

La Ciencia de los Datos

Mg. Ing. Karina B. Eckert

Agenda

- 1. Objetivo
- 2. Introducción
- 3. Antecedentes y disciplinas vinculadas
- 4. Ciencia de Datos
 - 1. Metodologías
 - 2. Datos y almacenamiento
 - 3. Perfiles/Roles
 - 4. Lenguajes y Herramientas
- 5. Aplicaciones reales

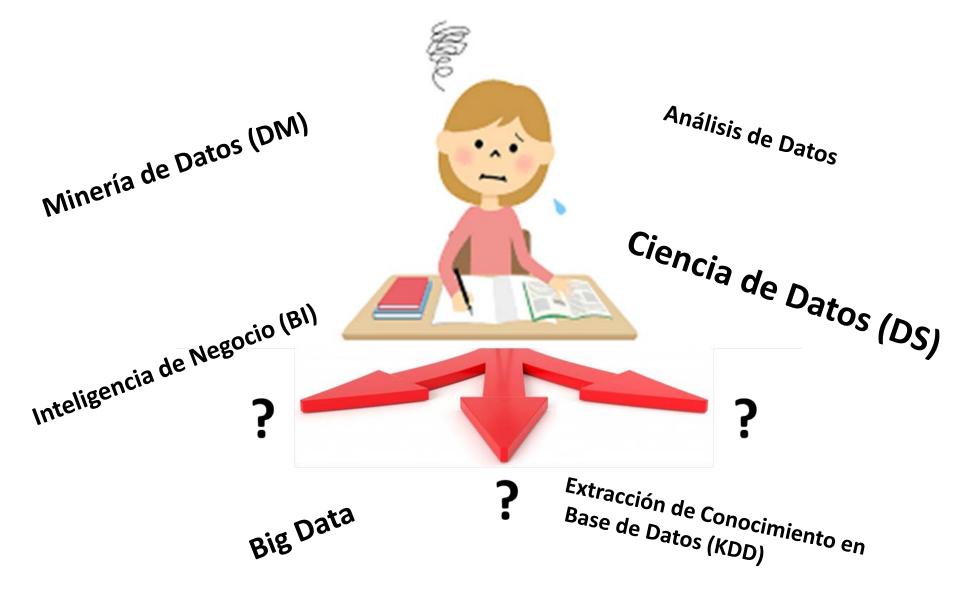
OBJETIVO

Objetivo

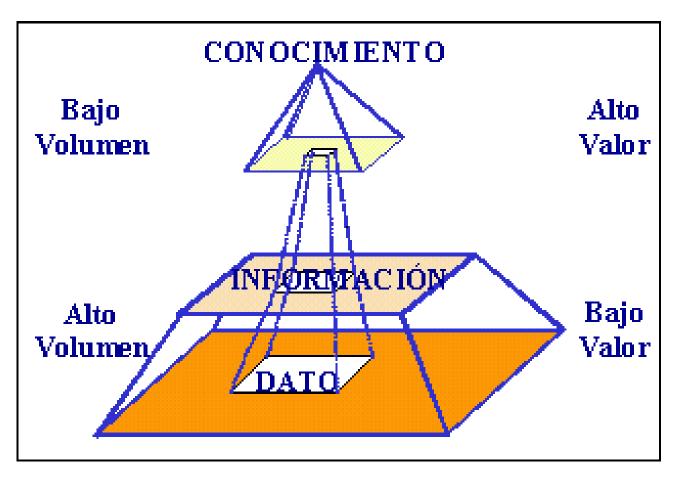
Dar a conocer los conceptos centrales vinculados a la ciencia de datos: principios, metodologías, técnicas, algoritmos, roles, herramientas de ciencia de datos...

INTRODUCCIÓN

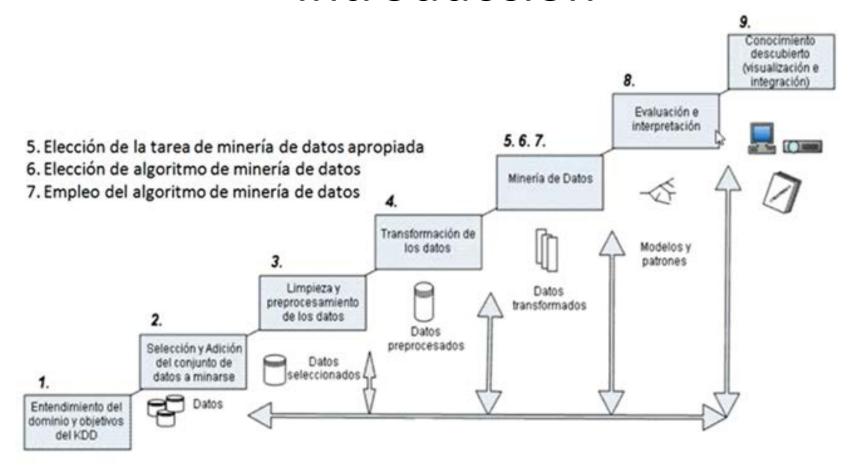
Motivación



Información adecuada, en el lugar y momento oportuno


Incrementa la Efectividad

"Torturar los datos hasta que ellos confiesen"



Pirámide del Conocimiento

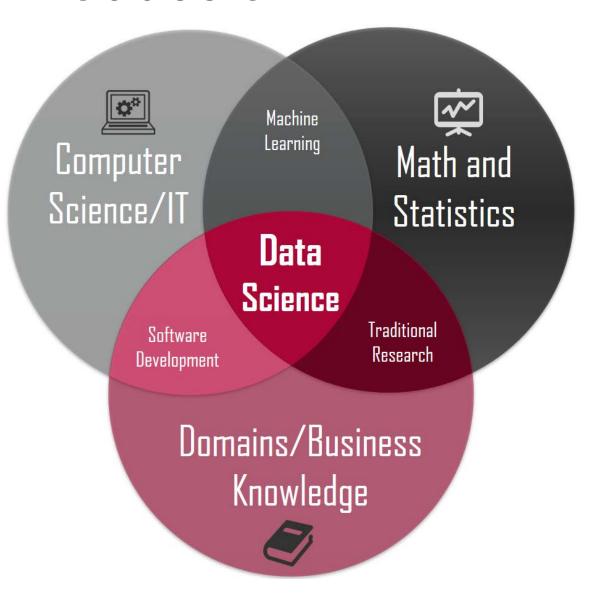
KDD: Knowledge Discovery in Databases

KDD: Knowledge Discovery and DataMining

"Proceso no trivial de identificar patrones válidos, novedosos, potencialmente útiles y, en última instancia, comprensibles a partir de los datos"

Metas:

- Procesar automáticamente grandes cantidades de datos.
- Identificar patrones significativos y relevantes.
- Presentar los modelos como conocimiento innovador y apropiado para satisfacer las metas del usuario.


Inteligencia de Negocio

 Es el conjunto de procesos, metodologías, estrategias, aplicaciones y tecnologías que facilitan la obtención rápida y sencilla de todos los datos generados por una empresa para su análisis e interpretación, de manera que puedan ser aprovechados para la toma de decisiones y se conviertan en conocimiento para los responsables del negocio.

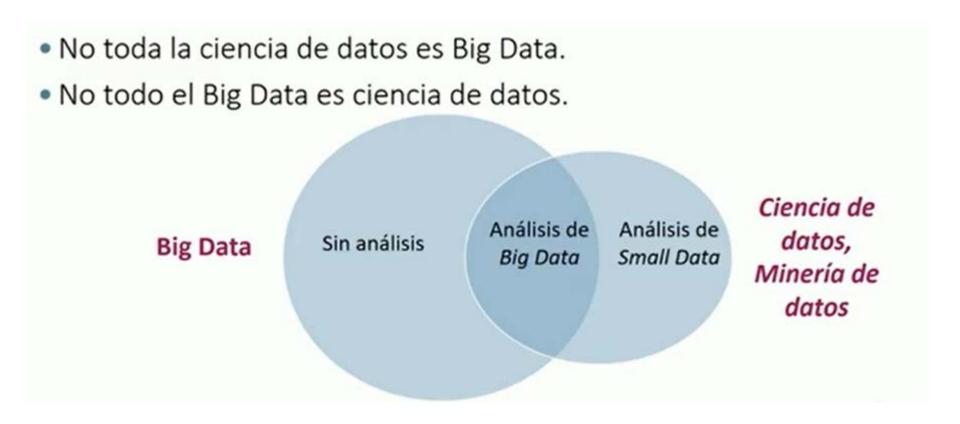
 BI, es analizar los datos históricos para comprender lo que pasó. En algunos casos permite entender una tendencia.

DS es un conjunto de principios fundamentales que apoyan y guían la extracción de información y conocimiento a partir de los datos; incluye diversas metodologías, técnicas, algoritmos y herramientas que facilitan el procesamiento avanzado y automático de los mismos; permitiendo identificar información relevante y estratégica, que a simple vista no es detectada.

"El Big Data es el análisis masivo de datos. Una cuantía de datos, tan sumamente grande, que las aplicaciones de software de procesamiento de datos que tradicionalmente se venían usando no son capaces de capturar, tratar y poner en valor en un tiempo razonable."

