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ON THE COMPLEMENTS OF UNION OF OPEN BALLS OF
FIXED RADIUS IN THE EUCLIDEAN SPACE

M. LONGINETTI - P. MANSELLI - A. VENTURI

Let an R-body be the complement of the union of open balls of radius
R in Ed . The R-hulloid of a closed not empty set A, the minimal R-body
containing A, is investigated; if A is the set of the vertices of a simplex,
the R-hulloid of A is completely described (if d = 2) and if d > 2 special
examples are studied. The class of R-bodies is compact in the Hausdorff
metric if d = 2, but not compact if d > 2.

1. Introduction

Given a closed set E ⊂ Ed (d ≥ 2), the convex hull of E is the intersection of all
closed half spaces containing E; the convex hull can be considered as a regular-
ization of E. Given R > 0, a different hull of E could be the intersection of all
closed sets, containing E, complement of open balls of radius R not intersecting
E. Let us call this set the R-hulloid of E, denoted as coR(E); the R-bodies are
the sets coinciding with their R-hulloids. R-bodies are called 2R-convex sets in
[10].

The R-hulloid coR(E) has been introduced by Perkal [10] as a regularization
of E, hinting that coR(E) is a mild regularization of a closed set. Mani-Levitska
[8] hinted that the R-bodies cannot be too irregular.
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In our work it is shown that this may not be true: in Theorem 5.7 an example
of a connected set is constructed with disconnected R-hulloid. A deeper study
gave us the possibility to add new properties to the R-bodies: a representation
of coR(E) is given in Theorem 3.4 and new properties of ∂coR(E) are proved in
Theorem 3.5, Theorem 3.6 and Corollary 3.7. Moreover contrasting results on
regularity are found: every closed set contained in an hyperplane or in a sphere
of radius r ≥ R is an R-body (Theorems 3.10 and 3.11). As a consequence
a problem of Borsuk, quoted by Perkal [10], has a negative answer (Remark
3.10). In § 4 it is shown that the R-body regularity heavily depends on the
dimension. A definition (Definition 4.3) similar to the classic convexity is given
for the class of planar R-bodies, namely (Theorem 4.5):

A is an R-body iff coR({a1,a2,a3})⊂ A ∀a1,a2,a3 ∈ A.

As consequence, if d = 2: a sequence of compact R-bodies converges in the
Hausdorff metric to an R-body (Corollary 4.7). If d > 2, in Theorem 3.16 it is
proved that a sequence of compact R-bodies converges to an (R− ε)-body, for
every 0 < ε < R; however, the limit body may not be an R-body as an exam-
ple in § 5 shows. If E is connected, properties of connectivity of coR(E) are
investigated in § 4.3.

In [7, Definition 2.1] V. Golubyatnikov and V. Rovenski introduced the class
K1/R

2 . In Theorem 6.1 it is proved that the class of R-bodies is strictly included
in K1/R

2 . If d = 2 , under additional assumptions, it is also proved that the two
classes coincide.

2. Definitions and Preliminaries

Let Ed ,d ≥ 2, be the linear Euclidean Space with unit sphere Sd−1; A ⊂ Ed

will be called a body if A is non empty and closed. The minimal affine space
containing A will be Lin(A). The convex hull of A will be co(A); for notations
and results of convex bodies, let us refer to [13].

Definition 2.1. Let A be a not empty set.
Aε := {x ∈ Ed : dist(A,x) < ε;}; A′

ε := {x ∈ Ed : dist(A,x) ≥ ε}; A− :=
A∪∂A; Ac := Ed \A ; Int(A) = A− \∂A.

B(x,r) will be the open ball of center x ∈ Ed and radius r > 0; a sphere of
radius r is ∂B(x,r).

Let us recall the following facts for reference.

Proposition 2.2. Let A be a not empty set.

• 1 Aε is open; Aε = (A−)ε ⊂ (Aε)
−.
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• 2 Aε = {x ∈ Ed : ∃a ∈ A, for which x ∈ B(a,ε)}= {x ∈ Ed : B(x,ε)∩
A ̸= /0}

= ∪a∈AB(a,ε) = A+B(0,ε).

• 3 A′
ε = {x ∈ Ed : ∀a ∈ A, x /∈ B(a,ε)} = {x ∈ Ed : B(x,ε)∩A = /0} =

∩a∈A B(a,ε)c.

• 4 Let Ai, i = 1,2 be non empty sets. Then

A1 ⊂ A2 ⇒ (A1)ε ⊂ (A2)ε .

• 5 If E is non empty, then E ⊂ (E ′
R)

′
R ⊂ ER, see [1, lemma 4.3].

Definition 2.3. ([3]) If A ⊂ Ed , a ∈ A, then reach(A,a) is the supremum of all
numbers ρ such that for every x ∈ B(a,ρ) there exists a unique point b ∈ A
satisfying |b− x|= dist (x,A). Also:

reach(A) := inf{reach(A,a) : a ∈ A}.

Let b1,b2 ∈ Ed , |b1 − b2| < 2R and let h(b1,b2) be the intersection of all
closed balls of radius R containing b1,b2.

Proposition 2.4. ([1, Theorem 3.8], [11]) The body A has reach ≥ R if and only
if A∩h(b1,b2) is connected for every b1,b2 ∈ A,0 < |b1 −b2|< 2R.

