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Abstract—This paper presents a comparative study of two
discrete nonlinear current controllers with fixed switching fre-
quency, one based on the model predictive control and the
other to robust discrete-time sliding mode, applied to a six-
phase induction machine. The outer speed control is based on the
proportional-integral controller. Simulation results are presented
to demonstrate the performance of the two current control
strategies using the mean squared error, root mean square and
total harmonic distortion as figures of merit, thus concluding the
advantages and limitations of each current controller at steady
and transient states.

Index Terms—Discrete time sliding mode, finite state model
predictive control, fixed switching frequency, multiphase induc-
tion machine, pulse width modulation, space vector modulation.

NOMENCLATURE

DTSM Discrete time sliding mode.
FCS-MPC Finite control set model predictive control.
IGBT Isolated gate bipolar transistor.
IRFOC Indirect rotor field oriented control.
KF Kalman filter.
M2PC Modulated model predictive control.
MPC Model predictive control.
MSE Mean squared error.
PCC Predictive current control.
PI Proportional integral.
PWM Pulse width modulation.
RMS Root mean square.
SIM Six-phase induction machine.
SMC Sliding mode control.
SVM Space vector modulation.
TDE Time delay estimation.
THD Total harmonic distortion.
VSD Vector space decomposition.
VSI Voltage source inverter.

I. INTRODUCTION

Multiphase machines have received great interest from
power electronics community due to their good features in
comparison with traditional three-phase machines such as
lower torque ripple, lower current per phase and fault tolerant
capabilities [1]–[3]. Nowadays, they are extensively used for
high-power and reliable applications such as wind energy
conversion systems and electric vehicles [3], [4]. Most of

the control strategies applied for multiphase drives in real
applications are an extension of the three-phase case such as
field oriented control based on proportional-integral current
control, direct torque control, among others [5], [6].

In the last few years, some new nonlinear techniques were
developed to apply to multiphase machines such as FCS-
MPC [7], [8], predictive torque control [9], [10], fuzzy logic
control [11] and SMC [11], [12]. Some of these techniques
have variants already presented in the literature such as M2PC
for FCS-MPC [13] and DTSM for SMC [14] which are con-
sidered improved versions on their original techniques. M2PC
is based on a modulation scheme, based on SVM, incorporated
to the conventional MPC for different power converters [15],
[16]. This technique is applied to a two-level VSI, where the
duty cycles are generated for two active vectors and two zero
vectors which are selected for the converter using a given
switching pattern in order to obtain an efficient performance
for the SIM [17]. In the case of SMC, it is considered one
of the robust proposed nonlinear control techniques in the
literature. This technique forces the system trajectories to
converge to a user-chosen switching surface [18] in finite-
time using a discontinuous controller. However, to ensure
high performances, the switching gains should be chosen as
large as possible to reject the effect of bounded uncertainties.
Therefore, this choice causes the major drawback of SMC, the
well-known chattering phenomenon [19].

Recently, a promising idea that consists on combining
sliding mode control with TDE method for uncertain nonlinear
systems has been presented on [20]. The main contribution of
this paper is a comparative study of M2PC, with a KF as an
state observer and DTSM, with TDE as an state observer to
operate a SIM in terms of current tracking, THD of stator
currents and RMS of the current and torque ripple. The two
fixed switching frequency techniques are compared by using
the MSE, THD and RMS of the current and torque ripple,
as figures of merit. These techniques are tested for different
operation conditions, in steady state and transient conditions.

This paper is organized as follows: the SIM state-space
mathematical model is presented in Section II. In Section III,
the M2PC and DTSM designs are shown where, for M2PC it
describes the traditional PCC and the modulation method, as
for DTSM it explains the technique with TDE. The simulation
results are shown in Section IV where the transient and steady
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state behavior, for the two methods are compared. Section V
summarizes the conclusion.

II. MATHEMATICAL MODEL OF SIM

The studied system is composed of a SIM connected to
a six-leg VSI and a DC voltage source (Vdc). An electrical
scheme of the VSI drive, based on IGBT, is shown in Fig. 1.
The SIM is a continuous system which can be analyzed by
differential equations. By considering the VSD technique and
the six-dimensional space of the SIM, defined by the six-
phases (a, b, c, d, e, f ), it can be transformed into three
two-dimensional orthogonal planes in the stationary reference
frame, represented as (α−β), (x−y) and (z1−z2), by using the
transformation matrix T [8]. The studied SIM is asymmetrical
and has isolated neutrals configuration, thus (z1−z2) currents
are not considered.
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where the invariant amplitude criterion has been selected.
The six-phase VSI has a discrete behavior and a total

number of 26 = 64 switching states defined by the six
VSI legs S = [Sa, Sb, Sc, Sd, Se, Sf ], where Si ∈ {0, 1}.
The different switching states and Vdc determine the phase
voltages, which can be represented into the (α−β) and (x−y)
planes according to the VSD approach [21]. Fig. 2 shows
the 64 possibilities which lead only to 49 different vectors
(48 vectors + 1 null vector) in the (α−β) and (x− y) planes.
The state-space model of the SIM is defined by:

