

 Int. J. Web Engineering and Technology, Vol. 11, No. 1, 2016 29

 Copyright © 2016 Inderscience Enterprises Ltd.

A navigational role-centric model oriented web
approach – MoWebA

Magalí González* and Luca Cernuzzi
Catholic University of Asuncion,
Asuncion, Paraguay
Email: mgonzalez@uca.edu.py
Email: lcernuzz@uca.edu.py
*Corresponding author

Oscar Pastor
Research Center on Software Production Methods,
Universitat Politècnica de Vàlencia,
Valencia, Spain
Email: opastor@pros.upv.es

Abstract: This study presents MoWebA, a navigational role-centric model
driven development (MDD) proposal for web applications development. The
approach was conceived considering a previous study of web methods and
analysing some open issues. This article presents the fundamentals of the
proposal; the methodological aspects for modelling and transformation
processes; and the defined notations/techniques for modelling and
transformation tasks, including their abstract and concrete syntax definitions.
We include a summary of the validation experiences and main results, and a
comparison against other related proposals, in order to highlight the main
contributions of MoWebA.

Keywords: model driven architecture; MDA; model driven development;
MDD; web application; web methodologies; navigational models.

Reference to this paper should be made as follows: González, M., Cernuzzi, L.
and Pastor, O. (2016) ‘A navigational role-centric model oriented web
approach – MoWebA’, Int. J. Web Engineering and Technology, Vol. 11,
No. 1, pp.29–67.

Biographical notes: Magalí González obtained her Informatics Engineering
degree from Catholic University of Asuncion, Paraguay in 2000, and currently
she is a PhD student at Polytechnic University of Valencia, Spain. Since 2002,
she has been a Professor in the Department of Electronics and Computer
Science Engineering (DEI in Spanish) at the Universidad Católica Nuestra
Señora de la Asunción – UC (Asunción, Paraguay). Currently, she is an
Associate Professor in Model Driven Engineering discipline. Her current
research interests include: software engineering, model driven engineering, web
engineering, among others. In these areas, she has published over 20 papers in
journals, book chapters, and international conferences and workshops.

 30 M. González et al.

Luca Cernuzzi obtained his Laurea degree in Computer Science from
University of Milan in 1990, and PhD in Engineering from University of
Modena e Reggio Emilia in 2007. Since 2000, he has been a Full Professor in
Software Engineering at the DEI – ‘Universidad Católica Nuestra Señora de la
Asunción’ (Paraguay). He has lectured as a Visiting Professor at several
European and Latin American universities. His current research interests
include: software engineering, web engineering, data science, ICT for good,
and social informatics. In those disciplines, he has published over 100 papers in
journals, book chapters, and international conferences and workshops.

Oscar Pastor is a Full Professor and Director of the ‘Centro de Investigación en
Métodos de Producción de Software (PROS)’ at the Universidad Politécnica de
Valencia (Spain). He is the Chair of the ER Steering Committee (2009–2010),
ER Fellow since 2010, member of the SC of conferences such as CAiSE, ER,
ICWE, ESEM, CIbSE or RCIS, and member of over 100 scientific committees
of top-ranked international conferences. His research activities focus on
conceptual modelling, web engineering, requirements engineering, information
systems, and model-based software production. He created the object-oriented,
formal specification language OASIS and the corresponding software
production method OO-METHOD. He led the research and development
underlying CARE Technologies that was formed in 1996.

This paper is a revised and expanded version of a paper entitled
‘Una Aproximación para Aplicaciones Web: MOWEBA’ presented
at XV Iberoamerican Conference on Software Engineering – CibSE,
Rio de Janeiro, Brazil, 28 April 2011.

1 Introduction and motivation

Web development has motivated the so-called ‘web engineering’ (Deshpande et al.,
2002; Pressman and Lowe, 2009), which focuses on methodological web proposals, in
order to improve the quality of the web development process and the final product.
Current web methods centre on developing techniques and/or models needed to define
the design processes, and on providing tools to support them (Mernik et al., 2005),
following the model driven development (MDD) approach in many cases (Brambilla
et al., 2012). Some methods have tool support for generating automatic prototypes
[e.g., VisualWADE for OO-H (Gómez et al., 2005)], but only a few, such as WebRatio
for WebML, have automation tools tested in industrial settings. There are various
quantitative and qualitative studies that show how MDD practices contribute to increase
the efficiency and effectiveness in software development (Acerbis et al., 2007; Blechar
and Norton, 2009).

The study of web methods and the classification proposed by Schwinger and Koch
(2006), as well as our previous experiences and that of different authors (De Troyer and
Decruyenaere, 1998; Cachero and Koch, 2002; Bozzon et al., 2006; Meliá et al., 2005),
reveal some concerns. Below we list those more important from our point of view.

The first concern establishes that ‘navigational oriented modelling could help
simplify the models for web applications’. Navigation has been identified as a critical and
fundamental feature within web engineering (Rossi et al., 2007; De Troyer and
Casteleyn, 2003). Nevertheless, navigational models are usually not the starting point of

 A navigational role-centric model oriented web approach – MoWebA 31

the modelling process. In some situations, navigational models do not provide an
appropriate syntax to model common behaviours of current web systems, such as the
dynamic navigation behaviour observed during users’ interaction, or inter-intra
contextual navigation. Most of the methodologies mentioned in the literature
[UWE (Koch et al., 2007), WebML (Ceri et al., 2000), OOWS (Fons et al., 2007), OO-H
(Cachero et al., 2000), OOHDM (Schwabe and Rossi, 1998)] start the design of
navigational models from the conceptual (i.e., structural) model. However, the way in
which the information is arranged and structured in the organisation, is not necessarily
the way external users need to access it (De Troyer and Decruyenaere, 1998). Thus,
deriving the navigational model from the structural model may be useful in order to
organise the information content, but this does not model users’ interaction in all their
dimensions. Modelling the navigational perspective according to the way in which user
wishes to explore the application (i.e., functional-oriented modelling) helps to obtain
friendly and easy to access navigational paths. Therefore, the open issue is to find
alternative ways to model the navigational perspective better fitting the requirements of
users’ interaction and making user navigation more adherent to its mental model.

A second concern is that the “adoption of standards will facilitate
interoperability between models, methods, transformations rules, and tools”.
In recent years, methodologies such as UWE (Koch et al., 2007), WebML (Ceri
et al., 2000), W2000 (Baresi et al., 2006), OOWS (Fons et al., 2007); and tools
such as Acceleo (http://www.acceleo.org), AndroMDA (http://www.andromda.org),
Olivanova (http://www.sosyinc.com), Optimal J (http://www.compuware.com),
ArcStyler (http://www.markosweb.com/www/arcstyler.com), among others, have
partially adapted their models, processes and/or transformation languages to the model
driven architecture – MDA (MDA Guide Version 1.0.1, http://www.omg.org); MDA
propose using several standard languages to follow MDD. Without adopting MDA
approach in all its potential, the methodologies tend not to take advantage of the
efficiency and effectiveness in web engineering. Despite UWE being the only
methodology whose models and processes completely follow the MDA approach,
their code generation tools require additional adjustments for a complete transformation
(e.g., UWE4JSF which works in the eclipse environment and generates JSF applications
requiring additional adjustments for some java classes, libraries, style sheets, among
others). For the semi-automatic generation of web applications some other approaches
were implemented and are currently under evaluation (http://uwe.pst.ifi.lmu.de/). In any
case, it is an open line of research how to take profit from the adoption of standards,
transformation tools, and the thorough MDA potential in web engineering.

Finally, the third concern is the belief that “taking into account evolution of web
environments is very important for improving the development of current web
applications”. In fact, current web applications evolve very fast (considering
technologies, platforms, architectures, diversity access devices, among others) and
methodologies need to be flexible in order to consider these web tendencies. Normally,
methodologies try to do this by extending their modelling notations [e.g., RIAs proposal
for WebML (Bozzon et al., 2006)] at the level of platform independent model (PIM). In
doing so, the PIMs are not technology/platform independent anymore, and they are
becoming increasingly complex to understand and manage. The consequence is a loss of
portability of the models. Therefore, the open issue is to find alternative ways to assure
the easy evolution of web application as well as preserving the independence of the PIM
and the portability of models for different platforms.