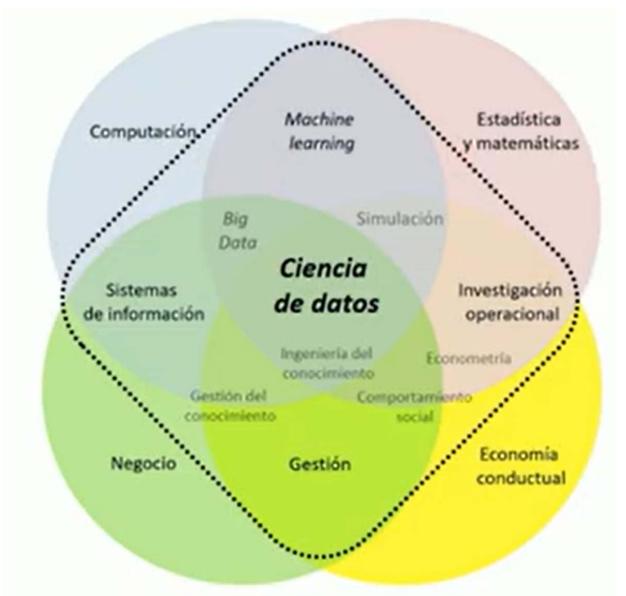
Herramientas

Apache
Hadoop
Elasticsearch
Apache Storm


MongoDB
Apache Spark
Python

Apache

Cassandra Lenguaje R


Apache Drill

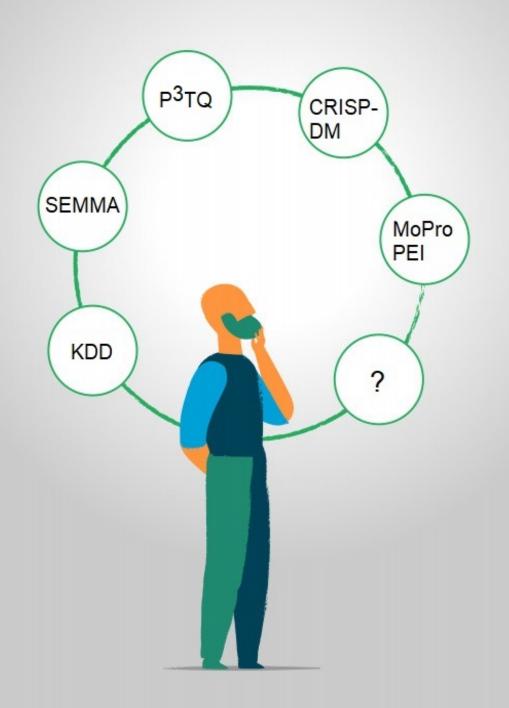
<u>Oozie</u>

Big Data y Ciencia de Datos

Ciencia de Datos

CIENCIA DE DATOS

Ciencia de Datos

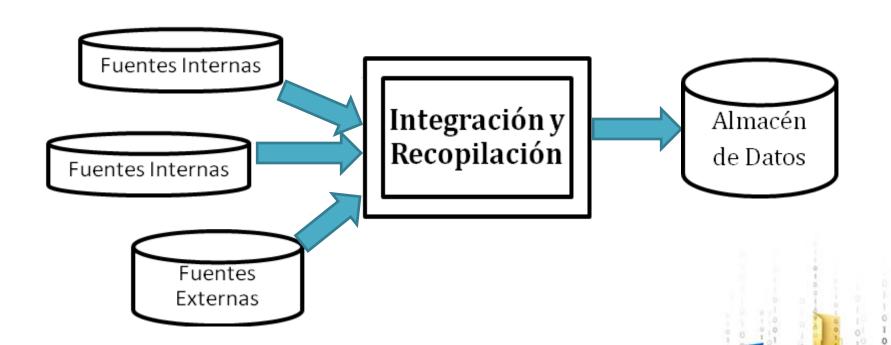

- Campo inter/trans disciplinar que involucra
 - Métodos científicos
 - Procesos
 - Sistemas

Para extraer conocimiento o mejorar el entendimiento de los datos (estructurados o no)

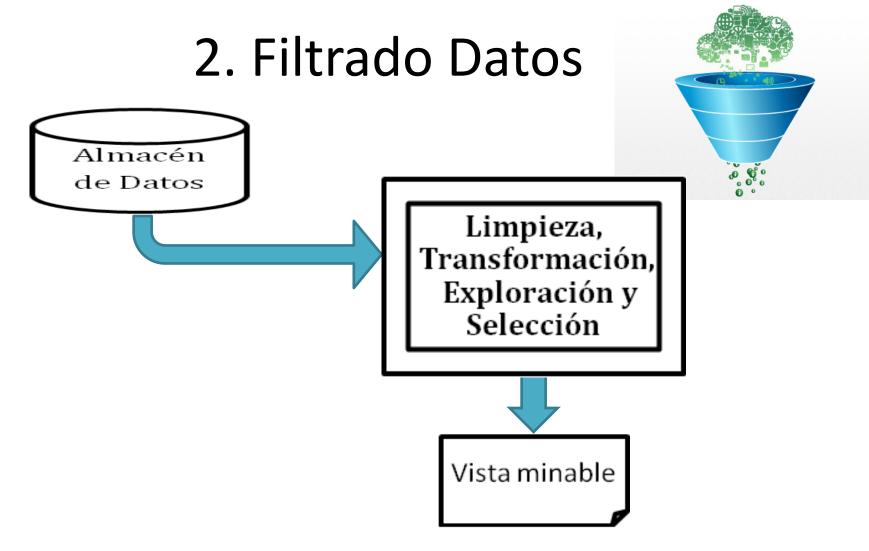
- Involucra diversas disciplinas para los diferentes tipos de análisis, como:
 - Minería de datos
 - Aprendizaje Automático
 - Estadística computacional

Ciencia de Datos

- Data Science es la resolución a los problemas de negocios/organizaciones a través de las matemáticas, la programación y el método científico que implica la creación de hipótesis, experimentos y pruebas a través del análisis de datos y la generación de modelos predictivos.
- Es responsable de transformar estos problemas en preguntas bien planteadas que también puedan responder a la hipótesis inicial de una manera creativa. También debe incluir la comunicación efectiva de los resultados obtenidos y cómo la solución agrega valor a la Empresa/Organización



Proceso de KDD

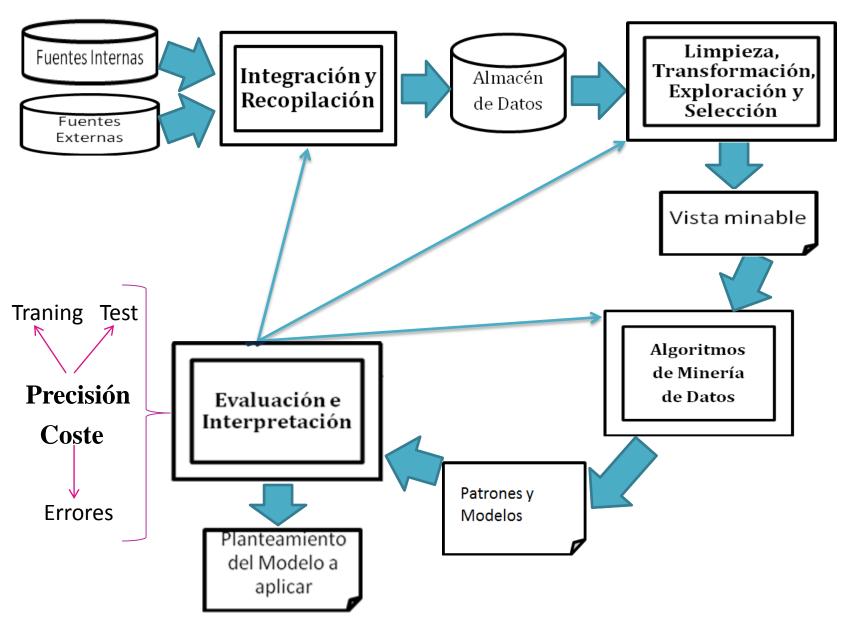

Datos iniciales Integración y recopilación Almacén de datos Limpieza, transformación, Interactivo exploración y selección Datos Seleccionados (Vista Minable) Minería de Datos Iterativo Patrones Evaluación e interpretación Conocimiento Difusión y uso Decisiones

HERNÁNDEZ ORALLO, J. y otros. 2004

1. Integración y Recopilación

 Datos o fuentes de información en bruto.

 Eliminar datos redundantes y filtrar los de mejor calidad para el proceso de minado.


3. Minería de Datos

 Crear un Modelo aplicando Técnicas y Algoritmos de MD para extraer Patrones.

