ON THE COMPLEMENTS OF UNION OF OPEN BALLS OF FIXED RADIUS IN THE EUCLIDEAN SPACE

M. LONGINETTI - P. MANSELLI - A. VENTURI

Abstract

Let an R-body be the complement of the union of open balls of radius R in \mathbb{E}^{d}. The R-hulloid of a closed not empty set A, the minimal R-body containing A, is investigated; if A is the set of the vertices of a simplex, the R-hulloid of A is completely described (if $d=2$) and if $d>2$ special examples are studied. The class of R-bodies is compact in the Hausdorff metric if $d=2$, but not compact if $d>2$.

1. Introduction

Given a closed set $E \subset \mathbb{E}^{d}(d \geq 2)$, the convex hull of E is the intersection of all closed half spaces containing E; the convex hull can be considered as a regularization of E. Given $R>0$, a different hull of E could be the intersection of all closed sets, containing E, complement of open balls of radius R not intersecting E. Let us call this set the R-hulloid of E, denoted as $c o_{R}(E)$; the R-bodies are the sets coinciding with their R-hulloids. R-bodies are called $2 R$-convex sets in [10].

The R-hulloid $c o s_{R}(E)$ has been introduced by Perkal [10] as a regularization of E, hinting that $c_{R}(E)$ is a mild regularization of a closed set. Mani-Levitska [8] hinted that the R-bodies cannot be too irregular.

[^0]In our work it is shown that this may not be true: in Theorem 5.7 an example of a connected set is constructed with disconnected R-hulloid. A deeper study gave us the possibility to add new properties to the R-bodies: a representation of $c o_{R}(E)$ is given in Theorem 3.4 and new properties of $\partial c o_{R}(E)$ are proved in Theorem 3.5, Theorem 3.6 and Corollary 3.7. Moreover contrasting results on regularity are found: every closed set contained in an hyperplane or in a sphere of radius $r \geq R$ is an R-body (Theorems 3.10 and 3.11). As a consequence a problem of Borsuk, quoted by Perkal [10], has a negative answer (Remark 3.10). In $\S 4$ it is shown that the R-body regularity heavily depends on the dimension. A definition (Definition 4.3) similar to the classic convexity is given for the class of planar R-bodies, namely (Theorem 4.5):

$$
A \quad \text { is an } R \text {-body iff } \quad \operatorname{co}_{R}\left(\left\{a_{1}, a_{2}, a_{3}\right\}\right) \subset A \quad \forall a_{1}, a_{2}, a_{3} \in A
$$

As consequence, if $d=2$: a sequence of compact R-bodies converges in the Hausdorff metric to an R-body (Corollary 4.7). If $d>2$, in Theorem 3.16 it is proved that a sequence of compact R-bodies converges to an $(R-\varepsilon)$-body, for every $0<\varepsilon<R$; however, the limit body may not be an R-body as an example in $\S 5$ shows. If E is connected, properties of connectivity of $\cos _{R}(E)$ are investigated in $\S 4.3$.

In [7, Definition 2.1] V. Golubyatnikov and V. Rovenski introduced the class $\mathcal{K}_{2}^{1 / R}$. In Theorem 6.1 it is proved that the class of R-bodies is strictly included in $\mathcal{K}_{2}^{1 / R}$. If $d=2$, under additional assumptions, it is also proved that the two classes coincide.

2. Definitions and Preliminaries

Let $\mathbb{E}^{d}, d \geq 2$, be the linear Euclidean Space with unit sphere $\mathcal{S}^{d-1} ; A \subset \mathbb{E}^{d}$ will be called a body if A is non empty and closed. The minimal affine space containing A will be $\operatorname{Lin}(A)$. The convex hull of A will be $\operatorname{co}(A)$; for notations and results of convex bodies, let us refer to [13].

Definition 2.1. Let A be a not empty set.
$A_{\varepsilon}:=\left\{x \in \mathbb{E}^{d}: \operatorname{dist}(A, x)<\varepsilon ;\right\} ; A_{\varepsilon}^{\prime}:=\left\{x \in \mathbb{E}^{d}: \operatorname{dist}(A, x) \geq \varepsilon\right\} ; A^{-}:=$ $A \cup \partial A ; A^{c}:=\mathbb{E}^{d} \backslash A ; \operatorname{Int}(A)=A^{-} \backslash \partial A$.
$B(x, r)$ will be the open ball of center $x \in \mathbb{E}^{d}$ and radius $r>0$; a sphere of radius r is $\partial B(x, r)$.

Let us recall the following facts for reference.
Proposition 2.2. Let A be a not empty set.

- $1 \quad A_{\varepsilon}$ is open; $\quad A_{\varepsilon}=\left(A^{-}\right)_{\varepsilon} \subset\left(A_{\varepsilon}\right)^{-}$.
-2 $\quad A_{\varepsilon}=\left\{x \in \mathbb{E}^{d}: \exists a \in A\right.$, for which $\left.x \in B(a, \varepsilon)\right\}=\left\{x \in \mathbb{E}^{d}: B(x, \varepsilon) \cap\right.$ $A \neq \emptyset\}$

$$
=\cup_{a \in A} B(a, \varepsilon)=A+B(0, \varepsilon)
$$

- $3 A_{\varepsilon}^{\prime}=\left\{x \in \mathbb{E}^{d}: \forall a \in A, x \notin B(a, \varepsilon)\right\}=\left\{x \in \mathbb{E}^{d}: B(x, \varepsilon) \cap A=\emptyset\right\}=$ $\cap_{a \in A} B(a, \varepsilon)^{c}$.
- 4 Let $A_{i}, i=1,2$ be non empty sets. Then

$$
A^{1} \subset A^{2} \Rightarrow\left(A^{1}\right)_{\varepsilon} \subset\left(A^{2}\right)_{\varepsilon}
$$

- 5 If E is non empty, then $E \subset\left(E_{R}^{\prime}\right)_{R}^{\prime} \subset E_{R}$, see [1, lemma 4.3].

Definition 2.3. ([3]) If $A \subset \mathbb{E}^{d}, a \in A$, then $\operatorname{reach}(A, a)$ is the supremum of all numbers ρ such that for every $x \in B(a, \rho)$ there exists a unique point $b \in A$ satisfying $|b-x|=\operatorname{dist}(x, A)$. Also:

$$
\operatorname{reach}(A):=\inf \{\operatorname{reach}(A, a): a \in A\}
$$

Let $b_{1}, b_{2} \in \mathbb{E}^{d},\left|b_{1}-b_{2}\right|<2 R$ and let $\mathfrak{h}\left(b_{1}, b_{2}\right)$ be the intersection of all closed balls of radius R containing b_{1}, b_{2}.

Proposition 2.4. ([1, Theorem 3.8], [11]) The body A has reach $\geq R$ if and only if $A \cap \mathfrak{h}\left(b_{1}, b_{2}\right)$ is connected for every $b_{1}, b_{2} \in A, 0<\left|b_{1}-b_{2}\right|<2 R$.

Remark 2.1. The R-hull of a set E was introduced in [1, Definition 4.1] as the minimal set \hat{E} of reach $\geq R$ containing E. Therefore if $\operatorname{reach}(A) \geq R$, then A coincides with its R-hull. The R-hull of a set E may not exist, see [1, Example 2].

Proposition 2.5. [1, Theorem 4.4] Let $A \subset \mathbb{E}^{d}$. If $\operatorname{reach}\left(A_{R}^{\prime}\right) \geq R$ then A admits R-hull \hat{A} and

$$
\hat{A}=\left(A_{R}^{\prime}\right)_{R}^{\prime}
$$

Proposition 2.6. [1, Theorem 4.8] If $A \subset \mathbb{E}^{2}$ is a connected subset of an open ball of radius R, then A admits R -hull.

Let us also recall the following result:
Proposition 2.7. [1, Theorem 3.10], [12]) Let $A \subset \mathbb{E}^{d}$ be a closed set such that $\operatorname{reach}(A) \geq R>0$. If $D \subset \mathbb{E}^{d}$ is a closed set such that for every $a, b \in D$, $\mathfrak{h}(a, b) \subset D$ and $A \cap D \neq \emptyset$, then $\operatorname{reach}(A \cap D) \geq R$.

