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Abstract. This paper develops a computational method for designing a control system that is an in-
terconnection of transfer functions and multiple decoupled backlash nonlinearities where each backlash
is modelled as an uncertain band containing multi-valued functions. The design objective is to ensure
that the system outputs and the nonlinearity inputs always stay within their prescribed bounds in the
presence of all inputs whose magnitude and whose slope are bounded by respective numbers. By using a
known technique, each backlash is decomposed as a linear gain and a bounded disturbance. Essentially,
the original design problem is replaced by a surrogate design problem that is related to a linear system
and thereby can readily be solved by tools available in previous work. Moreover, as a result of using
the convolution algebraA, the method developed here is applicable to rational and nonrational transfer
functions. To illustrate the usefulness of the method, linear decentralized controllers are designed for a
binary distillation column where valve stiction characteristics are taken into account.
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1. Introduction

Backlash nonlinearities are found in many practical
control systems as well as system components such as
sensors and actuators (see, e.g., [1, 2, 3] and also the ref-
erences therein). They, if ignored during the control
design, can give rise to significant performance degrada-
tion or even instability in the closed-loop systems. A
number of researchers have been prompted to develop
methods for compensating (or mitigating) the adverse
effects of backlash so that the control systems are en-
sured to be stable or to operate satisfactorily.

An approach for backlash compensation is to em-
ploy adaptive control schemes for ensuring desirable
properties in the closed-loop systems. Because the lit-
erature on this subject is extensive and the space avail-
able is limited, readers are referred to [1, 2] and also
the references therein. Another approach is to design
a linear controller, where one tries to obtain conditions
on the dynamical subsystems that yields a satisfactory
controller. For example, Barreiro and Baños [4] and
Tarbouriech, Queinnec, and Prieur [5] provide useful
conditions for guaranteeing the stability of control sys-
tems that are an interconnection of linear time-invariant
(LTI) subsystems and a backlash. In fact, our work is in
this direction.

In this paper, we develop a computational method
for designing the control system shown in Fig. 1
where p ∈ RN is a vector of design parameters, Ψ ≜
[ψ1, ψ2, . . . , ψn]

T is the vector of backlash nonlineari-
ties, z ≜ [z1, z2, . . . , zm]T is the vector of outputs of
interest, v ≜ [v1, v2, . . . , vn]

T is the vector of the non-
linearity outputs, u ≜ [u1, u2, . . . , un]

T is the vectors
of the nonlinearity inputs, and f denotes an exogenous
input.

Suppose that the exogeneous input f is known only
to the extent that it belongs to the input set F described
by

F = {f ∈ L∞ : ∥f∥∞ ≤M and ∥ḟ∥∞ ≤ D} (1)

where M and D are given bounds. As usual, for a
function x : R+ → R, ∥x∥∞ ≜ supt≥0 |x(t)| and
L∞ ≜ {x : ∥x∥∞ < ∞}. A noteworthy feature of
the set F is that it is suitable for characterizing inputs
that vary persistently for all time, called persistent in-
puts. When all inputs are persistent and do not have
stepwise discontinuities, using F makes the design for-
mulation more realistic and more appropriate than us-
ing L∞ ([6, 7, 8]). For different characterizations of the
input set and their implications, readers are referred to,
e.g., [6, 7, 8, 9].

Fig. 1. General configuration for nonlinear control
systems considered in the paper.

Suppose that each backlash ψj is described by an un-
certain band model ([4])

ψj(x) = Kjx+ ηj(x)
ηj(x) = [−aj , aj ] ∀x ∈ R

}
(2)

where Kj is a linear gain and ηj(·) is the multi-valued
function mapping R to 2R. Here, 2R denotes the set of
all subsets ofR ([10]). Themodel is depicted in Fig. 2. In
spite of certain amount of conservatism, the uncertain
band model has the following advantages: (i) it simplic-
ity enables us to develop the design method presented
here; (ii) the backlash width does not need to know
exactly; and (iii) it is such a general model that con-
tains some nonlinearities such as friction-driven hystere-
sis, backlash-like hysteresis, inertia-driven hysteresis and
dead zone ([11, 2, 4, 5]).

Fig. 2. Uncertain band model of backlash where
aj = Kjρj .

The design problem considered in this work is to
determine a value of p ∈ RN satisfying the following
criteria:

ẑi(p) ≤ εi, i = 1, 2, . . . ,m
ûj(p) ≤ σj , j = 1, 2, . . . , n

}
(3)

where ẑi(p) and ûj(p) are the performance measures
defined by

ẑi(p) ≜ sup
f∈F

∥zi∥∞ and ûj(p) ≜ sup
f∈F

∥uj∥∞ (4)

and εi and σj are specified bounds. The numbers ẑi(p)
and ûj(p) are called the peak outputs of zi and uj , re-
spectively, for the input set F ([6, 8, 9]).

Regarding the criteria (3), it is worth noting that
many researchers (see, e.g., [12, 13, 6, 8, 14, 9] and also
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the references therein) have been prompted to develop
various methods for designing linear control systems to
satisfy the criterion of the form

v̂ ≤ ε, v̂ ≜ sup
f∈F

∥v∥∞ (5)

where v̂ is the peak output of the system’s response v
for the set F and ε is the largest value of v̂ that can be
accepted or tolerated. The criterion (5) is particularly
useful for designing critical control systems ([15, 16]), in
which v(t) is required to stay strictly within the in-
terval [−ε, ε] for all t, any violation resulting in unac-
ceptable operation. Moreover, the criterion has been
used in the design of various linear control systems (e.g.,
[17, 18, 19]).

