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Abstract 

The estimation of solar irradiance is performed by means of numerical weather prediction models that include 

all the necessary information to solve the temporal, geographical and atmospheric conditions variability being 

this the basis of solar energy applications. However, the radiative transfer schemes implemented in 

meteorological models show systematic errors in the simulation of global irradiance (GHI). In this contribution, 

we present a post-process analysis of the Weather Research and Forecasting (WRF) model which combines a 

Kalman Filter with Model Output Statistics for bias correction in order to improve the overall predicted values 

of GHI simulations over Paraguay. The hourly GHI is simulated at 4x4 km2 of spatial resolution. The annual 

evaluation of the hourly WRF model without post process shows relative mean bias error (rMBE) of 21% and 

relative root mean square error (rRMSE) of 81%. The results using several ground stations and combinations of 

post-process show an annual correction of systematic errors with rMBE of -0.7% and rRMSE of 70%. 

Keywords: Solar irradiance, numerical weather prediction, statistical post-process, Kalman Filter, Model 

Output Statistics. 

1. Introduction 

The increased contribution of solar energy to power generation sources requires an accurate estimation of 

global horizontal irradiance (GHI) conditioned by geographical, temporal and meteorological conditions. The 

knowledge of the variability of these factors is necessary for estimating energy production and increase its 

reliability of available solar energy into the global energy participation. The prediction of GHI is performed by 

means of numerical weather prediction models (NWP).  

NWP models simulate the earth-atmosphere system by solving fluid mechanics and thermodynamic equations, 

which describe weather processes based on initial values and boundary conditions in a nonlinear computing 

environment (Kimura, 2002). Although NWP models have been advancing rapidly along with the development 

of modern computing technology, numerical prediction errors are inevitable due to the following (Liang et al., 

2007): 1) NWP models cannot exactly describe all the physical processes of the atmosphere (e.g. complex 

cloud formation); 2) There are random errors in the initial values (observations); 3) Rounding errors accumulate 

during computing processes; 4) The spatial coverage of observed input is incomplete, especially above the 

surface. 

Specifically, systematic errors of simulations of radiative transfer schemes of NWP models are mainly due to: 

1) Miscalculation of location of the clouds and total cloud water content in the layers of the atmosphere; 2) 

Incorrect specification of the optical thickness of aerosols; 3) Decrease of atmospheric water vapor absorption 

for clear skies conditions. Therefore, the use of statistical post-processing methods may have the potential to 

satisfy the requirements of solar irradiance forecasting for up to several days ahead and its application in solar 

devices (Heinemann, 2006). These post-processing methods seek to improve the accuracy of the forecast by 

reducing both systematic and random errors, while preserving or improving the correlation with observations 

(Wilks, 2006). Among different statistical post-processes, the Model Output Statistics (MOS) and the Kalman 

Filter are the ones most extended within the atmospheric community. 
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The MOS proposed by Glahn and Lowry (1972), and developed by National Weather Service of United States 

is often used to forecast weather variables near the surface. MOS relates weather variables at specific locations 

to NWP model output in a historic dataset by multiple linear regression. In solar irradiance forecasting, Lorenz 

et al., (2009) and Mathiesen and Kleissl (2011) applied a multivariate fourth-order regression to derive the 

MOS correction function of solar irradiance in NWP models. One of the limitations of MOS is that a high 

number of days are needed to adjust the MOS coefficients.  

The Kalman Filter method (Kalman, 1960) provides a linear dynamic relationship by estimating the previous 

error and a correction factor proportional to the forecast error with minor computational cost and easy 

adaptation to any changes in the observations. The Kalman has been used to correct NWP variables (e.g. 

Monache et al., 2011; McCollor and Stull, 2008; Roeger et al., 2003). Pelland et al. (2011) present an 

adjustment of solar irradiance in an NWP model using the Kalman algorithm. Unlike the MOS, Kalman method 

only needs a short training period and puts more weight on recent data than to older observations. However, 

Kalman Filter is not likely to predict sudden changes in the forecast error caused by rapid transitions from one 

weather regime to another (Monache et al., 2011). Thereby, Kalman Filter is unable to predict a large bias when 

all the biases for the past few days have been small.  