4. Interpretación y Evaluación

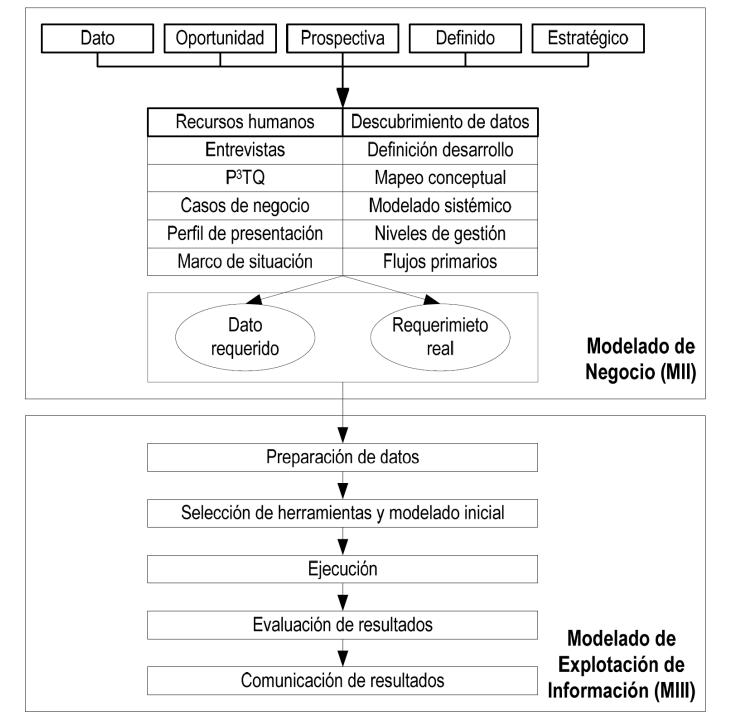
5. Difusión, Uso y Monitorización

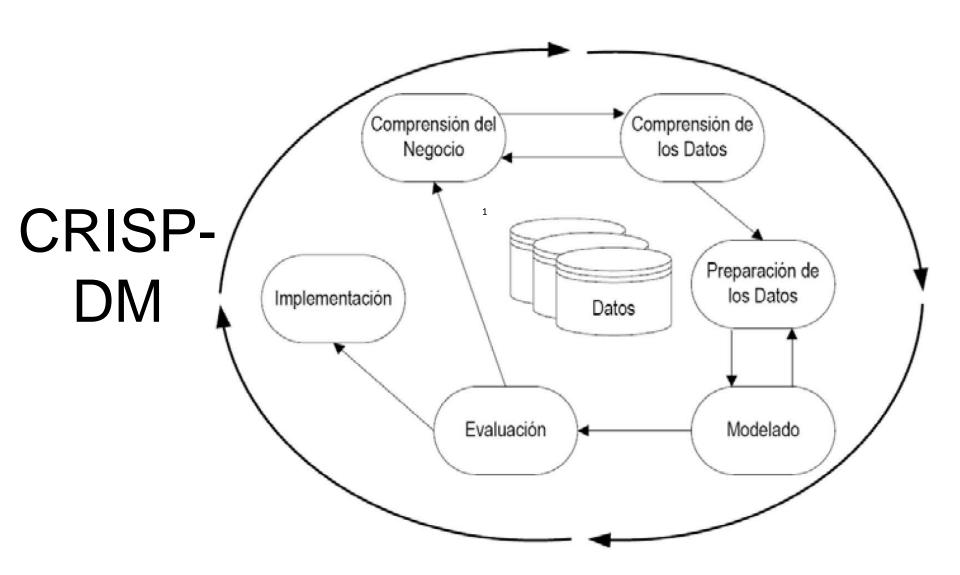
Finalidades:

- Acciones basadas en la observación del modelo y sus resultados.
- Aplicación del modelo a diferentes conjuntos de datos.

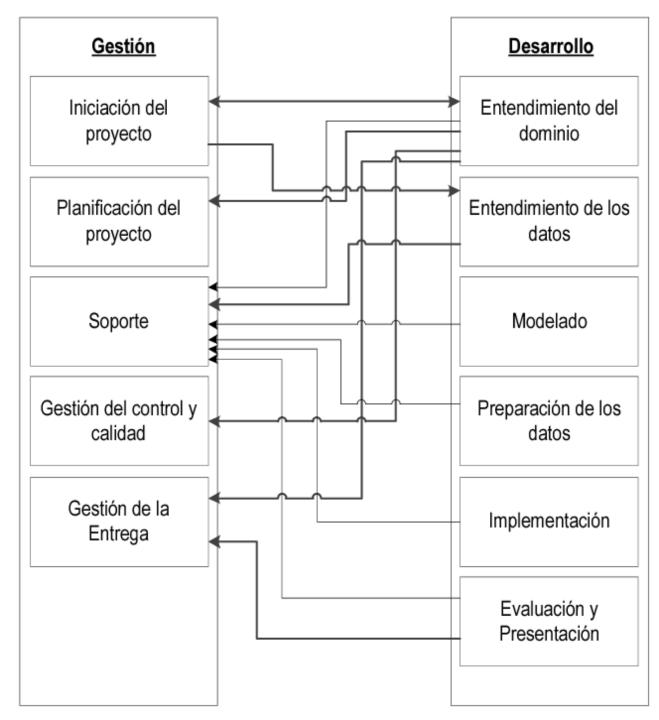
- Difusión y aplicación del modelo
- Integrar al know-how de la organización.

Monitoreo y Mantenimiento.

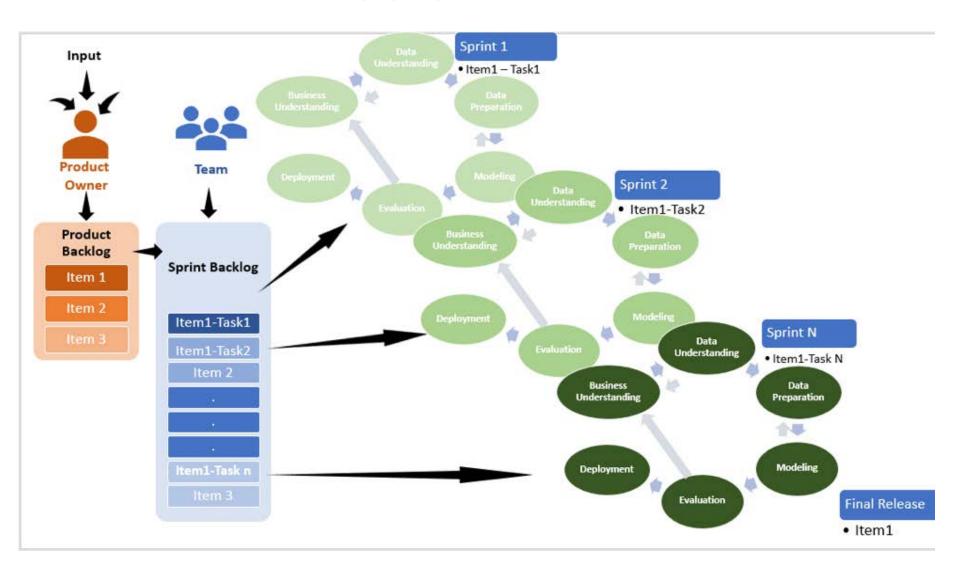

Metodologías de Ciencia de Datos

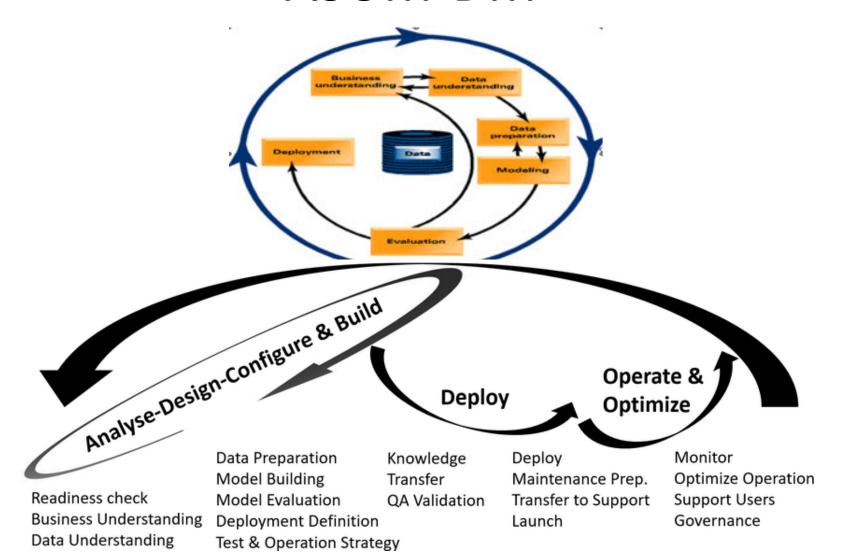


Metodología indica cómo encarar un Proy: fases, tareas y como llevarlas a cabo

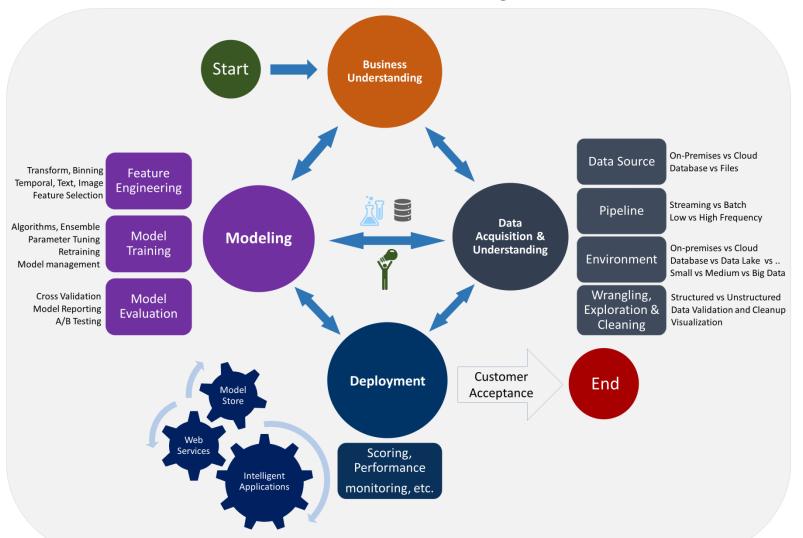

Catalyst P³TQ

(Product, Place, Price, Time, Quantity)




MoProPEI

Scrum-DM

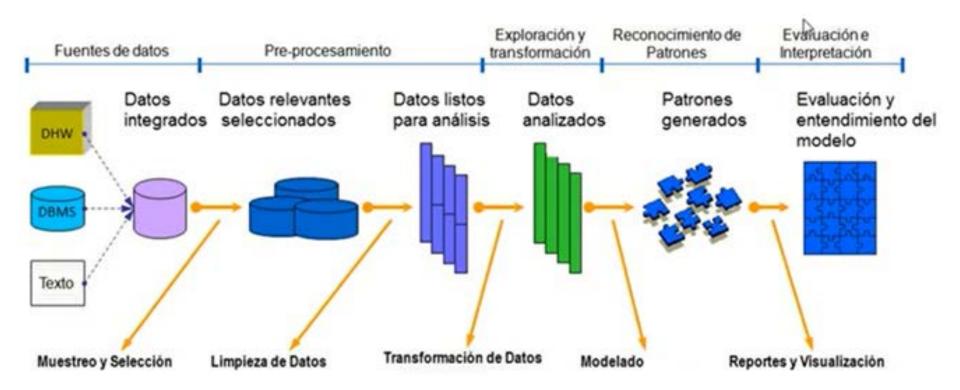


ASUM-DM

Team Data Science Process (TDSP)

