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Abstract: Antimicrobial peptides (AMPs) have been investigated for their potential use as an alterna-
tive to antibiotics due to the increased demand for new antimicrobial agents. AMPs, widely found in
nature and obtained from microorganisms, have a broad range of antimicrobial protection, allowing
them to be applied in the treatment of infections caused by various pathogenic microorganisms. Since
these peptides are primarily cationic, they prefer anionic bacterial membranes due to electrostatic in-
teractions. However, the applications of AMPs are currently limited owing to their hemolytic activity,
poor bioavailability, degradation from proteolytic enzymes, and high-cost production. To overcome
these limitations, nanotechnology has been used to improve AMP bioavailability, permeation across
barriers, and/or protection against degradation. In addition, machine learning has been investigated
due to its time-saving and cost-effective algorithms to predict AMPs. There are numerous databases
available to train machine learning models. In this review, we focus on nanotechnology approaches
for AMP delivery and advances in AMP design via machine learning. The AMP sources, classifica-
tion, structures, antimicrobial mechanisms, their role in diseases, peptide engineering technologies,
currently available databases, and machine learning techniques used to predict AMPs with minimal
toxicity are discussed in detail.

Keywords: antibiotic resistance; antimicrobial peptide; drug delivery; LL-37; machine learning;
nanotechnology; peptide engineering; peptide database; peptide design

1. Introduction

The discovery of antibiotics is one of the greatest achievements in modern medicine.
However, over time, antibiotics have become less effective due to the emergence of drug-
resistant bacteria from the overuse and abuse of antibiotics [1]. In clinical isolates, antibiotic
resistance mutations have been found in promoter regions of efflux pumps, the target of
antibiotics, and binding regions of antibiotics. Antibiotic resistance, where a mutation
or post-translational modification alters the target or inactivates the antibiotic [2,3], has
resulted in treatment failure [3]. The Centers for Disease Control and Prevention (CDC)
reports more than 2.8 million infections and over 35,000 deaths due to antibiotic resistance
in the United States [4]. Therefore, discovering new antimicrobial agents to overcome this
challenge is essential [5].

Antimicrobial peptides (AMPs) constitute an important source for developing a new
generation of antibiotics. AMPs have a broad range of activity against microorganisms,
including bacteria [6], fungi [7], parasites [8], and viruses [9,10]. These peptides play a
critical role in innate immunity by responding to a variety of pathogen-associated molec-
ular patterns through increased leukocyte recruitment to the infection site and signaling
damaged tissues [11,12]. AMPs also are involved in the adaptive immune response as
they have demonstrated the ability to recruit immature phagocytic and dendritic cells [13].
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AMPs may exhibit other properties, including the ability to target drug-resistant micro-
bial biofilms, kill cancer cells, and promote wound healing [14]. Biofilm inhibition is an
advantageous property of AMPs, as biofilms have led to increased tolerance to various
antibiotics and have accounted for about two-thirds of all human infections [13]. In the
case of chronic wounds, the formation of biofilms could delay wound healing. Hence, the
effective disruption of preformed biofilms by AMPs constitutes an important step toward
wound healing [15–18].

AMPs have been discovered in six life kingdoms: bacteria, archaea, protists, fungi,
plants, and animals [19]. Most natural AMPs (74%) originated from animals, especially
amphibians and insects [20,21]. They share some common characteristics, such as cationic
charge (+1 to +7), short sequences (<50 amino acids), and they are usually amphiphilic [13,22].
The net positive charge results from the abundance of arginine, lysine, and histidine
residues due to the positive charges associated with these residues [23]. The presence of
~50% hydrophobic and hydrophilic residues contributes to these peptides’ amphiphilicity,
enabling them to interact with bacterial membranes and to enter cells [13]. These peptides
can fold into different structures, including alpha helices, beta-sheets, combined alpha helix
and beta-sheets, and non-alpha-beta structures [24]. Amphipathic alpha-helical structures,
observed for magainin and human cathelicidin LL-37 for instance, provide a basis for
understanding the mechanism of action of AMPs [25–27].

AMPs present selectivity toward bacteria over eukaryotic cells. AMPs’ selectivity
toward bacterial membranes over eukaryotic membranes is due to differences in the
composition of the membranes. Eukaryotic membranes have primarily zwitterionic lipids,
including phosphatidylcholine and sphingomyelin, which are usually neutral. In contrast,
bacterial membranes are composed of anionic lipids, such as phosphatidylglycerol and
cardiolipin [28]. The favored interaction between cationic AMPs and anionic bacterial
membranes is responsible for peptide selectivity.

It should be pointed out that such a preferred interaction with bacteria does not
mean AMPs will never interact with host cells. AMPs, such as human cathelicidin and
defensins, do associate with host cell receptors (e.g., GPCRs, MrgX2, FPR2, and P2X7) at a
peptide concentration much below the minimal inhibitory concentration (MIC) [29]. Such
interactions are not cell damaging; rather, they induce signal transduction for immune
regulation. Such a role of AMPs links them with a variety of physiological processes,
including human diseases.

2. AMPs and their Relationships with Human Diseases

2.1. Role in Respiratory Diseases

AMPs provide defense mechanisms for multiple diseases, including respiratory dis-
eases. Rai et al. reviewed the preparation of various AMP-based materials and their antimi-
crobial properties against infections in the brain, eye, mouth, skin, lung, etc. [30]. Due to
their role in adaptive and innate immunity, AMPs can protect against pathogens in various
organs [31]. The respiratory tract is lined with epithelial cells to protect against potential
infections [13]. Upon infection, epithelial cells, neutrophils, and macrophages populate
and can secrete AMPs, which act intracellularly to kill invading pathogens [32]. Catheli-
cidin LL-37, a natural human AMP, and cathelicidin-related AMP (CRAMP) demonstrated
antiviral activity against influenza A virus [33,34]. LL-37 showed effectiveness against
influenza A virus both in vitro and in vivo, with a 90% reduction in virus titer in vitro and
a significant 70–80% reduction in lung virus three days post-infection in mice [34]. AMPs
have demonstrated their role in protecting against respiratory infections, but they are also
involved in non-infectious lung diseases [32].

In various respiratory diseases, such as chronic obstructive pulmonary disease (COPD)
and cystic fibrosis, studies have presented different AMP expression (overexpression or
down-regulation) compared to non-diseased states [13]. For instance, some AMPs, such as
LL-37, are overexpressed in respiratory diseases, which may influence disease progression.
Increased levels of LL-37 correlated with bronchial inflammation, which affected disease
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severity [35]. The overexpression of LL-37 in the airways of COPD patients stimulated
the overproduction of mucus, where this mucus contributed to disease progression [36].
LL-37 is a neutrophil-derived AMP, which can further disease progression in the lungs
due to its inflammatory activity and cytotoxicity at relatively high concentrations [32].
Smokers with COPD, a disease with limited airflow due to toxic particles or gases, had
reduced beta defensin-2 (hBD-2) compared to smokers without COPD and ex-smokers
with COPD [37,38]. Decreased concentrations of hBD-2 were also associated with disease
severity in cystic fibrosis patients [35]. Diseases involving decreased hBD-2 production
could correspond to an increased susceptibility to infections by different pathogens [13].

2.2. Role in Autoimmune Diseases

Studies have shown that the expression of AMPs plays a role in autoimmune disease
pathogenesis. Psoriasis, rheumatoid arthritis, and Crohn’s disease are autoimmune dis-
eases that have shown altered AMP expression [39–41]. Psoriasis is an autoimmune skin
condition caused by innate and adaptive immunity deviations induced by infection, injury,
and stimulation [42]. Patients diagnosed with psoriasis have increased expression levels
of AMPs, such as LL-37 and human β-defensins, compared to healthy individuals [43].
Studies demonstrated that LL-37 could act as an autoantigen by circulating T cells and can
complex with self-RNA, which activates Toll-like receptors (TLR), leading to the exacerba-
tion of psoriasis [44,45]. hBDs also play a role in the development of psoriasis as Rohrl et al.
demonstrated the ability of hBD-2 to act as a ligand for chemokine receptor (CCR6), where
this CCR6 signal induced Th17 in patients with psoriasis [46,47].

Rheumatoid arthritis is a disease that leads to chronic inflammation and joint destruc-
tion by producing disease-specific-anticitrullinated protein antibodies and complexing with
citrullinated fibrinogen [48]. Francisco et al. discovered elevated liver-expressed AMP 2
(LEAP2) levels in rheumatoid arthritis patients compared to healthy individuals. This
evidence indicates that LEAP2 is associated with inflammatory mediators in rheumatoid
arthritis [49]. hBD-3 also played a role in the pathogenesis of rheumatoid arthritis, indi-
cated by the destruction of the cartilage due to the activation of matrix metalloproteinases,
resulting in the degradation of the extracellular matrix cartilage [50,51].

Crohn’s disease is a chronic condition described by relapsing and remitting patchy
inflammation along any section of the gastrointestinal tract [52]. Gutiérrez et al. discovered
the upregulated expression of LL-37 in peripheral blood neutrophils in Crohn’s disease
patients [53]. Another study demonstrated increased LL-37 expression in the inflamed mu-
cosa of patients with Crohn’s disease. In Crohn’s disease, LL-37 may enhance antibacterial
properties, specifically in the inflamed mucosa, which may protect against infection [54].
Wehkamp et al. determined that Crohn’s disease patients have reduced antibacterial activ-
ity in the intestinal mucosa and have shown a decreased expression in human α-defensin 5
(HD5) in the ileum. This decreased α-defensin expression may be a factor in the pathogene-
sis of Crohn’s disease through inflammation in the ileum, leading to compromised innate
immunity [55].