 32 M. González et al.

Model oriented web approach (MoWebA) try to respond to the previous concerns and
their related open issues. It adopts the MDD approach in every phase and the
corresponding supporting tools trying to offer more efficiency and effectiveness in web
applications development; it offers an innovative proposal for the navigational
perspective; and it considers the new technological tendencies in web applications.

The main contributions of MoWebA are:

1 providing a view of navigation, more function-oriented (i.e., behavioural-oriented)
than data-oriented, trying to better capturing the requirements of users interaction

2 considering almost all the modelling process, starting from the navigational model
instead of the conceptual/data model

3 providing an architectural level of modelling definition titled ASM – architectural
specific model, in order to facilitate the evolution of applications. In this study, we
present the dimensions and the processes of MoWebA and its use in different
experiences paving the way for a more rigorous validation of the proposal.

The rest of the article is organised as follows: Section 2 presents a general overview of
the MoWebA proposal; Section 3 presents the MoWebA modelling process; Section 4
includes the MoWebA transformation process; Section 5 explains some experiences of
MoWebA; Section 6 presents related works. Finally, we present the conclusions and
future works in Section 7.

2 The model oriented web approach – MoWebA

MoWebA defines methodological aspects (processes, stages, work products, dimensions)
and complements these aspects with an entire environment, including modelling and
transformation tools, automatic code generation, use of standards, and layered
architecture, among others. For this reason, we refer to MoWebA as a ‘navigational role-
centric model-based approach to web application development’.

Figure 1 shows the MoWebA dimensions: phases, levels and aspects.
The phases dimension covers the modelling and transformation processes. MoWebA

adopts the MDA approach by identifying three different abstractions for modelling: the
problem space, covered by computational independent model (CIM) and PIM models; the
solution modelling space, covered by architectural specific model (ASM) and platform
specific model (PSM); and the source code definition, covered by implementation
specific model (ISM) and manual code. The levels dimension deals with complementary
perspectives to be considered in every phase (content, business logic, navigation,
presentation, users). Finally, the aspects dimension addresses the structure and behaviour
considerations for each perspective.

MoWebA defines two main complementary processes: one related to the modelling
activities and the other to the transformation activities. As shown in Figure 1, the
horizontal axis represents the MoWebA transformation process. To formalise the
modelling and transformation processes, it adopts the MOF language for abstract syntax
definition, and the UML profile extension for a precise definition of the modelling
language.

 A navigational role-centric model oriented web approach – MoWebA 33

Figure 1 MoWebA dimensions (see online version for colours)

The modelling process includes the necessary activities to get all the diagrams for the
complete specification of the system-to-be (considering the problem space, architecture/s,
and destination platform/s). This process considers the CIM, the PIM, the ASM and the
PSM with their corresponding modelling activities. CIM definition covers the late
requirements identification, focusing on functional requirements specifications. PIM
specification is based on five models, offering a strong separation of concerns: domain,
logic, navigation, presentation, and user. The ASM enriches the models with information
for a specific architecture [e.g., rich internet applications (RIAs), service oriented
applications, REST, among others] and the PSM contemplates information for a target
platform (e.g., a specific language, or a framework).

The transformation process, on the other hand, is related to the steps, techniques, and
tools, which allow M2M (i.e., model-to-model) and/or M2T (i.e., model-to-code)
transformations. This process is based on the MDA approach, and implies steps and
activities for transforming specification in order to go through each MoWebA phase (i.e.,
CIM/PIM-ASM/PSM, ASM/PSM-ISM/Manual adjustments). The CIM/PIM-ASM/PSM
transformation is done in a semi-automatic way (i.e., introducing some manual
adjustments), by defining the metamodels for specific architecture or platform, and the
corresponding mapping rules for PIM-ASM/PSM transformations. The ASM/PSM-ISM
transformation corresponds to the automatic transformation from the models to the
application code. Since real experiences have shown that sometimes manual adjustments
are necessary, we consider a ‘manual adjustment’ phase, where additional code can be
added to adapt the application. Finally, the transformation process is done iteratively,
allowing an incremental application development.

The next sections detail the modelling and transformation processes of MoWebA.

 34 M. González et al.

3 MoWebA modelling process

This section starts by presenting a general overview of the stages and activities, and then
going into details for each stage, considering diagrams, notations and tasks involved. To
clarify the proposal, we use as an example a web-based academic system. The system
supports teachers, students, staff and the general public, and covers a range of basic
functions such as: student registrations processing, courses monitoring, and school,
department and career management. Teachers have sufficient privileges to manage the
courses they are in charge of and provide students with information regarding their
current status. Students have the required privileges to track the courses they are enrolled
in and also access their current academic status. Finally, the system should provide the
facility to perform administrative tasks such as faculty, course, department, and subject
management.

The modelling process includes the CIM, PIM, ASM and PSM specification and
systematised in seven stages (see Figure 3).

Stages 1 through 6 are oriented to CIM and PIM definitions, based on the dependency
relationships between the different models, the level of granularity of the modelling task,
and the type of modelling to be done; these stages are done manually. MoWebA adopts
the use case model for CIM definition, focusing on modelling the functional requirements
of the system-to-be. For PIM definition, MoWebA proposes the following models:

1 entity model

2 navigational model

3 behavioural model

4 presentation model

5 user model.

Each model is composed of one or more diagrams. Figure 2 presents the dependency
relationships between the different models.

Stage 1 is related to the requirements analysis. The artefact produced in this stage is a
use case diagram representing the functional, navigational and usability requirements, as
well as potential users of the application. Stage 2 corresponds to the navigational
structure, role and domain definition. In this stage a navigational tree diagram is defined
to organise the system basic functionalities in a hierarchical way. The role and zone
diagrams are created considering the potential users identified at stage 1. An entity
diagram defines the structure and the static relationships between classes identified in the
problem domain. Stage 3 defines the navigational behaviour for each node through the
node diagram. Stage 4 defines which elements are going to be displayed on every
presentation page using the content diagram. The pages structure (positions of headers,
menus, footers, among others) is also defined through the structure diagram. In addition,
structural composition of business process and transactional procedures are defined with
the logic diagram. In Stage 5 the main activity is to personalise the models through the
adaptation model. MoWebA proposes source and rules diagrams to model different
kinds of adaptations (i.e., adaptive). Stage 6 proposes a detailed definition of each service
or action identified at logic and content diagrams using the service diagram.

 A navigational role-centric model oriented web approach – MoWebA 35

Figure 2 Diagrams in MoWebA (see online version for colours)

Figure 3 Modelling process (see online version for colours)

 36 M. González et al.

Stage 7 contemplates the architectural and platform aspects. This stage is done in a
semi-automatic way. It proposes an enrichment of existing models in order to consider
aspects related to the final architecture of the system (e.g., RIAs, SOAs, REST),
specifying the ASM diagram. The next step proposes to add platform specific information
(e.g., Ruby on Rails, Python, PHP, Java), specifying the PSM diagrams.

The modelling process is an iterative and incremental process, allowing for diagram
refinement. Next sub-sections describe the different stages of the modelling process.

3.1 Stage 1: identify potential users and functional requirements

As a first stage, we need to specify the main goal of the system. In the example, the main
goal could be stated as follow: ‘to develop a web-based application for academic
management of a university in order to process student registrations, course monitoring,
and school, department and career management; oriented to students, professors and
administrators’.

Early requirements are out of the scope of MoWebA. However, we assume that the
designer may use specification scenario-based techniques that already exist in order to get
a good understanding of the problem domain (Nuseibeh and Easterbrook, 2000).
MoWebA covers the use case diagram with the identification of the different actors and a
list of functions associated to the actors (see Figure 4).

Figure 4 The use case diagram for the academic system (see online version for colours)

In this classification, there are some similar or common functions that should be
re-organised or re-grouped. In the next stage, we will refine the potential users, identify
the domain model and define a navigational structure based on the functionalities defined
in this stage.