3. R-bodies

Let R be a fixed positive real number. B will be any open ball of radius R. $B(x)$ will be the open ball of center $x \in \mathbb{E}^{d}$ and radius R. Next definitions have been introduced in [10].

Definition 3.1. Let A be a body, A will be called an R-body if $\forall y \in A^{c}$, there exists an open ball B in E^{d} (of radius R) satisfying $y \in B \subset A^{c}$. This is equivalent to say

$$
A^{c}=\cup\{B: B \cap A=\emptyset\}
$$

that is

$$
A=\cap\left\{B^{c}: B \cap A=\emptyset\right\}
$$

Let us notice that for any $r \geq R$ and for every x, the body $(B(x, r))^{c}$ is an R-body.

Definition 3.2. Let $E \subset \mathbb{E}^{d}$ be a non empty set. The set

$$
\operatorname{co}_{R}(E):=\cap\left\{B^{c}: B \cap E=\emptyset\right\}
$$

will be called the R-hulloid of E. Let $\operatorname{co}_{R}(E)=\mathbb{E}^{d}$ if there are no balls $B \subset E^{c}$.
Remark 3.1. In [10] the sets defined in Definition 3.1 are called $2 R$ convex sets and the sets defined in Definition 3.2 are called $2 R$ convex hulls. On the other hand Meissner [9] and Valentine [15, pp. 99-101] use the names of R-convex sets and R-convex hulls for different families of sets. An s-convex set is also defined in [4, p. 42]. To avoid misunderstandings we decided to call R-bodies and R-hulloids the sets defined in Definition 3.1 and in Definition 3.2.

Remark 3.2. Let us notice that $\cos _{R}(E)$ is an R-body (by definition) and $E \subset$ $\operatorname{co}_{R}(E)$. Moreover A is an R-body if and only if $A=\operatorname{co}_{R}(A)$. The R-hulloid always exists.

Clearly every convex body E is an R-body (for all positive R) and its convex hull $\operatorname{co}(E)=E$ coincides with its R-hulloid.

Remark 3.3. It was noticed in [1, Corollary 4.7] and proved in [2, Proposition 1] that, when the R-hull exists, it coincides with the R-hulloid. If A has reach greater or equal than R, then (see remark 2.1) A has R-hull, which coincides with A and with its R-hulloid, then A is an R-body.

Proposition 3.3. Let E be a non empty set. The following facts have been proved in [10].

- a $\quad c o_{R}(E)=\left(E_{R}^{\prime}\right)_{R}^{\prime} ;$
- b $\quad E^{-} \subset \cos _{R}(E)$;
- c Let $E^{1} \subset E^{2}$; then $\operatorname{co}_{R}\left(E^{1}\right) \subset \operatorname{co}_{R}\left(E^{2}\right)$;
- d $\operatorname{co}_{R}\left(E^{1}\right) \cup \operatorname{co}_{R}\left(E^{2}\right) \subset \operatorname{co}_{R}\left(E^{1} \cup E^{2}\right) ;$
- e $\quad \operatorname{co}_{R}\left(\cos _{R}(E)\right)=\operatorname{co}_{R}(E) ;$
- f Let $A^{(\alpha)}, \alpha \in \mathcal{A}$ be R-bodies, then $\cap_{\alpha \in \mathcal{A}} A^{(\alpha)}$ is an R-body;
- g $\operatorname{diam} E=\operatorname{diam} c_{R}(E)$;
- h If A is an R-body then A is an r-body for $0<r<R$;
- i $\cos _{R}(E) \subset \operatorname{co}(E)$ for all $R>0$.

Remark 3.4. Let E be a body. From \mathbf{c} of Proposition 3.3 it follows that if A is an R-body and $A \supset E$, then $A \supset \cos _{R}(E)$ and $\cos _{R}(E)$ is the minimal R-body containing E.

Lemma 3.5. A point $k \in \cos _{R}(E)$ if and only if there does not exist any open ball $B(x, l) \ni k$ with $l \geq R, B(x, l) \subset E^{C}$.

Proof. As $(B(x, l))^{c}$ is an R-body, the set $c_{R}(E) \cap(B(x, l))^{c} \supset E$ would be an R-body strictly included in $\operatorname{co}_{R}(E)$, which is the minimal R-body containing E.

Lemma 3.6. Let E be a body. Then

$$
\begin{equation*}
c o_{R}(E) \subset E_{R} \tag{1}
\end{equation*}
$$

Moreover there exists E such that $\left(E_{R}\right)^{-}$is not an R-body.
Proof. By 5 of Proposition 2.2, $\left(E_{R}^{\prime}\right)_{R}^{\prime} \subset E_{R}$ and by a of Proposition 3.3, the inclusion (1) follows. Let $x_{0} \in \mathbb{E}^{d}, R<\rho<2 R$ and let $E=\left(B\left(x_{0}, \rho\right)\right)^{c}$. Then $\left(E_{R}\right)^{-}$is $\left(B\left(x_{0}, \rho-R\right)\right)^{c}$, not an R-body.

Theorem 3.4. Let $E \subset \mathbb{E}^{d}$ be a body. Then

$$
\begin{equation*}
\operatorname{co}_{R}(E)=E_{R} \cap\left(\partial\left(E_{R}\right)\right)_{R}^{\prime} \tag{2}
\end{equation*}
$$

Proof. Formula (2) can also be written as:

$$
\begin{equation*}
\left(c o_{R}(E)\right)^{c}=E_{R}^{\prime} \cup\left(\partial\left(E_{R}\right)\right)_{R} \tag{3}
\end{equation*}
$$

Let $\Omega=E_{R}^{\prime} \cup\left(\partial\left(E_{R}\right)\right)_{R}$.

Inclusion (1) implies that $E_{R}^{\prime} \subset\left(\cos _{R}(E)\right)^{c}$. Let us notice that:

$$
\left(\partial\left(E_{R}\right)\right)_{R}=\cup\left\{B(x): x \in \partial\left(E_{R}\right)\right\}=\cup\{B(x): \operatorname{dist}(x, E)=R\}
$$

then

$$
\begin{equation*}
\left(\partial\left(E_{R}\right)\right)_{R} \subset \cup\{B(x): \operatorname{dist}(x, E) \geq R\}=\left(\cos _{R}(E)\right)^{c} \tag{4}
\end{equation*}
$$

Then from (4):

$$
\Omega \subset\left(c o_{R}(E)\right)^{c}
$$

holds too.
The open set $\left(\operatorname{co}_{R}(E)\right)^{c}$ is the union of the balls $B(x)$, satisfying $B(x) \cap$ $E=\emptyset$; clearly dist $(x, E) \geq R$; if dist $(x, E)=R$ then $x \in \partial\left(E_{R}\right)$ and $B(x) \subset$ $\left(\partial\left(E_{R}\right)\right)_{R} ;$ if dist $(x, E)>R$, then $B(x) \subset E_{R}^{\prime}$. Therefore

$$
\left(\cos _{R}(E)\right)^{c} \subset \Omega
$$

Then $\Omega=\left(\operatorname{co}_{R}(E)\right)^{c}$.
Remark 3.7. The previous theorem is the analogous, for the R-hulloid, of the property of the convex hull of a body $E: \operatorname{co}(E)$ is the intersection of all closed half spaces supporting E.

If E is a compact set, part of the following theorem has been proved in [2, Proposition 2].

Theorem 3.5. Let E be a body, $k \in \operatorname{co}_{R}(E), l=\inf f_{x \in E_{R}^{\prime}}|k-x|=\operatorname{dist}\left(k, E_{R}^{\prime}\right)$. Then l is a minimum and $l \geq R$. Moreover $l=R$ if and only if $k \in \partial c o_{R}(E)$ and there exists $x_{0} \in E_{R}^{\prime}$ satisfying $B\left(x_{0}\right) \subset E^{c}, \partial B\left(x_{0}\right) \ni k$.