Altered expression levels of AMP in the gastrointestinal tract have been found in
diabetes. Liang et al. determined that cathelicidin-related antimicrobial peptide (CRAMP)
expression was decreased in the colon of non-obese mice, which led to the production of
type I interferons. This production led to the promotion of the pancreatic autoimmune
response, accelerating the progression of diabetes. However, when CRAMP expression
was increased, it restored homeostasis, which prevented the diabetogenic response [56].
Although type 2 diabetes is not an autoimmune disease, this disease has been associated
with a reduced expression of β-defensin [57]. Lin et al. determined that hBD-1, human
beta defensin 1, was reduced in the gastric corpus in the diabetic metabolic state. Given
this information, the induction of AMP expression may help resolve issues involved in
intestinal barrier deficiency [58].
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2.3. Role in Cancer

Vitamin D receptor (VDR) plays a role in regulating the transcriptional profile of
many genes involved in physiological functions, such as regulating immune activity [13].
VDR has been shown to be one of the resistance mechanisms to pathogens. Due to the
dysregulation of the VDR, AMP expression levels alter, and cancer biology is influenced
through altered DNA methylation patterns [59]. Various AMPs, such as α-defensins,
β-defensins, and LL-37, are involved in developing a variety of tumors and cancers, where
the VDR regulates these peptides [13]. Defensins are AMPs produced by eukaryotes,
where some defensin-like peptides have antiproliferative activity and apoptosis in cancer
cells, demonstrated by the increased phosphorylation of MAPK p38 [60,61]. Due to this
ability, defensins can be used in combination therapy to overcome chemotherapeutic
resistance. For instance, Johnstone et al. determined that defensins could increase the
in vitro anticancer activity of doxorubicin, an anticancer drug, against multidrug-resistant
tumor cells [62]. Human neutrophil peptide-1 (HNP-1) is another alpha defensin that has
shown anticancer activity in addition to antimicrobial activity [63]. Gaspar et al. established
that HNP-1 induced apoptosis with defects in the cellular membrane at a low concentration
of peptide [64].

Likely due to the exposure of anionic phosphatidylserine (PS), cancer cells have an
increased sensitivity to cationic AMPs compared to normal cells. This increased sensitivity
results from an undeveloped cytoskeleton seen in cancer cells [1]. Cancer cells have a high
metabolism, which allows this change in the cytoskeleton. As a result, AMPs can interact
with the cancer cell membrane [1,13]. Interestingly, LL-37 has demonstrated the ability to
produce tumorigenic or anticancer effects, depending on the type of cancer involved [65].
For instance, the expression of LL-37 is down-regulated in gastric and pancreatic cancer,
indicating that LL-37 can have anticancer effects. Zhang et al. showed a high concentration
of LL-37 at 20 mg/kg with a 42% reduction in pancreatic tumor growth compared to the
control. Results have suggested that the LL-37-induced inhibition of autophagy results
in the accumulation of reactive oxygen species (ROS) and inhibits pancreatic cancer cell
growth [66]. Wu et al. determined that LL-37 inhibited the proliferation of gastric cancer
cells by activating bone morphogenetic protein signaling through a proteasome-dependent
mechanism [67]. Of great interest is that the major antimicrobial peptide (FK-16) of LL-37,
originally discovered by NMR-trim, is demonstrated to have anticancer properties as
well [68,69].

LL-37 has also been shown to present tumorigenic effects in some cases. Haussen et al.
showed LL-37 expression in human lung cancer cells; the overexpression of LL-37 in cancer
cells resulted in an increased proliferation. This study also showed that murine models
had similar results, where cells overexpressing LL-37 developed larger tumors compared
to mice without the overexpression of LL-37 [70]. The overexpression of cathelicidins
has also played a role in the pathogenesis of breast cancer. Weber et al. determined that
the treatment of LL-37 stimulated breast cancer cell migration and their colonies had a
dispersed morphology, which indicated increased metastatic potential. The overexpression
of human cathelicidin protein (hCAP18) in low malignant breast cancer cell lines induced
metastases in severe combined immunodeficiency mice. Therefore, the overexpression of
hCAP18 and LL-37 in certain cancers may serve as a useful marker for cancer diagnosis [71].

2.4. Role in Cardiovascular Diseases

Cardiovascular disease contributes to worldwide mortality, including conditions such
as atherosclerosis and heart failure [72]. Atherosclerosis is the accumulation of plaque
in blood vessels and is one of the leading causes of cardiovascular diseases [73]. Edfeldt
et al. discovered the expression of LL-37 in atherosclerotic lesions, which modulates
inflammation expression. LL-37 activated adhesion molecules and chemokines, resulting
in leukocyte recruitment and atherogenesis [74,75]. Salamah et al. determined the presence
of LL-37 in platelets, which secreted upon activation and promoted thrombus formation.
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The formation of a thrombus led to further complications, such as blood clots, resulting in
heart failure [76].

Heart failure is an end-stage condition that results from complications associated
with cardiovascular disease, which is identified as the leading cause [77]. Zhou et al.
demonstrated the decreased expression of LL-37 in heart failure patients and decreased
CRAMP in heart and serum samples of heart failure mice models. In their study, CRAMP
supplementation suppressed cardiac hypertrophy, indicated by reduced expression levels
of atrial natriuretic peptide and B-type natriuretic peptide. The presence of LL-37 in serum
suggested that this AMP might be used as a biomarker for acute heart failure [78]. For
instance, Bei et al. demonstrated that a lower LL-37/neutrophil ratio could predict a worse
prognosis for myocardial infarction patients [79].

2.5. Role in Neurodegenerative Diseases

Neuroinflammation results from brain injuries or diseases released from activated
microglia, astrocytes, and cytokines. Neurodegeneration is associated with responses
due to inflammation resulting from over-activated glial cells [80]. Lee et al. showed a
relative upregulation of LL-37 in the brain compared to other organs, indicating that the
LL-37 expression level might be associated with chronically diseased areas in the brain
involved in Alzheimer’s and Parkinson’s [80]. The amyloid β-protein (Aβ), another human
AMP, influences Alzheimer’s disease pathogenesis [81]. Soscia et al. determined that
Alzheimer’s disease homogenates increased higher antimicrobial activity against microbes
compared to non-diseased homogenates. Although Aβ demonstrated its ability to protect
Alzheimer’s patients from infection, this peptide also contributed to the pathogenesis of
the disease [81]. Wang et al. determined that dysregulated AMP expression might be
involved in the development of Alzheimer’s disease by inducing Aβ deposition. These
findings indicated the potential of using AMPs as biomarkers and therapeutic agents for
Alzheimer’s disease [82].

3. AMPs’ Antimicrobial Mechanisms

AMPs kill microorganisms primarily via selectively disrupting the membrane through
membrane permeation mechanisms. These mechanisms include the barrel-stave model,
carpet model, and toroidal-pore model (Figure 1) [28]. In the barrel-stave model, AMPs are
embedded perpendicularly into the microbial membrane, where they self-assemble to form
a transmembrane channel [83,84]. Due to their amphipathic nature, the hydrophobic faces
orient themselves toward the interior of the microbial membrane, while the hydrophilic
faces orient themselves to form the hydrophilic pore (Figure 1b) [85]. In the carpet model,
AMPs are oriented parallel to the microbial membrane, where they are absorbed to induce
membrane disruption. The membrane disrupts through micellization, degrading the mem-
brane and resulting in microbial cell death, as shown in Figure 1c [86]. The toroidal-pore
model is similar to the barrel-stave model, where a pore is formed by inserting AMPs per-
pendicularly into the membrane. However, this model differs from the barrel-stave model
where the bacterial membrane incorporates into the pore. This incorporation induces lipid
monolayers to bend, forming a continuous interface with the AMPs (Figure 1d) [28,84].
Generally, AMPs target microbial membranes through hydrophobic and electrostatic in-
teractions, resulting in cell death due to losing cellular components and electrochemical
gradients [87,88]. However, evidence suggests that membrane permeation is not the only
mechanism for AMPs to eliminate bacteria. Some AMPs, such as lantibiotics, target the
bacterial cell wall [89]. AMPs may also translocate across microbial membranes and bind to
intracellular targets that may inhibit nucleic acid and protein synthesis, which may result in
cell death (Figure 1I–III) [22]. As to Gram-negative bacteria, AMPs may act as an antagonist
on the lipopolysaccharide (LPS) of the outer membrane. LPS is an endotoxin that stimulates
the secretion of proinflammatory cytokines to modulate immune responses [13]. This
endotoxin is essential in the integrity and stability of bacterial cell structures, providing a
protective barrier from chemical attack while managing cell permeability [13,90]. AMPs
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have demonstrated the ability to inhibit LPS-induced cellular responses via TLR4 and may
eliminate extracellular LPS through interactions with this endotoxin in various molecules
using membrane permeation methods [13,91]. Such an LPS neutralization usually led to an
anti-inflammatory effect.