Ẋ(t) = A(t) X(t) + B(t) U(t) + H$(t) (2)

where X(t) = [x1, x2, x3, x4, x5, x6]
T is the state vector that

corresponds to the stator and rotor currents x1 = iαs, x2 =
iβs, x3 = ixs, x4 = iys, x5 = iαr and x6 = iβr, U(t) =

[u1, u2, u3, u4]
T

= [vαs, vβs, vxs, vys]
T is the input vector

applied to the stator, the process noise is defined as $(t) and
H is the noise weight matrix and A(t) and B(t) are matrices
determined by the electrical parameters of the SIM as follows:
−Rsc2 c4Lmωr 0 0 c4Rr c4Lrωr
c4Lmωr −Rsc2 0 0 c4Lrωr c4Rr

0 0 −Rsc3 0 0 0
0 0 0 −Rsc3 0 0

Rsc4 −c5Lmωr 0 0 −c5Rr −c5Lr
−c5Lmωr Rsc4 0 0 −c5Lr −c5Rr



c2 0 0 0
0 c2 0 0
0 0 c3 0
0 0 0 c3
−c4 0 0 0

0 −c4 0 0



Fig. 1. Scheme of an SIM connected to a six-leg VSI.
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Fig. 2. Voltage space vectors and switching states in (α − β) and (x − y)
planes for a SIM.

where Rs, Rr, Lm, Lr = Llr + Lm and Ls = Lls + Lm
are the electrical parameters of the SIM. The coefficients are
determined as c1 = LsLr − L2

m, c2 = Lr

c1
, c3 = 1

Lls
, c4 = Lm

c1

and c5 = Ls

c1
. Stator voltages are dependent of the input

control signals S. In this particular case, the simplest VSI
model has been considered to obtain a good optimization
process. In this model the stator voltages can be calculated
from the ideal six-leg VSI model M[S] [8].

M[S] =
1

3


2 0 −1 0 −1 0
0 2 0 −1 0 −1
−1 0 2 0 −1 0
0 −1 0 2 0 −1
−1 0 −1 0 2 0
0 −1 0 −1 0 2

ST (3)

An ideal six-leg VSI transforms gating signals into stator
voltages which can be projected to (α−β) and (x−y) planes



and defined in U(t), determined with the following equation:

U(t) = Vdc TM[S] (4)

The output vector, Y, is:

Y(t) = CX(t) + ν(t) (5)

being ν(t) is the measurement noise and

C =


1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0


The mechanical variables of the SIM are related by the
following equations:

Te = 3 P (ψαsiβs − ψβsiαs) (6)

Ji ω̇m +Bi ωm = (Te − TL) (7)

ωr = Pωm (8)

where Bi is the friction coefficient, Ji the inertia coefficient,
Te defines the produced torque, TL is the load torque, ωr is
the rotor electrical speed, ωm the rotor mechanical speed, ψαs
and ψβs are the stator fluxes and P the number of pole pairs.

III. PROPOSED NONLINEAR CONTROLLERS

A. Outer Control Loop

The outer loop is designed for control the speed. A PI
controller, designed in [22] is implemented. The PI speed
controller is selected to obtain the dynamic reference current
i∗qs[k]. Then, the process of the slip frequency (ωsl[k]) estima-
tion is executed in the same way as the IRFOC methods, from
the reference currents (i∗ds[k], i

∗
qs[k]) in the dynamic reference

frame and the electrical parameters of the SIM.

B. M2PC

1) Classic MPC: This technique uses the mathematical
model of the discrete system to predict at time [k] the future
values [k+ 1], by using the measured variables such as stator
currents and the mechanical rotor speed.