Proof. As $\operatorname{co}_{R}(E)=\cap\left\{B^{c}: B^{c} \supset E\right\}$, then dist $\left(E_{R}^{\prime}, \operatorname{co}_{R}(E)\right) \geq R$. Let $x_{n} \in E_{R}^{\prime}$ satisfying $\left|x_{n}-k\right| \rightarrow l \geq R$; by possibly passing to a subsequence, one can assume that $x_{n} \rightarrow x_{0} \in E_{R}^{\prime}$, where $\left|x_{0}-k\right|=l$. If $\left|x_{0}-k\right|=R$ then $k \in \operatorname{co}_{R}(E) \cap$ $\partial B\left(x_{0}\right)$. As $l=R$, it cannot be $k \in \operatorname{Int}\left(\cos _{R}(E)\right)$. Therefore the claim of the theorem holds.

Theorem 3.6. Let E be a body, $k \in \partial \operatorname{co}_{R}(E)$. Then there exists $B \subset E^{c}$ satisfying $k \in \partial B$. Moreover if $\mathfrak{F}=\left\{B \subset E^{c}: \partial B \cap \operatorname{co}_{R}(E) \neq \emptyset\right\}$, then \mathfrak{F} is not empty and if $B \in \mathfrak{F}$ then $\partial B \cap E \neq \emptyset$.

Proof. If $k \in \partial \operatorname{co}_{R}(E)$, by previous theorem there exists $x_{0} \in E_{R}^{\prime}$ with the property $B\left(x_{0}\right) \subset E^{c}, \partial B\left(x_{0}\right) \ni k$. If dist $\left(x_{0}, E\right)=l>R$ then $k \in B^{1}=B\left(x_{0}, l\right) \subset$ E^{c}, this is impossible by Lemma 3.5 and \mathfrak{F} is non empty. Let $B(x) \in \mathfrak{F}$ and, by contradiction, let $\partial B \cap E=\emptyset$; then, $R_{1}=\operatorname{dist}(x, E)>R$. Thus $B\left(x, R_{1}\right)^{c}$ is an R-body containing E, then $\cos _{R}(E) \subset B\left(x, R_{1}\right)^{c}$; as $\partial B(x) \subset B\left(x, R_{1}\right)$ so $\partial B(x) \cap \operatorname{co}_{R}(E)=\emptyset$, contradiction with $B(x) \in \mathfrak{F}$.

Corollary 3.7. Let A be an R-body. Then :
(i) $\Xi(A):=\left\{x: B(x) \subset A^{c}\right\}$ (the set of centers of balls of radius R contained in A^{c}) is closed;
(ii) $\forall y \in \partial A$, there exists $x_{0} \in \Xi(A)$ with the property: $y \in \partial B\left(x_{0}\right)$.

Proof. Let x_{0} be an accumulation point of $\Xi(A)$ and $\Xi(A) \ni x_{n} \rightarrow x_{0}$; let $b \in$ $B\left(x_{0}\right)$, then $\lim _{n \rightarrow \infty}\left|b-x_{n}\right|=\left|b-x_{0}\right|$ where $\left|b-x_{0}\right|<R$. Thus for n sufficiently large $\left|b-x_{n}\right|<R$, therefore $b \in B\left(x_{n}\right) \subset A^{c}, \forall b \in B\left(x_{0}\right)$. Then $B\left(x_{0}\right) \subset A^{c}$, $x_{0} \in \Xi(A)$ and (i) holds.
(ii) follows by Theorem 3.6.

Lemma 3.8. Let A be a body; if A^{c} is union of closed balls of radius R, then A is an R-body.

Proof. For every $y \in A^{c}$ there exists $(B(z))^{-} \subset A^{c}, y \in(B(z))^{-}$. As A and $(B(z))^{-}$are closed and disjoint, there exists $R_{1}>R$ so that $B\left(z, R_{1}\right) \subset A^{c}$. Then there exists a ball $B \subset A^{c}, B \ni y$. Thus A^{c} is union of open balls of radius R and A is an R-body.

Let us notice that there exist R-bodies A such that A^{c} is not union of closed balls of radius R. As example, let $A=B^{c}$.

Theorem 3.8. Let A be a body, which is not an R -body. Then there exists $y_{0} \in A^{c}$ such that y_{0} belongs to no closed ball of radius R, contained in A^{c}.

Proof. By contradiction, let us assume that every $y \in A^{c}$ is contained in a closed ball of radius R contained in A^{c}, then A^{c} is union of closed balls of radius R and satisfies the hypothesis of Lemma 3.8, then A is an R-body. Impossible.

Let \mathcal{C}^{d} be the metric space of the compact bodies in \mathbb{E}^{d} with the Hausdorff distance $\delta_{H}(F, G):=\min \left\{\varepsilon \geq 0: F \subset G_{\varepsilon}, G \subset F_{\varepsilon}\right\}$.

From a bounded sequence in \mathcal{C}^{d} one can select a convergent subsequence in the Hausdorff metric (see e.g. [13, Theorem 1.8.4]).

Let $\mathcal{R}^{d}=\left\{A \subset \mathcal{C}^{d}: A\right.$ is an R-body $\}$. Let $A \subset \mathbb{E}^{d}$ be a body, $\varepsilon>0$. Let $A_{\varepsilon}^{-}:=\left\{x \in E^{d}: \operatorname{dist}(A, x) \leq \varepsilon\right\}=\left(A_{\varepsilon}\right)^{-} . D=B^{-}$will be any closed ball of radius R.

Theorem 3.9. Let $A^{(n)}$ be a sequence of compact R-bodies; let us assume that $A^{(n)} \rightarrow A \in \mathcal{C}^{d}$ in the Hausdorff metric. Then, A is an $R_{\mathcal{\varepsilon}}$-body for every $0<$ $R_{\mathcal{E}}<R$.

Proof. By contradiction, let us assume that A it is not an $R_{\mathcal{E}}$-body. Then by Theorem 3.8, there exists $y_{0} \in A^{c}$ with the property

As dist $\left(y_{0}, A\right)>0$, then $y_{0} \in\left(A_{\sigma}\right)^{c}$ for suitable $\sigma>0$. As $A^{(n)} \rightarrow A$ in the Hausdorff metric, there exists a sequence $\varepsilon_{n} \rightarrow 0^{+}$satisfying $A^{(n)} \subset A_{\mathcal{E}_{n}}$, $A \subset A_{\varepsilon_{n}}$. For n sufficiently large $\left(A_{\sigma}\right)^{c} \subset\left(A_{\varepsilon_{n}}\right)^{c}$ and $y_{0} \in\left(A_{\varepsilon_{n}}\right)^{c} \subset\left(A^{(n)}\right)^{c}$. As $A^{(n)} \in \mathcal{R}^{d}$, then there exist open balls $B\left(x_{n}\right)$ satisfying $y_{0} \in B\left(x_{n}\right) \subset\left(A^{(n)}\right)^{c}$; then $\operatorname{dist}\left(x_{n}, A^{(n)}\right) \geq R$, $\operatorname{dist}\left(x_{n}, A\right) \geq R-\varepsilon_{n}$.

As $\left|x_{n}-y_{0}\right|<R$, by possibly passing to a subsequence, $x_{n} \rightarrow x_{0} \in \mathbb{E}^{d}$. The point x_{0} satisfies: $\left|x_{0}-y_{0}\right| \leq R$, dist $\left(x_{0}, A\right) \geq R$. Then $B\left(x_{0}\right) \subset A^{c}$ and $D:=\left(B\left(x_{0}\right)\right)^{-}$is a closed ball of radius R containing y_{0}. If $y_{0} \in B\left(x_{0}\right)$, then $D_{\rho}=B^{-}\left(x_{0}, \rho\right)$, with $\rho=\max \left\{\left|y_{0}-x_{0}\right|, R_{\varepsilon}\right\}$ is a closed ball which provides a contradiction with (5). In case $y_{0} \in \partial B\left(x_{0}\right)$ the closed ball enclosed in D, tangent to $\partial B\left(x_{0}\right)$ at y_{0}, with radius R_{ε}, provides a contradiction with property (5).