Amino acids are essential elements that contribute to the antimicrobial activity seen
in AMPs. Aspartate and glutamate are negatively charged amino acids responsible for
binding divalent cations, which is essential for the antibacterial activity of some AMPs such
as daptomycin. When these negatively charged amino acids bind to divalent cations, the
conformation of the AMPs is altered to enhance the interaction between the AMPs and cell
membranes [92,93]. Tryptophan (Trp) is a non-polar amino acid located on the protein that
intersects the membrane interface region [9,94]. The preference of tryptophan residing in
the membrane interface is likely the result of tryptophan’s sidechain indole, rigid structure,
and aromaticity, which limits access to the hydrocarbon core [95]. Because of its bulky side
chain, Trp is frequently used to enhance peptide activity, especially short ones. Arginine
and lysine are basic amino acids which contribute to cationic charge, a characteristic seen in
amphipathic AMPs [96]. Histidine residues can function as a proton shuttle, which allows
these residues to modify the net positive charge by adjusting the pH, affecting antimicrobial
activity [97]. When histidine incorporates into the AMP sequence, it can provide a cationic
charge at an acidic pH, but it loses a positive charge at a basic pH and reduces peptide
activity [96,98]. Cysteine residues can form disulfide bonds, providing stability against
chemical, thermal, and enzymatic degradation [93]. Proline residues are frequently found
as a structural breaker in an alpha helix due to its properties including steric hinderance
and a lack of hydrogen to participate in helix stabilization [99]. Interestingly, there are
proline-rich AMPs that inhibit ribosome assembly [100].

The primary antimicrobial mechanisms of AMPs via membrane disruption have
demonstrated advantages over conventional antibiotics. AMPs can kill pathogens faster
than traditional antibiotics and have a narrower active concentration window to kill
pathogens [101]. Typical antibiotics only act on specific intracellular targets, while AMPs
utilize various intracellular and extracellular targets. Since AMPs can act rapidly on
pathogens and have various killing mechanisms, it reduces the chance of bacteria develop-
ing resistance to AMPs [102].
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Figure 1. AMPs interact with microbial membranes and their associated mechanisms of action. The
mechanisms for membrane permeation begin with (a) AMP interaction with microbial membranes,
allowing AMPs to insert themselves. (b) The barrel-stave model results when AMPs insert perpendic-
ularly into microbial membranes and self-assemble to form pores [83,84]. (c) The carpet model works
by absorbing AMPs, resulting in disrupting the microbial membranes through micellization [86].
(d) The toroidal-pore model results from incorporating AMPs to form a continuous interface with
the microbial membrane [28,84]. AMPs can also translocate across microbial membranes and bind
to intracellular targets, resulting in cell death. These intracellular targets include (I) inhibiting
DNA and RNA synthesis, (II) inhibiting protein synthesis, and (III) inhibition of cell wall synthe-
sis [22]. Adapted from (Bahar et al., 2013) CC BY 3.0 [103]. Created with BioRender.com (accessed on
15 December 2022).
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4. Limitations and Strategies for Clinical Applications

There is a growing interest in developing biomedical applications for AMPs due to
their unique properties and different antimicrobial mechanisms. It appears that the success
of AMPs to a large extent is determined by their structure and biological source. Based on
a universal peptide classification scheme [24], AMPs are classified into four classes: linear
(UCLL), sidechain-connected (UCSS), sidechain-backbone linked (UCSB), and backbone-
connected (UCBB). The latter three belong to cyclic peptides. Because of the stability with
proteases, some cyclic AMPs have been approved for clinical applications (Table 1). Linear
AMPs, however, face challenges due to issues with protease degradation [104].

4.1. Clinical Applications of AMPs from Prokaryotes

Currently, there are a few Food and Drug Administration (FDA)-approved peptide
antibiotics being used clinically to treat patients. Broadly, they belong to natural AMPs.
Table 1 summarizes peptide molecular weight, activity, targeted pathogens, mechanism,
administration routes, year of approval, and reference. The structures of these peptide
antibiotics are depicted in Figure 2. They can be classified into two types: natural and
engineered. Natural peptides include bacitracin [105], daptomycin [106], teicoplanin [107],
vancomycin [108], colistin [109], and gramicidin [110]. Bacitracin, daptomycin, teicoplanin,
and vancomycin primarily inhibit Gram-positive pathogens, while colistin is the last resort
antibiotic to treat Gram-negative pathogens. Gramicidin can kill both Gram-positive and
-negative pathogens. Bacitracin is a cyclic heptapeptide with its lysine sidechain attached
with a short peptide segment. It is used topically to treat skin infections caused by Gram-
positive bacteria, such as Staphylococcus aureus (S. aureus). Daptomycin and colistin also
have cyclic structures attached with a fatty acid tail (e.g., lipopeptides). Vancomycin is a
sidechain-linked peptide antibiotic for systemic use. Teicoplanin has a structure similar to
vancomycin. It is a mixture of multiple molecules that differ in the fatty acid chain structure.
Due to a longer half-life that allows less frequent dosing, teicoplanin has an advantage
over vancomycin. Additionally, dalbavancin [111], oritavancin [112], and telavancin [113]
are semi-synthetic lipoglycopeptides developed to treat Gram-positive bacterial infections
where vancomycin does not work well. They all share a heptapeptide core that inhibits
transglycosylation and transpeptidation. Remarkably, dalbavancin and oritavancin have a
long half-life in the range of 147 to 393 h, making it possible to administer a treatment of
one dose per week [114]. Gramicidin D consists of a mixture of gramicidins (80% A, 6% B,
and 14% C). These linear peptides are particularly effective against Gram-positive bacteria
by forming an ion channel on membranes. Gramicidin can only be used topically to treat
eye, nose, throat, and wound infections since it is highly hemolytic. Note that gramicidin
S (AP02243 in the APD database) is very different as it possesses a head-to-tail cyclic
backbone structure. Overall, it shows higher activity against S. aureus and Enterococcus
faecium (E. faecium) than Gram-negative bacteria [115].

Finally, there are also antiviral peptides (Table 1) engineered based on viral proteins to
inhibit viral proteases (e.g., Boceprevir [116] and Telaprevir [117]) or fusion (e.g., Enfuvir-
tide [118]). Such designed peptides differ from classic AMPs.
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Figure 2. Two-dimensional structures of multiple FDA-approved AMPs. These AMPs include baci-
tracin [105], colistin [109], daptomycin [106], gramicidin A [110], vancomycin [108], teicoplanin [107],
dalbavancin [111], oritavancin [112], telavancin [113], boceprevir [116], telaprevir [117], and enfuvir-
tide [118]. Created with BioRender.com (accessed on 15 December 2022).

4.2. Eukaryotic AMPs under Investigation for Clinical Applications

Multiple AMPs from eukaryotes, such as insects, amphibians, and mammals, have
entered clinical trials but have not received FDA approval. For example, omiganan, a
derivative of indolicidin, is a recently transitioned Phase III drug that reduces catheter
colonization and acts as an anti-inflammatory agent against rosacea, an auto-inflammatory
skin disease [13]. Pexiganan, derived from frog magainin, has also been tested to treat
diabetic foot ulcers, but has not yet been approved [119]. Its antimicrobial effect is even
better when it is used in combination with nisin due to different mechanisms to induce
bacterial killing [120]. Iseganan, a derivative of pig cathelicidin protegrin-1, was tested
clinically to treat oral mucositis [121].

More AMPs are under development. For example, DP7 (VQWRIRVAVIRK) is an AMP
effective against Gram-negative, Gram-positive, and multidrug-resistant bacteria [91,122].
Studies have investigated the effectiveness of DP7 against biofilm production [91] and
infections such as the severe acute respiratory syndrome (SARS) coronavirus [123]. A mu-
tation in Pseudomonas aeruginosa (P. aeruginosa) blocked the generation of a signal molecule,
resulting in hindered differentiation and biofilm formation [124]. Yin et al. investigated
the antibiofilm activity of DP7 against a mutated strand of P. aeruginosa. Increasing the
concentration of DP7 showed a reduction in biofilm biomass, which indicated that DP7
might bind to targets involved in biofilm production. This study showed a biofilm re-
duction in P. aeruginosa of 43% to 68% [91]. Zhang et al. investigated the ability of DP7
in resisting the coronavirus infection on the ACE2 receptor by the coronavirus receptor-
binding domain (RBD) and spike protein (S protein). The results from their study showed
that a 50% inhibitory concentration (IC50) of DP7 inhibiting SARS-CoV and SARS-CoV-2
S protein pseudovirus-infected ACE2-293T was 104 µg/mL and 74 µg/mL, respectively.
An enzyme-linked immunosorbent assay (ELISA) was used to determine if DP7 could
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inhibit SARS-CoV-2 S-RBD from binding to the ACE2, which showed that DP7 inhibited
the combination of the two [123]. There are numerous studies aimed at developing human
cathelicidin LL-37 into novel antimicrobials (for a review, see ref. [125]).

