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Early therapeutic effects of an 
Angiopoietin-1 mimetic peptide in 
middle-aged rats with vascular 
dementia
Huanjia Gao 1, Elizabeth L. Findeis 1, Lauren Culmone 1, 
Brianna Powell 1, Julie Landschoot-Ward 1, Alex Zacharek 1, 
Trueman Wu 2, Mei Lu 2, Michael Chopp 1,3,4 and 
Poornima Venkat 1,4*
1 Department of Neurology, Henry Ford Health, Detroit, MI, United States, 2 Public Health Sciences, 
Henry Ford Health, Detroit, MI, United States, 3 Department of Physics, Oakland University, Rochester, 
MI, United States, 4 Department of Physiology, Michigan State University, East Lansing, MI, United States

Background: Vascular Dementia (VaD) refers to dementia caused by 
cerebrovascular disease and/or reduced blood flow to the brain and is the second 
most common form of dementia after Alzheimer’s disease. We previously found 
that in middle-aged rats subjected to a multiple microinfarction (MMI) model 
of VaD, treatment with AV-001, a Tie2 receptor agonist, significantly improves 
short-term memory, long-term memory, as well as improves preference for 
social novelty compared to control MMI rats. In this study, we tested the early 
therapeutic effects of AV-001 on inflammation and glymphatic function in rats 
subjected to VaD.

Methods: Male, middle-aged Wistar rats (10–12 m), subjected to MMI, were 
randomly assigned to MMI and MMI + AV-001 treatment groups. A sham group 
was included as reference group. MMI was induced by injecting 800 ± 200, 70–
100 μm sized, cholesterol crystals into the internal carotid artery. Animals were 
treated with AV-001 (1 μg/Kg, i.p.) once daily starting at 24 h after MMI. At 14 days 
after MMI, inflammatory factor expression was evaluated in cerebrospinal fluid 
(CSF) and brain. Immunostaining was used to evaluate white matter integrity, 
perivascular space (PVS) and perivascular Aquaporin-4 (AQP4) expression in 
the brain. An additional set of rats were prepared to test glymphatic function. At 
14 days after MMI, 50 μL of 1% Tetramethylrhodamine (3 kD) and FITC conjugated 
dextran (500 kD) at 1:1 ratio were injected into the CSF. Rats (4–6/group/time 
point) were sacrificed at 30 min, 3 h, and 6 h from the start of tracer infusion, and 
brain coronal sections were imaged using a Laser scanning confocal microscope 
to evaluate tracer intensities in the brain.

Result: Treatment of MMI with AV-001 significantly improves white matter integrity 
in the corpus callosum at 14 days after MMI. MMI induces significant dilation of 
the PVS, reduces AQP4 expression and impairs glymphatic function compared 
to Sham rats. AV-001 treatment significantly reduces PVS, increases perivascular 
AQP4 expression and improves glymphatic function compared to MMI rats. MMI 
significantly increases, while AV-001 significantly decreases the expression of 
inflammatory factors (tumor necrosis factor-α (TNF-α), chemokine ligand 9) and 
anti-angiogenic factors (endostatin, plasminogen activator inhibitor-1, P-selectin) 
in CSF. MMI significantly increases, while AV-001 significantly reduces brain tissue 
expression of endostatin, thrombin, TNF-α, PAI-1, CXCL9, and interleukin-6 (IL-6).
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Conclusion: AV-001 treatment of MMI significantly reduces PVS dilation and 
increases perivascular AQP4 expression which may contribute to improved 
glymphatic function compared to MMI rats. AV-001 treatment significantly reduces 
inflammatory factor expression in the CSF and brain which may contribute to 
AV-001 treatment induced improvement in white matter integrity and cognitive 
function.

KEYWORDS

Angiopoietin-1, cognition, microinfarct dementia, vascular dementia (VaD), Vasculotide, 
glymphatic clearance function, AV-001

Introduction

Vascular Dementia (VaD) refers to cognitive dysfunction and 
neurological impairment caused by cerebrovascular disease and/or 
reduced cerebral blood flow and subsequent infarctions in the brain. 
VaD alone or in combination with Alzheimer’s disease (AD) as mixed 
dementia remains the second most common cause of dementia, and 
accounts for more than 20% of all dementia cases (Khan et al., 2016; 
Mossanen Parsi et al., 2021). VaD patients often exhibit attention-
deficit disorders, memory loss, slowed thinking, depression, confusion 
and disorientation, gait or balance problems, speech impairment, and 
loss of executive functions (Venkat et al., 2015). Thus, VaD affects the 
ability of patients to live and function independently and creates a 
huge socio-economic burden (Wimo et  al., 2013). The risk of 
developing VaD is high in individuals with hypertension, obesity, 
diabetes, stroke, and cardiac disease, and this risk increases 
exponentially with advancing age (Gorelick et al., 2011; Zhao et al., 
2020). Therefore, as life expectancy increases and the global aging 
populations grows, there is a pressing need to develop treatments 
specifically for VaD. Neuropathological diagnosis of VaD relies largely 
on the presence of ischemic or hemorrhagic infarcts due to stroke, or 
commonly lacunar infarcts due to the occlusions of deep penetrating 
arteries, and microinfarcts due to aging and vascular pathologies 
(Corrada et al., 2016; Iadecola et al., 2019; Oveisgharan et al., 2022). 
We  have previously reported that treatment of middle-aged rats 
subjected to a multiple microinfarct (MMI) model of VaD with 
AV-001 significantly improves short-term and long-term memory, 
preference for social novelty, spatial learning and memory at 6 weeks 
after MMI (Culmone et al., 2022). AV-001 treatment significantly 
reduced demyelination, improved axon density, and neuroplasticity in 
middle-aged rats with VaD (Culmone et  al., 2022). However, the 
mechanisms by which AV-001 improves cognitive function in rats 
with VaD are unclear. This study investigates the early therapeutic 
benefits of AV-001 in middle-aged rats with VaD.