X̂[k+1|k] = X[k] + Ts f
(
X[k], U[k], ωr[k]

)
(9)

where Ts is the sample time. In the state-space model (9),
only the stator currents, voltages and mechanical speed are
measured. The stator voltages are predicted from the switching
commands issued to the VSI, however, the rotor currents
cannot be directly measured. This fact can be solved through
a reduced order observer where it provides an estimation for
only the rotor currents. This method was proposed in [7] by
using a reduced order estimator based on a KF. By considering
a zero-mean Gaussian measurement and uncorrelated process
noises, the system’s equations can be written as:

X̂[k+1|k] = A[k]X[k] + B[k]U[k] + H$[k] (10)

Y[k+1|k] = CX[k+1] + ν[k+1] (11)
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Fig. 3. Available sectors for the six-leg VSI.

where A[k] and B[k] are discretized matrices from the model.
A[k] depends on the present value of ωr[k] and must be
considered at every sampling time. A detailed description of
the dynamics of the reduced order KF can be found in [7], [23]
which has not been presented for the sake of conciseness.

2) Cost Function: The MPC performs an optimization
process at every sampling time. This process consists on
the evaluation of a cost function (12) for all possible stator
voltages to achieve the control objective. The cost function is
selected to minimize the current tracking error, defined as the
following equation:

J[k+2|k] =‖ i∗αs[k+2] − îαs[k+2|k] ‖2 + ‖ i∗βs[k+2] − îβs[k+2|k] ‖2

+ λxy
(
‖ i∗xs[k+2] − îxs[k+2|k] ‖2 + ‖ i∗ys[k+2] − îys[k+2|k] ‖2

)
(12)

being i∗s[k+2] the vector containing the reference for the stator
currents and îs[k+2] the vector containing the predictions based
on the second-step ahead state and a tuning parameter (λxy)
is used [7], [23] to prioritize the (α− β) stator currents.

3) Modulation method: It can be determined each available
vector for the six-leg VSI in the (α− β) plane, which defines
48 sectors, which are given by two adjacent vectors, as shown
in Fig. 3. The proposed technique, based on SVM, evaluates
the prediction of two active vectors that conform the 12
outside sectors at every sampling time and evaluates the cost
function separately. Each prediction is evaluated based on
(9) and the only difference is in the calculation of the input
vector U[k] [8].

The duty cycles, for the two active vectors d1 and d2, are
calculated by solving the next equations:

d0 =
σ

J0
d1 =

σ

J1
d2 =

σ

J2
(13)

d0 + d1 + d2 = Ts (14)

where d0 corresponds to the duty cycle of a null vector. Then,
it is possible to obtain the expression for σ and the duty cycles
for each vector given as:

d0 =
TsJ1J2

J0J1 + J1J2 + J0J2
(15)

d1 =
TsJ0J2

J0J1 + J1J2 + J0J2
(16)



d2 =
TsJ0J1

J0J1 + J1J2 + J0J2
(17)

Considering these expressions, the new cost function, which
is evaluated at every Ts, is defined as:

G[k+2|k] = d1J1 + d2J2 (18)

The two vectors which minimize G[k+2|k] are selected and
applied to the six-phase VSI at the next sampling time. After
obtaining the duty cycles and selecting the optimal two vectors
to be applied, a switching pattern procedure, shown in [24],
is adopted with the goal of applying the two active vectors
(v1−v2) and two zero vectors (v0), considering the calculated
duty cycles obtaining a fixed-switching frequency.

C. DTSM with TDE

The combination of DTSM control with TDE method will
be designed to force the stator current in the (α−β) and (x−y)
sub-spaces to converge to their desired references in finite-time
with high accuracy even in presence of unmeasurable states
(rotor currents) and uncertainties. The discrete model of (2)
can be expressed as follows:

x1[k+1] = A1 x1[k] + A2 x3[k] + B1 v1[k] + n1[k] (19)
x2[k+1] = A3 x2[k] + B2 v2[k] + n2[k] (20)
x3[k+1] = A4 x1[k] + A5 x3[k] + B3 v1[k] + n3[k] (21)

with:

x1[k] =
[
iαs[k], iβs[k]

]T
(22)

x2[k] =
[
ixs[k], iys[k]

]T
(23)

x3[k] =
[
iαr[k], iβr[k]

]T
(24)

while the stator voltages represents the input vectors:

v1[k] =
[
vαs[k], vβs[k]

]T
(25)

v2[k] =
[
vxs[k], vys[k]

]T
(26)

and H$[k] =
[
n1[k], n2[k], n3[k]

]T ∈ R6. The matrices A1,
A2, A3, A4, A5, B1, B2 and B3 are discrete forms of sub-
matrices from A and B defined as follows:

A1 =

[
a11 a12
a21 a22

]
, A2 =

[
a15 a16
a25 a26

]
, A3 =

[
a33 0
0 a44

]

A4 =

[
a51 a52
a61 a62

]
, A5 =

[
a55 a56
a65 a66

]