4.3. Complications and Potential Solutions

The use of AMPs for clinical applications, unfortunately, faces limitations. One major
issue with many AMPs is their hemolytic activity, which is the ability to burst red blood
cells in an organism [126]. This AMP property is a significant concern for therapeutics,
as hemolysis may cause anemia or death following treatment. AMPs may also be de-
graded via proteolytic enzymes found in the GI tract, blood serum proteases, and kidney
drug clearance [87,126]. Such degradation results in poor oral bioavailability. Moreover,
AMPs are relatively large (on average, there are 33 amino acids in the APD), which can
increase their manufacturing costs [13]. Although AMPs may reduce the chance of bacteria
developing resistance, there are a few resistance mechanisms reported [102,127]. These
resistance mechanisms include modifying cell surfaces to reduce the negative charge on
their membranes, resulting in the reduced ability of AMPs to bind to these membranes
and kill microbes [128]. Other resistance mechanisms include antimicrobial efflux pumps,
external trapping, proteases used to degrade peptides, AMP sequestration to block access
to the cell membrane, and biofilms [129–131]. There is an increased need for techniques to
minimize or remove these limitations associated with AMPs.

New technology and techniques may overcome the challenges facing the applications
of AMPs. Nanotechnology, a growing field, has the potential to improve bioavailability,
permeability across barriers, protect against harsh environments such as pH and enzymes,
and control the release of AMPs [132]. Meanwhile, computational methods can avoid
poor peptide candidates initially, as seen with conventional methods of screening peptides
using growth media and determining cell toxicity [127]. Rational design, a computer-aided
method, of AMPs can reduce the amino acid length of the peptides to perform their de-
sired function against pathogens [133]. This design can reduce the length of AMPs while
maintaining their antimicrobial properties, which could help reduce production costs. For
example, LL-37 has been reduced to 12 amino acids (KR-12) for peptide engineering, and
the recently optimized lipopeptide is composed of only eight amino acids [26,134]. Machine
learning models have gained attention due to their cost-effectiveness in peptide discov-
ery [135]. These models can mine through relationships between antimicrobial activity and
biochemical features, which help predict AMPs in large-scale environments [136]. Machine
learning methods can potentially lead to reduction of toxicity seen in AMPs by modifying
the physicochemical features and chemical modifications responsible for toxicity [137].

Although computational methods have helped with obstacles facing AMPs, there are
a few computational challenges associated with them. The availability of new sequences
such as metagenomes shows their potential to find novel AMP sequences. However, pre-
dicting small genes in DNA sequences and AMP activity using homology-based methods
is challenging. Due to the limited use of homology-based methods to be directly applied
to AMPs, different techniques are required for the application of longer peptides [138].
Santos-Júnior developed Macrel to overcome these obstacles with the use of metagenomes
to predict AMP sequences and activity. This method can process metagenomic contigs,
metagenomes, or peptides. Macrel can process reads and assemble them into larger contigs,
where the small open reading frames (ORFs) are extracted and classified into AMPs or re-
jected. Since predicting small ORFs with the current methods has issues with false positives,
Macrel filters allowed the prediction of high-quality AMP sequences [138]. Huertas-Cepas
et al. developed eggNOG-mapper, a tool to annotate large sets of proteins based on or-
thology assignments from the eggNOG database. This method showed improvements
compared to homology-based techniques, revealing that orthologs are effective predictors
for AMPs [139].
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Table 1. FDA-approved AMP antibiotics.

Name
MW

(g/mol)
Activity Pathogen

Antimicrobial
Mechanism

Administration
Year

Approved
Ref.

Bacitracin 1460 Gram-positive

Streptococcus spp.,
Staphylococcus spp.,

Clostridium spp.,
Corynebacterium spp., and

Actinomyces spp.

Bacitracin inhibits the
synthesis of bacterial cell
walls, which prevents the
dephosphorylation of the
P-P-phospholipid carrier.

This carrier binds
peptidoglycan precursors

to the bacterial cell
membrane. Bacitracin

absorbs into injured skin
to prevent mucopeptides
from entering microbial

cell walls.

Topical,
ophthalmic,

intramuscular
1984 [140,141]

Boceprevir 519.7 Antiviral Hepatitis C

Boceprevir inhibits the
hepatitis C virus (HCV)
non-structural protein 3

(NS3/4A) protease,
important for cleaving

HCV polyprotein into its
mature protein forms.

HCV replication is
inhibited through

boceprevir binding
covalently to the active
site on NS3 protease.

Oral 2011 [142]

Colistin 1750 Gram-negative

A. baumannii,
P. aeruginosa, E. coli,

Enterobacter, Salmonella,
Klebsiella, and Shigella

Colistin binds through
electrostatic interactions
to the negatively charged

Gram-negative
membrane component,
lipid A of LPS. Colistin

displacing divalent
cations of magnesium

and calcium and
inserting its hydrophobic
acyl fatty chain results in

membrane lysis.

Intravenous
and

intramuscular
1962 [5,143,144]

Dalbavancin 1816.7 Gram-positive

S. aureus,
Streptococcus pyogenes,

Streptococcus dysgalactiae,
Enterococcus faecalis,

Streptococcus intermedius,
Streptococcus agalactiae,
Streptococcus anginosus,

and Streptococcus constellatus

Dalbavancin inhibits cell
wall synthesis through

interactions with the
D-alanyl-D-alanine

terminus of the
pentapeptide in

peptidoglycan of cell wall.
This binding prevents
crosslinking, which is

essential for building the
bacterial cell wall.

Intravenous 2014 [5,145]

Daptomycin 1620.7 Gram-positive

S. aureus,
Enterococcus faecalis,

Streptococcus dysgalactiae,
Streptococcus agalactiae,
Streptococcus pyogenes,

Corynebacterium jeikeium,
Enterococcus faecium,

S. epidermis, and
S. haemolyticus

Daptomycin has a
lipophilic acyl tail which

inserts into bacterial
cytoplasmic membrane,
resulting in the efflux of
potassium and leading

to membrane
depolarization. This

depolarization results in
the inhibition of DNA,

RNA, and protein
synthesis, resulting in

membrane lysis.

Intravenous 2003 [5,146,147]
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Table 1. Cont.

Name
MW

(g/mol)
Activity Pathogen

Antimicrobial
Mechanism

Administration
Year

Approved
Ref.

Enfuvirtide 4492 Antiviral HIV-1

Enfuvirtide inhibits the
fusion of viral and

cellular membranes,
which prevents HIV-1

from entering cells.
Enfuvirtide binds to the
first heptad-repeat (HR1)
in the gp41 subunit of the

viral envelope
glycoprotein, preventing
confirmational changes

necessary for fusing
viral membranes.

Subcutaneous 2003 [148]

Gramicidin D 1811.2 Gram-positive

Streptococcus pneumoniae,
S. aureus,

Haemophilus influenzae,
P. aeruginosa,

Streptococcus agalactiae,
E. coli, Neisseria

meningitidis, Klebsiella,
Neisseria gonorrhoeae, and

Enterobacter

In microbial membranes,
two gramicidin

molecules form a
head-to-head dimeric ion

channel in the center,
resulting in loss of

intracellular solutes,
reduction in ATP, and
inhibition of DNA and

RNA synthesis.

Topical 1955 [5,149]

Oritavancin 1989.1 Gram-positive

S. aureus,
Streptococcus intermedius,

Streptococcus pyogenes,
Streptococcus dysgalactiae,
Streptococcus agalactiae,

Enterococcus faecalis
Streptococcus anginosus, and
Streptococcus constellatus

Oritavancin inhibits
biosynthesis of cell walls

by binding to the stem
peptide of peptidoglycan
precursors. Oritavancin

may inhibit this
biosynthesis by binding

to peptide bridging
segments. Oritavancin

also disrupts the integrity
of microbial membranes,

resulting in cell death.

Intravenous 2014 [5,150]

Teicoplanin 1900 Gram-positive

S. aureus, S. epidermidis,
Streptococcus pyogenes,

Staphylococcus haemolyticus,
Staphylococcus hominis,

Staphylococcus saprophyticus,
Streptococcus bovis,

Streptococcus pneumoniae,
Streptococcus agalactiae,

Streptococcus mitis,
Streptococcus milled,

Streptococcus sanguis,
Clostridium difficile,

Listeria monocytogenes,
Clostridium perfringens,

Propionibacterium acnes, and
Corynebacterium jeikeium

Teicoplanin inhibits the
peptidoglycan

polymerization of the cell
wall by

binding to
Ac2-L-Lys-D-ala-D-ala,

an analog of the
peptidoglycan precursor
in cell wall biosynthesis.
As a result, teicoplanin

inhibits cell
wall synthesis.

Intravenous or
intramuscular 1990 [151,152]

Telaprevir 679.85 Antiviral Hepatitis C

Telaprevir inhibits the
HCV NS3/4A protease,
which is important for
cleavage of the HCV

polyprotein into mature
forms necessary for

viral replication.

Oral 2011 [153]
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Table 1. Cont.

Name
MW

(g/mol)
Activity Pathogen

Antimicrobial
Mechanism

Administration
Year

Approved
Ref.

Telavancin 1755.6 Gram-positive

S. aureus,
Streptococcus pyogenes,

Streptococcus constellatus,
Streptococcus agalactiae,

Enterococcus faecalis,
Streptococcus anginosus, and
Streptococcus intermedius

Telavancin binds to the
D-alanyl-D-alanine

terminus of cell wall
precursors and late-stage
peptidoglycan precursors

such as lipid II. This
interaction inhibits the

polymerization of
precursors into

peptidoglycan and
crosslinking. The

mechanism of telavancin
and membrane lysis

is unknown.