AV-001 is a novel Tie2 receptor agonist designed to activate the 
angiopoietin/Tie2 signaling pathway (Gutbier et al., 2017; Dekker 
et  al., 2018). AV-001 is a synthetic PEGylated peptide conjugate 
derived from 4 identical 7-amino-acid peptides (T7) bound to the 
PEG tetramer. The T7 peptide, which forms the core of AV 001, was 
selected from over a billion unique peptide sequences using a phage-
display method. The peptide was chosen for its ability to bind to the 
extracellular region of the Tie2 receptor (Tournaire et  al., 2004). 
AV-001 is a clinical candidate version of its predecessor analog 
referred to as Vasculotide. Vasculotide has been demonstrated to bind 
and phosphorylate Tie2 in a dose-dependent manner (Gutbier et al., 
2017; Dekker et al., 2018). The role of Angiopoietin-1 (Angpt-1) in 
post-ischemic recovery is well documented and Angpt-1 is known to 
promote vascular remodeling via pericyte recruitment, and 
maturation, and stabilization of blood vessels (Suri et al., 1996, 1998; 
Iurlaro et al., 2003), and to promote neurite remodeling (Wang et al., 
2015), and attenuate blood vessel leakage in the ischemic brain (Zhang 
et al., 2002; Metheny-Barlow et al., 2004). In diabetic rats subjected to 
ischemic stroke, Vasculotide treatment significantly improves stroke 
outcome and neurological function by reducing neuroinflammation 
and blood brain barrier leakage in the ischemic penumbra (Venkat 
et al., 2018, 2021). The safety and efficacy of AV-001 in improving 
disease outcome has been well documented using several rodent 
disease models including sepsis (Kümpers et  al., 2011), influenza 
(Sugiyama et  al., 2015), stroke (Venkat et  al., 2018, 2021), VaD 
(Culmone et al., 2022), and AD (Lynch et al., 2021). In our prior study, 
we found that 1 μg/Kg AV-001 administered once daily starting at 24 h 
after MMI does not alter body weight, blood pressure, or heart rate at 
6 weeks after MMI compared to baseline measurements or MMI 
control rats (Culmone et al., 2022).

Cerebral small vessel disease (cSVD) is one of the most common 
causes of VaD that is characterized by perivascular space (PVS) 
dilation, white matter hyperintensities and lacunar infarcts 
(Benveniste and Nedergaard, 2022). PVS serves as the main conduit 
for lymphatics drainage (Da Mesquita et al., 2018). Enlarged PVS 
likely reflects dysfunction of glymphatic system, which may further 
lead to the aggregation of hazardous wastes, potentially damaging the 
brain (Brown et  al., 2018). In our prior studies, we  reported that 
animals subjected to MMI exhibit reduced cerebral blood flow, 
multiple diffuse cerebral microinfarcts, white matter injury, 
impairment of glymphatic waste clearance pathway, and cognitive 
impairment (Venkat et al., 2017; Yu et al., 2019a). The glymphatic 
system is a molecular size selective mechanisms of waste clearance 
that enables removal of soluble proteins, metabolic wastes and 

Abbreviations: AD, Alzheimer’s disease; Angpt-1, Angiopoietin-1; AQP4, 

Aquaporin-4; CCA, Common carotid artery; CNS, Central nervous system; CSF, 

Cerebrospinal fluid; cSVD, Cerebral small vessel disease; CXCL9, Chemokine 

ligand 9; ECA, External carotid artery; H&E, Hematoxylin and eosin; ICA, Internal 

carotid artery; IL-6, Interleukin-6; MMI, Multiple microinfarction; PAI-1, Plasminogen 

activator inhibitor-1; PVS, Perivascular space; RT-PCR, Real time polymerase chain 

reaction assay; TNF-α, Tumor necrosis factor-α; tPA, Tissue plasminogen activator; 

VaD, Vascular dementia.
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neurotoxins such as soluble Aβ, tau and lactate from the brain as well 
as facilitates the delivery of signaling molecules and metabolic factors 
to the brain (Yu et al., 2022; Iadecola et al., n.d.). The glymphatic 
pathway consists of influx of cerebrospinal fluid (CSF) along 
paraarterial spaces, subsequent transport of CSF into the brain 
interstitium, facilitated by aquaporin 4 (AQP4) lined water channels, 
CSF exchange with interstitial fluid followed by paravenous interstitial 
fluid efflux (Iliff et al., 2012; Benveniste et al., 2019). In diabetic and 
hypertensive rodent models of cSVD, impairment of glymphatic 
function with stagnation of glymphatic flux and perivascular dilation 
occur as SVD progresses and accelerates accumulation of protein 
aggregates and metabolic (Benveniste and Nedergaard, 2022). In 
hypertension, diabetes, and aging, arterial wall stiffening affecting 
arterial wall pulsatility, and/or inflammation causes a reduction in 
CSF influx into the brain parenchyma, and stagnation of perivascular 
fluid leads to PVS dilation (Benveniste and Nedergaard, 2022). 
Impaired glymphatic function likely precedes cognitive decline in 
diabetes (Jiang et al., 2017), as well as MMI induced VaD (Venkat 
et al., 2017; Wang et al., 2017; Yu et al., 2019a). Therefore, here, we test 
whether AV-001 treatment improves white matter integrity, reduces 
inflammation, and improves glymphatic waste clearance at 14 days 
after MMI in middle-aged rats.