Data Science Lifecycle

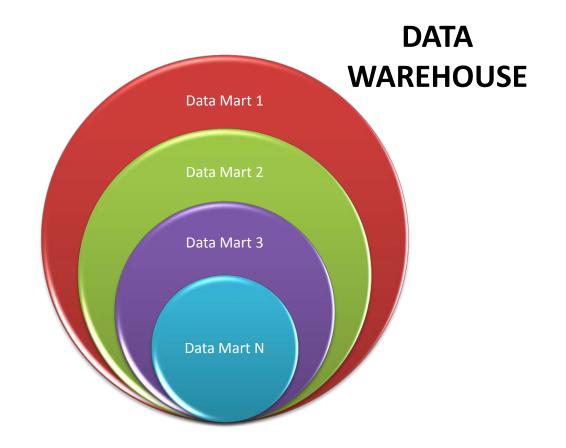
LOS PROYECTOS DE DS NECESITAN UN PLAN DE ATAQUE CLARO Y EFICAZ PARA TENER **ÉXITO**


- **Comunicación,** para mostrar efectivamente los beneficios a los ejecutivos enseñando los resultados que se relacionan con los objetivos de la organización.
- Entendimiento de negocio, que solo ocurre a través de la interacción con las partes interesadas del negocio que están más cerca del proceso o problema.
- **Planificar y alinear** a todos los involucrados con el alcance y el plan del proyecto.
- Una lista de acciones comprobadas que deben considerarse.

En términos de datos

Una vez realizado el análisis del negocio y definido una estrategia, se plantean los objetivos técnicos que preguntas/conocimiento se deben responder/descubrir a partir de qué datos.

Procesamiento de datos


Preparación y curado de los datos que permitan el modelado y tratamiento de éstos

Datos

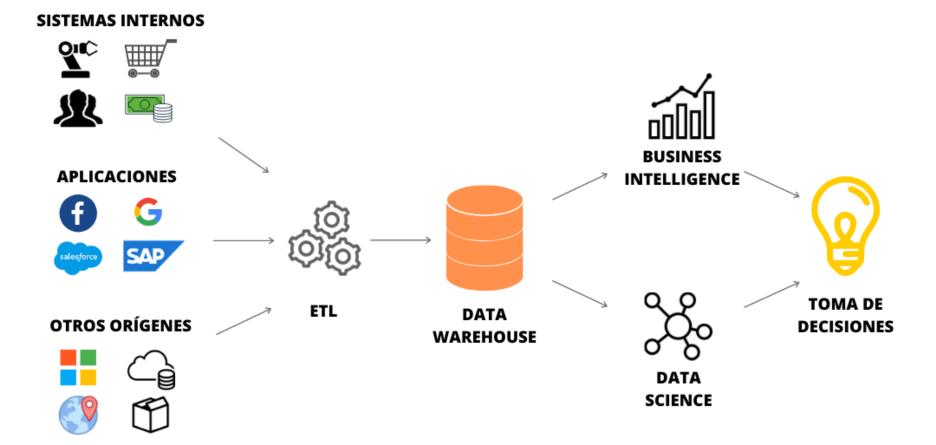
Data Mart

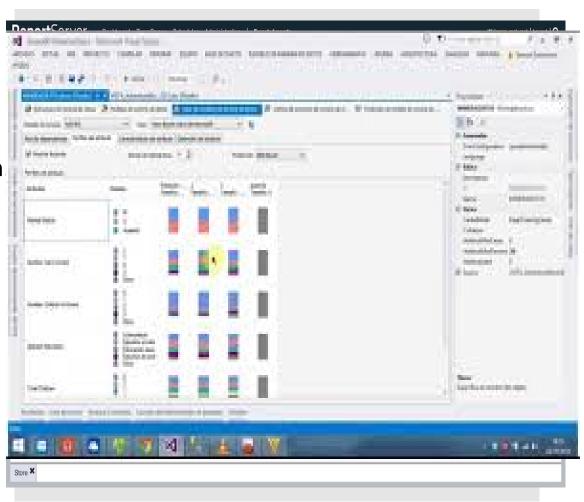
Los Data Mart son subconjuntos de los DW, es decir que contienen subconjuntos de datos de toda la organización que son valiosos para diferentes grupos específicos de personas.

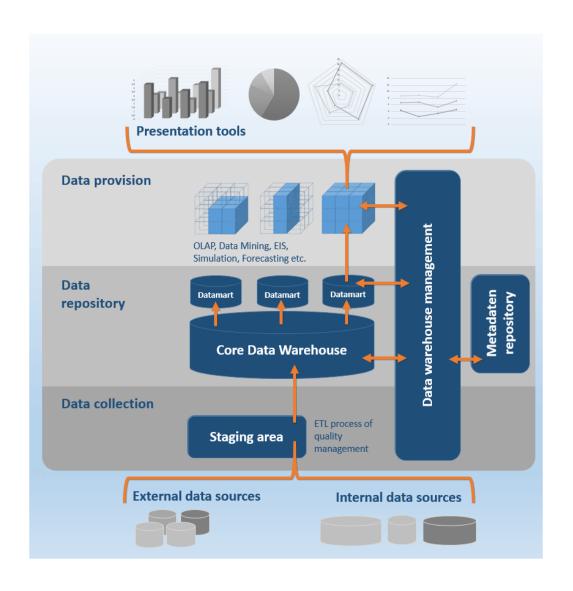
Data Warehouse

Un DW es un gran repositorio lógico de datos que permite el acceso y manipulación flexible de grandes volúmenes de información provenientes tanto de transacciones detalladas como datos agregados de fuentes de distintas naturaleza (Archivos planos, CSV, planillas de cálculo, etc).

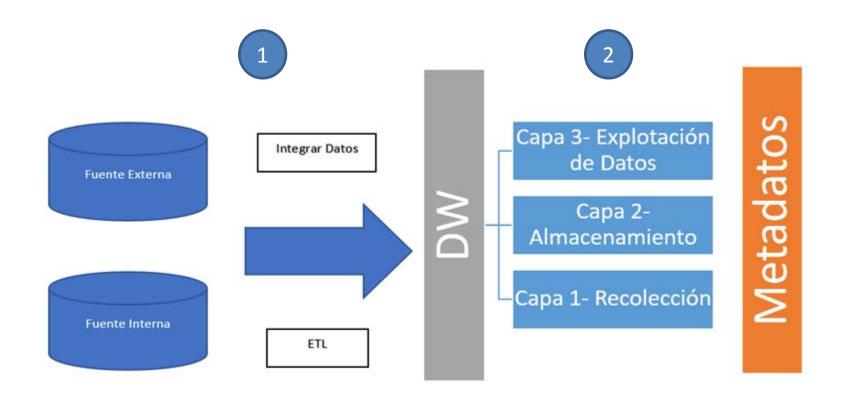
Un DW proporciona datos generalizados y consolidados en una vista multidimensional. Junto con una vista generalizada y consolidada de datos, un almacén de datos también nos proporciona herramientas de procesamiento analítico en línea (OLAP).

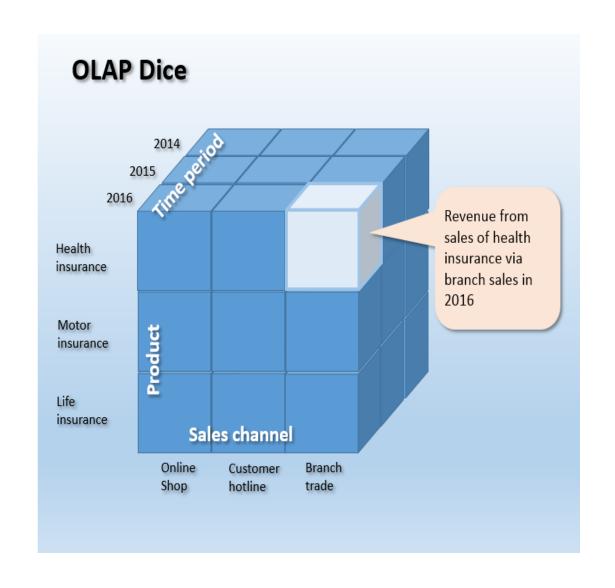

colección de datos para el soporte de la toma de decisiones





TIPOS DE DW


- Procesamiento de información
- Procesamiento OLAP.
- Minería de Datos.