Intravenous 2009 [5,154,155]

Vancomycin 1485.7 Gram-positive

S. aureus,
Streptococcus bovis,

S. epidermidis,
Streptococcus pyogenes,
Listeria monocytogenes,
Streptococcus agalactiae,

Clostridium species,
Actinomyces species, and

Lactobacillus species.

Vancomycin inhibits the
polymerization of
peptidoglycans by

binding to
D-alanyl-D-alanine. This

interaction inhibits
glucosyltransferase and
P-phospholipid carrier,

which prevents synthesis
and polymerization of the
peptidoglycan layer. This

inhibition results in a
weakened layer and leaks
intracellular components.

Intravenous
and oral 1954 [5,156–158]

Spp = species plural; S. aureus = Staphylococcus aureus; P. aeruginosa = Pseudomonas aeruginosa;
E. coli = Escherichia coli.

5. Machine Learning for AMP Prediction and Design

Machine learning algorithms are computational techniques that use input data to
build an adaptive model that can perform a task without having to be programmed by
humans. Due to the adaptiveness of these algorithms, they can modify their architecture
through repetition to enhance and adapt their ability to perform a task. This adaptation is
known as training, including input data and desired outcomes. Through this training, the
algorithm configures itself to produce desired outcomes from not only trained inputs but
also unseen data. This training learns outcomes, which is known as machine learning [159].

Machine learning can be divided into categories based on how the data are labeled,
including supervised and unsupervised learning. Supervised learning can focus on pattern
recognition to distinguish between different data sets based on the data. For example,
AMPs and other non-AMPs are unique but still have features that can distinguish one
another. Instead of coding every AMP and non-AMP, the program learns to distinguish
these through repeated encounters with AMPs and non-AMPs. The input data (cationic,
amphiphilic, etc.) pair with the classification label (antimicrobial or non-antimicrobial) to
recognize an AMP or a non-AMP (Figure 3a) [159]. Unsupervised learning is different,
where this algorithm only uses input data without output data to train the algorithm. The
algorithm takes unlabeled data, finds trends or patterns, and learns features from the data.
When models encounter new data, the algorithm uses the learned features to recognize and
classify the data [160]. For example, peptide databases contain a variety of peptides where
the algorithm finds trends in the data to distinguish AMPs from non-AMPs (Figure 3b).

When there is no experimental data, AMP prediction models can be used to find new
sequences with AMP characteristics, predict the mechanism or target of AMPs, or estimate
three-dimensional (3D) structures. These models can predict AMP features by mining
through databases with known AMPs and scanning the literature for sequences with sim-
ilar features to establish a relationship between the sequences [161]. Peptide databases
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contain information such as physicochemical features, modifications, mechanisms, and
structures to sort the data. Databases can be helpful to researchers when developing
peptides through de novo methods and optimizing known AMP sequences. Optimizing
AMPs depends on utilizing the physicochemical parameters involved in disrupting mi-
crobial membranes [102]. Alpha-helical peptides, for instance, are essential for membrane
permeation, where the hydrophobic and hydrophilic faces and net charge influence pore
formation [162].

Figure 3. Schematic representation of machine learning algorithms used to develop prediction
models. Machine learning algorithms are divided into two main categories. (a) Supervised machine
learning uses a training set of known AMPs and the desired outcome, such as antimicrobial or
non-antimicrobial properties. This model uses raw data of known AMPs to train the algorithm,
resulting in a trained model for analyzing new data. Then, when inputting new data into the model, it
can predict if that new sequence has antimicrobial or non-antimicrobial properties. (b) Unsupervised
machine learning does not have a training data set. Instead, unsupervised learning predicts if new
sequences are antimicrobial or non-antimicrobial based on any patterns or trends associated with
the data. Adapted from (Ma, Y., 2018) CC BY 4.0 [163]. Created with BioRender.com (accessed on
15 December 2022).

5.1. Databases for AMP Design

Databases for the machine learning design of AMPs are classified into general and
specific databases based on the categories of data collection. General databases (Table 2)
provide a broad scope of AMPs, regardless of the source [164]. The AMP database (i.e.,
APD3), the most studied database, focuses on features such as natural AMPs with less
than 200 amino acid residues, including human antimicrobial proteins, known amino acid
sequences, and biological activity. This original database, which launched online in 2003,
consisted of peptide search, prediction, design, and statistics interfaces [165]. There are
currently 3569 AMPs in this database, where users can sort information based on charge,
length, and hydrophobicity [19,166]. It contains natural, predicted, and synthetic peptides.
This database has taken the lead in annotating the peptide activity (25 types), chemical
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modifications (27 types), peptide binding targets, and systematic classification of AMPs in
numerous ways. The core data set in this database provides a foundation for us to decode
the design principles of natural AMPs. The Collection of Antimicrobial Peptides (CAMP)
is another database that contains 10,247 antimicrobial sequences [167]. This database
includes patents, validated peptides, and predicted antimicrobial sequences based on
similarity. CAMP includes sequences, structures, family signatures, AMP activity, source,
target organisms, and hemolytic activity. It has also programmed the machine learning
prediction interface [167,168]. Linking Antimicrobial Peptides (LAMP2) is another database
currently consisting of 23,253 AMP sequences that contain both natural and synthetic AMPs
with less than 100 amino acid residues. This database includes AMPs with antibacterial,
antiviral, antifungal, antiparasitic, and antitumor activity. LAMP2 also contains primary
structure, collection, composition, source, and function details. This database was built
by merging data from other databases, such as the APD3 and CAMP [169,170]. Data
Repository of Antimicrobial Peptides (DRAMP), another database, provides information
about structural, sequence, clinical, physicochemical, and antimicrobial activity [171].
Peptipedia, another database built via data merging, analyzes peptide sequences with the
highest number of sequences with biological activity. This database comprises 30 existing
databases, including features such as estimating physicochemical and statistical properties.
This database contains 92,055 peptides with machine learning techniques to classify the
data for sequences [172].

Specific databases (Table 3) focus on the specific types, sources, or characteristics
of AMPs instead of a broad overview. These databases can be categorized based on the
biological source (plant or animal AMPs), biological activity (antibacterial), 3D structures, or
molecular properties [164]. Hemolytik is a specific database with experimental information
demonstrating hemolytic activities and their potencies. Since hemolysis is a significant
challenge to AMPs being used for therapeutics, using this database may help overcome
this clinical obstacle [173]. Thiobase is composed of thiopeptides, which are peptides
produced by Gram-positive bacteria. The identification of these peptides depends on the
presence of an azole-substituted nitrogen-containing six-membered ring. These peptides
have shown potencies for Gram-positive bacteria, including resistant strands, which could
help overcome antibacterial resistance [174]. CyBase is a database composed of plant
cyclopeptides (i.e., cyclotides), where cyclic proteins derive from ribosome gene products,
and cyclization is a post-translational medication [175]. A primary therapeutic obstacle
to AMPs is their degradation by proteolytic enzymes; cyclotides are further stabilized by
three sets of disulfide bonds have shown resistance to proteolysis [176].

Table 2. General databases including a broad scope AMPs with no limitations to the source of
the data.

Database Entries Description Website References

APD 3569

This model database currently focuses on
natural AMPs (ribosomal or

non-ribosomal). First established criteria
for data registration. First and detailed
classification of over 25 AMP activity

(antibacterial, antiviral, hemolytic,
anticancer, spermicidal,

anti-inflammatory, etc.), peptide source,
properties, 3D structure, peptide binding

targets, and detailed chemical
modifications (>26 types).

https://aps.unmc.edu/database;
accessed on 15 December 2022

[19,166]

CAMP 24,243
Experimentally validated, predicted AMP,

and patents.

http://www.camp.bicnirrh.res.in/
index.php; accessed on

15 December 2022
[167,168]
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Table 2. Cont.

Database Entries Description Website References

LAMP 23,253 A database built via database merging.
http://biotechlab.fudan.edu.cn/

database/lamp; accessed on
15 December 2022

[169,170]

DRAMP 22,316
Less than 100 residues, mature sequences,

AMP activity demonstrated.
http://dramp.cpu-bioinfor.org;
accessed on 15 December 2022

[171,177]

dbAMP 26,447
Natural, synthetic, classification based on

functional activities.
https://awi.cuhk.edu.cn/dbAMP;

accessed on 15 December 2022
[178]

DBAASP 18,878
Synthetic, ribosomal, non-ribosomal,

monomers, multimers, multi-peptides.
https://dbaasp.org/home; accessed on

15 December 2022
[179]

MEGARes ~8000
Antimicrobial drugs, biocide, metal,

and multi-compound.
http://megares.meglab.org; accessed on

15 December 2022
[180]

ADAM 7007
Natural sources, size, and sequence

structure analysis.

http://bioinformatics.cs.ntou.edu.tw/
adam/tool.html; accessed on

15 December 2022
[181]

Table 3. Specific databases provide information on a specific type or source of AMP instead of a
broad scope.