Methods

The research procedures were in compliance with the National 
Institutes of Health (NIH) Guide for the Care and Use of Laboratory 
Animals and were approved by the Institutional Animal Care and Use 
Committee (IACUC) of the Henry Ford Health System. This 
manuscript was prepared following the ARRIVE guidelines (Kilkenny 
et al., 2010).

MMI model, AV-001 treatment and 
experimental groups

Male, Wistar rats were obtained as retired breeders from Charles 
River Laboratories (Wilmington, MA), housed 2 per cage with access 
to food and water ad libitum, and aged to 10 months. Cholesterol 
crystals were prepared following previously described methods (Rapp 
et al., 2008a; Venkat et al., 2017; Wang et al., 2017; Yu et al., 2019a; 
Chandran et al., 2020). In brief, freshly prepared cholesterol crystals 
were filtered using 100 and 70 μm cell strainers and counted with a 
hemocytometer. A final concentration of 800 ± 100 crystals/300 μL 
saline was prepared and loaded into a 1 cc syringe attached to a PE-50 
tube with a tapered tip. Rats were anesthetized using 4% isoflurane 
and then spontaneously respired with 2% isoflurane mixed with 2:1 
N2O:O2 using a nose cone. Anesthesia was regulated using a modified 
FLUOTEC 3 Vaporizer (Fraser Harlake) and the animals were placed 
on a heating pad maintained at 37°C throughout the surgery. Rats 
were placed in a supine position and a ~1.5 cm small central midline 
incision was made on the neck. Under a dissecting microscope, the 
carotid bifurcation was exposed and while carefully avoiding any 
damage to the muscles or vagus nerve, the CCA and ICA were isolated 
and temporarily clamped. The distal end of the ECA was permanently 
occluded using a 4–0 silk suture. The catheter loaded with cholesterol 
crystal was gently advanced into the lumen of the ICA via an incision 

on the ECA and cholesterol crystals were slowly injected into the ICA, 
while the CCA remained clamped. The catheter was gently removed, 
and the ECA was ligated while the CCA and ICA remained patent. 
The neck incision was closed with a 4–0 nylon suture. Animals 
received routine post-surgical support and care including analgesia 
(Buprenorphine SR, 1 mg/Kg, subcutaneously). Stock solutions and 
aliquots of AV-001 were prepared in Dulbecco’s phosphate-buffered 
saline and stored at −20°C. AV-001 treatment was initiated at 24 h 
after MMI and administered via i.p. injection once daily for 14 days 
until sacrifice. Out of 18 rats subjected to MMI, 3 rats died within day 
3. Thus, for immunohistochemical evaluation, CSF cytokine array and 
brain RT-PCR, the following sample sizes were employed: (1) Sham 
(n = 13); (2) MMI (n = 8); (3) MMI + 1 μg/Kg AV-001 (n = 7).

Euthanasia

Rats were sacrificed at 14 days after MMI. Rats were anesthetized 
using Ketamine (87 mg/Kg) and Xylazine (13 mg/Kg). The head was 
fixed using a stereotaxic apparatus at a 45° angle between animal’s 
head and horizontal line. A median incision from the forehead to the 
neck was used to expose the base of the skull. A 27G needle was 
inserted gently into the cisterna magna and approximately 0.1 mL of 
uncontaminated CSF was collected and stored at −80°C. Following 
transcardial perfusion with 0.9% saline, the brains were quickly 
removed. A small section of cortical tissue was flash frozen in liquid 
nitrogen and stored at −80°C while the rest of the brain was 
immersion fixed in 4% paraformaldehyde.

Histological and immunohistochemical 
assessment

Paraffin embedded brain coronal tissue sections were 
prepared, and Hematoxylin and eosin (H&E) staining was used to 
assess white matter integrity. Three fields of view encompassing 
both medial and lateral corpus callosum were captured for each 
rat, and white matter damage was graded on a scale of 0 to 3. An 
investigator blinded to the groups rated the corpus callosum as 
normal (grade 0), showing disarrangement of nerve fibers (grade 
1), having marked vacuole formation (grade 2), or having regions 
with the disappearance of myelinated fibers (grade 3; Wakita et al., 
1994; Shibata et al., 2004). Antibodies against myelin basic protein 
(MBP, 1:250, Millipore) and AQP4 (1:1,500, Millipore) were also 
used. To evaluate PVS and water channel dysfunction, 6–8 fields 
of view of cortex and striatum with blood vessels were digitized 
under a 20× objective (Olympus BX40) using a 3-CCD color video 
camera with an MCID image analysis system (Imaging Research). 
For each field of view, all large blood vessels in the cortex and 
striatum with diameter > 10 μm were selected and PVS was 
quantified by manually drawing outer and inner limits of each 
blood vessel and calculating the differential area in μm2 following 
previously described methods (Ampawong et al., 2011; Venkat 
et  al., 2017). For MBP and AQP4, positive-stained areas were 
measured using an in-built densitometry function with a density 
threshold set uniformly above unstained for all groups. The data 
for each animal were averaged to determine the percentage of 
positive area.
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CSF cytokine array

To evaluate early inflammatory factor expression in CSF, a 
cytokine array was employed (R&D Systems) and CSF samples were 
pooled by group and tested in duplicates (Sham, MMI and MMI + 1 μg/
Kg). Protein concentration was determined with the BCA kit (Thermo 
Scientific) and CSF volume containing 150 μg protein was used for 
each group. The immunoblot images were acquired using a Biotechne 
fluorChem E system and images were analyzed using ImageJ software.