Remark 3.9. In section 5 it will be shown that in \mathbb{E}^{3} a limit (in Hausdorff metric) of a sequence of R-bodies may be not an R-body. In Corollary 4.7 it will be proved that, in \mathbb{E}^{2}, a limit of a sequence of R-bodies (in Hausdorff metric) is an R-body too.

Theorem 3.10. Let $\Sigma=\partial B(r) \subset \mathbb{E}^{d}$ be a sphere of radius $r \geq R$ and let E be a body subset of Σ. Then E is an R-body.

Proof. Σ is a topological space with the topology induced by \mathbb{E}^{d} and E is closed in that topology. Then $\Sigma \backslash E$ is union of $(d-1)$-dimensional open balls in Σ. Let $D=(B(r))^{-}$, as $\mathbb{E}^{d} \backslash \Sigma=B(r) \cup D^{c}$, then

$$
\mathbb{E}^{d} \backslash E=B(r) \cup D^{c} \cup(\Sigma \backslash E)
$$

is union of the following open balls of radius R :
(i) all open balls of radius R contained in $B(r)$, which fill $B(r)$ since $r \geq R$;
(ii) all open balls B of radius R contained in D^{c};
(iii) all open balls B of radius R satisfying the property: $B \cap \Sigma$ is a $(d-1)$ dimensional open ball in $\Sigma \backslash E$.

So E is an R-body.
With a similar proof, the following fact can be proved.
Theorem 3.11. Let $E \subset \mathbb{E}^{d}$ be a body, subset of a hyperplane Π. Then E is an R-body.

Remark 3.10. In [10], p.9, a question of Borsuk was stated: 'Are the R-bodies locally contractible?'.

The Borsuk's question has a negative answer: let Π be an hyperplane in E^{d}. By Theorem 3.11 every body, subset of Π, is an R-body; then there exist not locally contractible bodies subsets of Π.

4. Properties of R-bodies in \mathbb{E}^{2}.

4.1. $\quad R$-hulloid of three points in \mathbb{E}^{2}.

Let R be a fixed positive real number. Let T be a not degenerate triangle in $\mathbb{E}^{2}, V=\left\{x_{1}, x_{2}, x_{3}\right\}$ be the set of its vertices, $r(V)$ be the radius of the circle circumscribed to T. By Theorem 3.10, if $r(V) \geq R$, then $\cos _{R}(V)=V$.

Proposition 4.1. Let $\left\{x_{1}, x_{2}, x_{3}\right\}$ be the vertices of a triangle T inscribed in a circumference C of radius r. Three possible cases may occur:
i) ([6, pag 16]) if T is acute-angled then the three circumferences of radius r, each one through two vertices of T, different from C, meet in the orthocenter y of T;
ii) if T is obtuse-angled in x_{3} then the two circumferences of radius r through the vertices $\left\{x_{1}, x_{3}\right\}$ and $\left\{x_{2}, x_{3}\right\}$, respectively, different from C, meet C in x_{3} and in a point exterior to T ;
iii) if T is right-angled at x_{3} then the two circumferences of radius r through the vertices $\left\{x_{1}, x_{3}\right\}$ and $\left\{x_{2}, x_{3}\right\}$, different from C, are tangent at x_{3}.

Proof. i) it is related to the Johnson's Theorem [5]; ii) and iii) follows by construction.

Theorem 4.2. Let $V=\left\{x_{1}, x_{2}, x_{3}\right\}$ be the set of the vertices of a triangle T with circumradius $r=r(V)$. If $r(V)<R$, then

$$
\operatorname{co}_{R}(V)=V \cup \tilde{T}
$$

where $\tilde{T} \subset T$ is the curvilinear triangle bordered by three arcs of circumferences of radius R; each one through two vertices of T and relative to the circle not containing the remaining vertex of T. If T is a right-angled or obtuse-angled then the vertex of the greatest angle of T is also a vertex of \tilde{T}, that is the end point of two consecutive arcs of $\partial \tilde{T}$.

Proof. Let $B\left(q_{i}, r\right), B\left(c_{i}, R\right)$ be the open circles, not containing x_{i}, with boundary through the two vertices of T different from $x_{i}, i=1,2,3$. In the case i) of Proposition 4.1, the orthocenter y of T is in the interior of T and $y \in \cap_{i=1,2,3} \partial B\left(q_{i}, r\right)$. As $R>r: T \cap B\left(c_{i}, R\right) \subsetneq T \cap B\left(q_{i}, r\right)$, then $\operatorname{dist}\left(y, B\left(c_{i}, R\right)\right)>0,(i=1,2,3)$. Thus

$$
\begin{equation*}
\tilde{T}: \equiv T \cap\left(\bigcup_{j=1}^{3} B\left(c_{j}, R\right)\right)^{C} \tag{6}
\end{equation*}
$$

is a curvilinear triangle with $y \in \operatorname{Int}(\tilde{T})$; moreover $\partial \tilde{T}$ is union of of three arcs of the circumferences $\partial B\left(c_{i}, R\right)(i=1,2,3)$.

If T is obtuse-angled at x_{3}, case ii) of Proposition 4.1), the two circumferences $\partial B\left(c_{i}, R\right)$ containing x_{3} and another vertex of T cross each other in x_{3} and in a point exterior to T. If T is right-angled at x_{3} the two circumferences $\partial B\left(q_{i}, r\right)$ meet and are tangent to each other in x_{3}, then again the circumferences $\partial B\left(c_{i}, R\right)$ cross each other in x_{3} and in a point exterior to T. In both cases dist $\left(x_{3}, B\left(c_{3}, R\right)\right)>0$ and \tilde{T}, given by (6), is a curvilinear triangle with a vertex at x_{3}.

4.2. \quad Two dimensional R-bodies, equivalent definitions

Definition 4.3. Let a_{1}, a_{2} be two points in \mathbb{E}^{2}, with $0<\left|a_{1}-a_{2}\right|<2 R$. Let $B\left(x_{1}\right), B\left(x_{2}\right)$ the two open circles with the boundaries through a_{1}, a_{2}. Let us define

$$
H\left(a_{1}, a_{2}\right)=B\left(x_{1}\right) \cup B\left(x_{2}\right)
$$

and let $\mathfrak{h}\left(a_{1}, a_{2}\right)$ be the intersection of all closed balls of radius R containing a_{1}, a_{2}.

Definition 4.4. Let A be a planar body. A satisfies the property \mathfrak{Q}_{R} if :

$$
\forall a_{1}, a_{2}, a_{3} \in A \quad \text { the } R \text {-hulloid of the set }\left\{a_{1}, a_{2}, a_{3}\right\} \text { is a subset of } A \text {. }
$$

When x, y are points on a circumference ∂B, let us denote with $\operatorname{arc}_{\partial B}(x, y)$ the shorter arc on ∂B from x to y.

Lemma 4.1. Let A be a planar body. If A satisfies the property \mathfrak{Q}_{R}, then

$$
\begin{equation*}
\left\{a_{1}, a_{2}\right\} \subset A, 0<\left|a_{1}-a_{2}\right|<2 R: \mathfrak{h}\left(a_{1}, a_{2}\right) \backslash\left\{a_{1}, a_{2}\right\} \subset A^{c} \Rightarrow H\left(a_{1}, a_{2}\right) \subset A^{c} \tag{7}
\end{equation*}
$$

Proof. Let $H\left(a_{1}, a_{2}\right)=B\left(x_{1}\right) \cup B\left(x_{2}\right)$. Let us assume, by contradiction, that there exist $a_{3} \in A \cap\left(B\left(x_{1}\right) \backslash \mathfrak{h}\left(a_{1}, a_{2}\right)\right)$. Let $T=\operatorname{co}\left(\left\{a_{1}, a_{2}, a_{3}\right\}\right)$, then $r(T)<R$. By Theorem 4.2 there exist $y_{1}, y_{2} \in \operatorname{arc}{ }_{\partial B\left(x_{2}\right)}\left(a_{1}, a_{2}\right)$ satisfying

$$
\operatorname{arc}_{\partial B\left(x_{2}\right)}\left(y_{1}, y_{2}\right) \subset \operatorname{co}_{R}\left(\left\{a_{1}, a_{2}, a_{3}\right\}\right) \subset A
$$

As

$$
\operatorname{arc}_{\partial B\left(x_{2}\right)}\left(y_{1}, y_{2}\right) \subset \mathfrak{h}\left(a_{1}, a_{2}\right) \backslash\left\{a_{1}, a_{2}\right\} \subset A^{c}
$$

this is impossible. The proof is similar if $a_{3} \in B\left(x_{2}\right)$.
Theorem 4.5. Let A be a planar body. A is an R-body if and only if A satisfies the property \mathfrak{Q}_{R}.