Database Entries Description Website References

Hemolytik ~3000 Hemolytic activity
http://crdd.osdd.net/raghava/hemolytik;

accessed on 15 December 2022
[173]

Thiobase ~100 Bacterial thiopeptides
https://bioinfo-mml.sjtu.edu.cn/THIOBASE/

index.php; accessed on 15 December 2022
[182]

CyBase ~1771 Cyclic peptides
http://www.cybase.org.au; accessed on

15 December 2022
[175,183]

Defensins
Knowledgebase

~360 Defensins
http://defensins.bii.a-star.edu.sg; accessed on

15 December 2022
[184]

Inverpep 774
Experimentally validated,
AMPs from invertebrates

https://ciencias.medellin.unal.edu.co/
gruposdeinvestigacion/

prospeccionydisenobiomoleculas/InverPep/
public/home_en; accessed on

15 December 2022

[185]

BACTIBASE ~177 Bacteriocins
http://bactibase.hammamilab.org/main.php;

accessed on 15 December 2022
[186]

YADAMP ~2525 Antibacterial peptides
http://yadamp.unisa.it/searchDatabase.aspx;

accessed on 15 December 2022
[187]

Peptaibol ~317 Peptaibol
http://peptaibol.cryst.bbk.ac.uk/home.shtml;

accessed on 15 December 2022
[188]

DADP ~2571 Anuran defense peptide
http://split4.pmfst.hr/dadp; accessed on

15 December 2022
[189]

BaAMPs ~221 Antibiofilm peptides
http://baamps.it; accessed on

15 December 2022
[190]

CancerPPD ~3492 Anticancer peptides
http://crdd.osdd.net/raghava/cancerppd;

accessed on 15 December 2022
[191]

ParaPep ~863 Antiparasitic peptides
https://webs.iiitd.edu.in/raghava/parapep/
peptide.php; accessed on 15 December 2022

[192]
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5.2. Machine Learning Classifications

Machine learning adopts computation approaches to predict the structure and activity
of AMPs through the classification of features into peptide-level and amino-acid-level fea-
tures. The peptide-level features include sequence-based and structure-based features [193].
These computational approaches use statistics to sort and learn patterns in large amounts
of data. Machine learning tools use the data provided by a database, known as a training
set, to allow the models to learn and select the best features for the desired outcome. Vali-
dating this hypothesis on the new data uses a test set to ensure this model is effective [102].
Machine learning or deep learning models are used in the prediction and generation of
AMPs. This scheme with input features, the construction of models, and prediction is
shown in Figure 4.

Figure 4. A general machine learning workflow of AMP discovery and design, including a sum-
mary of the major techniques in each stage of the workflow. Redistributed from (Yan et al., 2022)
CC BY 4.0 [193].

5.2.1. Sequence-Based Features

Sequence-based features are dependent on the composition of amino acids or groups
of amino acids to compute vectors [193]. To compute these vectors, various techniques
are used, including one-hot encoding, amino acid composition, pseudo-amino acid com-
position, reduced amino acids, physicochemical properties, etc. [194]. One-hot encoding
is a technique that represents a value as a vector of bits, where the vector length is pro-
portional to the number of categories. In the case of AMPs, there are 20 natural amino
acids which are each assigned to a bit position. The assigned bit is identified with a
value of 1, while the other positions are set to 0. According to this positioning system,
alanine (A) is the first amino acid alphabetically and would be positioned at the right-
most bit (00000000000000000001), while tyrosine (Y) would be assigned to the leftmost bit
(10000000000000000000) [195]. Amino acid composition is a technique where the vector has
a proportion of an amino acid relative to the sequence length. For AMPs, these peptides
can be divided into sections with both an N and C terminus, which is used to calculate
local amino acid composition. Unfortunately, the amino acid composition does not account
for the sequence order effect, which can have a wide range of combinations depending on
the sequence length. The pseudo-amino acid composition accounts for the sequence order
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by computing the correlations and occurrence number between various clusters among
a pair of amino acids, resulting in a dimensional vector [193,194]. Although amino acid
and pseudo-amino acid compositions have their advantages, they do not account for the
specific amino acid sequence for a peptide due to limitations associated with the sequence
order and sequence variations [194]. Reduced amino acid compositions group similar
amino acids based on sequence correlation factors, such as physicochemical or structural
properties. Physicochemical properties include hydrophobicity, charge, and a few other
features that are determined through wet lab experiments. The use of physicochemical
features are usually in combination with other techniques, such as pseudo-amino acid
combinations, to enhance the accuracy of the techniques [194].

5.2.2. Structure-Based Features

Structure-based features look at the secondary structure of proteins or peptides, which
has an impact on the antimicrobial activity of peptides. Therefore, predicting AMPs using
a combination of sequence-based and structure-based features is essential. Structure-based
features are computed using quantitative structure–activity relationship (QSAR), distance
distribution, general structure encodings, and other techniques. QSAR is a technique used
to describe amino acid sequences through chemical properties [193,194]. This technique
can predict antibacterial activity by relating descriptors with peptide properties such
as toxicity [196]. The structure of the peptide helps identify descriptors, which include
amphiphilicity, net charge, and length. These descriptors help define classifiers and are
used to classify the peptides based on their efficacy [14]. Distance distribution involves
prediction based on the distribution of distances for each pair of atom types. This technique
computes the distance between atom types (such as donor–donor, donor–acceptor, etc.) into
a distribution function [197]. General structural encodings differ from QSAR methods in
that this technique provides structure information from the whole peptide and converts this
information to a numerical representation. This technique describes the peptide structure
by the 3D shape and is based on the electrostatic potential. General structure encodings
can be applied to predicting AMPs because the 3D composition of peptides influences the
antimicrobial activity. Overall, the combination of sequence-based and structure-based
features enhances the accuracy and effectiveness of the prediction [194].

5.2.3. Amino-Acid-Level Features

Amino-acid-level features look at the sequence, where each word corresponds to the
one-letter code of the amino acids. These features are primarily used in deep learning
algorithms, but can use embedding layers to extract representative features such as word
embedding and contextualized embedding [193]. Word embedding techniques involve
Word2vec and Global Vectors (GloVe). Word2vec is a shallow word embedding model that
predicts words based on their context using neural models such as a continuous bag of
words (CBOW) or Skip-Gram. CBOW uses three layers to predict a word, where the input
layer describes the context. The hidden layer describes the projection of the words from
the input and is projected into the output layer. Skip-Gram is different from CBOW in
that the input layer relates to the target word, while the output layer relates to the context.
Skip-Gram predicts the context of the word as opposed to the prediction of a word. GloVe
is a technique based on the occurrence of words in a textual corpus. This technique involves
constructing a co-occurrence matrix and factorization of the matrix to obtain vectors [198].
Contextual embedding is different from word embedding in that the embedding learned is
a function of the whole input sequence, therefore allowing the same word to have various
representations in different contexts. Contextual embeddings are generated through deep
learning techniques and use language models, such as bidirectional encoder representation
from transformers (BERT), text-to-text transfer transformer (T5), and auto-regressive model
(XLNet) [193]. BERT is a technique used to pre-train deep bidirectional representations
using unlabeled text, where context is conditioned in the layers. This technique is able to
pre-train bidirectional representations by masking a percentage of input tokens randomly
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and predict those tokens through a masked language model (MLM). The pre-trained deep
bidirectional representation allows the model to be fine-tuned with an additional output
layer to provide a range of tasks [199]. T5 considers a task and is inputted into the model as
text and trained to generate target text [200]. XLNet models extract bidirectional contextual
information through the random ordering of the input order while maintaining the one-way
model. This bidirectional contextual information is attained by considering the ranking
order of the text, but it only predicts a partial sequence [201].

5.2.4. Machine Learning Models

Machine learning uses models or algorithms to classify data and predict an outcome
based on the provided data. To predict antimicrobial activity, these models use statistics to
learn the relationships between physicochemical properties and amino acid composition.
Various algorithms predict the AMP activity, mechanism of action, and efficacy. Prediction
models for AMPs include k-nearest neighbor (KNN), support vector machine (SVM),
artificial neural network (ANN), random forest (RF), and other algorithms. These models
can be trained by using features, such as amino acid composition, length, molecular weight,
charge, and hydrophobicity [102].

KNN (Figure 5a) performs a classification and regression analysis of data points to
find a trend. Classifying data records (t) results from retrieving its k nearest neighbors,
forming a neighborhood of t [202,203]. The nearest neighbor is the data point closest to the
desired data point. When the nearest items are determined, the algorithm recommends
these items to the users based on the previous majority of nearest neighbors [204]. This
model is dependent on selecting a k value, where the effectiveness of the classification is
dependent on this value. Due to this dependence, this model is limited based on selecting
the appropriate number of neighbors for the algorithm [202].

A supervised machine learning model known as SVM (Figure 5b) classifies data by
finding a hyperplane to segment collected data. This model creates a hyperplane with the
largest distance from the nearest training points. The maximal distance created by the hy-
perplane allows a strong separation between classes, resulting in a lowered generalization
error [203,205]. SVM can perform a linear classification through regression analysis and
non-linear classification using the kernel trick. The kernel trick works by mapping data
into high-dimensional feature spaces, characterizing data in multiple dimensions [160].
Unfortunately, limitations with this classifier result from data in target classes overlapping,
resulting in an uncertain classification of data [203].

ANN (Figure 5c) is a supervised machine learning model that uses various hyper-
parameters to approximate a relationship between input and output values. These hyper-
parameters include many hidden layers and units, a learning rate, and activation func-
tion [203]. ANN is composed of computational units called neurons, which are organized
into layers and connected to form a network. Artificial neurons can receive signals from
various sources and transform them through an activation function [206]. The general
structure of an ANN consists of input, hidden, and output layers. The input layer receives
incoming data, hidden layers transport incoming data into a higher-order function, and an
output layer makes a prediction about the input data. Having multiple hidden layers helps
obtain high non-linearity, preventing the computation of a large linear function [203,207].