Real time polymerase chain reaction assay

The standard TRIzol (Invitrogen) protocol was used to isolate 
total RNA. Subsequently, the M-MLV standard protocol was used to 
convert 2 μg of Total RNA into cDNA (complementary DNA). A 2 μL 
aliquot of the resulting cDNA was used to conduct quantitative 
polymerase chain reaction (qPCR) using the SYBR Green real-time 
PCR method. The qPCR was performed on a ViiA 7 PCR instrument 
(Applied Biosystems) with program parameters recommended by the 
manufacturer, including a 2-min incubation at 50°C, a 10-min 
incubation at 95°C, followed by 40 cycles of amplification: 15 s at 95°C 
and 1 min at 60°C. Each sample was tested in triplicate, and gene 
expression analysis was performed using the 2−ΔΔCT method to 
determine relative gene expression levels.

Endostatin:
 F: GGAGGCTGATGGAGAGTTACTG; R: ACAGGACG 
ATGTAGCTGTTGTG.

Thrombin R:
 F: AGTCCCTGTCCTGGCGCACT; R: GGACGTCGTGGC 
AGGTGGTG.

TNF-α:
 F: TACTCCCAGGTTCTCTTCAAGG; R: GGAGGTTGACTTTC 
TCCTGGTA.

IL-6:
 F: CAGAGTGTGGGCGAACAAAG; R: CAGCCTTAGCAAA 
AACTCTCTGG.

PAI-1:
 F: GGGCAGCAGATAGACAGATC G; R: CTGAA ATAACACA 
AGGCGGC.

CXCL-9:
 F: TCCCCTAGACGGTTGTGGATG; R: TACTCTGAAAT 
GCTGAGCGGC.

Glymphatic function assessment

To evaluate glymphatic function, additional sets of middle-aged 
(10–12 months) male rats were randomized to Sham, MMI and 
MMI + 1 μg/Kg AV-001 groups. AV-001 treatment was initiated 24 h 
after MMI and administered via i.p. injection once daily for 14 days. 
At 14 days after MMI, animals were anesthetized with 4% isoflurane 

in a chamber and then spontaneously respired with 2% isoflurane 
mixed within 2:1 N2O:O2 mixture using a nose cone. Anesthesia was 
regulated using a modified FLUOTEC 3 Vaporizer (Fraser Harlake) 
and the animals were placed on a heating pad maintained at 37°C 
throughout the surgery. The head was fixed using a stereotaxic 
apparatus. Following a midline dorsal neck incision to expose the 
atlanto-occipital membrane, a hole was drilled at the lower edge of the 
occiput, and a PE50 tube with a tapered tip was gently inserted into 
the cisterna magna for about 1.5–2 mm. The external portion of the 
catheter was affixed to the occipital bone using superglue. Then, 50 μL 
of 1% (diluted in artificial CSF) Tetramethylrhodamine conjugated 
dextran (MW: 3 kD, Thermo Fisher) and FITC conjugated dextran 
(MW: 500 kD, Thermo Fisher) at 1:1 ratio were injected into the CSF 
over 25 min using a syringe pump. Rats (4–6/group/time point) were 
sacrificed at 30 min, 3 h, and 6 h from the start of infusion and 
perfusion fixed with 0.9% saline followed by 4% Paraformaldehyde. 
Vibratome sections (100 μm thick) were cut to analyze tracer 
movement along paravascular pathways. A laser scanning confocal 
microscope (Olympus FV1200) equipped with a motorized stage was 
used. To obtain whole slice montages, the brain coronal sections were 
imaged under a 10× objective in the x-y direction using tile scans that 
were stitched into larger mosaics. Four optical sections were acquired 
along the z-axis (depth) and a single composite projection image was 
constructed. All images acquired from laser scanning confocal 
microscope were imported into an MCID image analysis system and 
an in-built densitometry function with a density threshold set 
uniformly above unstained was used to evaluate the percentage of 
brain section that was fluorescently marked, i.e., tracer intensity in 
brain was calculated.

Statistical analysis

Data are presented as mean ± SEM for illustration. Data were 
evaluated for normality and homoscedasticity; log transformation for 
PVS Cortex and PVS Striatum were considered to make data normally 
distributed. One-way Analysis of variance (ANOVA) was used to 
study the group (either MMI or AV-001) effect. Similarly, for 
glymphatic function measurements, repeated analysis of variance 
(ANCOVA) was used to study group (either MMI or AV-001) and the 
time effect. Statistical significance was detected at p < 0.05. A 
significant group by time interaction indicated that the group effects 
varied over time.

Results

AV-001 treatment significantly improves 
white matter integrity in the corpus 
callosum when compared to control MMI 
rats

To test whether AV-001 treatment improves white matter integrity, 
H&E staining was employed, and white matter injury was scored on a 
scale of 0–3 and averaged over three fields of view encompassing both 
medial and lateral corpus callosum. The scores represented normal 
appearance (grade 0), disarrangement of the nerve fibers (grade 1), 
marked formation of vacuoles (grade 2), or the disappearance of 
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myelinated fibers (grade 3; Wakita et al., 1994; Shibata et al., 2004). 
Our data in Figure  1A show that MMI induces significant white 
matter injury in the corpus callosum compared to Sham rats at 14 days 
after MMI. Treatment with 1 μg/Kg AV-001 significantly improves 
white matter integrity indicated by reduced rarefaction and 
vacuolation in the corpus callosum when compared to control MMI 
rats. Figure 1B shows that MMI induces significant demyelination in 
the corpus callosum and white matter bundles of the striatum 
compared to Sham rats at 14 days after MMI. Treatment with 1 μg/Kg 
AV-001 significantly attenuates demyelination compared to control 
MMI rats.

