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Abstract   

Macrotyloma uniflorum (Lam.) Verdc., an economically important medicinal 
plant belongs to the Leguminosae family. Being Afro-Asian origin, the plant 
has long tradition of uses. It is primarily used for its antiurolithiatic property 
although it has other medicinal uses. Being Leguminosae member, this 
plant can form rhizobial nodules and mycorrhizal associations. The rhizobia 
obtained from this plant are mostly belonged to Bradyrhizobium sp.         
Although, Rhizobium pusence has also been reported. Microbes as bioferti-
lizers can be used to increase yield of this plant, as well as there is great po-
tential for utilizing the microbes derived from this plant. In this review we 
aim to describe the plant M. uniflorum - its taxonomic characteristics, eco-
nomic uses, putative active constituents, and beneficial microflora along 
with their applications.   

 

Keywords   

Antiurolithiatic property, beneficial microflora, Macrotyloma uniflorum, putative 
active constituents    

 

Introduction   

Plant Material            

Kidney stone is one of the common diseases that affect humankind from 
immemorable past, as early as 4800 BCE Egyptian mummies (1) and it can 
affect the renal system by various extent. It is known to affect about 10% to 
12% of the population (1, 2). Calcium oxalate is the most common type of 
kidney stone (1). Calcium oxalate or Calcium-oxalate-phosphate crystals 
account for about 80% of cases, while Calcium phosphate crystals account 
for less than 5%, Uric acid accounts for about 10%, Struvite accounts for 
about 10% and Cysteine accounts for less than 1% (1, 3). There have been 
arguments about some disadvantage in use of synthetic drugs and other 
treatment methods that may be overcome with help of herbal medicine or 
natural products (1). A broad range of plants or plant – based chemical ex-
tracts including flavonoids, phenolics, steroidal saponins etc (1) are known 
to have some degree of antiurolithic activities (2). However, Macrotyloma 
uniflorum (Lam.) Verdc. is traditionally well known for antiurolithic activity 
of its seed infusions (1, 3, 4-10). Additionally, the plant M. uniflorum (Lam.) 
Verdc. has many other medicinal activities including anti-
hypercholesterolemic, antioxidative, anti-hyperglycemic, anti-diabetic, anti
-obesity, anti-hypersensitive (8, 10) which are discussed in Fig. 1.  
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 This plant is rich with protein and seeds have high 

nutritional value containing vitamins, minerals, soluble 

fibers, fat and carbohydrate (10). M. uniflorum adds im-

portant amount of nitrogen to the soil (11). However, this 

tropical plant is remained heavily underutilized (6), as well 

as the association of microflora with this economically 

important plant, or application of microflora to increase its 

agricultural production, remains very poorly studied, with 

a very scanty amount of literature available. The aim of 

this review is to discuss about M. uniflorum including its 

medicinal properties, economic uses and microflora asso-

ciated with this plant. To date various investigations have 

been carried out on M. uniflorum but wide gaps remain in 

its microflora. In this review, we have also tried to address 

some future prospects to unveil microflora associated with 

M. uniflorum.  

Taxonomic identity of Macrotyloma uniflorum (Lam.) 

Verdc.          

M. uniflorum (Lam.) Verdc., or its taxonomic synonym,  Dol-

ichos uniflorus Lam. and Dolichos biflorus auct. non L. is a 

tropical pulse crop plant with medicinal importance. It 

belongs to the family Leguminosae or Papilionaceae (4, 8, 

10). It is native to the old world tropics (4). Earliest archae-

ological specimen of M. uniflorum has been obtained from 

the Indian Neolithic and Chalcolithic sites of Vindhyan 

plateau (12). During domestication, a gradual thinning of 

the seed coat has been found. Among these, the oldest 

specimens date from 2000 - 1700 BC (12). In vernacular 

language the plant is also known as horse gram or Madras 

gram (En), Kulthi (Hindi), Grain de Cheval (French),         

Feijoeiro de lagartixa, Favalinha, Culita (Polish) (4) Kulat-

tha (Sanskrit), Kurti Kalai (Bengali), Gahot (Kumaon and 

Gahrwal), Kollu (Tamil), Ullavallu (Telugu) etc. (8, 10). 

Some authors have been considered this plant to be toler-

ant to drought, salinity and heavy metal stress and it can 

grow under low soil fertility condition, wide range of      

climatic temperature. This gives the plant a wide range of 

habitat, and may supply foods to people living in adverse 

situations (4, 6). 