DATA WAREHOUSE – ARQUITECTURA

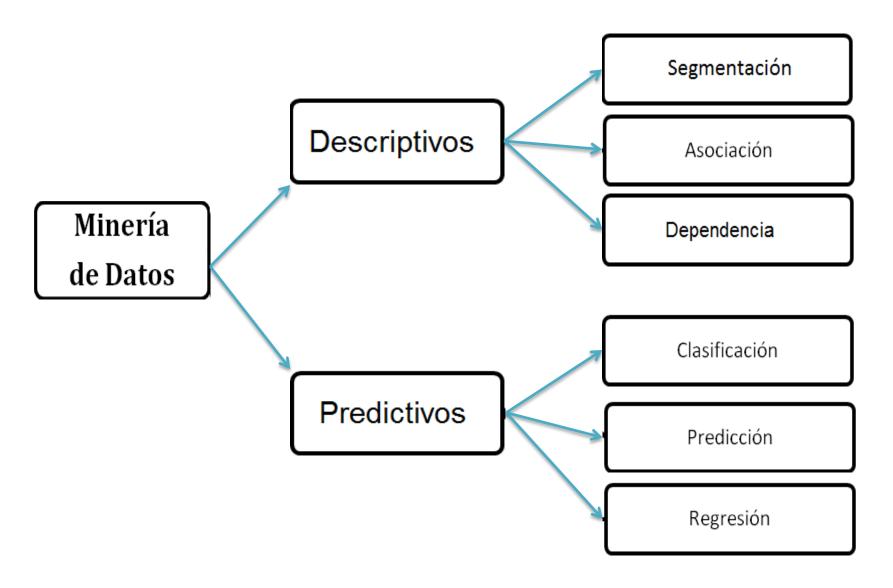
DATA WAREHOUSE – ARQUITECTURA

DATA WAREHOUSE – Cubo de Datos

OLAP vs MD

OLAP

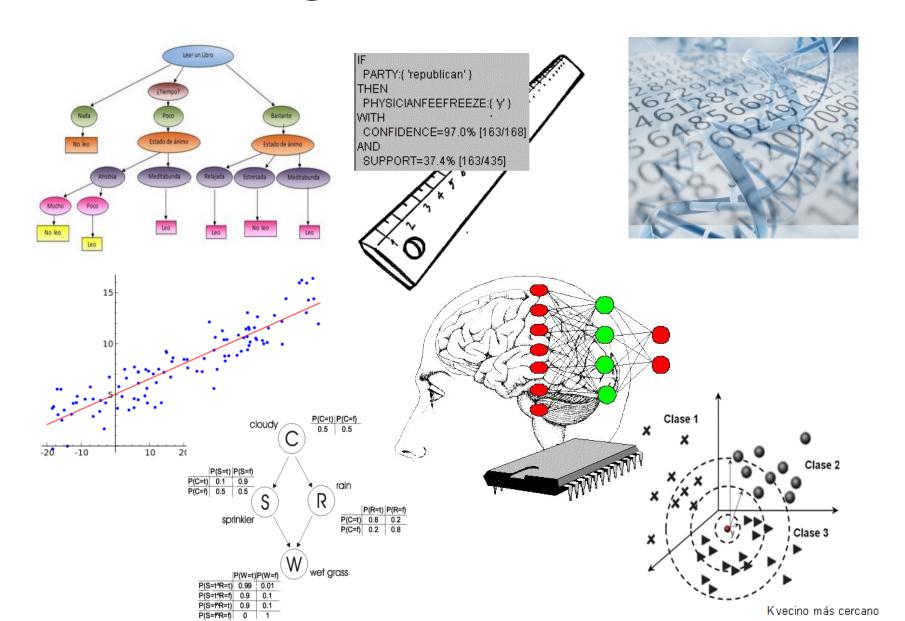
Minería


¿Cuál es el promedio de accidentes entre los fumadores y los no fumadores?	¿Cuáles son los mejores vaticinadores para los accidentes?		
¿Cuál es el promedio de la factura de teléfono de mis actuales clientes vs. mis exclientes?	¿Dejará X la compañía? ¿Qué factores afectan a las dimisiones?		
¿Cuál es el promedio de compras diarias entre los usuarios de tarjetas de crédito robadas y usuarios legítimos?	¿Qué patrones están asociados al uso de tarjetas de crédito fraudulentas?		

- Mis datos son valiosos para mi (in → in).
 - Datos internos útiles para la organización.
 - Inteligencia empresarial clásica... Muchas oportunidades todavía.
- Esos datos son valiosos para mi (out → in).
 - Datos externos útiles para la organización.
 - Medios sociales, Internet, datos abiertos, ... Muchas oportunidades nuevas.
- Mis datos son valiosos para otros (in → out).
 - Datos internos útiles para otras organizaciones.
 - Mis datos tienen utilidad para otros, ... Muchas oportunidades nuevas.
- Esos datos son valiosos para otros (out → out).
 - Datos externos útiles para otras organizaciones.
 - Estos datos tienen utilidad para otros, ... ¡Científico de datos freelancer!
- Creando datos (Ø → out).
 - Coleccionar datos que pueden tener valor. | Emprendedor de datos!

- Datos de telecomunicaciones
 - Valioso para comerciantes, tráfico, ayuntamiento, policía...
- Otros datos de geolocalización(Flickr, Instagram, Wikiloc, ...)
 - Valioso para agencias de viaje...
- Datos en consumo de energía
 - Valioso para anuncios de televisión...
- Datos del transporte público (bus, metro, tren, taxi, tráfico, ...)
 - Valioso para turismo, consumo, contaminación, comercio...
- Datos de redes sociales.
 - Valioso para casi todo...

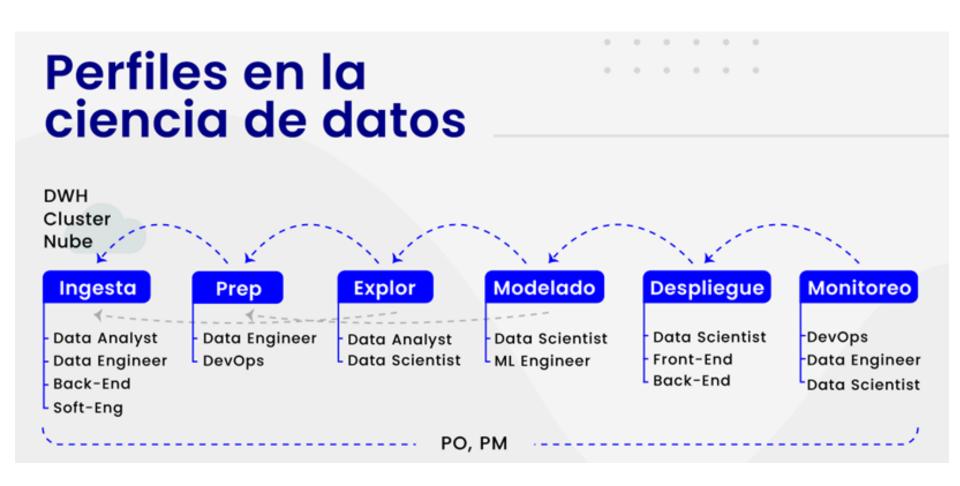
- Datos de uso de tarjetas de crédito
 - Valioso para comercios, ayuntamientos, ...
- Datos de policía
 - Valioso para aseguradoras, agentes inmobiliarios, ...
- Datos comerciales (Amazon, Ebay, segundamano.es, ...)
 - Valioso para salud, demografía, sociología...
- Datos climatológicos
 - Valioso para comercios.
- Datos de búsquedas web.
 - Valioso para casi todo.


Modelos y Tareas

Tareas y Técnicas de MD

Descripción	Técnicas estadísticas (media, moda, mediana, desviación estándar, mínimo, máximo, rango, correlaciones) y gráficas, algoritmos genéticos			
Clasificación	Redes neuronales (back propagation), árboles de decisión (ID3, C4.5, C5.0, CART), k-nn (k vecinos más cercanos), naive bayes, técnicas estadísticas			
Estimación	Técnicas estadísticas (regresión lineal simple, correlación, regresión múltiple), árboles de decisión, k-nn, redes neuronales			
Predicción	Técnicas estadísticas, redes neuronales, árboles de decisión k-nn, algoritmos genéticos			
Agrupación (Clustering)	Jerárquico, K-nn, K-means, Red Kohonen, Fuzzy C-means			
Asociación	Apriori (all, some, dynamic some), GRI, FP Grow			

Algoritmos de MD



Modelos, Tareas y Técnicas de MD

-	PREDICTIVO		DESCRIPTIVO		
Nombre	Clasificación	Regresión	Agrupamiento	Reglas de asociación	Correlaciones/ Factorizaciones
Redes neuronales	✓	V	V		
Árboles de decisión ID3, C5.0	✓				
Árboles de decisiones CART	✓	V			
Otros árboles de decisión	V	· ·	· ·	·	
Redes de Kohonen			· ·		
Regresión lineal y logarítmica		V			
Regresión logística	V			V	
Kmeans			/		L _g
Apriori				V	
Naive Bayes	V				
Vecinos más próximos	·	V	· ·		
Análisis factorial y de componentes principales					~
Twostep, Cobweb			· ·		
Algoritmos genéticos y evolutivos	·	~	·	~	~
Máquinas de vectores de soporte	·	~	~		
CN2 rules (cobertura)	¥			·	
Análisis discriminante multivariante	~				

Arquitecto de datos

Verifica recursos de infraestructura, personal, tipo de integración, tipo de análisis, cantidad de datos, tiempo de respuesta, tipo de información y legislaciones que se deben cumplir según el sector.

Determina qué sistemas de gestión de datos son apropiados según la estrategia de negocio.

Propone software, hardware, middleware que permitan la implementación de la solución.

Ingeniero de datos

Los ingenieros de datos a menudo luchan con problemas asociados con la integración de bases de datos y conjuntos de datos no estructurados y desordenados. Su objetivo final es proporcionar datos limpios y utilizables a quien lo requiera.

El ingeniero debe tener una comprensión clara de cómo es el ciclo de vida de los datos y adecuarlos para reducir el componente de error humano.

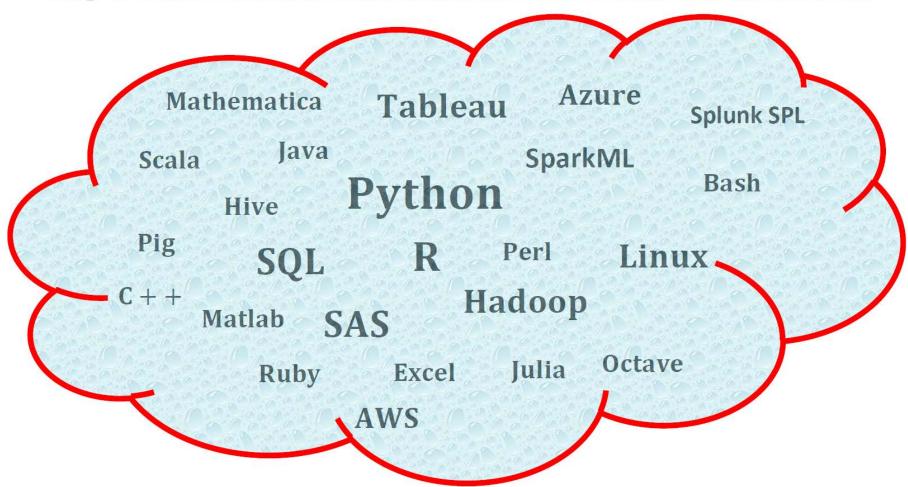
Los ingenieros de datos limpian, preparan y optimizan los datos para el consumo.