Remark 2.1. The R-hull of a set E was introduced in [1, Definition 4.1] as the
minimal set Ê of reach ≥ R containing E. Therefore if reach(A) ≥ R , then A
coincides with its R-hull. The R-hull of a set E may not exist, see [1, Example
2].

Proposition 2.5. [1, Theorem 4.4] Let A ⊂ Ed . If reach(A′
R)≥ R then A admits

R-hull Â and
Â = (A′

R)
′
R.

Proposition 2.6. [1, Theorem 4.8] If A ⊂ E2 is a connected subset of an open
ball of radius R, then A admits R-hull.

Let us also recall the following result:

Proposition 2.7. [1, Theorem 3.10], [12]) Let A ⊂ Ed be a closed set such
that reach(A) ≥ R > 0. If D ⊂ Ed is a closed set such that for every a,b ∈ D,
h(a,b)⊂ D and A∩D ̸= /0, then reach(A∩D)≥ R.
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3. R-bodies

Let R be a fixed positive real number. B will be any open ball of radius R. B(x)
will be the open ball of center x ∈ Ed and radius R. Next definitions have been
introduced in [10].

Definition 3.1. Let A be a body, A will be called an R-body if ∀y ∈ Ac, there
exists an open ball B in Ed (of radius R) satisfying y ∈ B ⊂ Ac. This is equivalent
to say

Ac = ∪{B : B∩A = /0};

that is
A = ∩{Bc : B∩A = /0}.

Let us notice that for any r ≥ R and for every x, the body (B(x,r))c is an
R-body.

Definition 3.2. Let E ⊂ Ed be a non empty set. The set

coR(E) := ∩{Bc : B∩E = /0}

will be called the R-hulloid of E. Let coR(E) = Ed if there are no balls B ⊂ Ec.

Remark 3.1. In [10] the sets defined in Definition 3.1 are called 2R convex sets
and the sets defined in Definition 3.2 are called 2R convex hulls. On the other
hand Meissner [9] and Valentine [15, pp. 99-101] use the names of R-convex
sets and R-convex hulls for different families of sets. An s-convex set is also
defined in [4, p. 42]. To avoid misunderstandings we decided to call R-bodies
and R-hulloids the sets defined in Definition 3.1 and in Definition 3.2.

Remark 3.2. Let us notice that coR(E) is an R-body (by definition) and E ⊂
coR(E). Moreover A is an R-body if and only if A = coR(A). The R-hulloid
always exists.

Clearly every convex body E is an R-body (for all positive R) and its convex
hull co(E) = E coincides with its R-hulloid.

Remark 3.3. It was noticed in [1, Corollary 4.7] and proved in [2, Proposition
1] that, when the R-hull exists, it coincides with the R-hulloid. If A has reach
greater or equal than R, then (see remark 2.1) A has R-hull, which coincides
with A and with its R-hulloid, then A is an R-body.

Proposition 3.3. Let E be a non empty set. The following facts have been
proved in [10].

• a coR(E) = (E ′
R)

′
R;
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• b E− ⊂ coR(E);

• c Let E1 ⊂ E2; then coR(E1)⊂ coR(E2);

• d coR(E1)∪ coR(E2)⊂ coR(E1 ∪E2);

• e coR(coR(E)) = coR(E);

• f Let A(α),α ∈ A be R-bodies, then ∩α∈A A(α) is an R-body;

• g diamE = diamcoR(E);

• h If A is an R-body then A is an r-body for 0 < r < R;

• i coR(E)⊂ co(E) for all R > 0.

Remark 3.4. Let E be a body. From c of Proposition 3.3 it follows that if A
is an R-body and A ⊃ E, then A ⊃ coR(E) and coR(E) is the minimal R-body
containing E.

Lemma 3.5. A point k ∈ coR(E) if and only if there does not exist any open ball
B(x, l) ∋ k with l ≥ R, B(x, l)⊂ EC.

Proof. As (B(x, l))c is an R-body, the set coR(E)∩ (B(x, l))c ⊃ E would be an
R-body strictly included in coR(E), which is the minimal R-body containing
E.

Lemma 3.6. Let E be a body. Then

coR(E)⊂ ER. (1)

Moreover there exists E such that (ER)
− is not an R-body.

Proof. By 5 of Proposition 2.2, (E ′
R)

′
R ⊂ ER and by a of Proposition 3.3, the

inclusion (1) follows. Let x0 ∈ Ed , R < ρ < 2R and let E = (B(x0,ρ))
c. Then

(ER)
− is (B(x0,ρ −R))c, not an R-body.

Theorem 3.4. Let E ⊂ Ed be a body. Then

coR(E) = ER ∩
(

∂ (ER)
)′

R
. (2)

Proof. Formula (2) can also be written as:

(coR(E))c = E ′
R ∪
(

∂ (ER)
)

R
. (3)

Let Ω = E ′
R ∪
(

∂ (ER)
)

R
.
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Inclusion (1) implies that E ′
R ⊂ (coR(E))c. Let us notice that:(

∂ (ER)
)

R
= ∪{B(x) : x ∈ ∂ (ER)}= ∪{B(x) : dist (x,E) = R},

then (
∂ (ER)

)
R
⊂ ∪{B(x) : dist (x,E)≥ R}= (coR(E))c. (4)

Then from (4):
Ω ⊂ (coR(E))c

holds too.
The open set (coR(E))c is the union of the balls B(x), satisfying B(x)∩

E = /0; clearly dist (x,E) ≥ R; if dist (x,E) = R then x ∈ ∂ (ER) and B(x) ⊂(
∂ (ER)

)
R
; if dist (x,E)> R , then B(x)⊂ E ′

R. Therefore

(coR(E))c ⊂ Ω.