M. uniflorum includes different varieties which are listed in 
Table 1. 

  Morphology of the plant (13-15) is represented in 

Fig. 2.  

Taxonomic description of M. uniflorum (10, 16, 17) is as 

follows: 

Habit          

Herbaceous, sometimes woody root; twining sub - erect 
annual; 60 to 90 cm tall; stem cylindrical with slightly hairy 

to tomentose stems.  

Leaves         

About 3.5 - 7.5 cm long, pinnate trifoliate, stipules                   

7 - 10 mm long, petiolate, stipulate, stipule on attachment 

of petiole base. Stipule: lanceolate, 4 - 10 mm long, striate. 

Stipel: filiform, lanceolate or obsolete. Trifoliate, terminal 

leaflet symmetrical and lateral leaflets asymmetrical,          

2 - 4 cm broad. Softly tomentose on both surfaces, lower 

(abaxial) surface paler.  Petioles: about 1 - 7 cm long.  Ra-

chis: 2.5 - 10 mm long. Petiolules:1 - 2 mm long. Leaflets:    

1 - 7 cm × 1 - 4 cm., Acute or slightly acuminate, ovate or 

ovate - rhombic; rounded at the base. 

Fig. 1. Medicinal properties of Macrotyloma uniflorum.  

Different varieties of           
M. uniflorum 

Description 

M. uniflorum var.  
uniflorum 

It is probably a native to Indian subconti-
nent, found wild in southern Asia and 
Namibia. Cultivated widely in tropics. 
Pods 6-8 mm wide. 

M. uniflorum var.  
stenocarpum (Brenan) Verdc. 

It is a little bit highland variety; generally 
occurs at 800-1200 m altitude in the 

Central, East, Southern Africa and in 
India. A pod (4 – 5 mm wide) with the 
stipe rarely exceeds the calyx tube. 
Cultivated in Australia and California US. 

M. uniflorum var.  
verrucosum Verdc. 

Occurs in East and Southern Africa up to 
550 m altitude in grassland and thicket. 

Pods 4 – 5.5 mm wide, distinctly stiped, 
margin warted. 

M. uniflorum var.  
benadirianum (Chiov.) Verdc. 

Occur in East Africa (Somalia, Kenya) at 
sea level altitude, on sand dunes and 

thin soils on coral rag. 

Table 1. Different known varieties of Macrotyloma uniflorum (4)  

Fig. 2. Morphological characters of Macrotyloma uniflorum (where, A, B, C, D, 
E, G, H represent plant body, flower, flower transverse section, diadelphous 
stamen, floral parts, anther, root nodule and SEM of root nodule respective-
ly). Photographs C, D, F by Rajarshi Rit, distributed under a CC BY 4.0 license.  
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Flowers          

Axillary, clustered, pseudoracemose, pedicels 0.3 - 0.5 cm 

long.  Calyx tube bell - shaped, lobes 4 or 5, deltoid,        

corolla: glabrous, creamy - yellowish, whitish or greenish; 

papilionaceous, Vexillum roundish to oval, often with a 

purple blotch, wings narrow, the keel is not twisted.       

Stamens: 10 in number, diadelphous (9 fused and 1 free).   

Anther: uniform, ovary linear - oblong to linear, style fili-

form, thin, glabrous or shortly pubescent, not bearded. 

Stigma: terminal, subcapitate, often brush.  

Pods          

Straight or curved, linear or linear - oblong, compressed, 

dehiscent, and not septate. The seeds are attached by a 

short central hilum surrounded with an obsolete or  

scarcely developed aril.  

Seeds          

Ovoid in shape, 4 - 6 mm long, 3 - 5 mm broad, color vary-
ing from pale brown through dark brown to black. Deco-

rated with faint mottles or small scattered black spots with 

central hilum. Each pod contains about 5 - 8 seeds.  Seeds 

albuminous (Endospermous).  

Pollen Grains           

Pollen Grains tuberculate or spinulose, zonitriporate.  

Economic uses of Macrotyloma uniflorum (Lam.) Verdc.    

Food           

The seeds are used as pulse or culinary (4, 6). 

Fodder         

The stem and leaves are used as cattle food. The boiled 

seeds are usually for horse food, from which it gets the 

name horse gram (4). 

Nutritional Properties of the Seeds        

M. uniflorum seeds are rich in protein and serve as great 

source of protein among poor people.  However, Phytic 

acid, an antinutritional factor, is higher in M. uniflorum 

than many other legumes (10) which is being focused as a 

beneficial chemical compound for its antioxidant, antican-

cerous and anti-ulcer properties. Seemingly, Phytic acid is 

an important constituent that play role in antiurolithic 

activity. Nutritional profile of M. uniflorum seeds is men-

tioned (Table 2). 