Una vez que los datos se vuelven útiles se entregan a los científicos de datos.

Científico de datos

Es una persona formada en ciencias matemáticas y computacionales con experiencia en cierta área de negocio o conocimiento que puede identificar que algoritmos y parámetros de análisis son los adecuados según la información con la que se cuenta para lograr ciertos objetivos.

Además debe ser el enlace entre la estrategia de negocio, los métodos científicos, su interpretación y aplicación para lograr dichos objetivos.


Deben identificar que tarea es la mas conveniente y por cada tarea que técnica es la mejor, si no existe una, entonces diseñar y programar algoritmos que se ajusten a los datos y proporcionen el modelo matemático requerido.

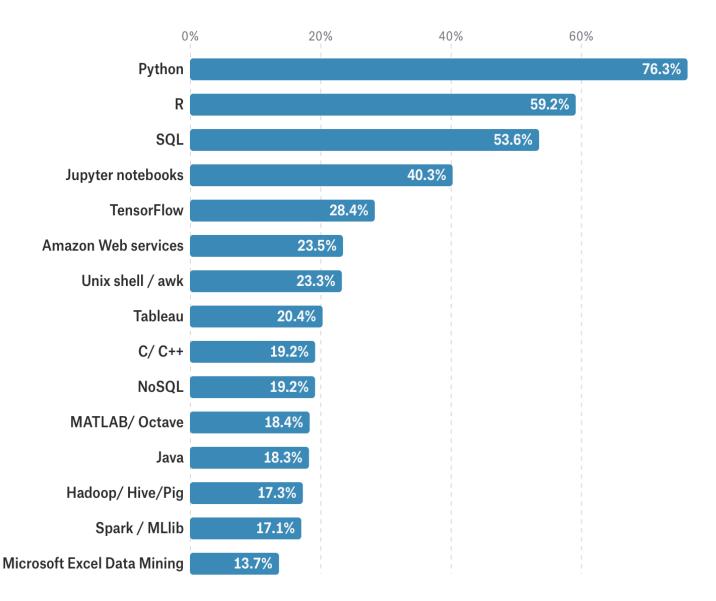
Pueden realizar una variedad de análisis y técnicas de visualización para comprender verdaderamente los datos y, eventualmente, contar una historia, realizar predicciones o descubrir conocimiento a partir de los datos.

Lenguajes y Herramientas

Soup of Desired Technical Skills Mentioned in some Data Scientists Job Ads

Python

es un lenguaje de programación interpretado, orientado a objetos y de alto nivel con semántica dinámica.



R

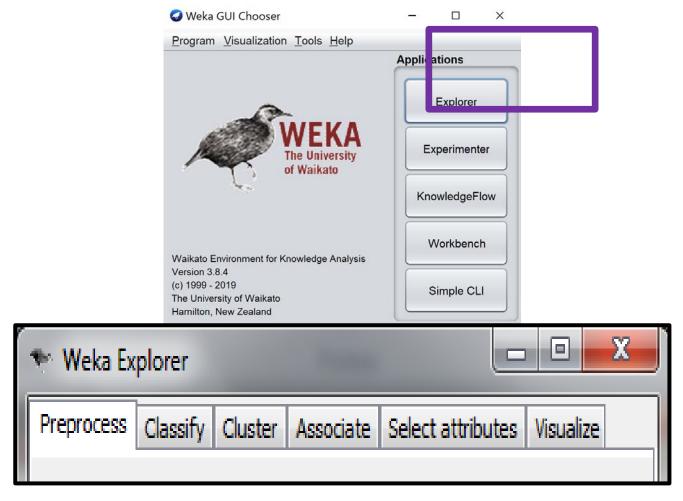
es un lenguaje y entorno para computación y gráficos estadísticos

Herramientas de MD

• । मानुभार सहीन्द्रं सेन १ विकार से अपने ।

• Licencia GRIL

 Específicamente diseñada y utilizada para investigación y fines educativos.



RAPID MINER

Interfaz Gráfica de Usuario

https://www.cs.waikato.ac.nz/ml/weka/

Aplicaciones

- Educación
- Agricultura
- Paso de fronteras
- Energía eléctrica
- BI
- PLN en diferentes ámbitos
- Proc. de imagen en diferentes ámbitos

Educación

Problemas:

- Calidad académica
- Deserción
- Reprobación
- Retraso estudiantil
- Bajos índices de eficiencia

Estrategias y Metodologías de anticipación a Eventos

Beneficios MDE

Objetivo Pedagógico

Detección temprana de:

- Casos críticos de deserción.
- Retención de alumnos destacados.
- Intervención de áreas con altos indicadores de reprobación.

Objetivo

Comercial

Mejorar la distribución de recursos :

- Optimizar la adjudicación de becas y capacitaciones.
- Adquisición bibliográfica.

Detectar y potenciar intereses por carreras o cursos específicos.

Impresión objetiva, basada en el desempeño del alumno:

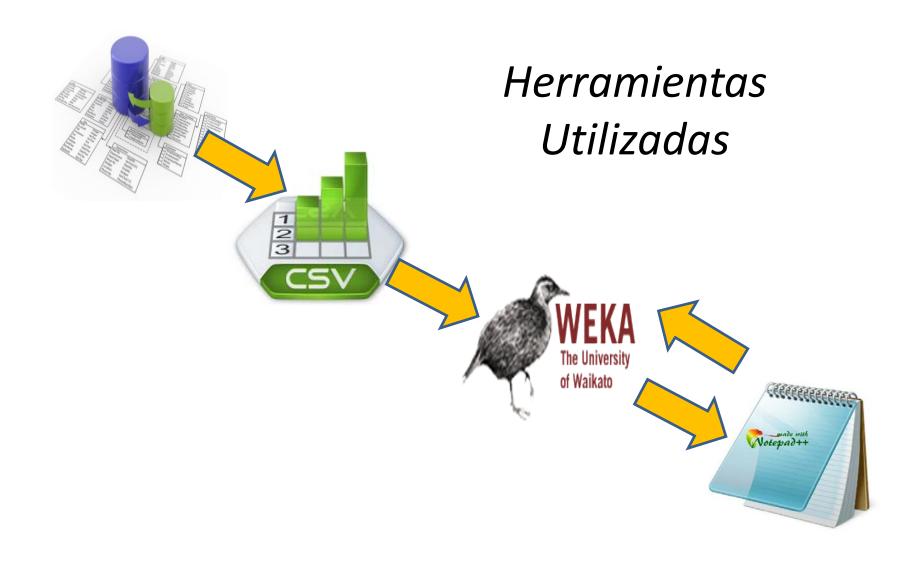
- Promedio de calificaciones.
- Uso de los recursos bibliográficos para su plan de estudio.
- Participación en proyectos institucionales y en ayudantías.

ヿ゙

Informar anticipadamente sobre:

- Comportamiento académico.
- Capacitaciones especiales.
- Deudas.

Objetivos de Gestión


Ámbito Educativo

"Aplicación de Técnicas de Minería de Datos al análisis de situación y comportamiento académico de alumnos de la UGD"

Objetivo

- Determinar patrones y relaciones entre datos de la trayectoria académica de los alumnos de la UGD utilizando técnicas de Minería de Datos (MD).
 - Demás integrantes
 - Roberto Suénaga, Luciano Duarte (GEPD)

Preparación, Pruebas y Desarrollo

1. Integración y Recopilación de Datos

a) Análisis BD UGD

Tabla: Aprobacion		
Tabla: Asistencias Generadas		
Tabla: Carreras		
Tabla: Clases Especiales		
Tabla: Clases Regulares		
Tabla: Comisiones Habilitadas		
Tabla: Condicion Cursado		
Tabla: Condicion Fichadas		
Tabla: Correlativas		
Tabla: Documentacion Legajo		
Tabla: Equivalencia		
Tabla: Estado Civil		
Tabla: Historial Alumnos		
Tabla: Inscripcion a Examen		
Tabla: Localidad		
Tabla: Matriculaciones		
Tabla: Mesas		
Tabla: Modalidad Carrera		
Tabla: Modo Informe		
Tabla: Parciales		
Tabla: Provincia		
Tabla: Sede		
Tabla: Tipo Parcial		
Tabla: Titulos		
Tabla: Titulos de Grado		
Tabla: Turno Examen		

b) Consolidación de los Datos Finales

PIVOT Materia

2. Filtrado de Datos

a) Limpieza de Datos

1. Datos Faltantes

– Ej: Campos con valores nulos.

2. Datos Erróneos

– Ej: PromSecundario: valor cero (0).