It may be noted that prior to this work, preliminary
investigations were carried out by Nguyen and Arun-
sawatwong [20, 21] for the case of single-loop unity-
feedback control systems consisting of a linear con-
troller, a backlash represented by the uncertain band
model (2) and a linear plant where the design objective is
to ensure that the error and the controller output stay
within their prescribed bounds for all time and for all
inputs in the set F .

The main contributions of the present paper are
twofold.

• First and foremost, we extend the results pre-
sented in [20] to a more general case in which
the LTI subsystems are a multivariable system in-
terconnecting with multiple decoupled backlash
nonlinearities. By the decomposition technique
used in [22], each backlash nonlinearity is replaced
by a linear gain and a bounded disturbance, thus
resulting in a linear system subject to n + 1 in-
puts. Then by using Kakutani’s fixed point the-
orem (see, e.g., [10]), sufficient conditions for the
design criteria (3) are derived from the resultant
linear system. Such conditions are used further
to develop readily computable design inequalities
(to be called surrogate design criteria) in place of
the original criteria (3). Furthermore, a sufficient
condition for the solvability of such design in-
equalities are given.

• Second, in order to illustrate the usefulness of
the developed method, a numerical example is
given in which linear decentralized controller are
design for a binary distillation column and in
which valve stiction characteristics are taken into
account.

The structure of the paper is as follows: Section 2
presents the main theoretical result (Theorem 2.2),
which provides sufficient conditions for the satisfaction
of the design criteria (3). Based on themain result in Sec-
tion 2, Section 3 further develops sufficient conditions

for the criteria (3) in the form of inequalities that can be
solved in practice by numerical methods and also pro-
vides a sufficient condition for the solvability of such in-
equalities. In Section 4, the usefulness of the developed
method is illustrated by a controller design example of
a binary distillation column with two valve stiction ele-
ments. Finally, conclusions and discussion are given in
Section 5.

2. Theoretical Results

This section presents the main theoretical result of
the article. The result is presented as Theorem 2.2, pro-
viding sufficient conditions for the satisfaction of the cri-
teria (3).

Suppose that G(s,p) is a transfer matrix repre-
sented by

G(s,p) =

[
Gzf (s,p) Gzv(s,p)
Guf (s,p) Guv(s,p)

]

where Gzf (s,p) ≜ [Gzif (s,p)]m×1, Gzv(s,p) ≜
[Gzivk(s,p)]m×n, Guf (s,p) ≜ [Gujf (s,p)]n×1,
Guv(s,p) ≜ [Gujvk(s,p)]n×n. Then the mathematical
model of the system in Fig. 1 is described by

zi = gzif ∗ f +

n∑
k=1

(gzivk ∗ vk), i = 1, 2, . . . ,m

uj = gujf ∗ f +

n∑
k=1

(gujvk ∗ vk)

vj = ψj(uj)

 , j = 1, 2, . . . , n

(6)
where gzif , gzivk , gujf and gujvk denote the in-
verse Laplace transforms of Gzif (s,p), Gzivk(s,p),
Gujf (s,p), and Gujvk(s,p), respectively. As usual the
symbol ∗ denotes the convolution; i.e., for x : R+ → R
and y : R+ → R,

(x ∗ y)(t) =
∫ t

0
x(t− τ)y(τ)dτ, t > 0.

Assumption 1. The linear part of the system (6) is a time-
invariant and non-anticipative system with zero initial
conditions.

Assumption 2. The vector Ψ is described by Ψ(u) =
[ψ1(u1), ψ2(u2), . . . , ψn(un)]

T where each ψj is repre-
sented by the uncertain band model (2).

Assumption 3. There exists at least a solution
z : R+ → Rm and u : R+ → Rn that satisfies (6) for
every input f ∈ F .
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Fig. 3. Equivalent system of the system (6).

In connection with the decomposition technique
used in [22], the backlash nonlinearities ψj are replaced
by

ψj(uj) = Kjuj + ηj(uj), j = 1, 2, . . . , n. (7)

Then the system (6) becomes equivalent to the system
shown in Fig. 3 whereK ≜ diag(K1,K2, . . . ,Kn) and
η(u) ≜ [η1(u1), η2(u2), . . . , ηn(un)]

T . Note, by As-
sumption 2, that ||ηj(uj)||∞ ≤ aj for all j whenever
u is bounded.

Now define

U ≜ U1 × U2 × · · · × Un,

Uj ≜ {x ∈ L∞ : ∥x∥∞ ≤ σj}, j = 1, . . . , n.
(8)

Suppose that w ≜ [w1, w2, . . . , wn]
T belongs to the set

U . Then, by replacing η(u) with η(w), we obtain the
auxiliary system described by

z′i = gzif ∗ f +
n∑

k=1

gzivk ∗ (Kku
′
k + dwk

),

i = 1, 2, . . . ,m

u′j = gujf ∗ f +
n∑

k=1

gujvk ∗ (Kku
′
k + dwk

)

dwj = ηj(wj)

 ,

j = 1, 2, . . . , n
(9)

where f ∈ F and w ∈ U . The system (9) is de-
picted in Fig. 4 where z′ ≜ [z′1, z

′
2, . . . , z

′
m]T , u′ ≜

[u′1, u
′
2, . . . , u

′
n]

T , v′ ≜ [v′1, v
′
2, . . . , v

′
n]

T , and dw ≜
[dw1 , dw2 , . . . , dwn ]

T .
For the responses z′i (i = 1, 2, . . . ,m) and u′j (j =

1, 2, . . . , n) of the system (9), define the peak outputs
ẑ′i(p) and û′j(p) as follows:

ẑ′i(p) ≜ sup
f∈F ,w∈U

∥z′i∥∞,

û′j(p) ≜ sup
f∈F ,w∈U

∥u′j∥∞.