Proof. Let A be an R-body then $\operatorname{co}_{R}\left(\left\{a_{1}, a_{2}, a_{3}\right\}\right) \subset \operatorname{co}_{R}(A)=A$ and \mathfrak{Q}_{R} holds for A.

On the other hand let assume the property \mathfrak{Q}_{R} holds for a body A. Let us prove that A is an R-body, by showing:

$$
\begin{equation*}
\text { if } \quad y_{0} \in A^{c} \quad \text { then } \quad \exists B \ni y_{0}, B \subset A^{c} . \tag{8}
\end{equation*}
$$

Let $y_{0} \in A^{c}$, then there exists $\delta>0$ such that dist $\left(y_{0}, A\right)=\delta$. If $\delta \geq R$, then $B\left(y_{0}, R\right) \subset B\left(y_{0}, \delta\right)$ and (8) holds. Let $\delta<R$. By definition of δ, there exists $a_{1} \in A \cap \partial B\left(y_{0}, \delta\right)$ and $B\left(y_{0}, \delta\right) \subset A^{c}$. There are two cases:
i) there exists a point $a_{2} \neq a_{1}, a_{2} \in A \cap \partial B\left(y_{0}, \delta\right)$;
ii) $A \cap \partial B\left(y_{0}, \delta\right)=\left\{a_{1}\right\}$.

In the case i), $\mathfrak{h}\left(a_{1}, a_{2}\right) \backslash\left\{a_{1}, a_{2}\right\} \subset B\left(y_{0}, \delta\right) \subset A^{c}$. Let $H\left(a_{1}, a_{2}\right)=B\left(x_{1}\right) \cup$ $B\left(x_{2}\right)$; by Lemma 4.1 the following inclusion holds:

$$
\begin{equation*}
H\left(a_{1}, a_{2}\right) \subset A^{c} \tag{9}
\end{equation*}
$$

As $y_{0} \in B\left(x_{1}\right)$ or $y_{0} \in B\left(x_{2}\right)$ and both balls $B\left(x_{1}\right), i=1,2$ have empty intersection with A, then y_{0} satisfies (8).

In the case ii) on $\partial B\left(y_{0}, \delta\right)$ let a_{*} be the symmetric point of a_{1} with respect to the center y_{0}. For $t>2$ let $a(t)=a_{1}+(t-1)\left(a_{*}-a_{1}\right)$. Let $t_{R}>2$ be such that $\left|a_{1}-a\left(t_{R}\right)\right|=2 R$. The set function $t \rightarrow \mathfrak{h}\left(a_{1}, a(t)\right) \backslash\left\{a_{1}\right\}$, for $2 \leq t<t_{R}$, is strictly increasing with respect to the inclusion. If for all $2 \leq t<t_{R}$ the set $\mathfrak{h}\left(a_{1}, a(t)\right) \backslash\left\{a_{1}\right\} \subset A^{c}$ then $\lim _{t \rightarrow t_{R}-} \mathfrak{h}\left(a_{1}, a(t)\right)$ is a closed ball $D \ni y_{0}$ of radius $R, A^{c} \supset \operatorname{Int}(D) \ni y_{0}$ and (8) holds. Otherwise, there exists $2<\tau<t_{R}$ satisfying $\mathfrak{h}\left(a_{1}, a(\tau)\right) \backslash\left\{a_{1}\right\} \cap A \neq \emptyset$. Let

$$
\bar{t}=\operatorname{Inf}\left\{t \in\left[2, t_{R}\right]:\left(\mathfrak{h}\left(a_{1}, a(t)\right) \backslash\left\{a_{1}\right\}\right) \cap A \neq \emptyset\right\}
$$

and let

$$
\begin{equation*}
2 \leq t \leq t_{R} \rightarrow F(t):=\left(\mathfrak{h}\left(a_{1}, a(t)\right) \backslash\left\{a_{1}\right\}\right) \cap\left(B\left(y_{0}, \delta\right)\right)^{c} . \tag{10}
\end{equation*}
$$

By construction $\{F(t)\}$ is a continuous family of bodies, strictly monotone with respect to the inclusion, with dist $(F(t), A)>0$ for $t<\bar{t}$. Then $F(\bar{t}) \cap A \neq \emptyset$, $\operatorname{Int}(F(\bar{t})) \subset A^{c}$ and dist $\left(a_{1}, F(\bar{t})\right)>0$. Therefore there exists $a_{2} \in \partial F(\bar{t}) \cap \partial A$ of minimum distance from a_{1}. This implies that $\operatorname{arc}_{\partial F(\bar{t})}\left(a_{1}, a_{2}\right)$ has no interior points of the body A. Then, $\mathfrak{h}\left(a_{1}, a_{2}\right) \backslash\left\{a_{1}, a_{2}\right\} \subset A^{c} ;$ by arguing as in case i$)$, the inclusion (9) holds and y_{0} satisfies (8).

Theorem 4.6. Let $A \subset \mathbb{E}^{2}$ be a body. If A is a ρ-body for every positive $\rho<R$ then A is an R-body.

Proof. If A is ρ-body the property \mathfrak{Q}_{ρ} holds for $\rho<R$. Let us show that it holds for $\rho=R$. Let $a_{1}, a_{2}, a_{3} \in A$, with $r\left(\left\{a_{1}, a_{2}, a_{3}\right\}\right) \geq R$, then $\operatorname{co}_{R}\left(\left\{a_{1}, a_{2}, a_{3}\right\}\right)=$ $\left\{a_{1}, a_{2}, a_{3}\right\} \subset A$. In case $r\left(\left\{a_{1}, a_{2}, a_{3}\right\}\right)<R$ let $\rho>r\left(\left\{a_{1}, a_{2}, a_{3}\right\}\right)$; by Theorem 4.2, with ρ instead of R and a_{1}, a_{2}, a_{3} in place of x_{1}, x_{2}, x_{3}, it follows

$$
\operatorname{co}_{\rho}\left(\left\{a_{1}, a_{2}, a_{3}\right\}\right)=\left\{a_{1}, a_{2}, a_{3}\right\} \bigcup \tilde{T}_{\rho}
$$

\tilde{T}_{ρ} a curvilinear triangle subset of A, bounded by arcs of radius ρ. As A is closed and $\tilde{T}_{\rho} \rightarrow \tilde{T}$, then $\tilde{T} \subset A$. Therefore \mathfrak{Q}_{R} holds too and previous theorem proves that A is an R-body.

From Theorem 4.6 and Theorem 3.9 it follows
Corollary 4.7. A limit of a sequence of planar R-bodies (in Hausdorff metric) is an R-body too.

Remark 4.2. With arguments similar to the proof of Theorem 4.5, it can also be proved that for a planar body A the property \mathfrak{Q}_{R} is equivalent to the property (7).

4.3. Connected and disconnected R-bodies in \mathbb{E}^{2}

Theorem 4.8. Let E be a connected body in \mathbb{E}^{2}, contained in an open ball B of radius R; then $\operatorname{co}_{R}(E)$ is connected.

Proof. As E is connected, by Proposition 2.6, E admits R-hull A of reach $\geq R$; then, by Remark 3.2, $A=\cos _{R}(E)$. By Proposition 2.4 the set A is connected.

In the previous theorem the assumption that E is contained in an open ball of radius R is needed as the following example shows.