 A navigational role-centric model oriented web approach – MoWebA 37

3.2 Stage 2: specify navigational structure, user roles and domain

This stage defines the following artefacts: navigational tree, role-zone and entity.
Navigation in MoWebA covers both structural and behavioural aspects. The

structural aspects are modelled in this stage in terms of ‘navigable nodes’ and their
relationships. A ‘navigable node’ is a functional unit of the system, and the navigation is
‘the change from one navigational node to another as a result of an invocation from the
user or an external agent’. Therefore, navigation occurs when an external agent interacts
through the invocation of a ‘navigational node’.

The navigational tree diagram represents the application’s navigational space and it
is composed of zero or more navigational elements. These elements may be nodes or
links. A navigational node connects to other nodes by means of relationships, called hard
links, which denote a hierarchy in the navigational tree. The navigational tree is defined
following four activities:

1 analyse the use cases defined at stage 1

2 analyse the actors diagram for a functional unit hierarchy definition

3 define an initial point for the hierarchical structure

4 create a structure considering the relationships between use cases and actors.

Figure 5 shows an example of a navigational tree.

Figure 5 Navigational tree for the web-based academic system (see online version for colours)

The navigational tree has remarkable differences with other approaches in the
fundamental concept of the ‘navigable node’. The most mentioned methodologies in the
literature create the navigational structure from the conceptual model. This has two
important implications:

 38 M. González et al.

1 the level of granularity of navigational elements are directly related to structural
elements (e.g., classes)

2 navigation is obtained considering the way information is structured (e.g., classes
relationships), not the way it is accessed.

In the case of MoWebA, navigation structure is defined considering the functional units
as the granularity level, and navigation paths are defined considering hard links between
the units, defining though the navigation from the way users interact with the system.
With this approach it is possible to model a functional-oriented navigational structure,
and to generate several exploration levels, which represent menus and sub-menus,
keeping the user located by using ‘breadcrumbs’ and ‘history of navigation’.

However, hard links are not sufficient to specify the navigational structure of an
application, because there are situations in which navigation through a different context
will be necessary (e.g., once authenticated, the user must specify the destination node).
To meet this need, we define the softLink, which will be specified in the node diagram
(Section 3.3).

To formalise the modelling and transformation processes, we used the MOF language
for the abstract syntax definition, and UML profile extension for the concrete syntax of
the modelling language. The MOF definition specifies MoWebA in terms of a
metamodelling language, allowing the definition of concepts in a more rigorous way.
Figure 6 shows the navigational tree metamodel and the corresponding UML profile. In
this case, only two stereotypes (<<node>> and <<hLink>>) are necessary.

Figure 6 Navigational tree metamodel and UML profile (see online version for colours)

The role diagram represents the hierarchy of user roles, that is, groups of users that can
access the same functionalities. For this diagram MoWebA proposes the use of the UML
actors stereotyped with <<role>>.

The zone diagram represents contexts containing certain behavioural profiles in
relation to each other. The zones provide system designers the possibility to explicitly
define different contexts with multiple roles assumed by users. There may be several
zones defined in a system, each one accessed by several roles, and, in turn, users could
have more than one role. For example we define a zone in which both students
and teachers can access (e.g., subjects or career) and, a different zone for managers
(e.g., department). Moreover, the zone could be relative, that is, dependent on a domain

 A navigational role-centric model oriented web approach – MoWebA 39

class indicating that for a user to assume a certain role, additional information is needed
(e.g., at the ‘academic’ zone, which is accessed by professor and student roles, each user
would take at most one of these roles for each subject; see Figure 7).

Figure 7 Example of zone diagram (see online version for colours)

To complete the role and zone modelling task, it is necessary to define roles/zones access
privileges on the elements of the system by establishing a dependency relationship
between a <<role>> or a <<zone>> and elements of another diagram (i.e., nodes access
privileges in navigational tree diagram). A relationship implies that the elements are
available for the specified role/zones assigned. Such relationships would be refined in the
next stages of other diagrams (logic, presentation, among others). In Figure 5 the node
‘course tracking’ has privileged access to the ‘academic’ zone, indicating that both
students and teachers have access to that node. The same privileges are inherited by the
nodes below in the hierarchy, maintaining access restricted to students and teachers.

Figure 8 presents the zone and role metamodel and UML profile. A role diagram is
composed of one or more RD elements, which could be specialised in ‘user’, ‘role’ and
‘zone’. Each zone can be composed in one or more roles which could have
attributeRoles. The zones could be aggregated by other zones, and roles can be defined in
a hierarchy.

For the entity diagram definition, MoWebA adopts the UML class diagram, where
each class is stereotyped with <<entity>>. Entities, attributes and relationships are
identified by the functionalities description of stage 1.

A simple example of an entity diagram is shown in Figure 9.
Figure 10 presents entity metamodel and UML Profile that includes a new stereotype

(<<entity>>).

 40 M. González et al.

Figure 8 Zone and role metamodel and UML profile (see online version for colours)

Figure 9 Simplified entity diagram for the web-based academic system (see online version
for colours)

 A navigational role-centric model oriented web approach – MoWebA 41

Figure 10 Entity diagram metamodel and UML profile (see online version for colours)

3.3 Stage 3: specify navigational behaviour

Each node in the navigational tree must have an associated navigational node diagram
representing its navigational behaviour. The node diagram is defined using the UML
State diagram.

There are three categories of states: flow states, virtual states and final states. Flow
states are transient and as such, they are visited only momentarily to create linkages with
other elements of the diagram. Flow states can be further classified into four types:

1 initial states

2 pseudo states

3 junctions

4 and service states, which model the services provided by the node.

Virtual states represent stationary states indicating the fact that the navigation flow
remains in a ‘virtual point’ within a node, waiting for an interaction from an external
agent. In stage 4, each virtual state will be linked to a presentation page.

The transitions between two states (o state nodes) are specialised in two sub-types:
the control flow transitions and the hyperlinks. The control flow models the natural
control transfer that occurs between two states, without requiring an external user
interaction. The hyperlink models a transition between two states resulting from an
invocation of an internal link, which leads to an interaction between the user and the
system. A control flow transition can only have a flow state as source, and any type of
state as target (e.g., the transition between the service ‘login’ and ‘error message’). The

 42 M. González et al.

hyperlink transition can only have a virtual state as source, and any state as target
(e.g., the transition between ‘entering data’ and service ‘login’). Hyperlinks defined in the
node diagram correspond to possible internal navigations, triggered by user interactions.
The final state can be connected to another node in the navigational tree; if there is such
linkage, it defines a soft link (sLink). This will allow navigation to a unit not directly
linked to the functional node of the navigational tree structure.

Figure 11 Node diagram for the authentication tree node (see online version for colours)

Figure 11 shows an example for the authentication process in which the user has to type a
user name and a password (‘entering data’ virtualState), then a login service is executed
to validate data, and finally, depending on the results, an error message will appear
(‘error message’ virtualState) or a soft link will take the user to the root node of the
system (‘sLinkNode = show details of careers’).

The node diagram allows modelling navigational behaviour aspects obtained from
dynamic interactions with the user.

As shown in Figure 12, a node diagram is composed of ND elements (node diagram
elements). The ND elements are classified into state and transition. States in turn are
specialised into FlowState, FinalState and VirtualState. On the other hand, transitions
can be classified as sLink, HyperLink, or ControlFlow. Finally, a number of relationships
between the elements have been defined indicating associations that must be considered
in order to comply with the different proposed constraints.

In the corresponding UML profile definition, it is possible to notice that the
<<state>> stereotype is an extension of the state UML metaclass. The <<transition>>
stereotype is an extension of the transition UML metaclass, and the <<sLink>>
stereotype is an extension of the FinalState UML metaclass. This figure also shows that
<<virtualState>> and <<service>> are specialisations of <<state>>, and <<transition>>
is specialised in <<hyperlink>> and <<controlFlow>>. Finally, the association between
<<virtualState>> and <<presentationPage>> establishes that for each <<virtualState>> of
the node diagram there should be a <<presentationPage>>. The association between
<<sLink>> and <<node>> allows modellers to link a destination node to a final state in
the node diagram.