Therefore, in this contribution, we present a combination of MOS-Kalman techniques to reduce their limitations 

when applied separately. The MOS-Kalman post-process has been applied for bias-correction on an annual 

simulation of GHI computed with the Weather Research and Forecasting (WRF-ARW) meteorological model 

(Skamarock et al., 2008). The post-process MOS-Kalman is easier to apply than others methods such as 

Artificial Neural Networks, Bayesian model averaging or analog methods (Zhang et al., 2015). Thus, we use 

the MOS-Kalman post-process to improve the accuracy of GHI simulated by the WRF-ARW model, 

significantly reducing the systematic error in all sky conditions for the full range of Sun’s vector position for 

the ground stations of Paraguay. 

2. Methodology 

2.1. WRF-ARW meteorological model 

The WRF-ARW mesoscale model (v3.7.1/2015) has been used to compute the GHI over the geographic area of 

Paraguay. It is a fully compressible and nonhydrostatic Eulerian model with the latest advances in 

meteorological mesoscale modelling and incorporates the state-of-the-art of physical parameterizations 

(microphysics, longwave radiation, shortwave radiation, land-surface model, planetary boundary layer and 

cumulus parameterization). Furthermore, it is a worldwide reference model used as a research tool and 

operational weather prediction.  

Table 1 summarizes the main characteristics of the parameterizations used by the WRF-ARW model as applied 

in this contribution. The radiation schemes provide atmospheric heating due to radiative flux divergence and 

surface downward longwave and shortwave radiation for the ground heat budget. The longwave radiation 

(RRTM scheme) includes infrared or thermal radiation absorbed and emitted by gases and surfaces, while the 

shortwave radiation (Dudhia scheme) explicitly considers extinction by Rayleigh atmosphere and water vapor 

only. The Dudhia scheme (Dudhia, 1989) consists of a simple broadband parameterization of GHI that includes 

visible and surrounding wavelengths that make up the solar spectrum. It is a downward integration allowing 

efficiently for clouds and clear-sky absorption and scattering, but it does not account for multiple scattering 

effects. Extinction by ozone, aerosols, and other molecular absorbers are considered through a bulk scattering 

parameter that was empirically set to represent average turbidity conditions (Zamora et al., 2005). 

The WRF-ARW model is run in diagnostic (hindcast mode) over the South American continent with three 

nested domains centered over Paraguay having 36 km, 12 km and 4 km horizontal grid resolution, 30 vertical 

layers and the outputs are stored at hourly temporal resolution. Initialization and boundary conditions are 

provided by the dataset DS090.0 Reanalysis with information available at 6 hour intervals (NCEP/NCAR, 

1994). The GHI hourly simulations consist of 365 daily runs to simulate the entire year 2015. The choice of this 

specific year is based on the availability of ground stations of GHI for this year (see section 3). 

2.2. Post-process description 

The Model Output Statistics (MOS) and the Kalman Filter are techniques which are used to estimate the 

systematic component of the forecast errors reducing the future bias from past forecast and observations in 

order to improve the forecast. The bias-removal post-processes used are briefly described below. 
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Tab. 1: Parameterizations schemes used in WRF-ARW model (v3.7.1) for the annual simulation in Paraguay of 2015.  

Parameterization Scheme Short description 

Microphysics WRF Single-Moment 3-class 

(Hong et al.,  2004) 

A simple, efficient scheme with 

ice and snow processes suitable 

for mesoscale grid sizes. 

Longwave Radiation RRTM scheme (Mlawer et al., 

1997) 

Scheme using lookup tables for 

efficiency. Accounts for multiple 

bands and microphysics species 

Shortwave Radiation Dudhia scheme (Dudhia, 1989) Simple downward integration 

allowing efficiently for clouds 

and clear-sky absorption and 

scattering. 

 

Surface Layer 

MM5 surface layer scheme 

(Fairall et al., 2003) 

The scheme is sped up to give 

similar timing as with the old 

MM5 scheme. The thermal and 

moisture roughness lengths over 

ocean are changed to COARE 3 

formula 

 

Land Surface 

Unified Noah land-surface model 

(Niu et al., 2011) 

Scheme with soil temperature and 

moisture in four layers, fractional 

snow cover and frozen soil 

physics. 

Planetary Boundary layer Yonsei University scheme (Hong 

et al., 2006). 

Scheme with the analysis of the 

interaction between the boundary 

layer and precipitation physics, 

explicit treatment of the 

entrainment layer at the PBL top 

and an enhanced stable boundary-

layer diffusion algorithm. Allows 

deeper mixing in windier 

conditions. 

Cumulus Kain-Fritsch scheme (Kain, 2004) Deep and shallow convection 

sub-grid scheme using a mass 

flux approach with downdrafts 

and removal time scale. 