Then Ω = (coR(E))c.

Remark 3.7. The previous theorem is the analogous, for the R-hulloid, of the
property of the convex hull of a body E: co(E) is the intersection of all closed
half spaces supporting E.

If E is a compact set, part of the following theorem has been proved in [2,
Proposition 2].

Theorem 3.5. Let E be a body, k ∈ coR(E), l = in fx∈E ′
R
|k− x| = dist (k,E ′

R).
Then l is a minimum and l ≥ R. Moreover l = R if and only if k ∈ ∂coR(E) and
there exists x0 ∈ E ′

R satisfying B(x0)⊂ Ec, ∂B(x0) ∋ k.

Proof. As coR(E) = ∩{Bc : Bc ⊃ E}, then dist (E ′
R,coR(E)) ≥ R. Let xn ∈ E ′

R
satisfying |xn − k| → l ≥ R; by possibly passing to a subsequence, one can as-
sume that xn → x0 ∈ E ′

R, where |x0 − k| = l. If |x0 − k| = R then k ∈ coR(E)∩
∂B(x0). As l = R, it cannot be k ∈ Int(coR(E)). Therefore the claim of the
theorem holds.

Theorem 3.6. Let E be a body, k ∈ ∂coR(E). Then there exists B ⊂ Ec satisfy-
ing k ∈ ∂B. Moreover if F= {B ⊂ Ec : ∂B∩ coR(E) ̸= /0}, then F is not empty
and if B ∈ F then ∂B∩E ̸= /0.

Proof. If k ∈ ∂coR(E), by previous theorem there exists x0 ∈ E ′
R with the prop-

erty B(x0) ⊂ Ec, ∂B(x0) ∋ k. If dist (x0,E) = l > R then k ∈ B1 = B(x0, l) ⊂
Ec, this is impossible by Lemma 3.5 and F is non empty. Let B(x) ∈ F and,
by contradiction, let ∂B∩E = /0; then, R1 = dist (x,E) > R. Thus B(x,R1)

c

is an R-body containing E, then coR(E) ⊂ B(x,R1)
c; as ∂B(x) ⊂ B(x,R1) so

∂B(x)∩ coR(E) = /0, contradiction with B(x) ∈ F.
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Corollary 3.7. Let A be an R-body. Then :
(i) Ξ(A) := {x : B(x)⊂ Ac} (the set of centers of balls of radius R contained

in Ac) is closed;
(ii) ∀y ∈ ∂A, there exists x0 ∈ Ξ(A) with the property: y ∈ ∂B(x0).

Proof. Let x0 be an accumulation point of Ξ(A) and Ξ(A) ∋ xn → x0; let b ∈
B(x0), then limn→∞ |b−xn|= |b−x0| where |b−x0|< R. Thus for n sufficiently
large |b − xn| < R, therefore b ∈ B(xn) ⊂ Ac,∀b ∈ B(x0). Then B(x0) ⊂ Ac,
x0 ∈ Ξ(A) and (i) holds.

(ii) follows by Theorem 3.6.

Lemma 3.8. Let A be a body; if Ac is union of closed balls of radius R, then A
is an R-body.

Proof. For every y ∈ Ac there exists (B(z))− ⊂ Ac, y ∈ (B(z))−. As A and
(B(z))− are closed and disjoint, there exists R1 > R so that B(z,R1)⊂ Ac. Then
there exists a ball B ⊂ Ac,B ∋ y. Thus Ac is union of open balls of radius R and
A is an R-body.

Let us notice that there exist R-bodies A such that Ac is not union of closed
balls of radius R. As example, let A = Bc.

Theorem 3.8. Let A be a body, which is not an R-body. Then there exists
y0 ∈ Ac such that y0 belongs to no closed ball of radius R, contained in Ac.

Proof. By contradiction, let us assume that every y ∈ Ac is contained in a closed
ball of radius R contained in Ac, then Ac is union of closed balls of radius R and
satisfies the hypothesis of Lemma 3.8, then A is an R-body. Impossible.

Let Cd be the metric space of the compact bodies in Ed with the Hausdorff
distance δH(F,G) := min {ε ≥ 0 : F ⊂ Gε , G ⊂ Fε}.

From a bounded sequence in Cd one can select a convergent subsequence in
the Hausdorff metric (see e.g. [13, Theorem 1.8.4]).

Let Rd = {A ⊂ Cd : A is an R-body }. Let A ⊂ Ed be a body, ε > 0. Let
A−

ε := {x ∈ Ed : dist(A,x) ≤ ε} = (Aε)
−. D = B− will be any closed ball of

radius R.

Theorem 3.9. Let A(n) be a sequence of compact R-bodies; let us assume that
A(n) → A ∈ Cd in the Hausdorff metric. Then, A is an Rε -body for every 0 <
Rε < R.