AV-001 treatment significantly reduces PVS 
and increases perivascular AQP4 
expression compared to MMI rats

PVS, also known as Virchow-Robin spaces, are fluid filled 
compartments surrounding the small blood vessels in the brain. PVS 
dilation is a hallmark of cerebral small vessel disease and dementia 
(Bown et al., 2022). AQP4 is a water channel protein that is expressed 
in astrocytes and ependymal cells lining the ventricles with the highest 
expression on perivascular astrocytic end-feet (Mader and Brimberg, 
2019; Salman et al., 2022). Astrocytic end-feet are in close contact with 
cerebral vessels and have high perivascular coverage such that only 
~20-nm clefts between overlapping end-feet provide access to the 
brain parenchyma. The particularly high AQP4 expression at the 
blood brain barrier and blood-CSF barrier facilitates bidirectional 
fluid exchange in the brain (Mader and Brimberg, 2019). In our prior 
work, we  found that MMI induces PVS enlargement and reduces 
perivascular AQP4 expression which may contribute brain-wide 
glymphatic dysfunction (Venkat et al., 2017; Yu et al., 2019a). Hence, 
we have evaluated PVS dilation and perivascular AQP4 expression in 

this study. We  found that AV-001 treatment of MMI significantly 
decreases the dilation of PVS and increases perivascular AQP4 
expression compared to control MMI rats (Figure 2).

AV-001 treatment significantly improves 
glymphatic function in rats subjected to an 
MMI model of VaD

Impaired glymphatic function has been implicated to induce 
white matter damage and cognitive decline in rats subject to MMI, 
stroke, diabetes, and other neurological (Jiang et al., 2017; Venkat 
et al., 2017; Wang et al., 2017; Yu et al., 2019a; Lin et al., 2020). Thus, 
the glymphatic system represents an important target for therapeutic 
intervention in neurological diseases. To evaluate glymphatic function, 
two fluorescent tracers varying in molecular size were injected into 
the CSF and the progressive transport of intracisterna-injected tracers 
was analyzed by sacrificing rats at various time points following 
infusion (30 min, 3 and 6 h). Since the glymphatic system is a brain-
wide waste clearance pathway, we have evaluated the intensities of 
injected tracers in whole-brain sections. Consistent with prior findings 
(Iliff et al., 2012; Jiang et al., 2017), we also observed the entry of both 
tracers into the paravascular spaces following injection into the 
cisterna magna of Sham rats. Over time, the Tetramethylrhodamine 
conjugated dextran which has a molecular size of 3 kD was able to 
readily enter the interstitium, while the larger FITC conjugated 
dextran, with a molecular size of 500 kD, was confined to paravascular 
space. Our data in Figure  3 show that MMI induces glymphatic 
dysfunction with significantly (p < 0.05) reduced expression of both 
tracers at 30 min and significantly (p < 0.05) delayed clearance of both 
tracers at 6 h compared to Sham rats. 1 μg/Kg AV-001 treatment 
significantly (p < 0.05) improves glymphatic function indicated by 
increased expression of FITC dextran (p < 0.05) at 30 min and 3 h after 

FIGURE 1

(A) H&E staining was used to evaluate white matter injury in the corpus callosum. Three fields of view, encompassing both medial and lateral corpus 
callosum, were captured for each rat, and white matter damage was graded on a scale of 0 to 3. The scores from the 3 fields of view were averaged to 
obtain a single score. The scores represented normal appearance (grade 0), disarrangement of the nerve fibers (grade 1), marked the formation of 
marked vacuoles (grade 2), or the disappearance of myelinated fibers (grade 3). MMI induces significant white matter injury in the corpus callosum 
compared to Sham rats at 14  days after MMI (p < 0.001). Treatment with 1 μg/Kg AV-001 significantly improves white matter integrity, indicated by 
reduced rarefaction and vacuolation in the corpus callosum when compared to control MMI rats (p < 0.05). (B) MBP staining indicates that MMI induces 
significant demyelination in the corpus callosum, and white matter bundles of the striatum compared to Sham rats at 14 days after MMI. Treatment with 
1 μg/Kg AV-001 significantly attenuates demyelination compared to control MMI rats. Scale bar: 0.1 mm. Sham n = 13; MMI n = 8; MMI + AV-001 n = 7.
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infusion as well as Tetramethylrhodamine dextran (p = 0.054) at 
30 min after infusion; as well as significantly (p < 0.05) increased 
clearance of both tracers by 6 h after infusion when compared to 
MMI rats.

MMI significantly increases, while AV-001 
treatment significantly decreases the 
expression of inflammatory factors such 
TNF-α, CXCL9, and anti-angiogenic factors 
such as endostatin, PAI-1 and P-selectin in 
the CSF

Early and sustained inflammation in the brain is a known 
contributor for white matter injury (Rosenberg, 2009; Ben-Ari et al., 
2019). CSF cytokine array was used to evaluate the effects of AV-001 
on inflammation after MMI. Data in Figure  4 show that MMI 
significantly increases, while AV-001 treatment significantly decreases 
the expression of inflammatory factors such as TNF-α, chemokine 

ligand 9 (CXCL9), and anti-angiogenic factors such as endostatin, 
plasminogen activator inhibitor-1 (PAI-1) and P-selectin.