Fig. 4. Auxiliary system of the system (6).
In order to make this paper’s contribution applica-

ble to lumped- and distributed-parameter systems, the
following notation is useful. Let A denote the convolu-
tion algebra whose elements take the form

g(t) =

 ga(t) +

∞∑
i=0

giδ(t− ti), t ≥ 0

0, t < 0

(10)

where δ(·) is the Dirac delta function, 0 = t0 < t1 <
t2 < · · · are constants,∫ ∞

0
|ga(t)| <∞ and

∞∑
i=0

|gi| <∞.

For the details on the algebra A, see, e.g., [23].
For the system (9), define the transfer matrix from

[f,dT
w]

T to [z′T ,u′T ]T as follows:

H(s,p) ≜
[
Hzf (s,p) Hzd(s,p)
Huf (s,p) Hud(s,p)

]
(11)

where
Hzf (s,p) ≜ [Hzif (s,p)]m×1,

Hzd(s,p) ≜ [Hzidk(s,p)]m×n,

Huf (s,p) ≜ [Hujf (s,p)]n×1,

Hud(s,p) ≜ [Hujdk(s,p)]n×n.

(12)

Then one can verify that
Hzf (s,p)=Gzv(s,p)K[I−Guv(s,p)K]−1Guf (s,p)

+Gzf (s,p), (13a)
Hzd(s,p) = Gzv(s,p)[I −KGuv(s,p)]

−1, (13b)
Huf (s,p) = [I −Guv(s,p)K]−1Guf (s,p), (13c)
Hud(s,p) = [I −Guv(s,p)K]−1Guv(s,p). (13d)
Furthermore, let hzif , hzidk , hujf and hujdk denote the
inverse Laplace transforms of Hzif (s,p), Hzidk(s,p),
Hujf (s,p) and Hujdk(s,p), respectively.

The following notations will be used in the proof
of the main result. Define the space L∞

n ≜
L∞ × L∞ . . .× L∞︸ ︷︷ ︸

n

.

For any x ≜ [x1, x2, . . . , xn]
T ∈ L∞

n , let

||x|| ≜
n∑

i=1

||xi||∞.
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For any x ∈ L∞
n and for any T > 0, define the truncated

function xT as follows:

xT (t) ≜
{

x(t), 0 ≤ t ≤ T

0, t > T
.

For X ⊆ L∞
n , define the truncated set XT as XT ≜

{xT : x ∈ X}. For X,Y ⊆ L∞
n , let S : M ⊆ X → 2Y

be a multi-valued map where 2Y denotes the set of all
subsets of Y . Finally, let S(X) denote the union of all
sets S(x) over x ∈ X , i.e.,

S(X) =
⋃
x∈X

S(x).

Lemma 2.1. LetX ⊂ L∞
n . For every T > 0, letH denote

the operator defined overXT by

Hx(t) ≜ [H1x(t),H2x(t), . . . ,Hnx(t)]
T ,

Hjx(t) ≜
n∑

k=1

∫ T

0
hjk(t− τ)xk(τ)dτ + rj(t),

∀t ∈ [0, T ]

(14)

where hjk : R+ → R (j, k = 1, 2, . . . , n) are given,
rj : [0, T ] → R (j = 1, 2, . . . , n) are continuous and
satisfy ∥rj∥∞ ≤ M for someM > 0. If both hjk and ḣjk
belong to A for all j, k, thenH is compact.

Proof. See Appendix A.

Now it is ready to state the main result of this sec-
tion, which is obtained by using the decomposition (7)
and Kakutani’s fixed point theorem (see, e.g., [10]). This
technique was previously used by [4] and [20]. Note fur-
ther that [4] investigates the stability properties of sys-
tems with backlash whereas our paper aims to develop
design methods in connection with the criteria (3).

Theorem 2.2. Consider the system (6) and let Assump-
tions 1–3 hold. Let hujf ∈ A for j = 1, 2, . . . , n and let
hujdk , ḣujdk ∈ A for j, k = 1, 2, . . . , n. The original de-
sign criteria (3) are satisfied if, for the auxiliary system (9),
the following conditions hold.

ẑ′i(p) ≤ εi, i = 1, 2, . . . ,m, (15a)
û′j(p) ≤ σj , j = 1, 2, . . . , n. (15b)

Proof. Let f ∈ F be a fixed input and let conditions (15)
hold. Consider the auxiliary system (9). From (13c) and
(13d) it can be verified that for j = 1, 2, . . . , n,

u′j =

n∑
k=1

hujdk ∗ ηk(wk) + hujf ∗ f ≜ Φj(w) (16)

for any input w. Let T > 0 be fixed. Truncating to
both sides of (16) yields

u′j,T =

n∑
k=1

(
hujdk ∗ ηk(wk,T )

)
T
+
(
hujf ∗ f

)
T

≜ Φj,T (wT ).
(17)

In connection with (17), we define a map ΦT such that

ΦT (wT ) ≜ [Φ1,T (wT ),Φ2,T (wT ), . . . ,Φn,T (wT )]
T .
(18)

Now suppose that w ∈ U . Since conditions (15b)
hold, it follows that u′ ⊆ U and hence u′

T ⊆ UT . Thus,
ΦT (wT ) ⊆ UT ; i.e., ΦT maps UT into 2UT . In the fol-
lowing, we will show that ΦT has a fixed point in UT .
To this end, we write ΦT = HQ, where

Hx = [H1x,H2x, . . . ,Hnx]
T ,

Hjx =

n∑
k=1

(hujdk ∗ xk)T + (hujf ∗ f)T ,

Qx = η(x).