Proof. By contradiction, let us assume that A it is not an Rε -body. Then by
Theorem 3.8, there exists y0 ∈ Ac with the property

y0 belongs to no closed ball, of radius Rε , subset of Ac. (5)
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As dist (y0,A) > 0 , then y0 ∈ (Aσ )
c for suitable σ > 0. As A(n) → A in

the Hausdorff metric, there exists a sequence εn → 0+ satisfying A(n) ⊂ Aεn ,
A ⊂ Aεn . For n sufficiently large (Aσ )

c ⊂ (Aεn)
c and y0 ∈ (Aεn)

c ⊂ (A(n))c. As
A(n) ∈Rd , then there exist open balls B(xn) satisfying y0 ∈ B(xn)⊂ (A(n))c; then
dist (xn,A(n))≥ R, dist (xn,A)≥ R− εn .

As |xn − y0| < R, by possibly passing to a subsequence, xn → x0 ∈ Ed .
The point x0 satisfies: |x0 − y0| ≤ R, dist (x0,A) ≥ R. Then B(x0) ⊂ Ac and
D := (B(x0))

− is a closed ball of radius R containing y0. If y0 ∈ B(x0), then
Dρ = B−(x0,ρ), with ρ = max{|y0 − x0|,Rε} is a closed ball which provides
a contradiction with (5). In case y0 ∈ ∂B(x0) the closed ball enclosed in D,
tangent to ∂B(x0) at y0, with radius Rε , provides a contradiction with property
(5).

Remark 3.9. In section 5 it will be shown that in E3 a limit (in Hausdorff
metric) of a sequence of R-bodies may be not an R-body. In Corollary 4.7 it will
be proved that, in E2, a limit of a sequence of R-bodies (in Hausdorff metric) is
an R-body too.

Theorem 3.10. Let Σ = ∂B(r)⊂ Ed be a sphere of radius r ≥ R and let E be a
body subset of Σ. Then E is an R-body.

Proof. Σ is a topological space with the topology induced by Ed and E is closed
in that topology. Then Σ\E is union of (d−1)-dimensional open balls in Σ. Let
D = (B(r))−, as Ed \Σ = B(r)∪Dc, then

Ed \E = B(r)∪Dc ∪ (Σ\E)

is union of the following open balls of radius R:
(i) all open balls of radius R contained in B(r), which fill B(r) since r ≥ R;
(ii) all open balls B of radius R contained in Dc;
(iii) all open balls B of radius R satisfying the property: B∩Σ is a (d − 1)-

dimensional open ball in Σ\E.
So E is an R-body.

With a similar proof, the following fact can be proved.

Theorem 3.11. Let E ⊂ Ed be a body, subset of a hyperplane Π. Then E is an
R-body.

Remark 3.10. In [10], p.9, a question of Borsuk was stated: ’Are the R-bodies
locally contractible?’.

The Borsuk’s question has a negative answer: let Π be an hyperplane in Ed .
By Theorem 3.11 every body, subset of Π, is an R-body; then there exist not
locally contractible bodies subsets of Π.
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4. Properties of R-bodies in E2.

4.1. R-hulloid of three points in E2.

Let R be a fixed positive real number. Let T be a not degenerate triangle in
E2, V = {x1,x2,x3} be the set of its vertices, r(V ) be the radius of the circle
circumscribed to T . By Theorem 3.10, if r(V )≥ R, then coR(V ) =V .

Proposition 4.1. Let {x1,x2,x3} be the vertices of a triangle T inscribed in a
circumference C of radius r. Three possible cases may occur:

i) ([6, pag 16]) if T is acute-angled then the three circumferences of radius r,
each one through two vertices of T , different from C, meet in the orthocenter y
of T ;

ii) if T is obtuse-angled in x3 then the two circumferences of radius r through the
vertices {x1,x3} and {x2,x3}, respectively, different from C, meet C in x3 and in
a point exterior to T;

iii) if T is right-angled at x3 then the two circumferences of radius r through the
vertices {x1,x3} and {x2,x3}, different from C, are tangent at x3.

Proof. i) it is related to the Johnson’s Theorem [5]; ii) and iii) follows by con-
struction.

Theorem 4.2. Let V = {x1,x2,x3} be the set of the vertices of a triangle T with
circumradius r = r(V ). If r(V )< R, then

coR(V ) =V ∪ T̃ ,

where T̃ ⊂ T is the curvilinear triangle bordered by three arcs of circumferences
of radius R; each one through two vertices of T and relative to the circle not
containing the remaining vertex of T . If T is a right-angled or obtuse-angled
then the vertex of the greatest angle of T is also a vertex of T̃ , that is the end
point of two consecutive arcs of ∂ T̃ .

Proof. Let B(qi,r),B(ci,R) be the open circles, not containing xi, with boundary
through the two vertices of T different from xi, i= 1,2,3. In the case i) of Propo-
sition 4.1, the orthocenter y of T is in the interior of T and y ∈ ∩i=1,2,3∂B(qi,r).
As R > r : T ∩B(ci,R) ⊊ T ∩B(qi,r), then dist (y,B(ci,R)) > 0, (i = 1,2,3).
Thus

T̃ :≡ T ∩

(
3⋃

j=1

B(c j,R)

)C

(6)

is a curvilinear triangle with y ∈ Int(T̃ ); moreover ∂ T̃ is union of of three arcs
of the circumferences ∂B(ci,R) (i = 1,2,3).
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If T is obtuse-angled at x3, case ii) of Proposition 4.1), the two circumfer-
ences ∂B(ci,R) containing x3 and another vertex of T cross each other in x3
and in a point exterior to T . If T is right-angled at x3 the two circumferences
∂B(qi,r) meet and are tangent to each other in x3, then again the circumfer-
ences ∂B(ci,R) cross each other in x3 and in a point exterior to T . In both cases
dist (x3,B(c3,R))> 0 and T̃ , given by (6), is a curvilinear triangle with a vertex
at x3.