MMI significantly increases, while AV-001 
treatment significantly reduces brain tissue 
expression of endostatin, thrombin, TNF-α, 
PAI-1, CXCL9, and IL-6

The results described above showed that AV-001 treatment 
dramatically decreases the expression of inflammatory factors 
(TNF-α, CXCL9), and anti-angiogenic factors such as endostatin, 
PAI-1 and P-selectin. We then performed real time polymerase chain 
reaction assay (RT-PCR) to test whether AV-001 treatment also 
decreases mRNA level of these inflammatory mediators and anti-
angiogenic factors in brain tissue in order to further validate the 
results obtained with CSF cytokine array. Data in Figure 5 indicate 
that MMI increases, while AV-001 treatment significantly reduces 
brain tissue expression of endostatin, thrombin, TNF-α, IL-6, PAI-1 
and CXCL9.

FIGURE 2

MMI induces significant dilation of the PVS in the cortex (p < 0.05) and striatum (p < 0.05) and reduces perivascular AQP4 expression in the cortex 
(p < 0.001) and striatum (p < 0.001) compared to Sham rats. Treatment of MMI with 1 μg/Kg AV-001 significantly reduces PVS dilation in the cortex 
(p < 0.05) and striatum (p < 0.01) and increases perivascular AQP4 expression in the cortex (p < 0.05) and striatum (p = 0.084) compared to MMI rats. Scale 
bar: 50 μm. Sham n = 13; MMI n = 8; MMI + AV-001 n = 7.
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Discussion

In this study, we  have demonstrated that AV-001 treatment 
significantly improves white matter integrity, reduces PVS, and 
increases AQP4 expression which in-concert may contribute to 
improved glymphatic function in middle-aged rats subjected to this 

MMI model of VaD. We  also report that AV-001 treatment 
significantly reduces inflammatory factor expression in the CSF and 
brain which also may contribute to the therapeutic effects of AV-001 in 
MMI induced VaD. These findings, in combination with our previous 
finding that AV-001 improves cognitive function and memory in 
middle-aged rats subjected to MMI (Culmone et al., 2022), provides 

FIGURE 3

To evaluate glymphatic function at 14 days after MMI, fluorescent tracers (FITC-dextran and Tetramethylrhodamine dextran) were slowly injected into 
the cisterna magna and animals (n = 4–6/time point/group) were sacrificed at 30 min, 3 or 6 h after injection. Whole brain slice montages of 100 μm thick 
vibratome sections were obtained using a 10× objective (with 4 z-stacks) of a laser scanning confocal microscope. Tracer fluorescence intensities were 
quantified using an in-built densitometry function in MCID image analysis system. MMI induces significant glymphatic dysfunction with significantly 
(p < 0.05) reduced expression of both tracers at 30 min and significantly (p < 0.05) delayed clearance of both tracers at 6 h compared to Sham rats. 1 μg/Kg 
AV-001 treatment significantly (p < 0.05) improves glymphatic function indicated by increased expression of FITC dextran (p < 0.05) at 30 min and 3 h after 
infusion and increased expression of Tetramethylrhodamine dextran (p = 0.054) at 30 min after infusion, as well as significantly (p < 0.05) increased 
clearance of both tracers by 6 h after infusion when compared to MMI rats.
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evidence that AV-001 may be  a novel therapeutic agent for the 
treatment of multi-infarct dementia.

AV-001 is a synthetic Angiopoietin-1 mimetic and a clinical 
candidate version of Vasculotide, previously reported in a model of 
ischemic stroke in diabetic rats to significantly improve stroke 
outcome and neurological function by reducing neuroinflammation 
and blood brain barrier leakage in the ischemic penumbra (Venkat 
et al., 2018, 2021). We also previously found that treatment of MMI 
with once daily administration of 1 μg/Kg AV-001 significantly 
enhances short-term and long-term memory, improves the preference 
for social novelty, and increases spatial learning and memory, as well 
as increases axon density, remyelination and neuroplasticity in the 
brain of middle-aged rats subjected to MMI (Culmone et al., 2022). 
Patients with VaD exhibit alterations in the microvasculature that 
supplies the subcortical white matter. These changes result in 
significant and extensive injury to the white matter including 
vacuolization, rarefaction, axonal loss, and demyelination (Iadecola, 
2013). In our previous study, we  showed that 1 μg/Kg AV-001 
significantly reduces white matter injury in middle aged-rats subjected 
to this MMI model of VaD 6 weeks after MMI (Culmone et al., 2022). 

In this study, we evaluated white matter injury at 14 days after MMI 
and showed that MMI induces significant white matter injury in the 
corpus callosum compared to Sham rats, and that AV-001 treated rats 
exhibit significantly improved white matter integrity indicated by 
reduced rarefaction and vacuolation in the corpus callosum when 
compared to VaD control rats.