Then, by using Lemma 2.1, the conditions hujf ∈ A
for all j and hujdk , ḣujdk ∈ A for all j, k imply that
H is compact over UT . Consequently, since Q(UT ) is
bounded, we conclude by Definition A.4 that Φ(UT ) is
relatively compact. Furthermore, it is easy to verify that
(i) ΦT is upper semi-continuous; (ii) UT is nonempty,
closed and convex; (iii) ΦT (x) is nonempty, closed and
convex for all x ∈ UT . Thus, by applying Kakutani’s
fixed point theorem (see, e.g., [10]), one can see that ΦT

always has a fixed point u†
T ≜ [u†1,T , u

†
2,T , . . . , u

†
n,T ]

T ∈
UT such that

u†
T ∈ ΦT (u

†
T ). (19)

From (17)–(19), it follows immediately that for each j,

u†j,T =

n∑
k=1

(
hujdk ∗ ηk(u

†
k,T )

)
T
+
(
hujf ∗ f

)
T
.

Consequently, by using (13c) and (13d), one can verify
that

u†j,T =
n∑

k=1

(
gujvk∗

(
Kku

†
k,T+ηk(u

†
k,T )

))
T
+
(
gujf∗f

)
T
.

(20)
By using the decomposition in (7), equation (20) turns
out to be

u†j,T =
n∑

k=1

(
gujvk ∗ ψk(u

†
k,T )

)
T
+
(
gujf ∗ f

)
T
. (21)

Next, let z† ≜ [z†1,T , z
†
2,T , . . . , z

†
m,T ]

T denote the
vector of the associated outputs of interest of the aux-
iliary system (9) when w = u†

T . Clearly, conditions
(15a) imply that ||z†i,T ||∞ ≤ εi for all i. Moreover, since
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u′
T = u†

T when w = u†
T (see above), it follows from (9)

that for each i,

z†i,T =
n∑

k=1

(
gzivk ∗

(
Kku

†
k,T + ηk(u

†
k,T )

))
T

+

(
gzif ∗ f

)
T

=

n∑
k=1

(
gzivk ∗ ψk(u

†
k,T )

)
T
+
(
gzif ∗ f

)
T

(22)
where we use the decomposition in (7) again in (22).

Now, it follows from (21) and (22) that z†T and u†
T

are also the responses zT anduT of the nonlinear system
(6). Moreover, ||z†i,T ||∞ ≤ εi for all i and ∥u†j,T ∥ ≤ σj
for all j. Finally, since the above arguments hold for
any f ∈ F and any T > 0, we conclude that the criteria
(3) are satisfied for the system (6).

3. Surrogate Design Criteria

In contrast to the original system (6), the auxiliary
system (9) is linear; therefore, inequalities (15) are easier
to solve than the original design criteria (3). However,
solving (15) is still not convenient because the input dw

depends on the characteristic of η. In this regard, based
on the main result in Theorem 2.2, this section pro-
vides practical sufficient conditions for (15), which are
expressed as inequalities that are more computationally
tractable.

3.1. Practical Design Inequalities

Consider the system (9). By defining

Dw ≜ {dw : dw = η(w),w ∈ U}, (23)

one can easily see that

ẑ′i(p) ≜ sup
f∈F ,dw∈Dw

∥z′i∥∞,

û′j(p) ≜ sup
f∈F ,dw∈Dw

∥u′j∥∞.

Now define

D ≜ {d ∈ L∞
n : ||dj ||∞ ≤ aj ∀ j} (24)

where d ≜ [d1, d1, . . . , dn]
T . From (2) and (23), one can

see that for any dw ∈ Dw,

sup
wj∈Uj

∥dwj∥∞ = aj ∀ j.

Consequently, Dw ⊆ D.

By replacing dw in (9) with d ∈ D, we obtain the
nominal system described by

z∗i = gzif ∗ f +
n∑

k=1

gzivk ∗ (Kku
∗
k + dk),

i = 1, 2, . . . ,m

u∗j = gujf ∗ f +
n∑

k=1

gujvk ∗ (Kku
∗
k + dk),

j = 1, 2, . . . , n

(25)

where f ∈ F and d ∈ D. The system (25) is de-
picted in Fig. 5 where z∗ ≜ [z∗1 , z

∗
2 , . . . , z

∗
m]T , u∗ ≜

[u∗1, u
∗
2, . . . , u

∗
n]

T , and v∗ ≜ [v∗1, v
∗
2, . . . , v

∗
n]

T . Addi-
tionally, the closed-loop transfer matrix of the system
(25) from [f,dT ]T to [z∗T ,u∗T ]T is identical toH(s,p)
described in (11)–(13).

Fig. 5. Nominal system.
Since Dw ⊆ D, it follows that ẑ′i(p) ≤ ẑ∗i (p) for

i = 1, 2, . . . ,m and û′j(p) ≤ û∗j (p) for j = 1, 2, . . . , n
where ẑ∗i (p) and û∗j (p) are the peak outputs of the sys-
tem (25) and are defined by

ẑ∗i (p) ≜ sup
f∈F ,d∈D

∥z∗i ∥∞,

û∗j (p) ≜ sup
f∈F ,d∈D

∥u∗j∥∞.

By using linearity properties of the system as well as
a well-known result in linear system theory ([24]), the
peak outputs ẑ∗i (p) and û∗j (p) can be given by

ẑ∗i (p) = ẑ∗i,f (p) +

n∑
k=1

ak∥hzidk∥1, i = 1, . . . ,m

û∗j (p) = û∗j,f (p) +

n∑
k=1

ak∥hujdk∥1, j = 1, . . . , n

(26)
where

ẑ∗i,f (p) ≜ sup
f∈F ,d=0

∥z∗i ∥∞,

û∗j,f (p) ≜ sup
f∈F ,d=0

∥u∗j∥∞.