Example 1. In E^{2} let $\Sigma_{0}:=\partial B\left(0, R_{0}\right)$, with

$$
\frac{R}{\sqrt{3}}<R_{o}<R
$$

Let $k_{i} \in \Sigma_{0}, i=1,2,3$ be the vertices of an equilateral triangle T and let $\partial B\left(o_{j}, R\right)$ the circumference, through the two points $k_{i}, i \neq j$, with $k_{j} \notin B\left(o_{j}, R\right)$. Let $D:=$ $(B(0,4 R))^{-}$and

$$
E:=D \cap\left(B\left(0, R_{0}\right) \bigcup_{j=1}^{3} B\left(o_{j}, R\right)\right)^{c}
$$

Then E is a planar connected body with disconnected R-hulloid.

Proof. It is obvious that E is connected since it is homotopic to a ring. E^{c} is an open set since E^{c} is the union of D^{c} and open balls. As $R_{0}<R$ and $\forall i \neq j, k_{i} \in \partial B\left(o_{j}\right), k_{j} \notin B\left(o_{j}\right)$ the set E^{c} does not contain the set of the vertices k_{i}. Let

$$
\tilde{T}: \equiv\left(\bigcup_{j=1}^{3} B\left(o_{j}, R\right) \cup B\left(0, R_{0}\right)\right) \backslash\left(\bigcup_{j=1}^{3} B\left(o_{j}, R\right)\right)
$$

\tilde{T} is a curvilinear triangle and it is a closed connected set disjoint from E; moreover any point of \tilde{T} can not lie in an open circle of radius R avoiding all the vertices k_{i} of the equilateral triangle T. Then, by Lemma 3.5, $E \cup \tilde{T} \subset \cos _{R}(E)$; as the complementary of $E \cup \tilde{T}$ is $D^{c} \cup_{j} B\left(o_{j}, R\right)$, union of open balls of radius R, then $E \cup \tilde{T}$ is an R-body, that is

$$
\operatorname{co}_{R}(E)=E \cup \tilde{T}
$$

which is a disconnected R-body.
The previous example can be modified to get a simply connected set E_{*} such that $\operatorname{co}_{R}\left(E_{*}\right)$ is disconnected. Let us consider $E_{*}=E \cap W^{c}$, where W is a small strip from $\partial B\left(o_{1}, R\right)$ to $\partial D(4, R)$. Clearly $\operatorname{co}_{R}\left(E_{*}\right)=c o_{R}(E)$ is disconnected and E_{*} is a simply connected set.

5. R-hulloid of the vertices of a simplex in \mathbb{R}^{d}

Definition 5.1. Let $d \geq 2,1 \leq n \leq d$. Let $\left\{v_{1}, \ldots, v_{n+1}\right\} \subset \mathbb{R}^{d}$ be a family of affinely indipendent points and let $V=\left\{v_{1}, \ldots, v_{n+1}\right\} \subset \mathbb{R}^{d}$. An n-simplex is the set $T=\operatorname{co}(V)$.

Let $T=\operatorname{co}(V)$; the $(d-1)$-simplexes $T_{i}=\operatorname{co}\left(V \backslash\left\{v_{i}\right\}\right),(i=1, \ldots, d+1)$ are called the facets of T. If V lies on a sphere, centered in $\operatorname{Lin}(T)$, and its points are equidistant, then T will be called a regular simplex.

It is well known the following fact: let V the set of the vertices of a d simplex T in \mathbb{E}^{d}. There exists a unique open ball $B(V)$ such that all the vertices in V belong to $\partial B(V)$, called the circumball to $\operatorname{co}(V)$. Let us notice that $D(V)=$ $(B(V))^{-}$does not coincide (in general) with the closed ball of minimum radius containing V, as an obtuse isosceles triangle shows.

Definition 5.2. Let $1<n \leq d$; if T is a n-simplex, the circumcenter $c(T)$ and the circumradius $r(T)$ are the center and the radius respectively, of the unique open ball $B(c(T), r(T))$, called circumball of T, such that: i) $c(T) \in \operatorname{Lin}(T)$; ii) $\partial B(c(T), r(T)) \supset V$.

Let us denote

$$
r(V): \equiv r(c o(V)), c(V): \equiv c(c o(V)), B(V): \equiv B(c(V), r(V))
$$

From Theorem 3.10 it follows that
Corollary 5.3. If $r(V) \geq R$ then

$$
\begin{equation*}
c o_{R}(V)=V \tag{11}
\end{equation*}
$$

Definition 5.4. Let $R>0$. The R-hulloid of V will be called full if its interior is not empty.

If $d=2$, let V be the set of the vertices of a triangle with circumradius less than R; by Theorem 4.2, $\operatorname{co}_{R}(V)$ is full.

5.1. Examples of R-hulloid of the vertices of a simplex in \mathbb{E}^{d}

Convex sets on \mathcal{S}^{d-1} have been studied in [14]. Here properties of regular simplexes on \mathcal{S}^{d-1} are recalled and used. If S is a regular simplex, centroid and circumcenter coincide.

Lemma 5.1. Let $d>1, R_{0}>0, \Sigma_{0}:=\partial B\left(0, R_{0}\right)$ in \mathbb{E}^{d}. Let $W=\left\{k_{1}, \ldots, k_{d+1}\right\} \subset$ Σ_{0} be the set of the vertices of a regular d-simplex S on Σ_{0}. Then

$$
\begin{equation*}
<k_{i}, k_{j}>=-R_{0}^{2} / d, \quad i \neq j \tag{12}
\end{equation*}
$$

and

$$
\begin{equation*}
\left|k_{i}-k_{j}\right|=\sqrt{2 \frac{d+1}{d}} R_{0} \tag{13}
\end{equation*}
$$

Let $W_{i}=W \backslash\left\{k_{i}\right\}$ and let $\Sigma_{i} \subset \Sigma_{0}$ be the $(d-1)$-dimensional sphere through the points of W_{i}. Then Σ_{i} has center $-k_{i} / d$; moreover $\forall p \in \Sigma_{0}$
the spherical distance on Σ_{0} from p to W is less or equal to $R_{0} \arccos 1 / d$.

Proof. As the centroid of S is 0 , then

$$
\sum_{i=1}^{d+1} k_{i}=0, \quad\left|k_{i}\right|^{2}=R_{0}^{2}, \quad<k_{i}, k_{j}>=R_{0}^{2} \cos \phi \quad(i, j=1, \ldots, d+1), i \neq j
$$

and

$$
0=<k_{j}, \sum_{i=1}^{d+1} k_{i}>=\left(R_{0}\right)^{2}+d\left(R_{0}\right)^{2} \cos \phi \quad(j=1, \ldots, d+1)
$$

Therefore $\cos \phi=-\frac{1}{d}$; so (12) and (13) hold.
As $S_{i}=c o\left(W_{i}\right)$ is an equilateral $(d-1)$-simplex, the centroid of S_{i} will be $\frac{1}{d} \sum_{j \neq i} k_{j}=-k_{i} / d$ and coincides with the center of Σ_{i}. Let \tilde{F}_{j} the spherical ($d-$ 1)-dimensional ball on Σ_{0} of center $-k_{j}$ bounded by Σ_{j}. Then \tilde{F}_{j} has spherical radius

$$
R_{0} \arccos \frac{\left\langle-k_{i}, k_{j}\right\rangle}{R_{0}^{2}}=R_{0} \arccos 1 / d
$$

As $\cup_{j=1}^{d+1} \tilde{F}_{j}=\Sigma_{0}$ the thesis follows.
Theorem 5.5. Let $d>2$ and let S be the regular simplex introduced in Lemma 5.1; let $R=\frac{d}{2} R_{0}$. Then the set W of its vertices is not an R-body and $\operatorname{co}_{R}(W)=$ $W \cup\{0\}$ is not full.