 A navigational role-centric model oriented web approach – MoWebA 43

Figure 12 Node diagram metamodel and UML profile (see online version for colours)

3.4 Stage 4: specify logic behaviour and presentation

To consider the behavioural modelling, MoWebA defines two diagrams: logic behaviour
and service diagrams. The logic behaviour diagram encapsulates and structures all the
behaviour actions (business processes and transactional procedures) that affect the
system. This is done by defining classes stereotyped with <<process>> and
<<valueObjects>>. The ‘process’ class encapsulates business processes that represent
complex transactions and are associated through a dependent relationship with one or
more classes of the entity diagram. These dependency relationships imply that the
partners are accessed by the operations defined in the process. On the other hand, the
‘valueObjects’ class encapsulates data, and depends on one or more entities, containing a

 44 M. González et al.

subset of attributes defined in the dependent classes. Every service identified in other
diagrams, should also be included into the logic behaviour diagram as a service for some
process. Furthermore, value objects provide domain visibility to the presentation layer.
This means that access to the domain has to be done by appropriate value objects defined
at the logic behaviour layer. The other behavioural diagram, called service diagram, will
be explained in stage 6.

Figure 13 Logic behaviour diagram (see online version for colours)

A simplified example of logic behaviour diagram is shown in Figure 13 representing a
logic process called ‘authentication’ which is conformed of two services (login, logout).
It is important to notice that the ‘login’ service has been already defined at the
navigational node diagram ‘authentication’ (see Figure 11). In Figure 13, we define two
<<valueObject>> elements, SubjectVO and CareerVO. Notice the dependency between
entities and value objects (e.g., SubjectVO and the subject entity).

Figure 14 Logic behaviour metamodel and UML profile (see online version for colours)

The LD elements of the logic behaviour metamodel (see Figure 14) are classified into
ValueObjects and TProcess. The ValueObjects are composed of attributes, and the
TProcess of services which can be defined in other diagrams (e.g., services defined in the
node diagram).

The presentation is mainly aimed to facilitate the interaction with the outside world
and to provide the necessary elements for users to successfully perform tasks, such as
entering data, enabling processes and browsing. For the presentation model, MoWebA
considers the following aspects: the presentation content; the presentation structure; the

 A navigational role-centric model oriented web approach – MoWebA 45

format of elements within each region; and the elements’ style. Thus, MoWebA defines
two presentation diagrams: content and structure diagrams.

Figure 15 Subject management presentation page (see online version for colours)

The content diagram allows modellers to specify the different elements that will be
presented to final users in each page. The diagram consists of a set of presentation pages,
each one related to a <<virtualState>> of the node diagrams, which contain one or more
<<compositeUIElements>>. Each <<compositeUIElements>> class can have attributes
classified as follows: static attributes, which represent static information not related to
any other element of the different diagrams (e.g., the title of the web page or static text
information); and binding attributes, which allows the transition from one state to another
(e.g., a submit button). The presentation classes can also display information from a
<<valueObject>> by establishing a dependency relationship between the class and a
‘valueObject’ defined in the logical layer diagram. Figure 15 shows the presentation page
‘subject management’ which is made up of two <<compositeUIElements>>: SubjectMng
and ShowCareers. The composite element ShowCareers, contains a DropBox attribute to
display all the available careers, and an association with the <<compositeUIElement>>
SubjectsMng, to display all available subjects of a specific career. It is worth noting that
the data that will be shown in the name attribute of ShowCareers, is defined by the
dependency relationship between ShowCareers and CareersVO (this is also true for
SubjectMng and SubjectVO). Finally, groupBy and orderBy tagged values defined for
SubjectMng allows grouping and ordering subjects by semester.

Figure 16 shows the presentation diagram composed of one or more
PresentationPages, which aggregate different PD elements. The PD elements are
classified into UIElements and CompositeUIElements. UIElements in turn are specialised
into anchor, TextInput, button, text, list, htmlText, Multimedia and ExternalLinks. Each
element has properties in order to model additional aspects related to constraints,
limitations, possible values, among others.

 46 M. González et al.

Figure 16 Content metamodel and UML profile (see online version for colours)

The structure diagram is used for the definition of page areas (e.g., header, footer, or
menu areas). UML packages stereotyped with <<layout>> represent regions. Each region
can be composed of other sub-regions, and it is possible to define different layout
structures for the same application (e.g., one structure diagram for each different target
platform). It is also possible to define a basic content diagram for each region, which can
then be complemented with the diagrams defined for each <<virtualState>>. An example
of the latter is shown in Figure 15 and Figure 17. Figure 17 shows the basic content of the

 A navigational role-centric model oriented web approach – MoWebA 47

rightLayout region that will show the latest news available (ShowNews class), and some
basic page information (RightElements class). On the other hand, Figure 15 shows the
content diagram for the ‘subject management’ <<virtualState>>. This diagram indicates
that the elements of the ‘SubjectMng’ class will be placed in ‘RigthLayout’ of the
structure diagram, extending the basic content (news and basic information) of the region
with the specific content of this page (SubjectMng elements). ShowCareers class, on the
other side, will be placed in a different region of the structure diagram (‘BodyLayout’).
Finally, to indicate the order in which presentation elements will be shown, a pair number
property is defined, where the first number sets the vertical order and the second number
the horizontal order.

Figure 17 Structure diagram and example of a content diagram for the ‘RighLayout’ (see online
version for colours)

With respect to the presentation style, even though it is considered a relevant aspect for
the presentation layer, in our vision it is more reasonable to deal with style specifications
in the ISM phase. Reasons for this decision are the style being very changing and
normally taken into account in the final stages of development; the lack of a standard
language at the modelling phase to specify this aspect and; the possibility to separately
differentiate style from other aspects, allowing modifications of the application without
changing any code (e.g., with CSS templates we could change the style at any time,
affecting the appearance of the application).

Figure 18 Structure diagram metamodel and UML profile (see online version for colours)

 48 M. González et al.

Figure 18 depicts the structure diagram metamodel, which is mainly composed of LD
elements. The LD elements are classified into layout, which can be composed of other
layouts. The layouts define dimensions and positions properties.

3.5 Stage 5: specify personalisation

According to Weibelzahl, personalisation refers to both adaptability and adaptivity
(Weibelzahl, 2002). Adaptability requires user interaction in order to conceive
personalisation (e.g., change colours, or types). On the other hand, adaptivity allows
personalisation considering other factors without a direct user intervention (e.g., suggest
list of books based on previous purchases). In order to consider these concepts, MoWebA
defines two diagrams: information source and rule diagrams.

Figure 19 Source information diagram for web-based academic system (see online version
for colours)

The information source diagram models user information needs for adaptation. The
information sources refer to the system domain factors to be considered for rule
conditioning, (e.g., in the example, an information source could be the level of
knowledge for specific users). The next step is to define associations between sources and
users considering the roles that they should play in the system. Therefore, we define a set
of information sources and associate them with a given role; these are stereotyped with
<<roleAttribute>>. The <<roleAttribute>> stereotype is used to establish relationships
between sources and roles, and it is possible to set default values to these attributes.
Figure 19 shows an example, we have defined two sources (preference and knowledge),
assigned roleAttributes to the student, and assigned default values to these attributes
(language = English and level = beginner). Such default values could be changed at any
time in the future.

The rules diagram allows the definition of ‘condition-action’ rules that establish
under which conditions a rule must be triggered in order to perform a specific action. The
final result will be a dynamic adaptation of the system. An example of an adaptivity
personalisation is a rule defined to filter exercise examples, the filtering could be done
based on types of exercise that the student has already solved.

 A navigational role-centric model oriented web approach – MoWebA 49

There are two types of rules:

1 general rules (e.g., if language is set to ‘English’, whenever a <<text>> element
appears, it should be in English)

2 specific rules applied to specific elements (e.g., even though the font type is set to
‘normal’, a specific title of a page should be ‘large’).

Figure 20 Rule example for language definition (see online version for colours)

Rules are specified using an OCL expression as the tagged value of the class. For
example, in Figure 20, the general rule called ‘LanguageRule’ has been defined for
<<compositeUIElements>> of the content diagrams, belonging to academic zone (i.e.,
the zone associated to the student and professor roles). The OCL expression defines a
condition related to the language attribute, triggering the selectContentLanguage action if
the default language is ‘English’. The behaviour of the selectContentLangage action must
be specified in some way. In order to do this we define a process in the logic layer
diagram called AdaptationService, and add the action selectContentLanguage as a
<<service>> operation. The detailed behaviour of the selectContentLanguage
<<service>> is then modelled in the service diagram, which will we be explained in the
next section.