The peak outputs ẑ∗i,f (p) and û∗j,f (p) can be computed
by using efficient methods for computing peak outputs
of linear time-invariant systems (e.g., [17, 14, 9] and the
references therein). In this work, the method presented
in [9] is employed because it is simple and efficient.

In connection with (26), we provide practical design
inequalities as follows:
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Theorem 3.1. Consider the system (6) and let Assump-
tions 1–3 hold. Suppose that hujf ∈ A for j = 1, 2, . . . , n

and that hujdk , ḣujdk ∈ A for j, k = 1, 2, . . . , n. Then
the original design criteria (3) are satisfied if, for the nom-
inal system (25), the following conditions hold.

ẑ∗i (p) ≤ εi, i = 1, 2, . . . ,m

û∗j (p) ≤ σj , j = 1, 2, . . . , n
. (27)

Proof. The proof readily follows from Theorem 2.2 and
the above discussion.

From Theorem 3.1, it readily follows that if a so-
lution of inequalities (27) exists, then it is also a design
solution of the original design criteria (3) for the sys-
tem (6). Accordingly, one can obtain a design solution
for the system (6) by solving inequalities (27). For this
reason, inequalities (27) are appropriately called the sur-
rogate design criteria.

Since each of inequalities (27) represents an indi-
vidual design objective, it is evident that solving these
inequalities is a multiobjective design problem, which
can readily be treated by the method of inequalities
([25, 6, 7, 8]). According to this, the primary goal in
solving inequalities (27) is to make sure that the inequal-
ities has at least a solution (that is to say, the set of all
solution of inequalities (27) is not empty). In this con-
nection, the solvability of inequalities (27) is provided
in Section 3.3.

3.2. Finiteness of ẑ∗i (p) and û∗j (p)

Following previous work ([25, 6, 26, 7, 8, 9]), it
is noted that in solving inequalities (27) by numerical
methods, a search algorithm needs to start from a point
p ∈ RN such that ẑ∗i (p) < ∞ for all i and û∗j (p) < ∞
for all j. In this regard, the relationship between the
bounded-input bounded-output (BIBO) stability of the
nominal system (25) and the finiteness of peak outputs
ẑ∗i (p), û

∗
j (p) is stated as follows:

Proposition 3.2. Consider the nominal system (25). As-
sume that f ∈ L∞ and d ∈ L∞

n . Then z∗ ∈ L∞
m and

u∗ ∈ L∞
n if the following two conditions hold.

(a) The transfer functions Hzif (s,p) (i = 1, 2, . . . ,m)
and Hzidk(s,p) (i = 1, 2, . . . ,m and k =
1, 2, . . . , n) are BIBO stable.

(b) The transfer functions Hujf (s,p) (j = 1, 2, . . . , n)
and Hujdk(s,p) (j, k = 1, 2, . . . , n) are BIBO sta-
ble.

Proof. From (13) and (25), one can verify that

z∗i = hzif ∗ f +

n∑
k=1

hzidk ∗ dk, i = 1, . . . ,m

u∗j = hujf ∗ f +

n∑
k=1

hujdk ∗ dk, j = 1, . . . , n

. (28)

Since f ∈ L∞ and d ∈ L∞
n , conditions (a) and (b) im-

ply, respectively, that z ∈ L∞
m and u ∈ L∞

n .

By Proposition 3.2 and by noting that F ⊂ L∞ and
D ⊂ L∞

n , one can easily see that for a given p, if all
elements ofH(s,p) are BIBO stable transfer functions,
then the responses z∗ and u∗ are bounded; hence, all the
peak outputs ẑ∗i (p) and û∗j (p) are finite.

In the literature, necessary and sufficient conditions
for BIBO stability are available for various classes of lin-
ear time-invariant systems. Some of the conditions are
used in developing a numerical procedure (in conjunc-
tion with the method of inequalities) for determining a
point p0 for which the systems are BIBO stable; such
a procedure is sometimes called numerical stabilization.
For retarded delay differential systems, a necessary and
sufficient condition for BIBO stability and a useful in-
equality for numerical stabilization are mentioned in
Section 4, where controller design for a time-delay con-
trol system is considered. For a wider class of linear sys-
tems called retarded fractional delay differential systems, a
BIBO stability condition and an inequality for numer-
ical stabilization are presented in [27]. It may be noted
further that for numerical stabilization in connection
with a class of nonlinear systems, readers are referred to
[28].

3.3. Solvability of Design Inequalities (27)

It is noted ([25, 6, 7, 8]) that not every design prob-
lem that is cast as a set of inequalities has a solution and
therefore the designer has to face the possibility that
such a design problem has no solution. In solving in-
equalities (27) by numerical methods (which is usually
a non-convex problem in the space RN ), when a search
algorithm fails to find a solution of the inequalities after
a large number of iterations, a question often arising is
whether or not the inequalities have a solution. When
no solution exists, the designer has to reformulate the
inequalities by simply increasing some bounds εi or σj
or, in some cases, using a different controller structure
with non-decreasing complexity so that the resultant in-
equalities have a solution.

From a computational viewpoint, it is useful to
know under which condition, inequalities (27) are guar-
anteed to have (at least) a solution. To this end, a suffi-
cient condition for the solvability of inequalities (27) is
stated below.

Definition 3.3. Inequalities (27) are said to be solvable
if they have (at least) a solution for sufficiently large
bounds εi and σj .