Medicinal properties         

Ancient Indian medical (Ayurveda) and religious literature 
(including Charaka Samhita and Susruta Samhita) has 

been thoroughly discussed the uses of this plant (18).         

In modern times, in folk and Ayurvedic system of medicine, 

the seed infusion of this plant is predominantly used as 

Antiuriolithic (helps in removal and prevention of kidney 

stone). Traditionally M. uniflorum seeds were used to cure 

diarrhoea, dysuria, hepatomegaly, hiccup, obesity, asthma 

etc (8). Medicinal properties of entire plant, leaves and 

seeds (10) are presented in Fig.1. 

Putative active constituents that impart into medicinal 
activities         

Phytic Acid          

M. uniflorum seeds have been seen to contain quite a high 
amount of Phytic acid (6) and it has been suggested that 
Phytic acid may be one of the constituents responsible for 
antiurolithic activity of M. uniflorum (9). A significant quan-
tity of Phytic acid in horse gram has been revealed in     
embryonic axe fraction and cotyledon (19). Phytic acid 
content in cotyledons of M. uniflorum has been estimated 
as 8.42±0.41 mg g-1 (19). Phytic acid has been considered 
as an antinutrient, since it reduces bioavailability of cer-
tain minerals; however, it has been considered as potent 
antioxidant, anticarcinogenic agent that reduces the rate 
of cell proliferation and augments the immune system 
(20). Phytic acid has hypoglycemic or hypolipidemic 
effects (20). The metal chelating ability of phytate gives it a 
strong free radical scavenging ability that reduces the bio-
availability of most pro-oxidant metallic iron unavailable 
to participate in the Fenton reaction and catalyze hydroxyl 
radical formation in vitro. Thus, Phytate may check oxida-
tive damage, such as lipid peroxidation and may thereby 
lessen atherosclerotic lesions (6). Phytic acid, or myo-
inositol hexaphosphate is a modification of the sugar alco-
hol, myo-inositol, each of its six hydroxyl groups esterified 
with phosphate. The molecule acts as a powerful chelating 

Seed contents Amount 

Carbohydrate 60.5% (w/w) 

Protein 22.5% (w/w) 

Fat 1.0% (w/w) 

Arginine 8.80 

Amino acids (% dw)  

Cysteine 1.96 

Histidine 3.15 

Isoleucine 6.14 

Leucine 8.96 

Lysine 8.63 

Table 2. Nutritional profile of Macrotyloma uniflorum seeds (4, 6, 10)  

Methionine 1.16 

Amino acids (% dw)  

Phenylalanine 6.31 

Threonine 3.82 

Tryptophan 1.16 

Valine 6.47 

Total ash value 4.68 % (w/w) 

Essential minerals (mg/g) 

Calcium 1.01 

Magnesium 0.4-1.90 

Phosphorus 0.13-4.20 

Vitamins (µg/g) 

Vit B1 (Thiamin) 4.2 

Vit B2 (Riboflavin) 0.9 

Vit B3 (Niacin) 15 

Fatty acids (%) 

Oleic acid 8.9 – 16.8 

Linoleic acid 40.3 – 45.6 

Linolenic acid 11.6 – 14.3 
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agent, locking in cations like Ca2+, Fe3+ etc. Phytic acid is 
nowadays highly valued for its beneficial properties such 
as repair of intestinal epithelium (21) and suppression of 
hepatic lipogenesis (22). It has been reported that Phytic 
acid helps to prevent calcium oxalate formation in vitro 
(23) and in vivo (24). Phytate can be excreted through uri-
nary route (25). Therefore, we can suspect that Phytic acid 
works by directly interfering with renal calculi, although 
further studies are needed to determine whether Phytic 
acid can act as an adjunctive therapeutic agent for the 
treatment of renal calculi. Conversely, it has been suggest-
ed that Phytic acid may increase the risk of renal calculi 
formation (26). A three-fold mechanism has been suggest-
ed by which Phytic acid inhibits renal stone formation, viz., 
direct interference with Ca2+, dissolves calcium oxalate and 
antioxidant activity (9) which is mentioned in Fig. 3.   