2.2.1. Model Output Statistics (MOS) 

The MOS (Glahn y Lowry, 1972) is a technique that has the ability to predict the systematic error through 

polynomial regression and applies to objectively improve correlations between simulations and observations. 

Correction of the systematic deviation in the solar irradiance simulations through the MOS technique is realized 

following the methodology proposed by Lorenz et al., (2009) and Mathiesen and Kleissl (2011). Equation 1 

shows the fourth order polynomial regression established for the present study, which relates the interaction of 

the atmospheric state and the sun position in the adjustment of the MOS regression in order to minimize the 

systematic error in the simulations. 

𝐵𝑖𝑎𝑠𝐶 = 𝜀 + 𝛼1 · 𝑘𝑡
∗ + 𝛼2 · cos(𝑆𝑍𝐴) + 𝛼3 · (𝑘𝑡

∗)2 + 𝛼4 · 𝑘𝑡
∗ · cos(𝑆𝑍𝐴) + 𝛼5 · (cos(𝑆𝑍𝐴))2 + 𝛼6 · (𝑘𝑡

∗)3 +

𝛼7 · (𝑘𝑡
∗)2 · cos(𝑆𝑍𝐴) + 𝛼8 · 𝑘𝑡

∗ · (cos(𝑆𝑍𝐴))2 + 𝛼9 · (cos(𝑆𝑍𝐴))3 + 𝛼10 · (𝑘𝑡
∗)4 + 𝛼11 · (𝑘𝑡

∗)3 · cos(𝑆𝑍𝐴) +

𝛼12 · (𝑘𝑡
∗)2 · (cos(𝑆𝑍𝐴))2 + 𝛼13 · 𝑘𝑡

∗ · (cos(𝑆𝑍𝐴))3 + 𝛼14 · (cos(𝑆𝑍𝐴))4 (eq. 1) 

Where 𝑘𝑡
∗ and cos(𝑆𝑍𝐴) are incorporated as independent variables of regression, which perform the bias 

estimation (𝐵𝑖𝑎𝑠𝐶) through constant 𝜀 and regression coefficients (𝛼1…14). The 𝑘𝑡
∗ (eq. 2) is the index of 

atmospheric transparency and cos(𝑆𝑍𝐴) is the cosine of the solar zenith angle, which depend of the modelled 

irradiance (GHI𝑤𝑟𝑓) and the theoretical attenuation of extraterrestrial irradiance (GHI𝑇𝐴), estimated based on 

astronomical calculations of Sun's declination, daily and hourly sun angle, earth's eccentricity and solar 

constant (Duffie and Beckman, 1991; Iqbal, 1983; Spencer, 1971). 

𝑘𝑡
∗ =

𝐺𝐻𝐼𝑤𝑟𝑓

𝐺𝐻𝐼𝑇𝐴
          (eq. 2) 
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2.2.2. Kalman Filter 

The Kalman Filter algorithm (Kalman, 1960) establishes a dynamic linear relationship by estimating the 

previous error and a correction factor proportional to the forecast error. The Kalman optimizes the systematic 

error using a recursive adaptation of its coefficients at each time step. This adaptation can reduce the training 

period between simulations and observations.  

The Kalman Filter bias-adjustment is a well-known and widely used technique. According to description of the 

algorithm presented by Delle Monache et al. (2006), calculating the systematic error (𝑥) for a future time step 

(𝑡 + ∆𝑡|𝑡) is performed by: 

𝑥𝑡+𝛥𝑡|𝑡 = 𝑥𝑡|𝑡−𝛥𝑡 + 𝛽𝑡|𝑡−𝛥𝑡 · (𝑦𝑡 − 𝑥𝑡|𝑡−𝛥𝑡)          (eq. 3) 

Where, previous estimation error is 𝑥𝑡|𝑡−𝛥𝑡, the gain factor is 𝛽𝑡|𝑡−𝛥𝑡 and the forecast error at time 𝑡 is 

determined by 𝑦𝑡 . The gain factor calculated by equation 4 is the adjustment of recursive algorithm that 

depends of the expected mean square error (𝑝), the previous error variance (𝜎𝜂
2) and the forecast error variance 

(𝜎𝜀
2). 