Figure 21 Adaptation metamodel and UML profile (see online version for colours)

An adaptation diagram is composed of rules and sources (see Figure 21). For each rule
we can specify a series of properties (name, OCLExpression and rule type). The rules can
be associated to one or more roleAttributes of the role diagram, as well as one or more
compositeULElement of the content diagram.

 50 M. González et al.

3.6 Stage 6: detail navigational, logic, adaptation and presentation services

Behavioural actions for each service specified at the navigational, logic, adaptation, and
presentation diagrams can be modelled through the MoWebA services diagrams. The
service diagrams use UML activity diagrams enriched with OCL and action semantics1.
For each service/action defined in the other diagrams, it is possible to create a service
diagram that encapsulates the associated service behaviour. Services are defined in the
logic layer diagram and could be invoked by entities, rules, node or content diagrams
elements.

To specify behavioural actions we use a set of basic and fundamental constructors.
The basic constructors represent actions, transitions and pseudo-states. Fundamentals
constructors consist of action specialisations classified into: CallBehaviorAction,
representing a type of action that can invoke other behaviour; DomainAccessAction,
representing access to the Entity model to perform an operation on it; and
VariableAction, representing a special type of action whose implementation performs
various operations on variables. Figure 22 shows the service diagram for the
selectContentLanguage action, invoked by the rule ‘languageRule’ (see Figure 20).

Figure 22 Adaptation service (see online version for colours)

Services allow the definition of behaviour actions at the modelling phase. In some
situations a service diagram can be very complicated, because of the complex logic that it
represents. In this case the service diagram definition could be avoided leaving the task of
definition for the ISM phase.

The main idea of the service metamodel (see Figure 23) is to define specialisations of
Action, which will enable to define more complex behaviours in the metamodel. The
metaclass CallBehaviorAction represents a special kind of action that can invoke other
behaviours represented by an activity diagram, or a behaviour that will come built into
the final platform destination. In the figure, there are listed others specialisation of action
(variableAction, domainAccessAction and writePage), and their relationships with other
classes. The corresponding UML Profile for the Service metamodel is presented in
Figure 24.

 A navigational role-centric model oriented web approach – MoWebA 51

Figure 23 Service metamodel (see online version for colours)

Figure 24 Service profile (see online version for colours)

3.7 Stage 7: ASM and PSM definition

Stage 7 is composed of two different models, which are generated in a semi-automatic
way from the diagrams defined during the previous stages: the architectural specific
model (ASM) and the platform specific model (PSM). ASM enriches the previous models
with additional information related to the system architecture (e.g., RIAs, REST, among
others). PSM is oriented to refine the models by adding information related to the

 52 M. González et al.

platform and language selected for the final system (e.g., Java, .NET, PostgreSQL,
among others). At this stage, we are moving from the conceptual definition (CIM/PIM
models) to the solution definition (ASM/PSM models).

It is important to mention that other approaches generally include architectural
aspects at the conceptual modelling level, without making a clear distinction between the
independent model and the architectural one. For example, in order to generate RIAs,
current approaches extend their notations with additional primitives or patterns
considered at the conceptual modelling phase [e.g., WebML RIA (Fraternali et al., 2010),
UWE for RIA (Koch et al., 2009)]. In MoWebA, the PIM could be used for different
architectures (e.g., RIAs, REST, client-server, SOAs) since architectural aspects are not
contemplated in this model. Therefore, MoWebA makes a clear separation between the
conceptual space and architectural aspects, defining them on different modelling
abstraction levels. In this way, our approach offers enough flexibility to evolve into
different architectures starting from the same PIM model.

Figure 25 Navigational node applying the ASMRia model (see online version for colours)

The ASM model could be defined for the RIA architecture, obtaining an ASMRia. RIAs
are web applications, which use data that can be processed both by the server and the
client. The data exchange takes place in an asynchronous way, so that the client stays
responsive while continuously recalculating or updating parts of the user interface. RIAs
main characteristics are: data and page computation distribution, asynchronous
communication between client and server, and enhanced user interface behaviour
(Bozzon et al., 2006; Busch and Koch, 2009). In order to model these characteristics in
an ASM model, MoWebA defines a series of stereotypes and tagged values. As an
example of an ASMRia model for the academic system, Figure 25 shows the navigational
node diagram for the ‘authentication’ node. The navigational node ‘authentication’ is
stereotyped with <<richNode>>, meaning that everything inside this node will be
executed mostly on the client side. Asynchronous communication is achieved for
example by transitions modelled after the ‘entering data’ virtual state, since user
validation is processed on the server. An example of a client side service could be

 A navigational role-centric model oriented web approach – MoWebA 53

‘validatePass’ stereotyped with <<clientService>>. This service should be invoked at the
presentation layer when the user sets a password in order to validate security levels.

Figure 26 ASMRia metamodel (see online version for colours)

Figure 26 shows a first version of the PSMRia metamodel. In this metamodel, we show
the extensions made on different elements related to distribution (client/server) and
duration of persistent data and services. We are working on a more complete definition of
an ASMRia considering presentation patterns, synchronisation, among other.

The PSM model enriches the models with specific platform information as the MDA
approach suggests. In this sense, we can have one or more PSM models depending on the
target platform selected for the application. In the example, one of the target platforms is
Ruby on Rails. For this purpose, we have defined a PSMRuby metamodel presented in
Figure 28. In this figure it is possible to notice that presentation elements are redefined
according to Ruby on Rails platform.

Figure 27 Content diagram for the ‘entering data’ virtual state (see online version for colours)

Figure 27 presents a content diagram with a PSMRuby extension for a Ruby on Rails
platform.

 54 M. González et al.

The ASM and the PSM can be defined and included into the model as plug-in
extensions. Indeed, to consider emerging web technologies, MoWebA proposes to define
a new ASM and/or PSM metamodel.

Figure 28 PSM ruby metamodel (see online version for colours)

4 MoWebA transformation process

The transformation process implies steps and activities for transformation specification in
order to go through each MoWebA phase (CIM/PIM-ASM/PSM, ASM/PSM-
ISM/Manual). This process aims to define intermediate specific models before the final
implementation (see Figure 29).

Figure 29 MoWebA transformation process (see online version for colours)

The transformation process is based on metamodels (PIM-ASM-PSM transformation).
The PIM-ASM/PSM phase is done in a semi-automatic way; since sometimes the
information to be added requires human intervention (e.g., in RIAs, the modeller needs to
specify where services will be executed, on the client or on the server). The automation
of this process is done using a MDD standard such as QVT, along with a tool that

 A navigational role-centric model oriented web approach – MoWebA 55

supports this standard (e.g., operational QVT). An example of the QVT transformation
rule is shown in Figure 30. In this figure, the QVT transformation rule is defined by using
the relation language, in order to transform the MoWebA entity diagram (which
corresponds to the input model) in a PSMPostgres (which corresponds to the output
model) diagram. Input and output diagrams vary according to each specific QVT
transformation rule.

Figure 30 QVT definition to obtain the PSMPostgres diagram

top relation EntityToTable { relation RecordToColumns {
 prefix, eName: String; checkonly domain entityDiagram

record:Record {
 checkonly domain entityDiagram

entity:Entity {
 fields = field:Field { }

 name = eName };
 }; enforce domain PSMPostgres table:Table

{ };
 enforce domain PSMPostgres table:Table

{
 primitive domain prefix:String;

 name = eName where {
 }; FieldToColumns(field, table);
 where { }
 prefix = ‘‘; }
 RecordToColumns(entity, table,

prefix);

 }

The ASM/PSM-ISM phase is done automatically by using open source tools (e.g.,
Acceleo, AndroMDA). The input models of this phase are the PSMs obtained at the
previous phase, and the output will be se source code.

We refer to the final implementation of the System as ISM. The ISM will contain
code for every platform selected and the bridges between them, in order to get a
functional system ready to be deployed. We have experienced two types of ISM obtained
by defining transformation rules with two different tools: AndroMDA and Acceleo.