4.2. Two dimensional R-bodies, equivalent definitions

Definition 4.3. Let a1,a2 be two points in E2, with 0 < |a1 − a2| < 2R. Let
B(x1),B(x2) the two open circles with the boundaries through a1,a2. Let us
define

H(a1,a2) = B(x1)∪B(x2),

and let h(a1,a2) be the intersection of all closed balls of radius R containing
a1,a2.

Definition 4.4. Let A be a planar body. A satisfies the property QR if :

∀a1,a2,a3 ∈ A the R-hulloid of the set {a1,a2,a3} is a subset of A.

When x,y are points on a circumference ∂B, let us denote with arc∂B(x,y)
the shorter arc on ∂B from x to y.

Lemma 4.1. Let A be a planar body. If A satisfies the property QR, then

{a1,a2} ⊂ A,0 < |a1 −a2|< 2R : h(a1,a2)\{a1,a2} ⊂ Ac ⇒ H(a1,a2)⊂ Ac.
(7)

Proof. Let H(a1,a2) = B(x1)∪ B(x2). Let us assume, by contradiction, that
there exist a3 ∈ A∩ (B(x1)\h(a1,a2)). Let T = co({a1,a2,a3}), then r(T )< R.
By Theorem 4.2 there exist y1,y2 ∈ arc∂B(x2)(a1,a2) satisfying

arc∂B(x2)(y1,y2)⊂ coR({a1,a2,a3})⊂ A.

As
arc∂B(x2)(y1,y2)⊂ h(a1,a2)\{a1,a2} ⊂ Ac,

this is impossible. The proof is similar if a3 ∈ B(x2).

Theorem 4.5. Let A be a planar body. A is an R-body if and only if A satisfies
the property QR.
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Proof. Let A be an R-body then coR({a1,a2,a3}) ⊂ coR(A) = A and QR holds
for A.

On the other hand let assume the property QR holds for a body A. Let us
prove that A is an R-body, by showing:

if y0 ∈ Ac then ∃B ∋ y0, B ⊂ Ac. (8)

Let y0 ∈ Ac, then there exists δ > 0 such that dist (y0,A) = δ . If δ ≥ R, then
B(y0,R) ⊂ B(y0,δ ) and (8) holds. Let δ < R. By definition of δ , there exists
a1 ∈ A∩∂B(y0,δ ) and B(y0,δ )⊂ Ac. There are two cases:

i) there exists a point a2 ̸= a1, a2 ∈ A∩∂B(y0,δ );
ii) A∩∂B(y0,δ ) = {a1}.
In the case i), h(a1,a2)\{a1,a2} ⊂ B(y0,δ )⊂ Ac. Let H(a1,a2) = B(x1)∪

B(x2); by Lemma 4.1 the following inclusion holds:

H(a1,a2)⊂ Ac. (9)

As y0 ∈B(x1) or y0 ∈B(x2) and both balls B(x1), i= 1,2 have empty intersection
with A, then y0 satisfies (8).

In the case ii) on ∂B(y0,δ ) let a∗ be the symmetric point of a1 with respect
to the center y0. For t > 2 let a(t) = a1 +(t − 1)(a∗− a1). Let tR > 2 be such
that |a1 − a(tR)| = 2R. The set function t → h(a1,a(t)) \ {a1}, for 2 ≤ t < tR,
is strictly increasing with respect to the inclusion. If for all 2 ≤ t < tR the set
h(a1,a(t))\{a1} ⊂ Ac then limt→tR−h(a1,a(t)) is a closed ball D ∋ y0 of radius
R, Ac ⊃ Int(D) ∋ y0 and (8) holds. Otherwise, there exists 2 < τ < tR satisfying
h(a1,a(τ))\{a1}∩A ̸= /0. Let

t = In f{t ∈ [2, tR] :
(
h(a1,a(t))\{a1}

)
∩A ̸= /0}

and let

2 ≤ t ≤ tR → F(t) :=
(
h(a1,a(t))\{a1}

)
∩ (B(y0,δ ))

c. (10)

By construction {F(t)} is a continuous family of bodies, strictly monotone
with respect to the inclusion, with dist (F(t),A)> 0 for t < t. Then F(t)∩A ̸= /0,
Int(F(t)) ⊂ Ac and dist (a1,F(t)) > 0. Therefore there exists a2 ∈ ∂F(t)∩ ∂A
of minimum distance from a1. This implies that arc∂F(t)(a1,a2) has no interior
points of the body A. Then, h(a1,a2) \ {a1,a2} ⊂ Ac; by arguing as in case i),
the inclusion (9) holds and y0 satisfies (8).

Theorem 4.6. Let A ⊂ E2 be a body. If A is a ρ-body for every positive ρ < R
then A is an R-body.
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Proof. If A is ρ-body the property Qρ holds for ρ < R. Let us show that it holds
for ρ = R. Let a1,a2,a3 ∈ A, with r({a1,a2,a3})≥ R, then coR({a1,a2,a3}) =
{a1,a2,a3} ⊂ A. In case r({a1,a2,a3})< R let ρ > r({a1,a2,a3}); by Theorem
4.2, with ρ instead of R and a1,a2,a3 in place of x1,x2,x3, it follows

coρ({a1,a2,a3}) = {a1,a2,a3}
⋃

T̃ρ .