𝛽𝑡|𝑡−𝛥𝑡 =
𝑝𝑡−∆𝑡|𝑡−2∆𝑡+𝜎𝜂

2

(𝑝𝑡−∆𝑡|𝑡−2∆𝑡+𝜎𝜂
2+𝜎𝜀

2)
          (eq. 4) 

The proportion established between the previous error variance and the forecast error variance is a parameter 

called error ratio: 

ratio =
𝜎𝜂

2

𝜎𝜀
2              (eq. 5) 

The error ratio is a crucial parameter to be calculated in the application of the algorithm that determines the 

performance from the random error caused by the noise of the number system. Therefore, optimizing the error 

ratio indicates the relative weighting of the observed and simulated values of the study area. Thus, if the ratio is 

too high, the error white-noise variance will be relatively small compared to the true bias white-noise variance 

(𝜎𝜂
2 > 𝜎𝜀

2). Therefore, the filter will put excessive confidence on the previous simulated values, and the 

predicted bias will respond very quickly to previous calculated errors. On the other hand, if the ratio is too low, 

the predicted bias will change too slowly over time. Consequently, there exists an optimal value for this ratio, 

which can be estimated by evaluating the filter performance in different situations. 

2.3. Statistical parameters 

The statistical parameters utilized in the present study for the model evaluation are: Mean Bias Error (MBE), 

Root Mean Square Error (RMSE) and Pearson Correlation Coefficient (r). In a similar manner, the relative 

percentage values of the MBE and RMSE are utilized, the so-called Relative Mean Bias Error (rMBE) and the 

Relative Root Mean Square Error (rRMSE). Parameters of statistical distribution are also utilized, which allow 

analysis of the variation of the central position (median, 50%) and the measurements of non-central positions 

such as the quartile range 25%, quartile range 75% and quartile range 90%. The aforementioned parameters 

allow measuring the precision in the pair of values model-observation and postprocess-observation correction. 

3. Radiometric ground stations 

The radiometric database used in this work belongs to the FECOPROD agroclimatic network based on Davis 

automatic stations equipped with photodiode sensors. Most of the stations are less than five years old and 

sampling time is standardized in 15 minutes. The automatic stations compute the average GHI over the 

sampling time using a local standard time (LST) reference. The time parameter takes into account the daylight 

saving time (DST) established by the national government. FECOPROD owns approximately 30 stations and 

manages another 30 stations from diverse owners. Only FECOPROD owned stations with at least 75% annual 

coverage between January 1 and December 31 of 2015 were used in this work. The 14 stations that met these 

conditions are summarized in Table 2. 
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Tab. 2: FECOPROD ground station network over Paraguayan territory with at least 75% cover of year 2015. 

# Station Altitude (m a.s.l) Latitude (°) Longitude (°) 
Series long. 

(month) 

1 Asunción 100 -25,2616 -57,5784 58 

2 Curupayty 302,1 -25,8425 -54,9712 54 

3 Friesland 110 -24,6085 -56,7873 53 

4 San Pedro 84,1 -24,0826 -57,0736 15 

5 Agua Dulce 139,9 -19,500 -59,7981 20 

6 Edelira 114 -26,5766 -55,4975 52 

7 Pirizal 156,1 -22,9658 -60,6426 55 

8 Neuland 44,8 -22,6714 -60,1175 53 

9 Sommerfeld 235,9 -25,4337 -55,6958 50 

10 Paratodo 128 -23,2260 -59,6026 44 

11 Las Palmas 125 -21,7365 -59,5486 46 

12 Bergthal 245,1 -25,2965 -55,583 45 

13 Esperanza 227,1 -22,1736 -61,4947 24 

14 Concepcion 86,9 -23,4098 -57,4121 20 

3.1. Quality control of the data 

Before assessing the quality of measurements, the adjustment of time series to the coordinated universal time 

(UTC) reference and a visual inspection of intra-hourly GHI data were carried out. The further quality test is 

based on Roesch et al. (2011) empirical method. The authors have investigated the impact of data gaps caused 

by missing or discarded data on GHI monthly mean assessment for the Baseline Surface Radiation Network 

(BSRN) database. Two of three procedures proposed in this paper were applied in this work: 1) The “physically 

possible” procedure aims at detecting extremely large errors in the radiation data, and 2) The “extremely rare” 

procedure flags data that may occur over very short time periods under very rare conditions. Data of “good 

quality” are assumed to be inside the “extremely rare” limits. No “acrossing quantities” were carried out since 

there are not diffuse or direct radiation measurements available. Table 3 summarizes the limits used for data 

flagging. 

Tab. 3: Numerical criteria for quality assessment of radiometric data. 

