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Introduction

Principal component analisys (PCA) is a data analysis technique for
mapping points in R"” to a two or three dimensional space. This dimen-
sionality reduction preserves the natural grouping of points and infor-
mation of data. This is done optimally by an ortogonal projection of
the points in R" over the subspace generated by eigenvectors associated
to the two or three greatests eigenvalues of the covariance matrix. It
is well known that computing eigenvalues in general is computationally
expensive, and therefore, several authors use techniques of numerical ap-
proximation. Furthermore, computations are more efficient whenever the

matrices are sparse and memory costs can be reduced.

It can be proved that adding zeros in a symmetric matrix M is equivalent
to delete edges of a graph that represent M. This way, we can study this
problem using graph theory:.

Spectral Sparsification

Let G = (V, E,w) be an undirectecfiv Weighteg oraph. We want to ap-
proximate G by a sparse subgraph G = (V, E, w), such that, given an
e € (0,1), and for all z € R”

(1—e)z' Lgz <a' Lzz < (1 + €)' Lex,

where L and Ly are the laplacian matrix of G and G, respectively.

m

Theorem (Zouzias) Suppose a < e < 1 and A = > fUZ'”UZ-T are given,
i=1
with column vectors v; € R™. Then there are non-negative real weights

{s;} at most [n/€?]| of which are non-zero, such taht

(1—€)PA=A=(1+¢)0A,

- m
where, A = sy .
i=1

Proposal

Apply Zouzias’'s theorem to a covariance matrix S according to the fol-
lowing scheme.

Apply PCA
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Experiments

We give an example of the behavior of the eigenvalues of a symetric
matrix S and its associated laplacian matrix L(.S), built according to
the previous scheme.
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Conclusions

We observed that the eigenvalues greater of S and L(.S) tend to have
the same values. This suggests us that by this scheme, we could use the
L(S) matrix, to apply PCA using a principal component.
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