PVS dilation is a frequent finding in the pathology of cerebral 
small disease, and has been observed in animals subjected to the MMI 
model of VaD (Venkat et al., 2017; Wang et al., 2017; Kalaria, 2018; 
Venkat et  al., 2020). Neuroimaging and pathological studies have 
demonstrated that dilated PVS increases with age and contributes to 
cognitive impairment (Patankar et al., 2005; Cumurciuc et al., 2006). 
A cohort study including more than 1,000 participants reported that 
a greater burden of PVS enlargement was linked to a higher risk of 
developing dementia, independent of vascular risk factors, changes in 
total brain volume, extent of white matter hyperintensities, and 
presence of covert infarcts (Romero et al., 2022). Iliff and colleagues 
found significantly reduced (~25%–60%) CSF influx in global AQP4 
knockout mice relative to wildtype animals, which supports the 
premise that AQP4 channels facilitate fluid movement between the 

FIGURE 4

A multiplex antibody array kit was used to simultaneously evaluate the relative expression levels of several different cytokines, chemokines, and acute-
phase proteins in the CSF. MMI significantly increases, while 1 μg/Kg AV-001 treatment significantly decreases the expression of inflammatory factors 
such TNF-α, CXCL9, and anti-angiogenic factors such as endostatin, PAI-1, and P-selectin in the CSF. CSF samples were pooled for each group. 
**p < 0.01, *p < 0.05.

FIGURE 5

RT-PCR was used to evaluate the expression of inflammatory factors in the brain tissue. MMI significantly increases, while 1 μg/Kg AV-001 treatment 
significantly reduces brain tissue expression of endostatin, thrombin, TNF-α, and IL-6. Brain tissue samples were pooled for each group. **p < 0.01, 
*p < 0.05.
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perivascular and interstitial spaces (Iliff et al., 2012). A recent report 
suggests that stagnation of interstitial fluid and increased interstitial 
volume may underlie the reduced glymphatic transport in AQP4 
knockout mice (Gomolka et al., 2023). In an optimized hematoma 
expansion model, AQP4 knock-out resulted in an increased 
hematoma volume and increased severity of BBB breakdown, which 
indicates that AQP4 plays a role in attenuating hematoma expansion 
and maintenance of BBB integrity (Chu et al., 2020). In our prior 
work, we found that the expression of AQP4 is decreased in MMI rats 
which may contribute in-part to MMI induced glymphatic 
dysfunction (Venkat et al., 2017; Yu et al., 2019a). In the present study, 
we  showed that MMI induces significant dilation of the PVS and 
reduces AQP4 expression around blood vessels compared to Sham 
rats, and AV-001 treatment significantly reduces PVS dilation and 
increases perivascular AQP4 expression compared to MMI rats.

PVS dilation and reduced AQP4 expression have been observed 
in VaD and are thought to contribute to glymphatic dysfunction 
(Venkat et  al., 2017; Wang et  al., 2017; Venkat et  al., 2020). The 
glymphatic system is a glial-dependent, brain-wide, waste clearance 
pathway that facilitates the clearance of soluble proteins, neurotoxins 
and metabolic waste from the brain (Zhang et  al., 2019). The 
glymphatic system also plays an important role in the delivery of 
nutrients and other essential molecules to the brain. Glymphatic 
dysfunction has been reported in several diseases including AD, 
stroke, diabetes mellitus, and VaD (Jiang et al., 2017; Venkat et al., 
2017; Wang et al., 2017; Yu et al., 2019a; Lin et al., 2020). Multiple 
microinfarcts in the brain significantly impairs the global influx of 
CSF along the paravascular channels and increases the risk of amyloid 
plaque formation (Venkat et al., 2017; Wang et al., 2017). Impairment 
of the glymphatic pathway can lead to the aggregation of soluble 
proteins and neurotoxins which aggravate neuroinflammation and 
neurodegeneration and thus, dementia (Wang et al., 2017). In current 
study, our results indicate that MMI induces significant glymphatic 
dysfunction compared to Sham rats at 14 days after MMI, and AV-001 
treatment significantly improves glymphatic function compared to 
non-treated MMI rats.

The relationship between inflammation and cognitive dysfunction 
has been well established, with increased levels of pro-inflammatory 
cytokines such as IL-1β, IL-6, C-reactive protein, and TNF-α found in 
both plasma and CSF of VaD patients (Tarkowski et al., 1999; Sjögren 
et al., 2004; Wada-Isoe et al., 2004; Yaffe et al., 2004; Zuliani et al., 
2007). Chronic low-grade inflammation and neuroinflammatory 
factors have also been linked to age-associated morbidity and 
mortality, white matter injury, and cognitive impairment (Franceschi, 
2007). Early and sustained inflammation in the brain can also cause 
white matter injury and cognitive impairment (Rosenberg, 2009; 
Wang L.-W. et al., 2012; Ben-Ari et al., 2019). In a transgenic mouse 
model of chronic neuroinflammation, overexpression of IL-6 in the 
brain was found to increase microglial proliferation and TNF-α 
expression (Gyengesi et  al., 2019). MMI induces microglial and 
astroglial activation adjacent to sites of microinfarction at 3 days after 
MMI (Rapp et al., 2008b; Wang M. et al., 2012). Neuroinflammatory 
factors (such as TNF-α) secreted by reactive glial cells damage 
oligodendrocytes and worsen demyelination and white matter 
degeneration in VaD (Tarkowski et al., 2003; Solito and Sastre, 2012; 
Acosta et  al., 2017). CXCL9 is a chemokine that participates in 
Th1-type immune responses, involving recruitment of effector T cells 
to sites of inflammation (Park et al., 2002). While CXCL9 is the most 