Proposition 3.4. Consider the nominal system (25). In-
equalities (27) are solvable if there exists a vector p∗ ∈ RN

such that all elements ofH(s,p∗) are BIBO stable.
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Proof. Assume that there exists a p∗ ∈ RN such that all
elements of H(s,p∗) are BIBO stable. Then it follows
from Proposition 3.2 that all the peak outputs ẑ∗i (p∗)
and û∗j (p∗) are finite. Using (26) and the fact that ẑ∗i (p)
and û∗j (p) do not depend on εi and σj respectively, we
conclude that inequalities (27) have a solution whenever
εi ≥ ẑ∗i (p

∗) and σj ≥ û∗j (p
∗). Thus, by Definition 3.3,

inequalities (27) are solvable.

Proposition 3.4 suggests that inequalities (27) are
guaranteed to have a solution if the following two con-
ditions are satisfied.
(I) There exists a p∗ ∈ RN for which the nominal

system (25) is BIBO stable.
(II) The bounds εi and σj are sufficiently large. More

specifically, εi ≥ ẑ∗i (p
∗) and σj ≥ û∗j (p

∗).

After such a point p∗ is found, a better design can
be obtained by decreasing some of the bounds εi and
σj and then solving inequalities (27) again. This pro-
cess of reformulating and solving inequalities (27) can be
carried out successively until the inequalities have only
one solution. It is known ([7, 8] and also the references
therein) that this solution yields an optimal design in the
Pareto sense, which is optimal in the sense that a reduc-
tion in any of the peak outputs ẑ∗i (p) and û∗j (p) can be
achieved only by increasing at least one of the others. It
may be noted further that the Pareto optimal solution
is not unique.

4. Numerical Examples

In this example, a controller design for a binary dis-
tillation column is given where two valve stiction ele-
ments are explicitly taken into account. Stiction is the
most common valve problem in the process industry
and can cause oscillations in the process output ([29]).
For the details on valve stiction, see, e.g., [29] and the
references therein.

The block diagram of the control system for a bi-
nary distillation column is shown in Fig. 6 where e =
[e1, e2]

T , u = [u1, u2]
T , and v = [v1, v2]

T . Following
[30], the plant transfer matrices Gp(s) and Gd(s) are
given by

Gp(s) =


12.8e−s

16.7s+ 1

− 18.9e−3s

21.0s+ 1

6.6e−7s

10.9s+ 1

− 19.4e−2s

14.4s+ 1


and

Gd(s) =


3.8e−8s

14.9s+ 1

4.9e−3s

13.2s+ 1

 .

Let the nonlinearityΨ be described by

Ψ(u) = [ψ1(u1), ψ2(u2)]
T

where ψ1 and ψ2 represent the valve stiction character-
istics shown in Fig. 7 with the parameters S1 = S2 =
0.05, J1 = J2 = 0.02, and m1 = m2 = 1. In or-
der to apply the design method developed in Sections
2 and 3, we will use the uncertain band model (2) in-
stead of the valve stiction where Kj = mj = 1. There-
fore, this results in the uncertain band with aj = ρj =
(Sj + Jj)/2 = 0.035.

Let the controller transfer matrix C(s,p) have the
form of PID structure as follows:

C(s,p) =

[
C1(s,p) 0

0 C2(s,p)

]
,

C1(s,p) = p1

(
1 +

1

p2s
+

p3s

1 + p4s

)
,

C2(s,p) = −p5

(
1 +

1

p6s
+

p7s

1 + p8s

) (29)

where p = [p1, p2, p3, p4, p5, p6, p7, p8]
T satisfies the

constraints
p1 > 0, p2(p3 + p4) > 0, p2 + p4 > 0, p4 > 0,

p5 > 0, p6(p7 + p8) > 0, p6 + p8 > 0, p8 > 0.
(30)

The constraints (30) are imposed so as to ensure that
C1(s,p) andC2(s,p) areminimum-phase transfer func-
tions.

Following [18], assume that the deviation of feed
rate f belongs to the set F where

M = 0.2 lb/min and D = 0.2 lb/min2. (31)

Fig. 6. Control system of a binary distillation column.

Fig. 7. Valve stiction model ([29]).
The main design objective is to ensure that for any

f ∈ F ,
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1) the top product deviation e1 stays within ±0.30
mol%,

2) the bottom product deviation e2 stays within
±0.50 mol%,

3) the deviation of the reflux rate u1 stays within
±0.50 lb/min,

4) the deviation of the reboiler rate u2 stays within
±0.50 lb/min.

It is easy to see that the system in Fig. 6 can be rep-
resented as the one in Fig. 1 where z = e,

Gzf (s) = −Gd(s), Gzv(s) = −Gp(s),
Guf (s,p) = −C(s,p)Gd(s),
Guv(s,p) = −C(s,p)Gp(s).

Accordingly, the design objective stated above are ex-
pressed as the following design criteria:

ẑ1(p) ≤ 0.30 mol%
ẑ2(p) ≤ 0.50 mol%
û1(p) ≤ 0.50 lb/min
û2(p) ≤ 0.50 lb/min

 . (32)

It is known (see, e.g., [31]) that a retarded delay dif-
ferential system is BIBO stable if and only if all the char-
acteristic roots have negative real parts. Let f(s) be the
characteristic function of the nominal system and let
α(p) denote the abscissa of stability of f(s) defined by

α(p) ≜ max{Re s : f(s) = 0}. (33)

Then conditions (a) and (b) in Proposition 3.2 are satis-
fied if

α(p) ≤ −ε

where 0 < ε≪ 1. In this work, the abscissa of stability
α(p) is computed by the method developed by [31].