B1 =

[
b11 0
0 b22

]
, B2 =

[
b33 0
0 b44

]
, B3 =

[
b55 0
0 b66

]
where:

a11 = a22 = 1− Ts c2 Rs a12 = −a21 = Ts c4Lm ωr[k]
a15 = a26 = Ts c4 Rr a16 = −a25 = Ts c4Lr ωr[k]
a33 = a44 = 1− Ts c3 Rs a51 = a62 = −Ts c4 Rs
a52 = −a61 = −Ts c5 Lm ωr[k] a55 = a66 = 1− Ts c5 Rr
h56 = −h65 = −c5 ωr[k] Ts Lr b11 = b22 = Ts c2
b33 = b44 = Ts c3 b55 = b66 = −Ts c4

1) Control of Stator Current in (α − β) Sub-Space: To

quantify the control objective, let xd1[k] =
[
i∗αs[k], i

∗
βs[k]

]T
to

be the desired reference and eφ[k] = x1[k]−xd1[k] ∈ R
2 be the

tracking error with φ ∈ {α, β}. Then, it is selected the sliding
surface [18] to be the error variable as:

σ[k] = eφ[k] (27)

An ideal sliding motion is ensured if the following conditions
is verified:

σ[k] = 0, σ[k+1] = 0 (28)

where σ[k+1] is obtained using the nominal model of (19) as:

σ[k+1] = eφ[k+1] = x1[k+1] − xd1[k+1]

= A1 x1[k] + B1 v1[k] − xd1[k+1]

(29)

As the classical sliding motion is not enough to ensure
robustness, the following reaching law is chosen:

σ[k+1] = λ σ[k] − Tsρ sign(σ[k]) (30)

where λ = diag(λ1, λ2) with 0 < λi < 1 for i = 1, 2, ρ ∈
R2×2 is a diagonal positive matrix that will be fixed later and
sign(σ[k]) =

[
sign(σ1[k]), sign(σ2[k])

]T
with:

sign(σi[k]) =

 1, if σi[k] > 0
0, if σi[k] = 0
−1, if σi[k] < 0

(31)

Hence, the DTSM controller for the stator current in (α −
β) sub-space described in (19) is obtained using the nominal
model as:

v1[k] = B−1
1

[
xd1[k+1] −A1x1[k] + λ σ[k] − Tsρ sign(σ[k])

]
(32)

Since the rotor currents x3[k] are not measurable and the
vector n1[k] is unknown, the control performance might not
be satisfactory. Then, assuming that x3[k] and n1[k] do not
vary largely between two consecutive sampling time. Then,
using (19), they can be estimated using TDE [25], [26] method
as:

A2x̂3[k] + n̂1[k]
∼= A2x3[k−1] + n1[k−1]

= x1[k] −A1x1[k−1] −B1v1[k−1]
(33)

Definition 3.1: For a discrete system, a quasi sliding mode
is considered in the vicinity of the sliding surface, such that
|σ[k]| < ε, with ε is a positive constant called the quasi-sliding-
mode bandwidth. To guarantee a convergent quasi sliding
mode, the following sufficient and necessary conditions given
in [25], [27] must be verified for i = 1, 2: σi[k] > ε ⇒ −ε ≤ σi[k+1] < σi[k]

σi[k] < −ε ⇒ σi[k] < σi[k+1] ≤ ε
|σi[k]| ≤ ε ⇒ |σi[k+1]| ≤ ε

(34)

Theorem 3.1: The DTSM control with TDE for the stator
currents in the (α− β) sub-space given in (10) is given by:

v1[k] = B−11

[
x1d[k+1] −A1x1[k] −A2x̂3[k]

−n̂1[k] + λ σ[k] − Tsρ sign(σ[k])
] (35)



ensures a quasi sliding mode if the following condition is met:

ρi > T−1s δi for i = 1, 2 (36)

Proof. The proof and the control applied to stator currents
in (x− y) sub-space are detailed on [28] thus it has not been
presented for the sake of conciseness.

2) PWM Modulation: After DTSM generates the voltage
reference in (α − β) and (x − y) sub-spaces, it is used a
Clark Transformation to obtain the corresponding references
per phase. Then it is performed an unipolar voltage PWM to
manage the activation of the six-leg VSI.

IV. SIMULATION RESULTS

A MATLAB/Simulink program has been developed for a
SIM in order to compare the proposed methods. A numerical
integration using first-order Euler’s discretization technique
has been applied to compute the evolution of the analyzed
system. The parameters of the SIM are: Rr = 6.9 Ω,
Rs = 6.7 Ω, Lm = 614 mH, P = 1, Llr = 12.8 mH,
Lls = 5.3 mH, Bi = 0.0004 kg.m2/s, Ji = 0.07 kg.m2, 2 kW
of nominal power and 3000 rpm of nominal speed.