By building multiple decision trees, random forests (Figure 5d) can overcome obstacles
associated with decision trees, such as overfitting data due to outliers. Decision trees are
algorithms used to classify an event or predict the outcomes of a variable. Decision trees
primarily solve classification problems but can also perform regression analysis. Random
forests function through the random sampling of the data while building several decision
trees for each random sample of data [204]. Building several decision trees with controlled
variation requires a combination of bootstrap aggregation and random feature selection.
Bootstrap aggregation (bagging) is a method that generates and averages predictors when
forming outcomes by using a majority vote to predict a class [203,208].
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Figure 5. Machine learning uses various models to classify and predict outcomes based on data.
(a) k-nearest neighbor (KNN) classifies data using the nearest neighbor, which is the data point
closest to the desired point. When the nearest items are determined, the algorithm recommends
using these items based on the previous majority vote of nearest neighbors [204]. (b) Support vector
machine (SVM) is a machine learning algorithm that classifies data by finding a hyperplane to
separate the data. A hyperplane creates a line that is the maximum distance from the nearest training
points, resulting in a strong separation between classes [203,205]. (c) Artificial neural network (ANN)
uses hyper-parameters to approximate relationships between input and output values. ANNs are
composed of computational units, which receive signals and transform them to make a prediction
using the network formed by layers [203,206]. (d) Random forests build multiple decision trees to
classify an event and avoid issues such as overfitting data due to outliers [204]. Adapted from CC
BY-SA 3.0 [209], CC BY 4.0 [210], CC BY-SA 3.0 [211], and CC BY-SA 4.0 [212].

5.3. Machine Learning Prediction and Design of AMPs

As discussed earlier, machine learning is a time-saving technique that can perform a
task, such as predicting an AMP, without being programed by humans, and can modify the
algorithms to adapt to the task [159]. These techniques are applied to the prediction of AMP
sequences to obtain unique properties to avoid potential issues with AMPs. For instance,
machine learning can be applied to develop non-hemolytic AMPs, which is a limitation
in their therapeutic use. Overall, with increasing knowledge on machine learning, this
technique can be used to mitigate the issues faced in wet lab experiments.

5.3.1. Predicting AMP Sequences

Machine learning methods have been used to predict AMPs soon after the establish-
ment of the original antimicrobial peptide database in 2003, known as the Antimicrobial
Peptide Database (APD) [165]. Lata et al. developed the first SVM model, named AntiBP2,
to predict AMPs using the data collected from the APD. This SVM model is based on the
amino acid composition of the peptide using a five-fold cross-validation technique and
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achieved a 92.14% accuracy [213]. Additionally, based on the APD, Xiao et al. developed
a fuzzy K-nearest neighbor algorithm based on pseudo-amino acid composition. This
algorithm is a multi-label classifier where the pseudo-amino acid composition components
incorporate various physicochemical properties. This method was named iAMP-2L and
achieved an accuracy of 86.32% when identifying AMPs and non-AMPs [214]. Torrent et al.
created an ANN method that correlates physicochemical properties with antimicrobial ac-
tivity. This model used the CAMP peptide database for the positive data set and the Uniprot
database for the negative data set with an overall accuracy of 90% [215]. Joseph et al. devel-
oped a one-against-all classifier model using random forests and SVMs to predict sequences
as antimicrobial or non-antimicrobial. In this multi-classification model named ClassAMP,
random forests determined the essential features for classification. ClassAMP achieved an
overall accuracy of about 95% with the test sequences [216]. Lawrence et al. developed a
random forest classifier named amPEPpy to predict AMP sequences. The number of used
trees in amPEPpy was optimized using the out-of-bag (OOB) error, where 128 decision
trees were optimal with an OOB error of 0.036 [217].

5.3.2. Machine Learning for Peptide Design

Recently, Capecchi et al. developed a recurrent neural network (RNN) method to
predict antimicrobial and hemolytic activity [218]. RNN is a branch of neural networks
that incorporates feedback connections from the previous time step in the model [219].
The preference for using RNN over other models, such as SVM, random forest, and naive
Bayes, is due to its better prediction of antimicrobial and hemolytic activity. The RNN
model obtained an accuracy of 76% on hemolysis prediction and antimicrobial activity [218].
Sharma et al. developed a web server to predict antibiofilm peptides known as dPABBs,
which used amino acid composition and selected residue features using six SVM and Weka
models. dPABBs was able to generate an accuracy, sensitivity, and specificity of 95.24%,
92.50%, and 97.73%, respectively, based on the training data sets [220]. Zhang et al. designed
a 12-amino-acid-long AMP called DP7 using machine learning methods based on amino
acid activity. DP7 has demonstrated broad-spectrum antimicrobial activity in vitro and
in vivo. The results from this study confirmed that DP7 could reduce methicillin-resistant
Staphylococcus aureus (MRSA) bloodstream infection in mice up to day 7 post-infection
at doses of 0.5, 1, and 2 mg/kg with 70, 80, and 90% reductions, respectively. DP7 also
showed its effectiveness compared to current antibiotics, where the protection level of DP7
at 1 mg/kg was equivalent to 10 mg/kg of vancomycin [221]. The lower concentration
indicates that DP7 is more potent than vancomycin at treating the resistant bacteria.

6. Peptide Engineering

The proteases produced by human cells and microbes may limit the bioavailability of
AMPs. For instance, LL-37 can be degraded by S. aureus proteases, aureolysin, and the V8
protease, thereby losing its antimicrobial activity [222]. To avoid the potential inactivation
of AMPs, peptide engineering techniques have been studied, including peptide backbone
modifications, cyclization, terminal modifications, and substituting L-amino acids with
D-amino acids or unnatural amino acids [223]. The most common terminal modifications
include N-terminal acetylation and C-terminal amidation, which provide the peptides with
different functions. N-terminal acetylation has shown to result in an increased stability
and helical content, which can contribute to a deeper insertion into the hydrophobic region
in microbial membranes [224]. C-terminal amidation has shown to enhance antimicrobial
activity and reduce hemolytic properties, which are advantageous features for antimicrobial
peptides [225]. Li et al. computationally designed antimicrobial peptide L163, which is
effective against multidrug-resistant bacteria but is degraded by proteases. The results
showed that the N-terminal acetylation of L163 had increased stability and reduced host
toxicity [226]. Due to human proteases solely recognizing L-amino acids to be degraded,
D-amino acids have shown enhanced stability against protease degradation [227]. Lu et al.
synthesized derivatives of AMP Pep05 (KRLFKKLLKYLRKF) through the substitution of
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D-amino acids and unnatural amino acids. The results showed that substitutions with
D-amino acids and unnatural amino acids enhanced the ability of peptides to resist pro-
teolytic cleavage from proteases produced by S. aureus and Escherichia coli (E. coli). When
all the L-amino acids of Pep05 were replaced with D-amino acids, this resulted in the
highest stability against proteases, but exhibited severe toxicity in vivo [228]. Wang et al.
found that the partial incorporation of D-amino acids and biphenylalanines into the major
antimicrobial peptide of LL-37 led to selective, stable, and potent antimicrobials against
antibiotic-resistant bacteria, including MRSA [229]. An eight-amino-acid lipopeptide of
LL-37 made in D-amino acids, which remained stable to five proteases, showed in vivo
efficacy against MRSA [134]. More recently, White et al. developed CD4-PP, a synthetic
peptide, through the dimerization and head-tail cyclization of the shortest antimicrobial
region of LL-37. This cyclized form was stable against aureolysin for 6 h in comparison
to LL-37, which degraded within minutes [230]. These results indicate the importance of
modifying peptides to enhance the stability required for clinical applications.

7. Nanotechnologies for AMP Delivery

Nanotechnology is a growing field involved in applying structures and systems at
the nanometric scale, but it has now been implemented into the delivery of drugs with
a limited therapeutic efficacy [231,232]. Nanotechnology can also protect AMPs from
degradation and increase their efficacy [233]. Nanoparticles range from 0.1 to 100 nm
and can transport peptides across the intestinal barrier to enter the bloodstream [132,233].
Various nanomaterials used for the delivery of AMPs include metal nanoparticles (gold,
silver), lipid nanoparticles (liposome), polymer nanoparticles [chitosan, hyaluronic acid,
and poly(glycolide-co-lactide) or PLGA], and other nanostructures (dendrimer, carbon
nanotube, and quantum dot), as shown in Figure 6 [234].