From Theorem 3.1 and Proposition 3.2, it follows
that a design solution p is obtained by solving the con-
straints (30) and the following inequalities:

α(p) ≤ −10−6, (34)

ẑ∗1(p) ≤ 0.30 mol%

ẑ∗2(p) ≤ 0.50 mol%

û∗1(p) ≤ 0.50 lb/min

û∗2(p) ≤ 0.50 lb/min

 (35)

where inequality (34) ensures the finiteness of the peak
outputs ẑ∗i (p) and û∗j (p) of the nominal system, and in-
equalities (35) are the surrogate design criteria, which
ensures for the satisfaction of (32).

In this work, a solution p of inequalities (30), (34)
and (35) is determined by using a search algorithm called

the moving-boundaries-process (MBP). The detail of the
MBP algorithm can be found in [25, 8]. Alternatively,
other algorithms for solving inequalities may also be
used (see, e.g., Chapters 7 and 8 of [8] and the references
therein).

At this point, it is worth mentioning that since
searching for a solution of inequalities (35) in the space
RN is in general a non-convex problem, the search algo-
rithm could sometimes be hindered by a computational
trap. However, as long as a solution exists, this can be
overcome in practice, for example, by choosing a new
starting point which is sufficiently far away from the
trap or by temporarily relaxing some of the bounds εi
and σj so that the algorithm can escape from the trap.
Detailed discussion on this can be found in [8].

4.1. Case I

In this subsection, the controller transfer functions
C1(s,p) and C2(s,p) will be designed with a1 = a2 =
0.035 so that inequalities (35), and hence inequalities
(32), are satisfied.

After a number of iterations, the MBP algorithm
locates a design solution pI resulting in the following
transfer functions:

C1(s,p
I) = 2.70

(
1 +

1

4, 824s
−

9.39s

1 + 10.9s

)
,

C2(s,p
I) = −0.384

(
1 +

1

7, 005s
−

0.700s

1 + 2.11s

)
(36)

where the corresponding performance measures are

α(pI) = −6.104× 10−5

ẑ∗1(p
I) = 0.2943 mol%

ẑ∗2(p
I) = 0.5000 mol%

û∗1(p
I) = 0.1033 lb/min

û∗2(p
I) = 0.1022 lb/min


. (37)

Fig. 8. Waveforms of the test input f⋆ and its deriva-
tive.
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Fig. 9. Responses of the nonlinear system subject to
the test input f⋆ with the controller (36).

To verify the design, a simulation is carried out with
the original nonlinear system subject to a test input
f⋆ ∈ F , which is a concatenation of the maximal inputs
that induce the peak outputs ẑ∗1,f (pI), ẑ∗2,f (pI), û∗1,f (pI)

and û∗2,f (pI) (cf. (26)). Such maximal inputs are ob-
tained by using the method in [9]. The waveform of
f⋆ and the corresponding system responses are shown
in Figs. 8 and 9. Clearly, the design objective (32) are
satisfied.

4.2. Case II

In this subsection, we attempt to find the maximum
width of the uncertain bandmodel such that inequalities
(35) has a solution for the controller structure defined
in (29). For simplicity, we assume that a1 = a2 = a.
Then we successively solve inequalities (35) for a de-
sign solution with a specified value of a that is gradu-
ally increased, until no design solution is found. The
so-obtained value of a results in the maximum width of
the uncertain band, which is equal to 2a, for each valve
stiction characteristics.

After extensive computation, we find the maximum
value of a as follows:

a = 0.0385. (38)
In this case, theMBP algorithm locates a design solution
pII resulting in the following transfer functions:

C1(s,p
II) = 34.1

(
1 +

1

4, 987s
−

126s

1 + 128s

)
,

C2(s,p
II) = −0.433

(
1 +

1

4, 548s
−

0.737s

1 + 2.02s

)
(39)

where the corresponding performance measures are

α(pII) = −1.376× 10−3

ẑ∗1(p
II) = 0.2977 mol%

ẑ∗2(p
II) = 0.5000 mol%

û∗1(p
II) = 0.1978 lb/min

û∗2(p
II) = 0.1278 lb/min


. (40)

To verify the design of Case II, a numerical simu-
lation is carried out for the system with the controller
(39) for the test input f⋆ as before. For the maximum
value of a in (38), the parameters of both valve stiction
models are modified so that Sj = 0.055, Jj = 0.022
and mj = 1, which yields (Sj + Jj)/2 = 0.0385 = aj .
The responses of the corresponding system due to f⋆ is
displayed in Fig. 10.

Fig. 10. Responses of the nonlinear system subject to
the test input f⋆ with the controller (39).

From (37) and (40), it is clear that both of the de-
sign results for Cases I and II satisfy the design crite-
ria (32). Notice, however, that the peak output û∗1(pII)
is 1.9 times of û∗1(pI) and û∗2(pII) is 1.2 times of û∗2(pI),
whereas there are no significant differences between
ẑ∗i (p

II) and ẑ∗i (pI) for i = 1, 2.

5. Conclusions and Discussion

This article has developed a practical and systematic
method for designing the nonlinear system (6) so as to
ensure that the outputs zi and the nonlinearity inputs
uj stay within the prescribed ranges ±εi and ±σj , re-
spectively, for all time and for all inputs f ∈ F . The
input set F can be regarded as the set of all inputs that
happen or are likely to happen; for this reason, it has
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been called the possible set ([7, 8]). The method devel-
oped in this work can be seen as an adjunct to Zakian’s
framework, which is a control design framework com-
prising the principle of matching ([7, 8]) and the method
of inequalities ([25]).

For simplicity, we focus our attention in this work
only to the input set characterized by (1). It should be
noted that the methodology used in the paper can also
be applied to input sets with different characterizations
in a straightforward manner.