Figure 31 The web-based system transformation process (see online version for colours)

 56 M. González et al.

In order to implement the MoWebA transformation rules, we defined a series of modules
(shown in Figure 32). For reasons of space, we will only explain in detail the source and
rule models, defined for the adaptation code generation phase.

Figure 32 Acceleo modules definition for MoWebA (see online version for colours)

The transformation process for our web academic system example is shown in
Figure 31.

The academic system was generated using the Acceleo Tool. Acceleo is considered a
template-based M2T (model to text) transformation open source MDD tool, which adopts
the model to text language (MTL) standard for transformation rules definition2. This tool
was created in 2006 as a part of the eclipse modelling project (EMP)3. The Acceleo code
generation process considers the following steps:

1 code generator project creation

2 input models inclusion (XMI files)

3 modules definition and templates creation

4 associated services creation

5 code generation

6 project depuration

7 generators modules exportation.

Modules are considered as partial or full implementations of transformation rules for a
specific platform. They can be executed as plug-ins of eclipse to generate an application
in the target platform. Modules are composed of templates, services and queries written
in the Java programming language. Templates use a specific syntax composed of tags.
Queries are used to extract information from the model, which can return values or

 A navigational role-centric model oriented web approach – MoWebA 57

collections. Java services are used to define complex or common operations that can be
accessed by the different templates defined within the module.

The adaptation transformation rules are composed of the source and rule modules.
The source module contains templates defined for information source generation and the
rule module corresponds to the adaptation rules processing.

The source module is composed of the following templates:

• generateTableSource: creates the database tables with the parameters defined in the
information source model

• loadSources: generates a file with SQL sentences to insert possible values defined in
enumerations

• generateTableSourceType: generates ruby files for modules in order to manipulate
the database tables

• generateSourcesForRoleAttribute: associates a user with a specific role, and
information sources with default values defined in the model.

Figure 33 shows the generateTableSourceType template.

Figure 33 generateTableSourceType.mtl template (see online version for colours)

The rule model, on the other side is composed of:
• generalRuleTransformation: is applied to the rule classes stereotyped with <<rule>>

and isGeneral=True. This template is composed of auxiliary templates:
getOclExpression, to retrieve the OCL expression; getSource, to identify the source
referencing; and sourceType, to identify the source type.

• applyGeneralRule.mtl: is defined to apply the general rule to the presentation
elements.

• specificRuleTransformation.mtl: analyses the specific rules, retrieving the OCL
expressions, sources and actions.

• applySpecificRule.mtl: applies the specific rule to the presentation elements
associated to it.

Figure 34 shows the generalRuleTransoformation.mtl template.

 58 M. González et al.

Figure 34 generateRuleTransformation.mtl template (see online version for colours)

Figure 35 An example of a generated page (see online version for colours)

Navigational map

Generated from the
navigational tree
diagram

Breadcrumbs

Serves as a complement
to the Navigational map

Node content

This displays the
implementation of each node

Role and user

Generated from roles and
zones models

Figure 35 shows an example of a page of the web academic system resulting from the
transformation process. In this figure we can visualise some parts generated from the
MoWebA models (e.g., from the navigational tree, node content, and roles and zones
diagrams).

5 Adopting MoWebA: some experiences

MoWebA has been used for modelling and generating different types of applications by
novice and experienced modellers and developers. Experienced modellers were already
familiar the UML notation and web methodologies (e.g., UWE, WebML, OOWS, or
OOHDM), while developers were experienced with different programing languages.

 A navigational role-centric model oriented web approach – MoWebA 59

Table 1 Experiences with MoWebA

Aspects considered
Application Type

Teama Profiles Type of
project Analysis

2EM Professionals Online course e-learning
1ED Thesis students

Academic Interview

University
administration

Administration 12NM Students Academic Interview

Aquatic birds portal Management 4EM Professionals Real project Interview
2 EM Academic system e-learning
2 ED

Professionals Academic Interview

3 EM Thesis students
3D Thesis students

Laboratory
management

Management

12 NM Students

Academic Questionnair
e

4 NM Students Budget execution Administration
4 MD Advance students

Real project Interview

Surveys Interactive 3 NM Students Real project Interview
12 MM Advance studentsSocial network Community
12 MD Advance students

Academic Interview

Notes: aTeam: level E (experienced), N (new), M (medium); type M (modeller),
D (developer).

These experiences, which are summarised in Table 1, are proofs of concepts in academic
and industrial settings. They have offered insights for improving specific aspects of the
processes and of different models of MoWebA. In addition, they are paving the way for a
more rigorous validation of the proposal in which we are currently working. The
experiences relied on two types of validation instruments (i.e., interviews and
questionnaires) in order to identify strengths and weaknesses.
Table 2 Aspects of MoWebA adoption in the different experiences

Modelling aspects
analysed Development aspect considered

Application

U
C

N
od

es

C
la

ss
es

Pr
es

.
pa

ge
s

Se
rv

ic
es

Develop time Target
platform Tool adopted

Online course 32 28 23 59 48
University admin 98 92 72 247 248
Aquatic birds portal 95 109 25 266 83
Academic system 20 35 22 105 93 Six months Ruby on Rails Acceleo
Lab management 15 17 13 28 19 Four months PHP AndroMDA
Budget execution 27 19 16 79 26 Six months PHP-Zend Acceleo
Surveys 12 21 14 35 25 Six months PHP-Zend Acceleo
Social network 17 38 12 40 26 Fou months Ruby on Rails Acceleo

 60 M. González et al.

For a more objective analysis, Table 2 summarises the diverse characteristics of these
applications. Some characteristics are related to the complexity of applications and
modelling elements, and others to the development process. A summary of the most
important considerations arising from these experiences are presented below:

• A first positive aspect is that Navigational structures considered were easy to model,
and easy to understand by subjects. For example, the academic system is composed
of 35 navigational nodes, with a mean of three virtual states per node, where each
virtual state represents a page. Having a global hierarchical view of the system with
35 elements is more manageable than 105 pages.

• The node diagrams were helpful to identify behavioural and presentation elements
more easily. We could note that for each navigational node there were identified, in
average, two to three services and three to four virtual pages. Thus, it is possible to
decompose the overall navigational structure into smaller parts, taking into account
the specific behavioural navigation for each functional element.

• The CIM/PIM phase was standardised, and could be modelled with any tool that
supports UML 2.0 (e.g., Magic Draw and Papyrus). The generated models were
exported to the XMI format in order to integrate them with Acceleo and AndroMDA.
Even though it was possible to work with different tools, some details had to be
considered, especially specially when defining tagged values.

• The automation was performed using two different tools: AndroMDA and Acceleo.
On average, the automatic generation percentages for each layer were the following:
data layer, 100%; logic layer, 61%; navigational layer, 100%; and presentation layer,
73%. The reason for logic layer not being totally generated is that some services
were difficult to model because of their behavioural complexity; therefore they had
to be added manually. With respect to presentation, there are some aspects related to
style (e.g., fonts, colours, among others) that can only be defined manually.

• MoWebA allows the modelling of diverse types of web applications. Even though,
special characteristics e.g., such as RIAs or REST, need further specification For this
reason, in order to add RIA characteristics to our web academic system example, we
had to define the ASMRia model.

• One of the limitations we encountered was that services were sometimes difficult to
model, but despite services not being totally defined, the PIM could be defined
almost completely. We noticed that for service definition it was necessary to have
knowledge in action semantics and OCL, but most of the modellers were not as
experienced with these, as they are with UML. However, considering all the services
defined in models for the different applications we saw that only 8.6% of the services
were complex, while most of them were medium (30.5%) or simple (60.9%)
services.

Furthermore, the transformation rules defined using AndroMDA and Acceleo, made it
possible to generate code for three different target platforms: PHP, Python and Ruby on
Rails.