Proof. Let $B\left(o_{j}, \rho_{j}\right)$ with the property that

$$
\partial B\left(o_{j}, \rho_{j}\right) \supset\left\{0, k_{1}, \ldots, k_{j-1}, k_{j+1}, \ldots, k_{d+1}\right\}
$$

Clearly $o_{j}=-\lambda k_{j},(\lambda>0)$. As $\left|o_{j}-0\right|^{2}=\left|o_{j}-k_{i}\right|^{2}, i \neq j$ then

$$
\left(\lambda R_{0}\right)^{2}=\left(\lambda R_{0}\right)^{2}+\left(R_{0}\right)^{2}+2 \lambda\left(R_{0}\right)^{2} \cos \phi
$$

therefore $\lambda=\frac{d}{2}, o_{j}=-\frac{d}{2} k_{j}$ and $\rho_{j}=\left|o_{j}-0\right|=\frac{d R_{0}}{2}=R$.
From (13) it follows

$$
\begin{equation*}
\left|o_{i}-o_{j}\right|=2 R \sqrt{\frac{1}{2}+\frac{1}{2 d}}, \quad j \neq i \tag{15}
\end{equation*}
$$

Claim Q: Let $R-R_{0}<|z| \leq R, Q_{z}: \equiv B\left(0, R_{0}\right) \cap B(z, R)$. Then $\partial Q_{z} \cap \Sigma_{0}$ is a spherical $(d-1)$ dimensional ball on Σ_{0} of radius r. If $|z|<R$ then

$$
r>R_{0} \arccos 1 / d
$$

Proof: let $v=z /|z|$, the family of $Q_{\lambda v}$ is ordered by inclusion for $R-R_{0}<$ $\lambda \leq R$, with minimum set for $\lambda=R$; for $\lambda=R$ the spherical $(d-1)$ dimensional ball $\partial Q_{R_{0} z /|z|}$ has radius $R_{0} \arccos 1 / d$.

If $R-R_{0}<|z|<R$, then from Claim \mathcal{Q} and (14), any open ball $B(z, R)$, which contains the point 0 contains at least one of the vertices $k_{i}, i=1, \ldots, d+1$. As $0 \notin W$ the set W is not an R-body. Moreover since

$$
(W \cup\{0\})^{c}=\bigcup_{j=1}^{d+1} B\left(o_{j}, R\right) \bigcup(c o(W))^{c}
$$

then $W \cup\{0\}$ is an R-body containing W; then $W \cup\{0\}$ is the R-hulloid of W and it has empty interior.

Theorem 5.6. In \mathbb{E}^{3} there exist sequences of R-bodies with limit, in the Hausdorff metric, a body that is not an R-body.

Proof. Let us use the notations of Lemma 5.1 in the special case $d=3$.
Let $k_{i}, i=1, \ldots, 4$ the vertices of a regular simplex in \mathbb{E}^{3} on the sphere $\Sigma_{0}:=$ $\partial B\left(0, R_{0}\right), R_{0}=\frac{2 R}{3}$.

For any fixed $i=1, \ldots 4$ the vertices $k_{j}, j \neq i$ belong to the boundary of the ball $B\left(o_{i}, R\right)$, with $o_{i}=-\frac{3}{2} k_{i}$.

From (12) it follows that

$$
<o_{j}, k_{i}>=\frac{2}{9} R^{2}, \quad i \neq j, \quad i, j=1, \ldots, 4
$$

Let $\varepsilon \rightarrow 0^{+}$and let $x_{i}^{(n)}=k_{i}+\varepsilon_{n} \frac{k_{i}}{\left|k_{i}\right|}, i=1, \ldots, 4$. The points $x_{i}^{(n)}$ are the vertices of a regular simplex $T^{(n)}$ in \mathbb{E}^{3}. For $i \neq j$ let $R_{n}=\left|o_{i}-x_{j}^{(n)}\right|$, then

$$
R_{n}^{2}=R^{2}+\varepsilon_{n}^{2}+2<k_{i}-o_{j}, k_{i} /\left|k_{i}\right|>\varepsilon_{n}=R^{2}+\varepsilon_{n}^{2}+\frac{2}{3} R \varepsilon_{n}>R^{2}
$$

For all $n \in \mathbb{N}$ let

$$
W^{(n)}:=\left\{x_{1}^{(n)}, \ldots, x_{4}^{(n)}\right\}=T^{(n)} \cap\left(\cup_{i=1}^{4} B\left(o_{i}, R_{n}\right)\right)^{c}
$$

As the complementary of the union of open balls of radius greater than R is an R-body and $T^{(n)}$ is convex then $V^{(n)}$ is an R-body too. The limit of $W^{(n)}$ is $W=\left\{x_{1}, \ldots, x_{4}\right\}$ which is not an R-body as proved in Theorem 5.5.

Theorem 5.7. Let $d \geq 3$; in \mathbb{E}^{d} there exist connected bodies in a ball of radius $\sqrt{2} R$ with disconnected R-hulloid.

Proof. Let us consider the regular simplex S in \mathbb{E}^{d}, defined in Theorem 5.5, with vertices on $\Sigma_{0}:=\partial B\left(0, R_{0}\right), R_{0}:=\frac{2 R}{d}$.

The $(d-2)$ spherical surface $L_{i, j}: \equiv \partial B\left(o_{i}, R\right) \cap \partial B\left(o_{j}, R\right), i \neq j$, has center at $\frac{o_{i}+o_{j}}{2}$ and contains 0 . Then, by (15), $L_{i, j}$ has radius

$$
\left|\left(o_{i}+o_{j}\right) / 2\right|=\sqrt{R^{2}-R^{2}\left(\frac{1}{2}+\frac{1}{2 d}\right)}=R \sqrt{\frac{1}{2}-\frac{1}{2 d}}
$$

Then, the maximum distance of $L_{i, j}$ from 0 is

$$
2 R \sqrt{\frac{1}{2}-\frac{1}{2 d}}<\sqrt{2} R
$$

Let $D:=(B(0, \sqrt{2} R))^{-}$and let

$$
\begin{equation*}
E:=D \cap\left(\bigcup_{j=1}^{d+1} B\left(o_{j}, R\right) \cup\{0\}\right)^{c} \tag{16}
\end{equation*}
$$

Claim 1: E is connected.
First let us consider the $(d-1)$ spherical balls $U_{i}=B\left(o_{i}\right) \cap \partial B(0, \sqrt{2} R)$ centered at $c_{i}=\sqrt{2} o_{i}$. As $0 \in \partial B\left(o_{i}, R\right)$, then by elementary geometric arguments, the spherical radius of U_{i} is $\frac{\pi}{4} \sqrt{2} R$. By (15), the spherical distance between o_{i} and o_{j} on $\partial B(0, R)$ is

$$
2 R \arcsin \sqrt{\frac{1}{2}+\frac{1}{2 d}}>\frac{\pi}{2} R
$$

Then, the spherical distance between c_{i} and c_{j} is greater than $\frac{\pi}{2} \sqrt{2} R$. Since the $(d-1)$ spherical balls U_{i} have radius $\frac{\pi}{4} \sqrt{2} R$, they are disjoints and

$$
\mathcal{E}=\partial B(0, \sqrt{2} R) \backslash \cup_{i=1}^{d+1} S_{i}
$$

is a connected subset of ∂E. Let us consider now $x \in E$, then $x \notin B\left(o_{i}, R\right)$; since $0 \in \partial B\left(o_{i}, R\right)$, then $\lambda x \notin B\left(o_{i}\right)$ for $\lambda \geq 1$. Therefore the segment connecting x to $\sqrt{2} \frac{x}{|x|} R \in \mathcal{E}$ is a subset of E. Claim 1 follows.

Claim 2: E^{c} is an open set.
As

$$
E^{c}=D^{c} \cup\left(\bigcup_{j=1}^{d+1} B\left(o_{j}, R\right) \cup\{0\}\right)
$$

it is enough to show that $\{0\} \subset \operatorname{Int}\left(E^{c}\right)$. This follows from the fact that $\{0\}$ is in the interior of the simplex S, and $\operatorname{Int}(S) \subset E^{c}$.

Claim 3: The set of the vertices of S is contained in E.
For each i the vertex $k_{i} \in \partial B\left(o_{j}, R\right), j \neq i$ and $k_{i} \notin B\left(o_{i}, R\right)^{-}$.
E is a closed set from Claim 2; from Claim 3 and (16) it follows that E is not an R-body, since any open ball of radius R, containing $0 \in E^{c}$, cannot be contained in E^{c}.