Procedure Parameter Lower bound Upper bound 

Physically possible GHI −4 𝑊𝑚−2 1.5 · 𝑆0 · 𝜇1.2 + 100 𝑊𝑚−2  

Extremely rare GHI  −2 𝑊𝑚−2 1.2 · 𝑆0 · 𝜇1.2 + 50 𝑊𝑚−2 

Ref: 𝑆0; Solar constant adjusted for Earth-Sun distance 𝜇; Cosine of solar-zenith angle 

 

The number of flagged (discarded) data is a good indicator of measures quality and continuity. Figure 1 

summarizes the amount of daily series discarded upon a 60% valid data of all possible intra-hourly diurnal data. 

i.e. for a daylight duration of 7 hours and a 15min sample time (28 possible data) at least 17 data should be 

valid to be computed. Most of the dataset performed very good except for Friesland, Agua Dulce and 

Concepción. The problem in most of the cases are due incompleteness of daily series. 

3.2. GHI hourly means computation 

For the computation of hourly means of GHI, a similar criteria to the M2 method tested by Roesch et al. (2011) 

was applied using hourly data instead of monthly data. This adaptation consist in the computation of hourly 

means but excluding all observations that are outside the most lenient quality flag identified as “extremely rare” 

limits without filling removed data or originally missing measurements. Finally, means are assessed only for 

hourly laps with 100% available intra-hourly data after passing the quality control process.  
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Fig. 1. Consolidated information of discarded data as result of ground data quality-test 

4. Annual simulation of WRF-ARW model 

4.1. Evaluation of GHI 

An annual evaluation of hourly GHI simulated by the WRF-ARW model over Paraguay used fourteen ground 

stations to analyze the model behavior. The methodology employed for validation is cell-point verification, 

which compares the punctual-observations with the values of the cells where the observations are located. This 

methodology supposes that the two values are comparable, although the observation is a temporal value which 

is spatially punctual, as opposed to the modelled result, which is a temporal value that is spatially averaged. 

Therefore, the mean stations present an annual bias of 47 W m-2 (rMBE=21%), RMSE of 178 W m-2 

(rRMSE=81%) and correlation coefficient r of 0.87. Figure 2 presents the results of the hourly comparison 

between the observed and modelled GHI for the average of ground stations in the year 2015. On the left side, 

figure 2a shows the annual tendency wherein the behaviour of the median (red line), the quartile range 75% 

(green lines) and the quartile range 90% (blue lines) show a marked overestimation in the GHI range between 

200 and 1000 W m-2, which represents almost the entire measurement range. The frequency histogram (blue 

bars) indicates the distribution of data pairs obs-mod compared, where it shows a gradual decrease with the 

increase of the range measured. Thus, the compared values vary from about 20000 in the range 0-200 W m-2 to 

less than 2000 between 1000 and 1200 W m-2. 

On the right side, figure 2b depicts a box diagram with the hourly quartile range of the modelled GHI (blue 

rectangles) compared to the observed GHI (gray rectangles). The results allow analysis of the daily cycle 

distribution between 10:00h and 22:00h UTC, through the behaviour of the median (central black line), the first 

quartile 25% (lower limit of the rectangle), third quartile 75% (upper limit of the rectangle) and atypical 

maximum and minimum values (pointed black lines). In essence, throughout the daily cycle persistence in the 

overestimation of the modelled GHI is observed, which is accentuated between 12:00h and 19:00h UTC, 

wherein a difference superior to 100 W m-2 is highlighted between the quartile 75% and the median. In this 

way, the overestimation is related to the hourly range of increased incidence of solar irradiance in the day.  

The results of the seasonal evaluation are shown in Table 4. Bias and rMBE values for spring-summer are 

significantly higher (bias>60 W m-2, rMBE>23%) than the values shown for autumn-winter (bias<21 W m-2, 

rMBE<11%). Regarding to RMSE values, the differences are less significant between spring-summer 

(RMSE>198 W m-2) and autumn-winter (RMSE<150 W m-2). Likewise, rRMSE values shown a difference of 

autumn (rRMSE=83%) in relation to the other seasons (rRMSE<75%). Therefore, the seasonal overestimation 

observed is related to the months of higher incidence of solar irradiance in the year. 