In addition to the experiences with different types of applications, some modelling
experiences with different user profiles (i.e., expert, and novice modellers) were also
carried out. An interesting experience was carried out with two groups, one formed

 A navigational role-centric model oriented web approach – MoWebA 61

entirely by students and the other entirely by MDD experts, for analysing the quality of
the MoWebA models. It was focused on studying different perspectives such as
simplicity, abstraction, ease of use, among others, adopting the GQM approach (Basili
et al., 1994). The results were quite positive, although there were some difficulties with
the modelling, especially for the service diagrams, because of their complexity.

6 Related works and discussions on MoWebA

Schwinger and Koch classified the web methods following different paradigms
(Schwinger and Koch, 2006): data-oriented, hypertext-oriented, object-oriented and
software-oriented. In this work, we present an improvement over the web method
classification table proposed by Schwinger and Koch. First, by considering new trends in
methodologies, we propose the MDD-oriented paradigm as a new category. Second, we
believe that the paradigms are not totally independent and therefore a methodology could
be classified in more than one paradigm. Third, we eliminate some methodologies that
are no longer in use.
Table 3 Web method classification

Classification
Method Hypertext-

oriented
Data-

oriented
Object-
oriented

Software-
oriented

MDD-
oriented

W2000 (Baresi et al., 2006) X X
Hera (Houben et al., 2004) X
WebML (Ceri et al., 2000) X X
WSDM (De Troyer and
Decruyenaere, 1998)

X X

OOHDM (Schwabe and Rossi, 1998) X X X
UWE (Koch et al., 2007) X X X
OO-H (Cachero et al., 2000) X X X
OOWS (Fons et al., 2007) X X X
WAE2 (Conallen, 2003) X
WebSA (Meliá et al., 2005) X X
MoWebA X X X
UWA (Distante et al., 2007;
Bernardi et al., 2014)

X X X

Next, we present a discussion of MoWebA for each concern in comparison with related
works.

C1 Navigational oriented modelling could help to simplify the models for web
applications

In MoWebA the navigational model is the central and starting point for modelling (see
stage 2). This approach is an alternative way to model the navigational perspective better
fitting the requirements of users’ interaction and making user navigation more adherent to

 62 M. González et al.

its mental model. From the first experiences, it seems to support modellers in defining
functions oriented to navigational structures, thus simplifying user orientation.

Other similar interesting approaches are: UWA (based on W2000) and WSDM.
However, in UWA navigation and services are derived from the information model.
Despite deriving the navigational model from the structural model may be useful in order
to organise the information content, it does not model users’ interaction in all their
dimensions, as already presented in the introduction section. The WSDM proposal
regarding the navigational structure (i.e., function oriented) is quite similar to the
MoWebA approach. However, some differences are:

1 the navigational model is more complex (e.g., including a great amount of
constructors)

2 the method does not use a standard notation and it does not support automation tools
(refers to the second concern); and, consequently

3 the evolution of technologies is difficult to manage (refers to the third concern).

MoWebA, as other approaches like OOHDM and OOWS, also discriminates between
intra (e.g., hard and soft links) and inter-contextual (e.g., hyperlinks between states of the
node diagram) navigations. However, it proposes their definition in a different way:

1 the concept underlying the soft links (i.e., navigate to an unrelated node in the
navigational tree) is quite singular of the MoWebA approach

2 the incremental process definition starts with the identification of the hard links in
the navigational tree diagram as a first step, and the hyperlinks and softLinks of the
node diagram as a second step.

This simplifies the overall understanding of the application structure and makes a
distinction between the different levels of navigation (see the first consideration in
Section 5).

C2 The adoption of standards will facilitate the interoperability between models,
methods, and transformation rules.

MoWebA, like other methodologies to some extent, adopts the MDD standards and
follows the object-oriented paradigm in every phase (e.g., UWE, OO-H, and OOWS).
MoWebA works with different tools and notations:

1 it formalises the processes by applying the MOF metamodelling language

2 it adopts UML profiles in XMI format to allow modelling with different case tools

3 it defines model to model transformation rules for PIM-ASM/PSM, adopting QVT
where the proposed ASM is RIA, and the proposed PSMs are PHP, Ruby on Rails
and PostgreSQL

4 it defines model to text (i.e., code generation) rules using the Java and ATL language
with the support of two different tools (AndroMDA and Acceleo).

MoWebA adopts the MDA approach in all the standards and in the entirely process trying
to make profit from all the MDD potential for web engineering.

In our best knowledge, UWE is the only other methodology whose models and
processes completely follows the MDA approach, maintaining some differences regards

 A navigational role-centric model oriented web approach – MoWebA 63

the other concerns. Moreover, another difference resides in the generation process. UWE
code generation process is done in a semi-automatic way, since the generated code
requires additional adjustments for obtaining the final application (e.g., UWE4JSF which
works in the eclipse environment and generates JSF applications requiring additional
adjustments for some java classes, libraries, stylesheets, among others). MoWebA also
follows the semi-automation approach, but this is done in the PIM-ASM/PSM phase,
since human intervention is needed to decide some transformation rules (see Section 4).

C3 Take into account the evolution of web environments for improving the
development of current web applications.

MoWebA considers evolution in different aspects. At a more structural level, considering
the evolution of the architecture and the final implementing platform, to the best of our
knowledge an approach such as the one from MoWebA has not been presented by any
other methodology. MoWebA separates the PIM, ASM and PSM models, in order to
facilitate the evolution of applications. With this separation, a clear distinction is made
between what would be the problem space, presenting a model that is completely
independent of the target architecture or platform; and the solution space, through the
ASM, PSM and the final code. Such proposal, tend to facilitate the support of web
development for the Web 2.0. In fact, for achieving dynamic website, where the users
actively interact with the web application, it is common to use technologies and platforms
like web services and RIAs, among others. Methodologies such as WebML and UWE
propose extensions for RIAs (or other final platforms) during the PIM modelling phase.
However, such extensions reduce the reusability and portability of the PIM. By contrast,
MoWebA captures the requirements for specific platforms at the ASM model according a
semi-automated process. As a counterpart, to offer a greater reusability of the PIM
facilitating the architectural evolution of the web applications, the MoWebA approach
requires some additional effort, including the need for metamodels and the definition of
the corresponding transformation rules, to achieve automatic transformations on the
proposed architecture or platform.

Moreover, the evolution concern is not only one for architectural/technological issues,
since the functional requirements of web applications also evolve fast. MoWebA, as well
the other methodologies that adhere to the MDD approach, follows an incremental
process, facilitating such type of functional changes that are defined at the model level
which will then be transformed into code by using automated tools.

At a user adaptation level, in general, to cover the accessibility aspects, other
methodologies propose notations to model user groups (e.g., OOHDM and OO-H). These
are defined in MoWebA with the zone diagram, which also allows setting different user
levels (groups of users that are defined by the roles, the roles related to each other
through the zones and zones of the different levels that may arise). It is also possible to
define access privileges on different notational elements, identifying different levels of
security. Adaptation is also considered in other methodologies to allow personalisation
strategies. For example, UWE defines adaptation using the aspect paradigm. With the
MoWebA adaptation model it is possible to cover adaptability and adaptivity, with the
source information and rule diagrams. In addition, in the presentation modelling stage of
MoWebA (see Section 3.4), the separation between content and structure, allows more
adaptability. In most methodologies there is no such distinction.

Finally, the presentation dimension is a critical aspect in web engineering and still
requires more effort to assure an adequate automatic generation. Some proposals consider

 64 M. González et al.

the separation of presentation and application logic to be necessary (e.g., UWE). Other
proposals indicate the importance of establishing a clear separation between application,
presentation and control logic, especially when multiple presentation channels should be
served by the same application logic (Book and Gruhn, 2009; Horrocks, 1998). MoWebA
considers these aspects with the logic (through value objects and services) and node
diagrams (through virtual and service states). Nevertheless, future works are needed to
deal with these open issues.

7 Conclusions and future work

This study presented MoWebA, a proposal for the development of web applications.
MoWebA defines navigation from a behavioural point of view, instead of a structural
(data-oriented) one, trying to better capturing the requirements of users’ interaction, and
it considers navigation as the starting point of the modelling process for web applications.
Moreover, it includes an appropriate syntax to model the dynamic navigation observed
during the users’ interaction and the inter-intra contextual navigation. Another innovative
contribution in MoWebA is the ASM – architectural specific model, which define an
architectural level of modelling definition separated from the PIM, in order to facilitate
the evolution of applications. MoWebA strongly adopts the standards proposed by MDD
(languages, tools, architecture, among others) in every phase. An important effort is
devoted to personalisation aspects. Based on the results of the various experiences
performed, this study discusses the current proposals, highlighting the contributions and
weaknesses of MoWebA in each phase.