Being obtained by using the decomposition (7) and
Kakutani’s fixed point theorem (the fixed point theo-
rem for multi-valued functions), Theorem 2.2 provides
an essential basis for developing the surrogate design cri-
teria (27), which are associated with the nominal linear
system subject to the input f ∈ F and an additional
disturbance d ∈ D. As a consequence, a solution of
the original design problem can be obtained by solving
the surrogate problem with the computational tools de-
veloped previously for linear systems. Inequalities (27)
are used in conjunction with conditions (a) and (b) in
Proposition 3.2 to obtain a solution of the original de-
sign problem (3) by numerical methods. From a compu-
tational viewpoint, we show that inequalities (27) have
a solution for sufficiently large bounds εi and σj when-
ever the nominal system (25) can be stabilized.

As a result of using the convolution algebra A
in Section 2, the method developed here is applica-
ble to control systems whose LTI subsystems consist-
ing of lumped- and/or distributed-parameter compo-
nents as long as the conditions hujf ∈ A for all j and
hujdk , ḣujdk ∈ A for all j, k hold.

Following previous work ([25,6,26,7,8,9]), it is inter-
esting to note that in solving inequalities (27) by numer-
ical methods, one has to deal with two computational
problems as follows.

• It is required that for a given p, the evaluation of
the peak outputs ẑ∗i (p) and û∗j (p) should be car-
ried out reliably and sufficiently fast, because the
process of searching for a solution of inequalities
(27) involves the evaluation of the peak outputs
for a long sequence of p.

• It is necessary to obtain a point p such that the
nominal system (25) is BIBO stable, because nu-
merical algorithms in general are able to search
for a solution of inequalities (27) only if they start
from such a point.

With the computational tools that are available (see
[9],[27],[31] for details), the method is applicable to a
class of retarded fractional delay differential systems,
which can be found in many practical applications.
However, there are still systems that do not belong to
this class; in order to make the method applicable to

such systems, we need to resolve the two problems men-
tioned above. And this can be topics for future investi-
gation.

In the numerical example, linear decentralized con-
trollers are designed for a binary distillation column
where the uncertain band models of backlash are used
during the design procedure instead of the actual valve
stiction characteristics. The numerical results clearly
demonstrate the usefulness of the contribution of this
work.
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Appendix A. Proof of Lemma 2.1

Definition A.1 ([32]). Let (E, ρ) be a metric space. Let
G denote a set of functions that are defined and finite-
valued on E. The set G is said to be equicontinuous if,
for every ε > 0, there is a δ(ε) > 0 such that for all
f ∈ G,

|f(x1)− f(x2)| < ε (41)
whenever x1, x2 ∈ E and ρ(x1, x2) < δ. The set G is
said to be uniformly bounded if there is anM <∞ such
that

|f(x)| ≤M, ∀x ∈ E, ∀ f ∈ G. (42)
Theorem A.2 (Ascoli’s Theorem [32]). Let G denote a
set of functions that are defined on a bounded and closed
set. If G is equicontinuous and uniformly bounded, then
it is possible to select a uniformly convergent subsequence
from every sequence {fn} of functions of G.
Proposition A.3 ([10]). In a Banach space, a subset K is
relatively compact if and only if every sequence in K con-
tains a subsequence.
Definition A.4 ([10]). Let X and Y be Banach spaces,
and H : D ⊂ X → Y be an operator. Then H is called
compact if and only if (i) H is continuous; and (ii) H
maps bounded sets into relatively compact sets.
Proof of Lemma 2.1. The lemma is proved with the
technique used in [33]. Note that this lemma consid-
ers the case in which H is an affine operator (see (14)),
whereas [33] considers the case in whichH is a linear op-
erator. For the sake of brevity, the sketch of the proof
is given here.

Since hjk ∈ A for all j, k, it follows from (14) that
there exists C0 <∞ such that

||Hx−Hy|| ≤ nC0

n∑
j=1

||xj − yj ||∞ = nC0||x− y||.

Thus, we conclude that H is continuous.
Let {x(l)} be any sequence inXT and let y(l) be de-

fined by

y(l)(t) =
(
Hx(l)

)
(t), ∀ t ∈ [0, T ].

Then we can write

y(l)(t) =
(
Hjx

(l)
)
(t), j = 1, 2, . . . , n.

Since XT ⊂ L∞
n,T and since hjk ∈ A for all j, k, it fol-

lows from (14) that {y(l)j } are uniformly bounded on
[0, T ] for any fixed T > 0 and for all j. Furthermore,
by using conditions ḣjk ∈ A for all j, k and by the dom-
inated convergence theorem (see, e.g., [34]), one can ver-
ify that for any t1, t2 ∈ [0, T ], any l > 0 and any ε > 0,
there always exists δ > 0 such that

|y(l)j (t1)− |y(l)j (t2)| ≤ ε ∀ j whenever |t1 − t2| ≤ δ.

Consequently, we conclude by Definition A.1 that
{y(l)j } (j = 1, 2, . . . , n) are equicontinuous. Hence, in
view of Theorem A.2, {y(l)j } contain a convergent sub-
sequence for j = 1, 2, . . . , n.

Now, by using Proposition A.3, the sets H1(XT ),
H2(XT ), . . . ,Hn(XT ) are relatively compact. Thus,
by virtue of Tychonoff’s theorem (see, e.g., [10]), the
set H(XT ) = H1(XT ) × H2(XT ) × · · · × Hn(XT ) is
relatively compact and so we conclude that the opera-
tor H maps bounded sets into relatively compact sets.
Hence, the compactness ofH readily follows from Def-
inition A.4 since H is continuous. □
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