Claim 4: The point 0 has a positive distance from E.
Let us consider for $i=1, \ldots, d+1$ the simplexes

$$
S_{i}=c o\left(\left\{0, k_{1}, \ldots, k_{i-1}, k_{i+1}, k_{d+1}\right\}\right)
$$

Then $S=\cup_{i} S_{i}$. Let $0<\varepsilon<\operatorname{dist}\left(0, S_{i}\right)$, where S_{i} are the facets of S; as $B(0, \varepsilon) \subset$ $\cup_{i} B(0, \varepsilon) \cap S_{i}$, then

$$
\operatorname{dist}(0, E) \geq \varepsilon
$$

Let us consider now the body $E \cup\{0\}$. Since

$$
(E \cup\{0\})^{c}=D^{c} \cup\left(\bigcup_{j=1}^{d+1} B\left(c_{j}, R\right)\right),
$$

then $E \cup\{0\}$ is by definition an R-body and is the minimal R-body containing E. Then $\operatorname{co}_{R}(E)=E \cup\{0\}$ which is a not connected set, since is the union of two closed disjoint sets.

6. R-bodies and other classes of bodies

In Remark 3.3 it is noticed that the class of R-bodies contains the class of bodies which have reach greater or equal than R.

The following class has been introduced in [7]: the class $\mathcal{K}_{2}^{1 / R}$ of bodies A satisfying the following property:

$$
\begin{equation*}
\forall x \in A^{c} \text { there exists a closed ball } D(R) \ni x: D(R) \cap \operatorname{Int}(A)=\emptyset \tag{17}
\end{equation*}
$$

Theorem 6.1. The following strict inclusion holds:

$$
\begin{equation*}
R \text {-bodies } \subsetneq \mathcal{K}_{2}^{1 / R} \tag{18}
\end{equation*}
$$

Moreover let $A \in \mathcal{K}_{2}^{1 / R}$ and $A=(\operatorname{Int}(A))^{-}$, then:
i) if $d=2$, then A is an R-body;
ii) if $d>2$, then A can be not an R-body.

Proof. The inclusion (18) is obvious: since if A is an R-body and $x \in A^{c}$, then $x \in B(R)$ and $B(R) \cap A=\emptyset$; therefore $\partial B(R) \cap \operatorname{Int}(A)=\emptyset$. Then, if $x \in D(R)=$ $\partial B(R) \cup B(R)$ thus $D(R) \cap \operatorname{Int}(A)=\emptyset$. The inclusion is strict: let $E=D(0, r) \cap$ $B(0, R)^{c} \cup \partial B\left(0, r_{1}\right)$, with $r_{1}<R<r$. Then E is not an R-body as if $x \in B(0, R) \backslash$ $\partial B\left(0, r_{1}\right)$ there is no ball $B \subset E^{c}$ containing x; on the other hand $E \in \mathcal{K}_{2}^{1 / R}$.

Let $d=2$ and $A \in \mathcal{K}_{2}^{1 / R}, A=(\operatorname{Int}(A))^{-}$. By contradiction, if A is not an R-body, then, by Theorem 4.5, there exist $a_{1}, a_{2}, a_{3} \in A$ such that there exists $z \in \operatorname{co}_{R}\left(\left\{a_{1}, a_{2}, a_{3}\right\}\right) \cap A^{c}$. Since $z \neq a_{i}, i=1,2,3$, then $\operatorname{co}_{R}\left(\left\{a_{1}, a_{2}, a_{3}\right\}\right)$ strictly contains $\left\{a_{1}, a_{2}, a_{3}\right\}$; by Corollary 5.3 with $V=\left\{a_{1}, a_{2}, a_{3}\right\}$, it follows that $r(V)<R$. Thus by Theorem 4.2, it follows that

$$
\cos _{R}(V)=V \cup \tilde{T} .
$$

\tilde{T} is a curvilinear triangle with $(\operatorname{int}(\tilde{T}))^{-}=\tilde{T}$. Since $z \in \tilde{T} \cap A^{c}$ and A^{c} is open, then there exists $\tilde{z} \in \operatorname{Int}(\tilde{T}) \cap A^{c}$. As

$$
\tilde{z} \in \operatorname{Int}(\tilde{T}) \subset \operatorname{int}\left(\operatorname{co}_{R}(V)\right.
$$

every ball $D(R) \ni \tilde{z}$ contains at least one of the vertices a_{i} in its interior, let a_{1}. Then $D(R)$ contains a neighborhood U of $a_{1} \in A$. Since $A=(\operatorname{Int}(A))^{-}, a_{1}$ can not be an isolated point of A, and in U there are points of $\operatorname{int}(A)$. Therefore property (17) does not hold for $\tilde{z} \in A^{c}$ and $A \notin \mathcal{K}_{2}^{1 / R}$, contradiction.

In case ii), let us consider the set E defined by (16) of Theorem 5.7. E is not an R-body but $E \cup\{0\}$ is it. Then any point of E^{c}, different from 0 satisfies property (17); moreover

$$
\operatorname{Int}(E)=\operatorname{Int}(D) \cap_{j=1}^{d+1} D\left(o_{j}, R\right)^{c} \cap\{0\}^{c}
$$

then 0 satisfies property (17) too, since the closed ball $D\left(o_{1}, R\right)$ does not intersect $\operatorname{Int}(E)$. Then $E \in \mathcal{K}_{2}^{1 / R}$ and E is not an R-body. Moreover it easy to see that $E=(\operatorname{Int}(E))^{-}$.

Acknowledgment

This work has been partially supported by INDAM-GNAMPA(2022) and dedicated to our unforgettable friend Orazio Arena.

REFERENCES

[1] A. Colesanti, P. Manselli, Geometric and Isoperimetric properties of sets of positive reach in \mathbb{E}^{d}, Atti Sem. Math. Fis. Univ. Modena. 57(2010), 97-113.
[2] A. Cuevas, R. Fraiman, B. Pateiro-López, On statistical properties of sets fulfilling rolling-type conditions, Adv. App. Probab. (S.G.S.A.) 44(2012), 311-329.
[3] H. Federer, Curvature measures, Trans. Amer. Math. Soc. 93(1959), 418-481.
[4] W. Fenchel, Convex Cones, Sets and Functions, Princeton Univ. Press, 1953.
[5] R.A. Johnson, A Circle Theorem, Amer. Math. Monthly 23(1916), 161-162.
[6] R. A. Johnson, Advanced Euclidean Geometry, Dover Publication, 1960.
[7] V. Golubyatnikov, V. Rovenski, Determination of sets with positive reach by their projection type images, Inv. Ill-Posed Problems 19 (2011), 407-428.
[8] P.Mani-Levitska, Characterizations of convex sets, (P.M.Gruber and J.M Wills, eds) Handbook of Convex geometry, Vol. A, Elsevier Amsterdam, 1993, 19-41.
[9] E. Meissner, Über Funtmengen Costanter Breite, Vjsch. Natureforch. Geo. Zürich 56(1911), 42-50.
[10] J. Perkal, Sur les ensembles ε-convexes, Colloq. Math. Comm. vol IV (1956), Fasc 1, 1-10.
[11] J. Rataj, Determination of spherical area measures by means of dilation volumes, Math. Nachr. 235(2002), 143-162.
[12] J. Rataj, On estimation of Euler number by projections of thin slabs, Adv. App. Prob. 36(2004), 715-724.
[13] R. Schneider, Convex bodies: the Brunn-Minkowski theory, Cambridge University Press, Cambridge, 1993.
[14] L.A. Santaló, Convex regions on the n-dimensional spherical surface, Ann. Math. 47 (1946) 448-459.
[15] F.A.Valentine, Convex sets, Mc Graw -Hill, 1964.

> M. LONGINETTI Dipartimento DIMAI, Università di Firenze e-mail: marco.longinetti@unifi.it $\begin{array}{r}\text { P. MANSELLI } \\ \text { e-mail: paolo.manselli@unifi.it } \\ \text { A. VENTURI } \\ \text { e-mail: adriana.venturi@unifi.it }\end{array}$

[^0]: Received on October 16, 2022
 AMS 2010 Subject Classification: 52A01;52A30
 Keywords: generalized convexity, generalized convex hull, reach, simplex