T̃ρ a curvilinear triangle subset of A, bounded by arcs of radius ρ . As A is closed
and T̃ρ → T̃ , then T̃ ⊂ A. Therefore QR holds too and previous theorem proves
that A is an R-body.

From Theorem 4.6 and Theorem 3.9 it follows

Corollary 4.7. A limit of a sequence of planar R-bodies (in Hausdorff metric)
is an R-body too.

Remark 4.2. With arguments similar to the proof of Theorem 4.5, it can also
be proved that for a planar body A the property QR is equivalent to the property
(7).

4.3. Connected and disconnected R-bodies in E2

Theorem 4.8. Let E be a connected body in E2, contained in an open ball B of
radius R; then coR(E) is connected.

Proof. As E is connected, by Proposition 2.6, E admits R-hull A of reach ≥ R;
then, by Remark 3.2, A= coR(E). By Proposition 2.4 the set A is connected.

In the previous theorem the assumption that E is contained in an open ball
of radius R is needed as the following example shows.

Example 1. In E2 let Σ0 := ∂B(0,R0), with

R√
3
< Ro < R.

Let ki ∈Σ0, i= 1,2,3 be the vertices of an equilateral triangle T and let ∂B(o j,R)
the circumference, through the two points ki, i ̸= j, with k j ̸∈ B(o j,R). Let D :=
(B(0,4R))− and

E := D∩

(
B(0,R0)

3⋃
j=1

B(o j,R)

)c

.

Then E is a planar connected body with disconnected R-hulloid.
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Proof. It is obvious that E is connected since it is homotopic to a ring. Ec

is an open set since Ec is the union of Dc and open balls. As R0 < R and
∀i ̸= j,ki ∈ ∂B(o j),k j ̸∈ B(o j) the set Ec does not contain the set of the vertices
ki. Let

T̃ :≡

(
3⋃

j=1

B(o j,R)∪B(0,R0)

)
\

(
3⋃

j=1

B(o j,R)

)
.

T̃ is a curvilinear triangle and it is a closed connected set disjoint from E; more-
over any point of T̃ can not lie in an open circle of radius R avoiding all the
vertices ki of the equilateral triangle T . Then, by Lemma 3.5, E ∪ T̃ ⊂ coR(E);
as the complementary of E ∪ T̃ is Dc ∪ j B(o j,R), union of open balls of radius
R, then E ∪ T̃ is an R-body, that is

coR(E) = E ∪ T̃

which is a disconnected R-body.

The previous example can be modified to get a simply connected set E∗ such
that coR(E∗) is disconnected. Let us consider E∗ = E ∩W c, where W is a small
strip from ∂B(o1,R) to ∂D(4,R). Clearly coR(E∗) = coR(E) is disconnected
and E∗ is a simply connected set.

5. R-hulloid of the vertices of a simplex in Rd

Definition 5.1. Let d ≥ 2, 1 ≤ n ≤ d. Let {v1, . . . ,vn+1} ⊂ Rd be a family of
affinely indipendent points and let V = {v1, . . . ,vn+1} ⊂ Rd . An n-simplex is
the set T = co(V ).

Let T = co(V ); the (d−1)-simplexes Ti = co(V \{vi}),(i= 1, . . . ,d+1) are
called the facets of T . If V lies on a sphere, centered in Lin(T ), and its points
are equidistant, then T will be called a regular simplex.

It is well known the following fact: let V the set of the vertices of a d-
simplex T in Ed . There exists a unique open ball B(V ) such that all the vertices
in V belong to ∂B(V ), called the circumball to co(V ). Let us notice that D(V ) =
(B(V ))− does not coincide (in general) with the closed ball of minimum radius
containing V , as an obtuse isosceles triangle shows.

Definition 5.2. Let 1 < n ≤ d; if T is a n-simplex, the circumcenter c(T ) and
the circumradius r(T ) are the center and the radius respectively, of the unique
open ball B(c(T ),r(T )), called circumball of T , such that: i) c(T ) ∈ Lin(T ); ii)
∂B(c(T ),r(T ))⊃V .
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Let us denote

r(V ) :≡ r(co(V )) ,c(V ) :≡ c(co(V )) ,B(V ) :≡ B(c(V ),r(V )).

From Theorem 3.10 it follows that

Corollary 5.3. If r(V )≥ R then

coR(V ) =V. (11)

Definition 5.4. Let R > 0. The R-hulloid of V will be called full if its interior is
not empty.

If d = 2, let V be the set of the vertices of a triangle with circumradius less
than R; by Theorem 4.2, coR(V ) is full.

5.1. Examples of R-hulloid of the vertices of a simplex in Ed

Convex sets on Sd−1 have been studied in [14]. Here properties of regular sim-
plexes on Sd−1 are recalled and used. If S is a regular simplex, centroid and
circumcenter coincide.