In order to assess the model ability to reproduce the GHI with respect to the Sun’s position vector and 

atmospheric conditions, figure 3 shows the annual bias evaluation in function of cos(𝑆𝑍𝐴) and index 𝑘𝑡
∗. The 

cos(𝑆𝑍𝐴) values range from 0 to 1, which correspond to the horizon plane (90°) to the zenith (0°). Meanwhile, 

the index 𝑘𝑡
∗ establishes the typical weather conditions depending on the cloud cover present in three different 

scenarios: 1) Clear-sky (𝑘𝑡
∗ > 0.65); 2) Cloudy (0.4 < 𝑘𝑡

∗ < 0.65) and Overcast (𝑘𝑡
∗ < 0.4). Therefore, GHI 

overestimation is observed with higher bias of 80 W m-2 for clear-sky and cloudy conditions with zenith angles 
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less than 60º (dark red zones), while GHI underestimation with a bias below -80 W m-2 is observed for all cloud 

cover and zenith angles greater than 60º (dark blue zones). 

Tab. 4: Seasonal evaluation values of WRF-ARW model for 14 ground stations in Paraguay for 2015. 

Season GHI mean (W m-2) Bias (W m-2) rMBE (%) RMSE (W m-2) rRMSE (%) r 

Summer 292 68 27 207 71 0.87 

Autumn 182 12 6 150 83 0.84 

Winter 197 21 11 132 67 0.90 

Spring 262 60 29 198 75 0.87 

Year 223 47 21 178 81 0.87 

 

 

Fig. 2: Comparison of GHI observed and GHI modelled for 14 ground stations in Paraguay for 2015. a) Annual trend of hourly  

data for median 50% (continuous red line), range of quartile 75% (green dotted lines), range of quartile 90% (blue dotted lines) 

and frequency distribution histogram (blue bars); b) Daily cycle distribution by hours of GHI observed (gray bars) and GHI 

modelled (blue bars). 

 

Fig. 3: Bias evaluation of WRF-ARW model in function of cosine of solar zenith angle (𝐜𝐨𝐬(𝑺𝒁𝑨)) and index of atmospheric 

transparency (𝒌𝒕
∗) for 14 ground stations in Paraguay for 2015. 

These results of WRF-ARW model evaluation compare with other NWP model evaluations (e.g. Rincon et al., 

2013; Mathiesen and Kleissl, 2011; Lara-Fanego et al., 2011; Ruiz-Arias et al., 2008; Heinemann, 2006; 

Zamora et al., 2005) from different geographical latitudes, which allow to establish similar systematic errors of 

the shortwave radiation scheme of Dudhia (1989) used in this work. 

4.2. Implementation and adjustment of MOS-Kalman post-process 

In order to solve the limitations of the techniques MOS and Kalman separately, a combination of adjustments of 

bias-removal by the algorithms is performed. On the one hand, the adjustment of MOS regression (eq. 1) is 

realized through a training process that allows obtaining the regression coefficients through the relative weights 

of the independent variables (Lorenz et al., 2009). The hourly records of 𝑘𝑡
∗ (eq. 2) and cos(𝑆𝑍𝐴) are utilized 

for obtaining the average bias through the numerical interaction of the aforementioned variables (between 0 and 

1). Thus, to perform these interactions tests of different time intervals are realized for a period from 7 to 90 

days, where a period of training is obtained equal to 60 days for all ground stations of Paraguay. Numerical 

interactions allow obtaining the relative weights establishing bias of the training data. As a consequence, a 
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matrix of relative weights and a matrix of average bias for previous 60 days are obtained in order to calculate 

the coefficients of the MOS regression for all days analyzed in the year (e.g. training data for MOS regression 

of day 61 is from 1 to 60 days, training data for MOS regression of day 62 is from 2 to 61 days, etc.). 

On the other hand, the implementation of the Kalman filter is performed in two steps: Optimization of error 

ratio (eq. 5) and adaptation of the Kalman algorithm to dataset.  

The optimal error ratio between variances of previous error and forecast error for GHI data is a testing of 50 

error ratios. The range from 0.01 to 5 has been selected for all ground stations considered over the entire year 

2015. We consider that because the solar irradiance dynamic is related to a seasonal cycle, it is important to 

take into account the variations of the ratio over the seasons. Therefore, we calculate bias and RMSE values 

over the four seasons to gauge the impact of different error ratio values on the model performance (figure 4). 

The optimal error ratio minimizes the bias (figure 4a) and minimizes the RMSE (figure 4b) for all seasons. 

Hence, we use an optimal value varying seasonally for all ground stations. Table 5 summarizes the optimal 

ratio values calculated for this work (e.g. spring with optimal ratio of 0.41 reduces bias from 71 to 10 W m-2 

and RMSE from 206 to 182 W m-2). 