strongly dependent on interferon gamma for expression, TNF-α can 
induce CXCL9 mRNA expression in endothelial cells (Murphy, 2003). 
Increased expression of CXCL9  in the serum and CSF has been 
associated with cognitive decline and is increased in AD brain 
(Galimberti et al., 2003; Elkind et al., 2021). CSF levels of TNF-α, 
CXCL9, and IL-6 are also elevated in other neuroinflammatory 
diseases such as multiple sclerosis (Lepennetier et al., 2019). Thus, 
elevated inflammatory factor expression may initiate the 
neuropathological pathways that contribute to the development of 
VaD. Our findings demonstrate that in middle-aged rats, MMI leads 
to a significant increase in the expression of inflammatory factors such 
as TNF-α and CXCL9 in the CSF, as well as TNF-α, CXCL9, TLR-4 
and IL-6 in the brain, whereas treatment with AV-001 significantly 
reduces the expression of these inflammatory factors. This reduction 
in inflammatory factors observed in the CSF and brain of middle-aged 
rats treated with AV-001 may have a positive impact on white matter 
integrity and cognitive outcome.

In addition to the increased risk for cognitive dysfunction 
associated with elevated inflammation, thrombin and PAI-1 have also 
been implicated in the development of VaD and AD. Thrombin is 
involved in fibrin formation and platelet aggregation in response to 
vascular injury, and its expression is increased in brain microvessels 
in AD patients (Grammas et al., 2006). In patients with VaD, plasma 
prothrombin levels were increased and systemic thrombin inhibition 
has been shown to improve cerebral metabolism in patients with 
silent cerebrovascular disease (Kario et al., 1996, 1999). PAI-1 plays 
a critical role in regulating the balance between thrombosis and 
fibrinolysis, and increasing PAI-1 levels can increase cardiovascular 
events via increasing thrombosis (Sillen and Declerck, 2020). 
Elevated PAI-1 levels in CSF may serve as a non-specific marker of 
neurological disease, and CSF PAI-1 levels were significantly 
increased in patients with AD, cerebral ischemia, central nervous 
system (CNS) infection, alcohol withdrawal seizures, and CNS 
neoplasia compared to patients without CNS disease (Sutton et al., 
1994). PAI-1 is also the main physiological inhibitor of tissue 
plasminogen activator (tPA) and our prior work has shown that 
young adult, and middle-aged tPA−/− mice exhibit significant 
cognitive impairment, neuroinflammation, white matter injury, 
blood brain barrier leakage, glymphatic dysfunction, and increased 
deposition of thrombin, amyloid precursor protein, amyloid beta, 
and fibrin in the brain (Yu et  al., 2019b). Therefore, targeting 
thrombin and PAI-1 may be a promising therapeutic strategy for 
VaD. Our data show that MMI significantly increases, while AV-001 
treatment significantly decreases the expression PAI-1 in the CSF and 
brain and thrombin in the brain tissue of middle-aged rats. Of 
interest Vasculotide has been shown to counteract thrombin or 
lipopolysaccharide stimulated increases in trans-endothelial 
permeability in vitro (David et  al., 2011; Wu et  al., 2015). 
Inflammation is closely linked to vascular and endothelial 
dysfunction, as chronic inflammation can lead to endothelial 
dysfunction and subsequent vascular damage. Vascular and 
endothelial dysfunction have been implicated in VaD pathophysiology 
as evidenced by their association with impaired cognitive function 
and white matter hyperintensity volume (Hoth et al., 2007). A key 
role of endostatin in angiogenesis is preventing endothelial cell 
multiplication, migration, binding, and survival (Dhanabal et al., 
1999; Dixelius et al., 2000). Endostatin, but not vascular endothelial 
growth factor was found to mediate a relationship between 
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endothelial function and cognitive performance in patients with 
coronary artery disease (Isaacs-Trepanier et  al., 2020). Activated 
endothelial cells up-regulate the expression of adhesion molecules 
and selectins. P-selectin is an adhesion molecule produced by 
activated platelets and endothelial cells which enhances procoagulant 
and proinflammatory activity (Kisucka et  al., 2009). Elevated 
P-selectin is related to white matter hyperintensities in VaD patients 
with lacunar infarcts (Staszewski et al., 2018; Cipollini et al., 2019). 
Thus, addressing vascular and endothelial dysfunction could be a 
potential therapeutic strategy for preventing and treating MMI 
induced VaD and our data show that MMI significantly increases, 
while AV-001 treatment significantly decreases the expression of 
P-selectin in the CSF as well as endostatin in CSF and brain tissue.

Since cognitive function deteriorates with advancing age, one of 
the main imitations of this study is employing middle-aged rats to test 
the effectiveness of AV-001 treatment in MMI induced VaD. In our 
previous study, we evaluated the MMI model in young, middle-aged, 
and aged rats and found that the MMI model induces significant 
cognitive deficits in middle-aged and aged rats but not in young rats 
(Rapp et al., 2008b; Venkat et al., 2017, 2019). Aged rats also exhibited 
aged-induced cognitive impairment and MMI induced neurological 
deficits which can potentially interfere with cognitive tests (Rapp et al., 
2008b; Venkat et  al., 2017, 2019). Further investigation of the 
therapeutic effects of AV-001 in aged male and female rats subject to 
VaD are warranted.

Conclusion

In this study, we demonstrate that treatment of MMI with AV-001 
significantly reduces PVS dilation and increases perivascular AQP4 
expression which may contribute to improved glymphatic function 
compared to MMI rats. AV-001 treatment also significantly reduces 
inflammatory factor expression in the CSF and brain which may 
contribute in-part to AV-001 treatment induced improvement in 
cognitive function.
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