Lemma 5.1. Let d > 1,R0 > 0,Σ0 := ∂B(0,R0) in Ed . Let W = {k1, . . . ,kd+1}⊂
Σ0 be the set of the vertices of a regular d-simplex S on Σ0. Then

< ki,k j >=−R2
0/d, i ̸= j (12)

and

|ki − k j|=
√

2
d +1

d
R0. (13)

Let Wi =W \{ki} and let Σi ⊂ Σ0 be the (d−1)-dimensional sphere through the
points of Wi. Then Σi has center −ki/d; moreover ∀p ∈ Σ0

the spherical distance on Σ0 from p to W is less or equal to R0 arccos1/d.
(14)

Proof. As the centroid of S is 0, then

d+1

∑
i=1

ki = 0, |ki|2 = R2
0, < ki,k j >= R2

0 cosφ (i, j = 1, . . . ,d +1), i ̸= j

and

0 =< k j,
d+1

∑
i=1

ki >= (R0)
2 +d (R0)

2 cosφ ( j = 1, . . . ,d +1).
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Therefore cosφ =− 1
d ; so (12) and (13) hold.

As Si = co(Wi) is an equilateral (d − 1)-simplex, the centroid of Si will be
1
d ∑ j ̸=i k j =−ki/d and coincides with the center of Σi. Let F̃j the spherical (d−
1)-dimensional ball on Σ0 of center −k j bounded by Σ j. Then F̃j has spherical
radius

R0 arccos
⟨−ki,k j⟩

R2
0

= R0 arccos1/d.

As ∪d+1
j=1 F̃j = Σ0 the thesis follows.

Theorem 5.5. Let d > 2 and let S be the regular simplex introduced in Lemma
5.1; let R = d

2 R0. Then the set W of its vertices is not an R-body and coR(W ) =
W ∪{0} is not full.

Proof. Let B(o j,ρ j) with the property that

∂B(o j,ρ j)⊃ {0,k1, . . . ,k j−1,k j+1, . . . ,kd+1}.

Clearly o j =−λk j,(λ > 0). As |o j −0|2 = |o j − ki|2, i ̸= j then

(λR0)
2 = (λR0)

2 +(R0)
2 +2λ (R0)

2 cosφ ,

therefore λ = d
2 , o j =−d

2 k j and ρ j = |o j −0|= dR0
2 = R.

From (13) it follows

|oi −o j|= 2R

√
1
2
+

1
2d

, j ̸= i. (15)

Claim Q: Let R−R0 < |z| ≤ R, Qz :≡ B(0,R0)∩B(z,R). Then ∂Qz ∩Σ0 is
a spherical (d −1) dimensional ball on Σ0 of radius r. If |z|< R then

r > R0 arccos1/d.

Proof: let v = z/|z|, the family of Qλv is ordered by inclusion for R−R0 <
λ ≤R, with minimum set for λ =R; for λ =R the spherical (d−1) dimensional
ball ∂QR0z/|z| has radius R0 arccos1/d.

If R−R0 < |z| < R, then from Claim Q and (14), any open ball B(z,R),
which contains the point 0 contains at least one of the vertices ki, i= 1, . . . ,d+1.
As 0 ̸∈W the set W is not an R-body. Moreover since

(W ∪{0})c =
d+1⋃
j=1

B(o j,R)
⋃
(co(W ))c,

then W ∪{0} is an R-body containing W ; then W ∪{0} is the R-hulloid of W
and it has empty interior.
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Theorem 5.6. In E3 there exist sequences of R-bodies with limit, in the Haus-
dorff metric, a body that is not an R-body.

Proof. Let us use the notations of Lemma 5.1 in the special case d = 3.
Let ki, i = 1, . . . ,4 the vertices of a regular simplex in E3 on the sphere Σ0 :=

∂B(0,R0), R0 =
2R
3 .

For any fixed i = 1, . . .4 the vertices k j, j ̸= i belong to the boundary of the
ball B(oi,R), with oi =−3

2 ki.
From (12) it follows that

< o j,ki >=
2
9

R2, i ̸= j, i, j = 1, . . . ,4.

Let ε → 0+ and let x(n)i = ki + εn
ki
|ki| , i = 1, . . . ,4. The points x(n)i are the

vertices of a regular simplex T (n) in E3. For i ̸= j let Rn = |oi − x(n)j |, then

R2
n = R2 + ε

2
n +2 < ki −o j,ki/|ki|> εn = R2 + ε

2
n +

2
3

Rεn > R2.

For all n ∈ N let

W (n) := {x(n)1 , . . . ,x(n)4 }= T (n)∩ (∪4
i=1B(oi,Rn))

c.

As the complementary of the union of open balls of radius greater than R is
an R-body and T (n) is convex then V (n) is an R-body too. The limit of W (n) is
W = {x1, . . . ,x4} which is not an R-body as proved in Theorem 5.5.

Theorem 5.7. Let d ≥ 3; in Ed there exist connected bodies in a ball of radius√
2R with disconnected R-hulloid.

Proof. Let us consider the regular simplex S in Ed , defined in Theorem 5.5,
with vertices on Σ0 := ∂B(0,R0), R0 := 2R

d .
The (d−2) spherical surface Li, j :≡ ∂B(oi,R)∩∂B(o j,R), i ̸= j, has center

at oi+o j
2 and contains 0. Then, by (15), Li, j has radius

|(oi +o j)/2|=
√

R2 −R2(
1
2
+

1
2d

) = R

√
1
2
− 1

2d
.