Results were quite encouraging, and stimulated new ongoing experiences, case
studies and more rigorous experiments: application of MoWebA and other methodologies
(UWE, OOHDM, OO-H, WebML) to the same real applications; integration and
refinement of rules definition in Acceleo; rules definition for other platforms (for
example, J2EE); PSMs definition for different platforms; and validation of models.

Finally, we also consider that MoWebA has sufficient flexibility to support
innovative technologies, such as those typical of Web 2.0 (e.g., ASMRia extension). To
validate these considerations, proofs of concept and case studies that focus on building
applications with current technologies (e.g., RIAs, REST, cloud computing) that facilitate
development of Web 2.0 applications are being planned. We are also considering an
interesting future work, to compare the development time required using MoWebA with
regards to:

1 competing approaches

2 manually creating all the web apps without using models; considering updates
activities for evolution analysis.

Acknowledgements

This research is partially supported by the CONACYT (Paraguay), through the INV-056
Project.

 A navigational role-centric model oriented web approach – MoWebA 65

References
Acerbis, R., Bongio, A., Brambilla, M., Tisi, M., Ceri, S. and Tosetti, E. (2007) ‘Developing

eBusiness solutions with a model driven approach: the case of acer EMEA’, Proceedings of
the 7th International Conference Web Engineering (ICWE’07), Berlin.

Baresi, L., Colazzo, S., Mainetti, L. and Morasca, S. (2006) ‘W2000: a modelling notation for
complex web applications’, in Web Engineering, pp.335–364, Springer, Berling.

Basili, V., Caldiera, G. and Rombach, H. (1994) ‘Goal question metric approach’, in Encyclopedia
of Software Engineering, pp.528–532, John Wiley & Sons, New York.

Bernardi, M., Di Lucca, G. and Distante, D. (2014) ‘Model-driven fast prototyping of RIAs: from
conceptual models to running applications’, 3rd International Conference on Advances in
Computing, Communications & Informatics, ICACCI 2015, Delhi, India.

Blechar, M. and Norton, D. (2009) Trends in Model-Driven Development, p.3, Gartner Research,
Technical Report, 4Q09-3Q10, ID Number: G00169442.

Book, M. and Gruhn, V. (2009) ‘Fine-grained specification an control of data flows in web-based
user interfaces’, Journal of Web Engineering, Vol. 8, No. 1, pp.48–70.

Bozzon, A., Comai, S., Fraternali, P. and Toffetti, G. (2006) ‘Capturing RIA concepts in a web
modeling language’, 15th International Conference on World Wide Web, New York, USA.

Brambilla, M., Cabot, J. and Wimmer, M. (2012) Model-Driven Software Engineering in Practice,
Morgan&Claypool, USA.

Busch, M. and Koch, N. (2009) Rich Internet Application. State of the Art, Technical Report 0902.
Programming Software Engineering Unit (PST), Munchen, Germany.

Cachero, C. and Koch, N. (2002) ‘Conceptual navigation analysis: a device and platform
independent navigation specification’, 2nd Internationa Workshop on Web-oriented Software
Technology – IWWOST, Málaga, Spain.

Cachero, C., Gómez, J. and Pastor, O. (2000) ‘OO-HMethod: Un Método de Diseño de Lugares
web’, IDEAS 2000, Cancún.

Ceri, S., Fraternalli, P. and Bongio, A. (2000) ‘Web modelling language: a modelling language for
designing web sites’, Computer Networks, Vol. 33, No. 1, pp.137–157.

Conallen, J. (2003) Building Web Application with UML, 2nd ed., Addison-Wesley, Massachutsets,
USA.

De Troyer, O. and Casteleyn, S. (2003) ‘Exploiting link types during the conceptual design of web
sites’, International Journal of Web Engineering Technology, Vol. 1, No. 1, pp.17–40.

De Troyer, O. and Decruyenaere, T. (1998) ‘Conceptual modelling of web sites for end-users’,
World Wide Web, Vol. 3, No. 1, pp.27–42.

Deshpande, Y., Murugesan, S., Ginige, A., Hansen, S., Schwabe, D., Gaedke, M. and White, B.
(2002) ‘Web engineering’, Journal of Web Engineering, Vol. 1, No. 1, pp.3–17.

Distante, D., Pedone, P., Rossi, G. and Canfora, G. (2007) ‘Model-driven development of web
applications with UWA, MVC and JavaServer faces’, in Web Engineerign, pp.457–476,
Springer Berlin Heidelberg, Como.

Fons, J., Pelechano, V., Pastor, O., Valderas, P. and Torres, V. (2007) ‘Applying the OOWS
model-driven approach for developing web applications: the internet movie database (IMDB)
case study’, in Web Engineering: Modeling and Implementing Web Applications, pp.65–108,
Springer, London.

Fraternali, P., Comai, S., Bozzon, A. and Toffett, G. (2010) ‘Engineering rich internet applications
with a model-driven approach’, ACM Trans. Web, Vol. 4, No. 2, p.7.

Gómez, J., Bia, A. and Parraga, A. (2005) ‘Tool support for model-driven development of web
applications’, Web Information System Engineering – WISE, Berlin.

Horrocks, I. (1998) Constructing the User Interface with Statecharts, Addison-Wesley
Professional, Bellingham, USA.

 66 M. González et al.

Houben, G., Frasincar, F., Barna, P. and Vdovjak, R. (2004) ‘Modeling user input and hypermedia
dynamics in hera’, 4th Internationa Conference on Web Engineering, Munich.

Koch, N., Knapp, A., Zhang, G. and Baumeiter, H. (2007) ‘UML-based web entineering, an
approach based on standards’, in Web Engineering: Modeling and Implementing Web
Applications, pp.157–192, London, Springer.

Koch, N., Pigerl, M., Zhang, G. and Morozova, T. (2009) ‘Patterns for the model-based
development of RIAs’, International Conference on Web Engineering (ICWE), San Sebastian,
Spain.

MDA Guide Version 1.0.1 [online] http://www.omg.org/cgi-bin/doc?omg/03-06-01.pdf
(accessed 5 July 2015).

Meliá, S., Gómez, J. and Koch, N. (2005) ‘Improving web design methods with
architecture modeling’, 6th International Conference on Electronic Commerce and Web
Technologies – EC-Web, Copenhagen.

Mernik, M., Heering, J. and Sloane, A. (2005) ‘When and how to develop
domain-specific languages’, ACM Computing Surveys (CSUR), Vol. 37, No. 4, pp.316–344,
DOI 10.1145/1118890.1118892.

Nuseibeh, B. and Easterbrook, S. (2000) ‘Requirements engineering: a roadmap’,
22nd International Conference on Software Engineering – ICSE, Limerick Ireland.

Pressman, R. and Lowe, D. (2009) Web Engineering: A Practitioner’s Approach, McGraw-Hill,
New York.

Rossi, G., Pastor, O., Schwabe, D. and Olsina, L. (2007) Web Engineering: Modelling and
Implementing Web Applications, Springer, London.

Schwabe, D. and Rossi, G. (1998) ‘An object oriented approach to web-based application design’,
Theory and Practice of Object Systems, Vol. 4, No. 4, pp.207–225.

Schwinger, W. and Koch, N. (2006) ‘Modeling web applications’, Web Engineering: A New
Discipline for Development of Web-Based Systems, pp.39–64, John Wiley, New York.

Weibelzahl, S. (2002) Evaluation of Adaptive Systems, Dissertation Presented to the Faculty I of
the University of Trier, Trier, Germany.

Notes
1 http://www.omg.org/docs/ptc/02-01-09.pdf.
2 http://www.omg.org/spec/MOFM2T/1.0/PDF.
3 http://www.eclipse.org/modeling/.

 A navigational role-centric model oriented web approach – MoWebA 67

Appendix (see online version for colours)