Figure 6. Nanoparticle delivery vehicles for AMPs to enhance biological stability. These delivery
vehicles have different purposes based on the properties desired for delivery. Metal nanoparticles
have demonstrated the ability to enhance the antimicrobial activity of AMPs but have limitations
at high concentrations due to potential toxicity [235]. Lipid nanoparticles are biocompatible, which
gives them the advantage of being used to avoid toxicity in tissues [236]. Polymeric nanoparticles
contain a coating of molecules with specific properties such as antimicrobial activity and good
bioavailability [237]. Forming other nanostructures helps combat complications, such as different
structures, allowing biofilm inhibition [238]. Modified with permission from CC-BY 4.0 [235]. Created
with BioRender.com (accessed on 21 December 2022).
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7.1. Metal Nanoparticles

Gold nanoparticles do not have antimicrobial activity, but they function as delivery
devices due to their ability to enhance the antimicrobial activity of AMPs. Gold nanopar-
ticles may lead to increased antimicrobial activity due to the penetration of bacterial cell
membranes and a high surface-to-volume ratio for drug delivery [235]. Rai et al. developed
an AMP-conjugated nanoparticle with a gold core and a hydrophilic cationic peptide shell.
This gold nanoparticle had a high concentration of AMPs with more significant antimicro-
bial activity in serum and in proteolytic environments compared to soluble AMPs [239].
Silver nanoparticles may deliver silver ions into bacterial cytoplasm and membrane and
present antimicrobial properties [240]. Mei et al. synthesized silver nanoparticles conju-
gated with AMPs (bacitracin A and polymyxin E). The minimum inhibitory concentration
(MIC) of silver nanoparticles conjugated with these AMPs was found to be significantly
lower than silver nanoparticles without AMPs [241].

7.2. Lipid Nanoparticles

Liposomes are more biocompatible than metal nanoparticles because their composi-
tion is similar to cell membranes [242]. The ability of these carriers to be biodegradable and
non-hemolytic gives them an advantage over other nanocarriers [236]. Li et al. developed
a liposome delivery system loaded with daptomycin and clarithromycin to treat MRSA
infections. This antibiotic delivery system had a reduced mutant prevention concentration
and decreased mutant selection window, demonstrating its potential to reduce MRSA infec-
tions [243]. Sharaf et al. designed liposomes loaded with clarithromycin and bioflavonoid
Hesperidin to provide a controlled drug release to target bacterial cell membranes. These
liposome nanostructures effectively inhibited Helicobacter pylori growth with no cytotoxic
effects (IC50 < 50 µM). These liposome carriers were biocompatible, which is essential
for effectively and safely delivering drugs to their target [244]. Solid lipid nanoparticles
(SLNs) were also studied due to their high drug loading and small size [245]. Severino et al.
developed an SLN loaded with polymyxin B to treat bacterial infections. This polymyxin-
B-loaded SLN was effective against various resistant strains of Pseudomonas aeruginosa
(P. aeruginosa) [246].

7.3. Polymer Nanoparticles

PLGA nanoparticles have been well studied for drug delivery. PLGA nanoparticles
have low systemic toxicity due to their ability to undergo hydrolysis, producing biodegrad-
able monomers (lactic acid and glycolic acid) [247]. Cruz et al. developed PLGA nanoparti-
cles loaded with an AMP, GIBIM-P5S9K, to determine the antimicrobial activity against
P. aeruginosa and MRSA. These AMP-loaded nanoparticles showed lower hemolytic activity
and higher antibacterial activity against bacterial growth at a lower concentration than
free AMPs [248]. Among the polymer nanoparticles studied, chitosan is a biodegradable
polymer with broad-spectrum antimicrobial activity and has been generally recognized as
safe (GRAS) by the FDA. Due to these properties and being inexpensive, chitosan has been
used in therapeutic applications [237,249]. Rashki et al. developed chitosan nanoparticles
(CS-NP) loaded with LL-37 to improve its antibacterial and antibiofilm activity. These
nanoparticles showed a 6-log reduction in colony-forming units of MRSA compared to
free LL-37. The CS-NP loaded with LL-37 also inhibited MRSA biofilm formation to 68%
after 2 h compared to 74% for free LL-37 [250]. Hyaluronic acid nanoparticles are another
example. Hyaluronic acid is a component in the extracellular matrix that provides bio-
compatibility for therapeutic applications [251]. Lequeux et al. created an antimicrobial
hydrogel by covalently binding nisin to hyaluronic acid. This hydrogel demonstrated an
antibacterial efficacy of 99.99% for Staphylococcus epidermidis and 99.95% for S. aureus at a
polymer concentration of 2 mg/mL and a nisin concentration of 0.01 mg/mL [252].
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7.4. Other Nanostructures

Dendrimers are hyper-branched polymer molecules that have demonstrated effec-
tiveness against biofilms, multidrug-resistant bacteria, and viruses [238]. Jiang et al. de-
veloped a PAMAN dendrimer conjugated with vancomycin and silver nanoparticles to
kill vancomycin-resistant Staphylococci. This dendrimer demonstrated the ability to kill
vancomycin-resistant strains of S. aureus with an MIC of 2 µg/mL compared to 8 µg/mL for
free vancomycin [253]. Carbon nanotubes were also studied, and they can provide antimi-
crobial activity by oxidizing glutathione, which increases oxidative stress on microbes [254].
Qu et al. developed multi-walled carbon nanotubes, where nisin was covalently immo-
bilized. These carbon nanotubes reduced biofilm formation by 100-fold on deposit film
and 2.6-fold in the suspension. The antimicrobial activity of nisin had retained at least
90% of bacterial activity for carbon nanotubes with immobilized nisin [255]. More recently,
quantum dots were studied. Quantum dots have a high transfer of electrons, allowing them
to produce free radicals such as reactive oxygen species (ROS), resulting in antimicrobial
activity and microbial cell death [256]. Zhao et al. developed nitrogen-doped carbon quan-
tum dots (NCQDs) to assess their antimicrobial activity against antibiotic-resistant bacteria.
These NCQDs had an MIC of 0.128 mg/mL and 0.256 mg/mL for methicillin-resistant and
susceptible S. aureus, respectively, with no toxicity to the host’s organs [257].

8. Summary and Perspective

Antibiotic resistance is a significant complication in healthcare since doctors may
face situations where they have no antibiotics to use. AMPs have been shown to present
a broad range of protection against pathogenic microorganisms in vitro, and more are
under investigation for their use as alternatives to antibiotics. Until recently, researchers
discovered new AMPs by modifying known AMPs to be individually tested against various
bacteria to determine antimicrobial efficacy in wet laboratories [127]. These methods are
time-consuming, costly, and require many resources [258]. This article has described the
use of machine learning methods as an alternative method to identify AMPs, which is
anticipated to accelerate the discovery of novel antimicrobials. AMP activity has been
predicted based on 2D features, such as amino acid sequence, net charge, and hydropho-
bicity. Machine learning could be applied not only to predict AMP sequences but also to
predict the 3D structure of AMPs. Predicting the 3D structure of AMPs through machine
learning would be a helpful tool for researchers to understand the binding of molecules to
AMPs, which plays a major role in drug discovery. More recently, machine learning has
also been used to predict AMP sequences to target SARS-CoV-2. Using in silico models,
Liscano et al. determined two AMPs (caerin 1.6 and caerin 1.10) which showed a potential
to interact with the spike surface viral protein (SGP) on SARS-CoV-2 as opposed to the
ACE2 protein. The SGP protein is located on the envelope protein of SARS-CoV-2 that
plays a role in the binding and fusion of and entering host cells. The results from these
in silico experiments show that these AMPs have the potential to block the S protein and
ACE2 during viral binding and entry, but need to be experimentally validated to deter-
mine their effectiveness [259]. Nanotechnology with antimicrobial properties also has the
potential to improve oral health concerns, such as endodontic infections. Currently, there
are no available techniques that remove biofilm while not affecting the root dentin [260].
Nanomaterials provide unique properties, including the removal of biofilms; they also
avoid demineralization and stimulate re-mineralization [261]. With the limited therapeutic
techniques to treat endodontic infections, nanocarriers may be a promising approach to
combat oral health concerns.

Therefore, computational technologies have great potential in designing future antibi-
otics. In this regard, the database filtering technology has illustrated the in silico design
of novel antimicrobials with potent activity both in vitro and in vivo [262,263]. Likewise,
with the accumulation of data in databases (Figure 7), machine learning algorithms may be
assembled into a pipeline to predict sequences to overcome the issues faced with AMPs [19].
These obstacles include degradation by enzymes, poor oral bioavailability, and hemolytic
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activity. As an example, Plisson [135] et al. developed models to predict hemolytic activity,
which predicted that 30% of AMPs were non-hemolytic, where 91% of the predictions
were considered reliable. Based on these models, designing non-hemolytic peptides should
include neutral or slightly charged sequences with an equal amount of aromatic/aliphatic
residues and small amino acids. These machine learning models provided information on
non-hemolytic AMP sequences, which can help researchers develop AMPs with minimal
toxic effects. Together with other techniques such as peptide engineering, formulations,
and nanotechnology, researchers may identify novel AMPs with improved properties and
bioavailability for future applications [264].

In summary, this review focuses on nanotechnology approaches for AMP delivery, the
roles of AMPs in various diseases, and recent advances in AMP design via machine learning.

Figure 7. Overall scheme of the advantages of AMPs and different approaches to improve challenges
associated with therapeutic applications. AMPs have advantages over current treatments due to their
broad range protection and other properties not found in antibiotics. However, these peptides have
obstacles when being applied to therapeutic use due to complications such as toxicity and instability.
Delivery approaches are used to overcome some of these issues with AMPs. Machine learning has
shown to be a promising approach for using models to predict and design AMPs with less therapeutic
complications. Databases help train machine learning models to enhance prediction methods for
AMPs. Created with BioRender.com (accessed on 21 December 2022).
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