Then, the maximum distance of Li, j from 0 is

2R

√
1
2
− 1

2d
<
√

2R.
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Let D := (B(0,
√

2R))− and let

E := D∩

(
d+1⋃
j=1

B(o j,R)∪{0}

)c

. (16)

Claim 1: E is connected.
First let us consider the (d−1) spherical balls Ui = B(oi)∩∂B(0,

√
2R) cen-

tered at ci =
√

2oi. As 0 ∈ ∂B(oi,R), then by elementary geometric arguments,
the spherical radius of Ui is π

4

√
2R. By (15), the spherical distance between oi

and o j on ∂B(0,R) is

2Rarcsin

√
1
2
+

1
2d

>
π

2
R.

Then, the spherical distance between ci and c j is greater than π

2

√
2R. Since the

(d −1) spherical balls Ui have radius π

4

√
2R, they are disjoints and

E = ∂B(0,
√

2R)\∪d+1
i=1 Si

is a connected subset of ∂E. Let us consider now x ∈ E, then x ̸∈ B(oi,R); since
0 ∈ ∂B(oi,R), then λx ̸∈ B(oi) for λ ≥ 1. Therefore the segment connecting x
to

√
2 x
|x|R ∈ E is a subset of E. Claim 1 follows.

Claim 2: Ec is an open set.
As

Ec = Dc ∪

(
d+1⋃
j=1

B(o j,R)∪{0}

)
,

it is enough to show that {0} ⊂ Int(Ec). This follows from the fact that {0} is
in the interior of the simplex S, and Int(S)⊂ Ec.

Claim 3: The set of the vertices of S is contained in E .
For each i the vertex ki ∈ ∂B(o j,R), j ̸= i and ki ̸∈ B(oi,R)−.
E is a closed set from Claim 2; from Claim 3 and (16) it follows that E is

not an R-body, since any open ball of radius R, containing 0 ∈ Ec, cannot be
contained in Ec.

Claim 4: The point 0 has a positive distance from E.
Let us consider for i = 1, . . . ,d +1 the simplexes

Si = co({0,k1, . . . ,ki−1,ki+1,kd+1}).

Then S =∪iSi. Let 0 < ε < dist (0,Si), where Si are the facets of S; as B(0,ε)⊂
∪iB(0,ε)∩Si, then

dist (0,E)≥ ε.
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Let us consider now the body E ∪{0}. Since

(E ∪{0})c = Dc ∪

(
d+1⋃
j=1

B(c j,R)

)
,

then E ∪{0} is by definition an R-body and is the minimal R-body containing
E. Then coR(E) = E ∪{0} which is a not connected set, since is the union of
two closed disjoint sets.

6. R-bodies and other classes of bodies

In Remark 3.3 it is noticed that the class of R-bodies contains the class of bodies
which have reach greater or equal than R.

The following class has been introduced in [7]: the class K1/R
2 of bodies A

satisfying the following property:

∀x ∈ Ac there exists a closed ball D(R) ∋ x : D(R)∩ Int(A) = /0. (17)

Theorem 6.1. The following strict inclusion holds:

R-bodies ⊊K1/R
2 . (18)

Moreover let A ∈ K1/R
2 and A = (Int(A))−, then:

i) if d = 2, then A is an R-body;
ii) if d > 2 , then A can be not an R-body.

Proof. The inclusion (18) is obvious: since if A is an R-body and x ∈ Ac, then
x ∈ B(R) and B(R)∩A = /0; therefore ∂B(R)∩ Int(A) = /0. Then, if x ∈ D(R) =
∂B(R)∪B(R) thus D(R)∩ Int(A) = /0. The inclusion is strict: let E = D(0,r)∩
B(0,R)c∪∂B(0,r1), with r1 < R < r. Then E is not an R-body as if x ∈ B(0,R)\
∂B(0,r1) there is no ball B ⊂ Ec containing x; on the other hand E ∈ K1/R

2 .
Let d = 2 and A ∈ K1/R

2 , A = (Int(A))−. By contradiction, if A is not an
R-body, then, by Theorem 4.5, there exist a1,a2,a3 ∈ A such that there ex-
ists z ∈ coR({a1,a2,a3})∩Ac. Since z ̸= ai, i = 1,2,3, then coR({a1,a2,a3})
strictly contains {a1,a2,a3}; by Corollary 5.3 with V = {a1,a2,a3}, it follows
that r(V )< R. Thus by Theorem 4.2, it follows that

coR(V ) =V ∪ T̃ .

T̃ is a curvilinear triangle with (int(T̃ ))− = T̃ . Since z ∈ T̃ ∩Ac and Ac is open,
then there exists z̃ ∈ Int(T̃ )∩Ac. As

z̃ ∈ Int(T̃ )⊂ int(coR(V ),
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every ball D(R) ∋ z̃ contains at least one of the vertices ai in its interior, let a1.
Then D(R) contains a neighborhood U of a1 ∈ A. Since A = (Int(A))−, a1 can
not be an isolated point of A, and in U there are points of int(A). Therefore
property (17) does not hold for z̃ ∈ Ac and A ̸∈ K1/R

2 , contradiction.
In case ii), let us consider the set E defined by (16) of Theorem 5.7. E is

not an R-body but E ∪{0} is it. Then any point of Ec, different from 0 satisfies
property (17); moreover

Int(E) = Int(D)∩d+1
j=1 D(o j,R)c ∩{0}c,

then 0 satisfies property (17) too, since the closed ball D(o1,R) does not intersect
Int(E). Then E ∈ K1/R

2 and E is not an R-body. Moreover it easy to see that
E = (Int(E))−.
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