 

Fig. 4: Seasonal ratio sensitivity for the hourly GHI over 14 ground stations of Paraguay. a) Bias; b) RMSE. Values are computed 

with the ratio ranging from 0.01 to 5, plotted on logarithmic scale. Perfect bias and RMSE would be 0 W m-2. On the plots bias 

and RMSE are reported before the application of the Kalman Filter. 

Tab. 5: Error ratio values calculated regarding to bias and RMSE for the seasons of the year 2015.   

Season Error ratio 

Autumn 0.21 

Spring 0.41 

Summer 0.41 

Winter 0.21 

 

The adaptation of the Kalman algorithm to data is done through a training period, which allows the adjustment 

of parameters using previous simulations and observations. Tests on Paraguay ground stations for a period 

between 6 and 20 days establish a training period equal to 15 days. Therefore, adjusting the Kalman algorithm 

is performed for each day of the year using the 15 days previous as training period. 

Finally, the systematic error estimation (𝐵𝑖𝑎𝑠𝐶) of MOS regression and Kalman algorithm allow to correct the 

model simulation (𝐺𝐻𝐼𝑤𝑟𝑓) and thereby obtain the 𝐺𝐻𝐼𝐶  correction: 

𝐺𝐻𝐼𝐶 = 𝐺𝐻𝐼𝑤𝑟𝑓 − 𝐵𝑖𝑎𝑠𝐶         (eq. 6) 

5. Results 

5.1. Application of post-processing 

In order to better understand the impact of reduction of systematic errors for the post-processes, figure 5 shows 

the results for several combinations of post-process adjustments for the year and the four seasons with respect 

to the raw model (black bars): 1) Only fit of MOS regression (blue bars), 2) Only fit of Kalman algorithm (red 

bars), 3) Fit of mean between MOS and Kalman corrections (orange bars) and 4) Fit of Kalman for corrections 
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produced by MOS (green bars). Figure 5a show the significant relative bias-removal (rMBE) of all 

combinations for the year, where the best reduction is the fit of Kalman over outputs of MOS with -0.7% from 

21% of the raw model. The same configuration shows the best bias-removal for summer and spring from 27% 

and 29% to -0.4% and 0.3%, respectively. Furthermore, figure 5b shows the annual decrease of rRMSE with 

less marked differences between raw model and post-processing combinations. The fit of mean between MOS 

and Kalman (69%) and Fit of Kalman to MOS (70%) show the largest corrections from the raw model (81%). 

Unlike figure 5a, where the combination of post-processes presents better results in bias-removal, the figure 5b 

shows less removal of rRMSE for the periods of time analyzed. This lower reduction of rRMSE could be 

associated with stochastic errors related to numerical random. 

 

Fig. 5: Comparison of percentage of removal of a) rMBE and b) rRMSE from the raw model (black bars), fit MOS (blue bars), fit 

Kalman (red bars), fit mean of bias-removal of MOS and Kalman (orange bars) and fit Kalman over MOS (green bars) for year 

and seasons periods of Paraguay for 2015. 

Figure 6 shows the annual bias correction of four combinations of post-process in function of cos(𝑆𝑍𝐴) and 𝑘𝑡
∗. 

The bias correction is applied to zenith angles less than 75º (right of the dotted line with cos(𝑆𝑍𝐴) > 0.26), 

which represents the Sun’s position vector 15º from the horizon until the zenith. It analyzes the changing shades 

of dark red (overestimation) and dark blue (underestimation) of model (figure 3) to light colors shown in figure 

6 for the post-processes. This change in tone towards yellow color indicates bias correction for cloudy and 

clear-sky conditions (𝑘𝑡
∗ > 0.4), where the Kalman-to-MOS post-process (figure 6d) presents the best results of 

correction with an annual bias of -2 W m-2, whereas single Kalman correction (figure 6b) and mean MOS and 

Kalman (figure 6c) show problems in correcting underestimation for cloudy and clear-sky days for zenith 

angles between 60º to 75º. Therefore, we have chosen the Kalman-to-MOS as post-process configuration for 

bias-removal of GHI simulated by WRF-ARW model.  

 

Fig. 6: Bias correction of WRF-ARW model in function of cosine of solar zenith angle (𝐜𝐨𝐬(𝑺𝒁𝑨)) and index of atmospheric 

transparency(𝒌𝒕
∗): a) MOS correction, b) Kalman correction, c) Mean of MOS and Kalman correction and d) Kalman-to-MOS 

correction.  
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5.2. Improvement of GHI corrected by Kalman-to-MOS post-process 

The results of annual bias correction of Kalman-to-MOS post-process are presented in the figure 7. On the left 

side, figure 7a shows the results of the hourly comparison between the observed and corrected GHI, where it 

observed a significant remove of overestimation between 0-1000 W m-2 of the raw model observed in figure 2a. 

