P.Mani-Levitska, *Characterizations of convex sets*, (P.M.Gruber and J.M Wills, eds) Handbook of Convex geometry, Vol. A, Elsevier Amsterdam, 1993, 19-41.
- [9] E. Meissner, Über Funtmengen Costanter Breite, Vjsch. Natureforch. Geo. Zürich 56(1911), 42-50.
- [10] J. Perkal, Sur les ensembles ε-convexes, Colloq. Math. Comm. vol IV (1956), Fasc 1, 1-10.

- [11] J. Rataj, *Determination of spherical area measures by means of dilation volumes*, Math. Nachr. 235(2002), 143-162.
- [12] J. Rataj, *On estimation of Euler number by projections of thin slabs*, Adv. App. Prob. 36(2004), 715-724.
- [13] R. Schneider, *Convex bodies: the Brunn-Minkowski theory*, Cambridge University Press, Cambridge, 1993.
- [14] L.A. Santaló, *Convex regions on the n-dimensional spherical surface*, Ann. Math. 47 (1946) 448-459.
- [15] F.A.Valentine, Convex sets, Mc Graw -Hill, 1964.

M. LONGINETTI Dipartimento DIMAI, Università di Firenze e-mail: marco.longinetti@unifi.it

P. MANSELLI e-mail: paolo.manselli@unifi.it

A. VENTURI e-mail: adriana.venturi@unifi.it