In the simulation, Vdc is 600 V, the sampling frequency is
16 kHz, a torque load of 2 Nm is connected to the SIM and
a d current reference (i∗ds = 1 A) has been applied. The PI
gains are designed to be KP = 0.1050 and KI = 0.1058.
For M2PC, λxy = 0.01, which is defined in (12), giving more
priority to the (α−β) stator current tracking. The values of the
process noise and the measurement noise can be determined
by using the method proposed in [23], being Q̂w = 0.0022
and R̂v = 0.0022. As for DTSM with TDE, these values are
considered for stator currents tracking in (α− β) sub-space:

λ = diag(0.5, 0.5), ρ1 = ρ2 = 30

While the gains of the DTSM for (x− y) currents are:

Γ = diag(0.9, 0.9), %1 = %2 = 30

Table I and Table II show a steady state analysis for
stator currents, rotor speed and electromagnetic torque under
different rotor speed references (ω∗r ) for M2PC and DTSM
respectively.

Six-phase VSI

SIM

SVM or PWM

Rotor current estimation
(KF or TDE)

M2PC or DTSM
technique

SVM or PWM

or

Fig. 4. Speed control with an inner current control based on M2PC or DTSM.
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Fig. 5. Transient response in q-axis stator current for rotor speed of 500 [rpm]
to −500 [rpm] and a sampling frequency of 16 [kHz]: (a) M2PC; (b) DTSM.

The results show a good performance at low speed and an
average performance at high rotor speed for M2PC, in terms
of speed and stator currents tracking (MSE), stator currents
THD and torque ripple RMS. As for DTSM, the results denote
an better performance, except for speed tracking, at different
rotor speeds, compared to M2PC. Fig. 5 exposes the transient
response for q stator current in a reversal test (speed reference
changes from 500 [rpm] to −500 [rpm]) where M2PC and
DTSM have an overshoot of 5 and 71 % and a settling time
(5 % criterion) of 10 and 2.9 ms respectively.

TABLE I
STATOR CURRENTS (α− β), (x− y), MSE [A], THD [%], RMS RIPPLE
OF Te [NM], MSE ωr [RPM] FOR M2PC AT DIFFERENT SPEEDS [RPM].

Speed ω∗r 500 [rpm]
MSEα MSEβ MSEx MSEy THDα
0.0949 0.0900 0.3251 0.3651 6.69
THDβ MSEωr RMS ripple Te RMS ripple Te %
6.30 0.1843 0.1001 5.01

Speed ω∗r 1500 [rpm]
MSEα MSEβ MSEx MSEy THDα
0.1869 0.1597 0.4062 0.4485 9.97
THDβ MSEωr RMS ripple Te RMS ripple Te %
9.32 0.8826 0.2042 10.09

TABLE II
STATOR CURRENTS (α− β), (x− y), MSE [A], THD [%], RMS RIPPLE
OF Te [NM], MSE ωr [RPM] FOR DTSM AT DIFFERENT SPEEDS [RPM].

Speed ω∗r 500 [rpm]
MSEα MSEβ MSEx MSEy THDα
0.0545 0.0547 0.1846 0.1776 5.27
THDβ MSEωr RMS ripple Te RMS ripple Te %
5.31 0.9625 0.0521 2.58

Speed ω∗r 1500 [rpm]
MSEα MSEβ MSEx MSEy THDα
0.0642 0.0651 0.2343 0.2350 5.28
THDβ MSEωr RMS ripple Te RMS ripple Te %
5.41 1.1929 0.0579 2.81

At last, the behavior of the stator currents in the (α−β) and
(x− y) sub-spaces are shown in Fig. 6 for M2PC and DTSM
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Fig. 6. Stator currents in (α − β) and (x − y) sub-spaces for a sampling
frequency of 16 kHz with an amplitude of 3.5 A (a) M2PC; (b) DTSM.

in steady-state response. It can be seen a better performance
in the (x− y) currents reduction for DTSM.

V. CONCLUSION

A comparative study of two nonlinear current controllers
with fixed switching frequency applied to a SIM is presented.
The results were compared between M2PC and DTSM and
showed a better performance in terms of current tracking,
current THD and torque ripple for DTSM. At the same time,
M2PC presented a better capability at lower speed than higher
speed. In terms of speed tracking (MSE), M2PC had a slightly
better performance than DTSM and in the current transient
analysis, M2PC presented a better response than DTSM. It
can be stated that both techniques are good options to classic
controllers with their corresponding characteristics.
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