The median and quartile ranges show a reduction of systematic error for the entire measuring range. 

On the right side, figure 7b presents a box diagram with hourly comparison of GHI corrected (light blue 

rectangles) in relation to GHI modelled (blue rectangles) and GHI observed (gray rectangles). The results allow 

analysis of low variability of the hourly distribution for the median, quartile 25% and quartile 75% with a 

difference of less than 50 W m-2 between corrections and observations from 10:00 to 20:00h UTC. Significant 

reduction of overestimation of model within the hours of highest incidence of solar irradiance in the middle of 

the day is highlighted. 

The statistical results of the annual and seasonal corrections are summarized in table 6. The comparison of bias 

with respect to the raw model (table 2) provides a significant improvement for summer from 68 to -1.1 W m-2 

(27 to -1.5%) and spring from 60 to 0.8 W m-2 (29 to 0.3%), which present the seasons with most systematic 

model errors. Regarding to reduction of RMSE, the differences are less significant for summer from 207 to 169 

W m-2 (71 to 61%) and spring from 198 to 175 W m-2 (75 to 68%), demonstrating a persistence of non-

deterministic errors.  

 

Fig. 7: Comparison of GHI observed and GHI corrected for 14 ground stations in Paraguay for 2015. a) Annual trend of hourly  

data for median 50% (continuous red line), range of quartile 75% (green dotted lines), range of quartile 90% (blue dotted lines) 

and frequency distribution histogram (blue bars); b) Daily cycle distribution of GHI observed (gray bars), GHI modelled (blue 

bars) and GHI corrected by Kalman-to-MOS (light blue bars). 

Tab. 6: Results of Kalman-to-MOS bias correction for 14 ground stations in Paraguay for 2015. 

Season Bias (W m-2) rMBE (%) RMSE (W m-2) rRMSE (%) r 

Summer -1.1 -1.5 169 61 0.85 

Autumn -0.8 -0.4 147 81 0.82 

Winter -1.8 -1.4 126 64 0.89 

Spring 0.8 0.3 175 68 0.85 

Year -1.5 -0.7 156 70 0.85 

 

Therefore, the seasonal overestimation of the raw model for the months of higher incidence of solar irradiance 

in the year is corrected by Kalman-to-MOS post-process. 

6. Conclusions and future work 

This contribution presents the assessment and improvement of the simulation of global irradiance based on 

post-processing techniques applied on outputs of WRF-ARW model. The analysis is performed on a full year 

meteorological simulation of 2015 for the Paraguay domain. The evaluation focuses on the capability of MOS 

regression and Kalman filter algorithm to improve the forecast of solar irradiance, estimating and comparing 

their uncertainty.  

The evaluation of the simulation of the GHI establishes a systematic overestimation throughout the year 2015. 
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Such overestimation is due to the mainly positive bias and RMSE values for spring and summer, which are 

presented in wide angle zenith ranges to cloudy and clear skies in the study area. The evaluation shows the 

weaknesses of the Shortwave Radiation of Dudhia scheme due to incorrect location of clouds and total cloud 

water, besides the lack of precision in the empirical adjustment of scattering parameter that defines the average 

of atmospheric extinction of molecular absorbers. 

We apply and evaluate four combinations of the two post-processes on the raw model outputs in order to 

improve the irradiance predictions reducing the systematic error. The fit of Kalman-to-MOS provides better 

results than the others combinations, reducing the errors of the raw model up to 97% of annual bias and 13% of 

annual RMSE. The aim of the Kalman-to-MOS combination is to apply an initial correction of the systematic 

error using MOS and subsequently utilize Kalman in order to avoid sudden changes of the GHI forecast that 

only Kalman fails to capture. Thereby, a Kalman-to-MOS post-process can predict a large bias when all the 

biases for the past few days have been small, especially for spring and summer. 

Among future developments of the work, we highlight the implementation of other post-processes as artificial 

neural networks and the use of other physics parameterizations that allow reduces stochastic errors related with 

high RMSE values. Also under consideration is the generation of surface energy maps allowing spatial 

visualization of the post-processing results, implementation to solar energy production system and validation of 

the system through real data of photovoltaic and thermal cells production in Paraguay. 
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