3. Datos No normalizados

 – Ej: Localidades registradas como "Posadas-Misiones", "POSADAS-MISIONES", "POSADAS", "POSADAS.MISIONES", "Posadas", "PDAS", "PDAS-MISIONES", "PDAS-MNES".

b) Transformación de Datos

Valores Existentes	Valores Nuevos
BAJA DEFINITIVA	B_DEF
BAJA TEMPORAL	B_TEMP
EN CURSO	CURS
EGRESADO	EGRE

•

Valores Nuevos	Descripción
99a01	Periodo año de ingreso 1999 al 2001
02a03	Periodo año de ingreso 2002 al 2003
04a05	Periodo año de ingreso 2004 al 2005
06a07	Periodo año de ingreso 2006 al 2007
08a09	Periodo año de ingreso 2008 al 2009

Valores Existentes	Valores Nuevos
S (Soltero)	S
C (Casado), V (Viudo), y D (Divorciado/a)	С

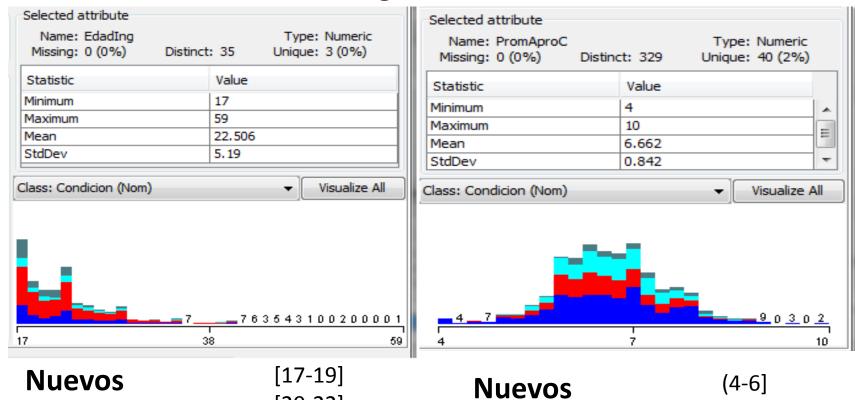
c) Estandarización e Integración de Datos Transformaciones sintácticas

Departamento:	Dpto	•Vive Padres:	VcPadr

•Grupo Carrera: Grupo C •Trabaja: Trab

•Carrera: Carr •Establecimiento: Est

•Año Ingreso: AñoIngr •Localidad: Loc


•Edad Ingreso: EdadIng •Provincia: Prov

•Sexo: Sexo •Promedio General PromGralC

Estado Civil: EstCiv
 Condición: Condición

d) Análisis Explorativo de Datos Finales -Visualización

 Análisis de las distribuciones de valores, con los que se modifican o descartan algunos.

Nuevos Valores: [17-19] [20-22] [230+)

Nuevos (4-6) Valores: (6-7) (7-10)

d) 2. Selección de Datos a Minar Vistas Minables Finales en formato ARFF:

```
@attribute Plan {LCI98,CPN98,LAD98,LCO98,CPN05,LAD05,LTH05,LCI04,LAGH99,LTH01,LC004,LGA04}
@attribute AñoAcad {1°a3°,4°a5°}
                                                                              @attribute Plan {IIN98,LSI98,IIN04,PIN05}
@attribute 1°Reg {[1-3],[4-5],[6-7],[8-9],[100+)}
                                                                              @attribute AñoAcad {1°a3°.4°a5°}
@attribute 1°Apr {[1-3],[4-7],[8-9],[100+)}
                                                                              @attribute 1°Reg {[1-3],[4-5],[6-7],[8-9],[100+)}
@attribute 2°Reg {[1-3],[4-5],[6-7],[8-9],[100+)}
                                                                              @attribute 1°Apr {[1-3],[4-7],[8-9],[10o+)}
                                                                              @attribute 2°Reg {[1-3],[4-5],[6-7],[8-9],[100+)}
@attribute 2°Apr {[1-3],[4-7],[8-9],[100+)}
                                                                              @attribute 2°Apr {[1-3],[4-7],[8-9],[10o+)}
@attribute Curs1 {[1-5],[6-7],[8-9],[10-inf)}
                                                                              @attribute Curs1 {[1-5],[6-7],[8-9],[10-inf)}
@attribute FracC1 {[0],[1],[2],[3],[4-inf)}
                                                                              @attribute FracC1 {[0],[1],[2],[3],[4-inf)}
@attribute Aprol {[0-1],[2-3],[4-5],[6-inf)}
                                                                              @attribute Aprol {[0-1],[2-3],[4-5],[6-inf)}
@attribute Curs2 {[1-5],[6-7],[8-9],[10-inf)}
                                                                              @attribute Curs2 {[1-5],[6-7],[8-9],[10-inf)}
@attribute FracC2 {[0],[1],[2],[3],[4-inf)}
                                                                              @attribute FracC2 {[0],[1],[2],[3],[4-inf)}
@attribute Apro2 {[0-1],[2-3],[4-5],[6-inf)}
                                                                              @attribute Apro2 {[0-1],[2-3],[4-5],[6-inf)}
@attribute PromAproC {(4-6],(6-7],(7-10]}
                                                                              @attribute PromAproC {(4-6],(6-7],(7-10]}
@attribute PromGralC { (1-4], (4-5], (5-6], (6-7], (7-10]}
                                                                              @attribute PromGralC {(1-4],(4-5],(5-6],(6-7],(7-10]}
@attribute PromAp1 {(4-6],(6-7],(7-10]}
                                                                              @attribute PromAp1 {(4-6],(6-7],(7-10]}
@attribute PromGr1 { (1-4], (4-5], (5-6], (6-7], (7-10]}
                                                                              @attribute PromGr1 { (1-4], (4-5], (5-6], (6-7], (7-10]}
@attribute PromAp2 {(4-6],(6-7],(7-10]}
                                                                              @attribute PromAp2 { (4-6], (6-7], (7-10] }
@attribute PromGr2 { (1-4], (4-5], (5-6], (6-7], (7-10]}
                                                                              @attribute PromGr2 { (1-4], (4-5], (5-6], (6-7], (7-10]}
@attribute EdadIng {(17-19],[20-22],[230+]}
                                                                              @attribute EdadIng {(17-19],[20-22],[230+]}
@attribute Loc {OTRAS,INT PROV,POSADAS}
                                                                              @attribute Loc {OTRAS,INT PROV,POSADAS}
@attribute Condicion {B TEMP, B DEF, EGRE, CURS}
                                                                              @attribute Condicion {B TEMP, B DEF, EGRE, CURS}
                                                                              @data
```

@data

3. Minería de datos

Técnicas Descriptivas Asociación

- AprioriSegmentación
 - > EM
 - > Cobweb (NB)
 - > K-means

Técnicas Predictivas

Selección de Atributos Clasificación

- > J48
- OneR

Resultados Característicos

		INFORMÁTICA	ADMINISTRACIÓN
	Año Académico	1° a 3° año	4° o 5° año
	Edad de Ingreso	17 -19 años	23 años o mayores
0	Asignaturas Cursadas	Mayor cantidad	Menor cantidad
	A. Cursadas/Fracasos	Medio/ Alto	Muy Bajo
	A. Cursadas/Aprobadas	Baja/Media	Media
	Promedios	Constantes	Disminución en 2° año
	Características Adicionales	 A. Aprobadas en 1° → Año Académico. 74% Baja Temp. → 4° o 5° año. 	 4° o 5° año, nivel actividad baja → Condición Egresado, Baja Temp o Definitiva.

1° y 2° Año

Resultados y Conclusiones

- >Análisis comparativo y segmentado:
 - ➤ Características similares y diferenciales → Acciones
- > Rendimiento académico en 2 tramos:
 - > Reducir niveles de clasificación
 - ➤ Obtener resultados agrupados más concretos
 - > Ajustar los datos a las estructuras curriculares
- > Más de un atributo-indicador:
 - ►Éxito o fracaso académico:
 - ➤ Calificaciones finales
 - Grado de éxito o fracaso de finalización de la carrera.

Aplicables a la Toma de Decisiones

- ➤ Incidencia de Promedios y N° de asignaturas Aprobadas
 - Medidas especiales de contención y eficacia del estudiante

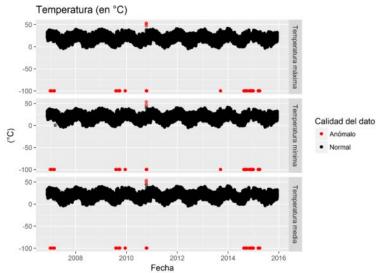
► Dpto. de Administración:

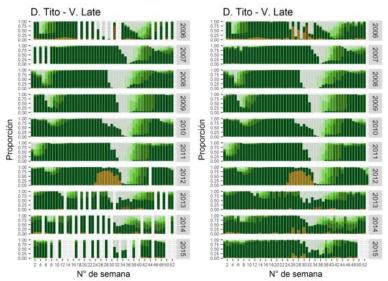
- Estrategias de apoyo diferenciadas por edades;
- Analizar contenidos, prácticas y metodologías de los espacios curriculares compartidos;

► Dpto. de Informática:

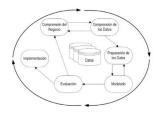
- > Acciones de retención y apoyo a alumnos de los 1ros año;
- Estrategias de motivación (finalización de la carrera);

Agricultura


"Aplicación de técnicas de minería de datos a un repositorio de variables fitofenológicas de cultivos cítricos"


Objetivo

- Determinar las características que influyen en el desarrollo de los cultivos cítricos a través de las variables fitofenológicas y del triángulo de las enfermedades que son almacenadas en el sistema FruTIC, aplicando técnicas de minería de datos
 - Demás integrantes
 - Martín Ehman, Gabriel Surraco, Sergio Garran, Vanesa Hochmaier, Armando Taie


Agricultura

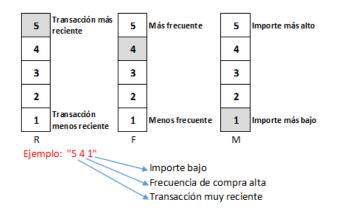
Atributo	Descripción	
Estado	Estado general de la planta. Valores posibles: Malo, Regular, Bueno, Muy Bueno.	
Brotación	Estadio de brotación de la planta observada. Valores posibles: B1, B2, B3, B3.4, B4, B5, B6, B7, B8.	
Floración	Estadio de floración de la planta observada. Valores posibles: F0, F1.0, F1.1, F2, F3, F4, F5, F6, F7, F8.	
Calibre	Diámetro ecuatorial del fruto. Valores mayores a cero.	
MTD Jackson Mediterráneo	Cantidad de moscas del Mediterráneo por día en trampas $Jackson$ Valores mayores o iguales a cero.	
MTD McPhail Mediterráneo	Cantidad de moscas del Mediterráneo por día en trampas $McPhail$ Valores mayores o iguales a cero.	
MTD McPhail Americana	Cantidad de moscas americanas por día en trampas $McPhail$ Valores mayores o iguales a cero.	
Total minador	Cantidad total de ramas con presencia de minador en la planta observada.	
Total Diaphorina	Cantidad total de ramas con presencia de <i>Diaphorina</i> en la planta observada.	

Agricultura

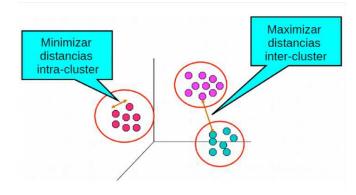
Librerías externas

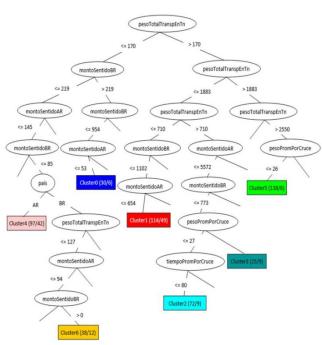
${f Atributo}$	Métrica	Modelo ganador	Modelo seleccionado
Estado	Precisión <i>Kappa</i> AUC	$random\ forest$ $random\ forest$ $xgboost$	xgboost
Brotación	Precisión <i>Kappa</i> AUC	$xgboost \\ xgboost \\ xgboost$	xgboost
Floración	Precisión <i>Kappa</i> AUC	$\begin{array}{c} \text{C5.0} \\ \text{C5.0} \\ xgboost \end{array}$	xgboost
Calibre	$\begin{array}{c} \text{RMSE} \\ \text{R}^2 \end{array}$	random forest random forest	random forest
MTD Jackson Mediterráneo	RMSE R^2	xgboost $xgboost$	xgboost
MTD <i>McPhail</i> Mediterráneo	RMSE R^2	xgboost $xgboost$	xgboost
MTD <i>McPhail</i> Americana	RMSE R^2	xgboost	xgboost
Total minador	$\begin{array}{c} \mathrm{RMSE} \\ \mathrm{R}^2 \end{array}$	random forest random forest	$random\ forest$
Total Diaphorina	$\begin{array}{c} \mathrm{RMSE} \\ \mathrm{R}^2 \end{array}$	random forest random forest	random forest

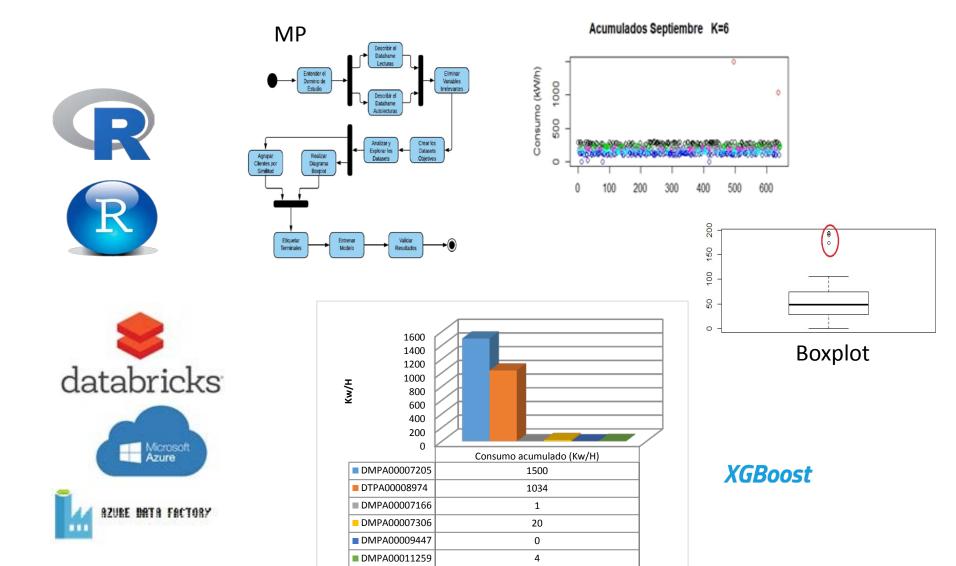

Paso de fronteras


"Determinación de perfiles de clientes de un Centro Unificado de Frontera utilizando la combinación de Técnicas de Minería de Datos"

Objetivo


- Identificar cuáles son los perfiles de los clientes propensos a disminuir o aumentar la cantidad de cruces, en el Centro Unificado de Frontera (CUF) de Santo Tome Corrientes, a través de patrones de comportamiento obtenidos mediante la combinación de técnicas de Minería de Datos (MD)
 - Demás integrantes
 - Roque Ortega


Paso de fronteras


Detección de posibles fraudes

"Detección de pérdidas no técnicas en Sistemas de Distribución de Energía Eléctrica mediante herramientas de Data Science"

Objetivo

- Determinar los patrones de comportamiento de clientes con sospecha de fraude dentro del Sistema de Distribución de Energía Eléctrica (SDEE), mediante la implementación de técnicas de data science
 - Demás integrantes
 - José Flores, Mariano Yavorski, Boris Da Silva

Detección de posibles fraudes

Elecciones

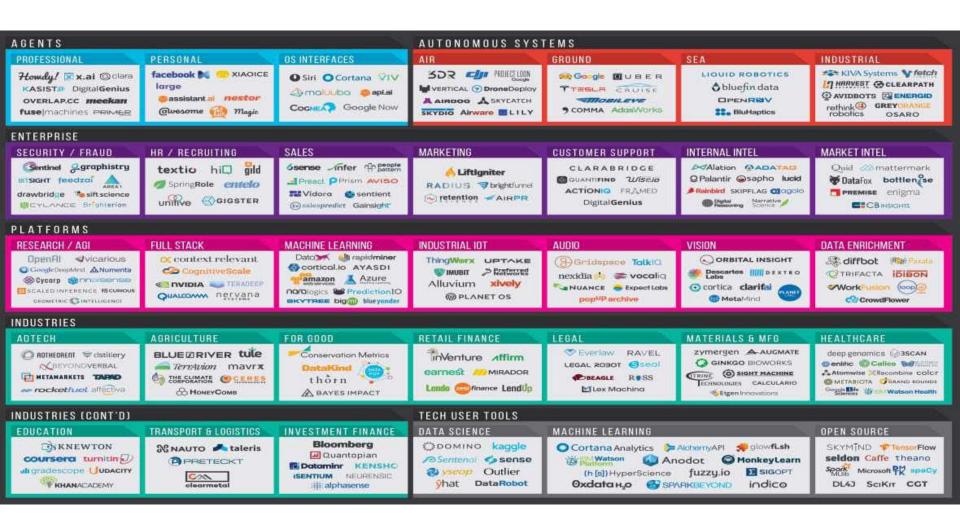
"Análisis descriptivo de resultados electorales mediante técnicas de minería de datos"

Objetivo

- Describir mediante técnicas de minería de datos las características más representativas del electorado en relación a los resultados de las elecciones del año 2011 en la Provincia de Misiones"
 - Demás integrantes
 - John Neudeck, Alfredo Moyano

Minería Web, Semántica, PLN

- "Modelo de Análisis de Información Desestructurada Utilizando Técnicas de Recopilación y Minería Web" (P-
 - Demás integrantes
 - Marcelo Karanik, Roberto Suénaga, Fabián Favret, Tokuji Kairiyama, Victor Alvarenga, Matías Barboza, Leandro Witzke
- "Técnicas, herramientas y métodos semánticos para el procesamiento y recuperación de información documental jurídica" (NJS- SPARQL Stardog)
 - Demás integrantes
 - Héctor Ruidias, Juan Manuel Lezcano, Gabriel Dehner
- "Clasificación de respuestas a consultas de disponibilidad hotelera a través de aprendizaje automático y procesamiento de lenguaje natural" (P-TensorFlow--DL)
 - Demás integrantes
 - Emanuel Friedrich, Matías Koch


IN, PLN

- "Inteligencia de Negocios aplicada a datos sobre Violencia Familiar" (Pentaho)
 - Demás integrantes
 - Rodolfo Maggio, Nicolás Silvero, Germán Pouscht
- "Extracción de Información de Historias Clínicas
 Digitales mediante Machine Learning" (IBM Watson ML)
 - Demás integrantes
 - Gabriel Candia, Sergio Montenegro, Nicolás López Forastier
- "Análisis comparativo de técnicas de inteligencia artificial como soportes para la elaboración de diagnósticos clínicos" (WEKA)
 - Demás integrantes
 - Mario Sotelo, Claudia Viera

Procesamiento de imágenes

- "Clasificación de hojas de té al ingreso del proceso de secado a través de imágenes, mediante técnicas de inteligencia artificial"
 - Demás integrantes
 - Luisina de Paula, Gabriel Guismín
- "Reconocimiento de patrones de marcas en proyectiles de armas de fuego mediante procesamiento digital de imágenes y clasificación supervisada"
 - Demás integrantes
 - Damián Dawidowicz , Manuel Quintana
- "Detección de Senecio Brasiliensis al ingreso del té al secadero utilizando Máquina de Soporte Vectorial y procesamiento digital de imágenes"
 - Demás integrantes
 - Federico Payes Alarcón, Fabián Favret

Herramientas y ecosistemas para Ciencia de Datos

Resumen

- Algoritmos/técnicas
 - Estructurados → ML: Sup. (predicción \$) o No Sup. (descripción/segmentación)
 - Texto
 - Imágenes

- Herramientas/Lenguajes
 - Herramienta
 - Lenguaje: R o Python

- Caso aplicación/uso
 - contextualizar

1

2

3

¡MUCHAS GRACIAS!