Magnesium        

Magnesium depletion and the incidence of kidney stones 
are correlated (2). It has been suggested that high magne-

sium (Mg2+) content in M. uniflorum interferes with the    

formation of calcium oxalate crystals and prevents renal 

stones formation. Application of aqueous extract of           M. 

uniflorum (AEMU) seeds at 400 mg kg-1 and 800 mg kg-1 for 

14 days on ethylene glycol (EG) induced urolithiasis in rats 

has been found to induce the levels of urinary and serum 

Mg2+ in rat. After application of AEMU seeds at       400 mg kg
-1, urinary and serum Mg2+ levels have been found to in-

crease by 1.97 and 1.53 times respectively, compared to EG 

induced-non AEMU treated experimental set. Whereas, 

application of AEMU seeds at 800 mg kg-1 have been shown 

to promote the level of urinary Mg2+ 2.48 times and serum 

Mg2+ 1.64 times compared to EG induced-non AEMU treat-

ed experimental set (27). The mechanism by which Mg2+ 

inhibits kidney stone formation (9) has been demonstrated 

in Fig.3. Along with Mg2+, Citrate and Phytate have also 

been reported to be effective against renal calcium oxalate 

crystallization (28). Furthermore, it has been examined 

that the combination of Mg2+ and Phytate showed a syner-

gistic effect on the inhibition of calcium oxalate crystalliza-

tion but the Mg2+ - citrate combination was not true for 

that purpose (24). Mg2+ in a quantity of 125 mg L-1 has been 

shown to be slightly more effective than 800 mg L-1 citrate 

in delaying the induction time of calcium oxalate crystalli-

zation (24).  

Phenolic compounds and flavonoids         

M. uniflorum contains a broad range of phenolics and 

Quercetin, a flavonoid (6). Tannins (phenolics) and flavo-

noids work as smooth muscle relaxants that help in expul-

sion of kidney stones (5). Phenolics decrease the formation 

of calcium oxalate by interfering with certain enzymes in-

volved in oxalate production, such as Glycolic Acid Oxidase 

in liver and Lactate Dehydrogenase in liver and kidney (5) 

which is demonstrated in Fig. 3. Different phenolic com-

pounds and flavonoids, obtained from M. uniflorum (6, 19) 

are listed (Table 3).  

 

Fig. 3. Magnesium depletion provokes kidney stone formation. Mg2+ com-
petes with Ca2+ to bind with oxalate, thus does not let to form. Magnesium, 
along with potassium, promotes excretion of citric acid that interfere calcium 
oxalate crystallisation.  Phenolics interfere the certain enzymes responsible 
for Calcium oxalate formation. Phytic acid inhibits renal stone formation 
interfering with Ca2+ and also dissolves calcium oxalate.  

Compounds Cotyledon Embryonic Axe Seed Coat 

Flavonoids  

Quercetin 9.7±0.55c 113.4±6.0b 129.5±11.3a 

Kaempferol 6.0±0.25c 67.4±3.7b 117.2±10.5a 

Myricetin 2.4±0.07b 32.9±3.3a 35.5±5.2a 

Daidzein 4.1±0.08b 22.2±1.3a 0.94±0.03c 

Genistein Not detected 44.7±3.22 Not detected 

Phenolic Acids  

Benzoic Acid Derivatives   

Vanillic acid 58.4±3.3a 53.2±5.1a 42.4±3.6b 

ProtocatechuicAcid 39.0±2.0a 11.8±0.4 23.1±1.2b 

Gallic acid 26.9±1.3a 19.8±0.8b 5.5±0.06c 

Para- Hydroxybenzoic acid 20.1±0.8b 13.1±0.5c 28.8±1.4a 

Syringic acid 18.4±1.0a Not detected 4.5±0.02b 

 Subtotal 162.8 97.9 104.3 

Chlorogenic acid 160.8±9.8a 26.8±2.1b 22.5±1.1b 

Cinnamic acidderivatives  

Caffeic acid 88.9±5.0a 61.5±4.9b 10.6±0.6c 

Ferullic acid 70.1±5.1a 31.4±2.4c 37.5±2.5b 

para – Coumaric acid 40.9±3.2a 21.4±1.3c 24.5±1.8b 

Sinapic acid 9.7±0.09a Not Detected 3.7±0.02b 

 Subtotal 370.4 141.1 98.8 

     Total 533.2 239.0 203.1 

Table 3.  Different phenolics and flavonoids, derived from Macrotyloma uniflorum (6) (where, different letters stand for statistically significant difference)  
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Experimental Evidence of medicinal qualities        

The seed extracts have been demonstrated to dissolve 

calcium oxalate crystals in vitro (3, 7) with aqueous frac-

tion performing the best (3) as well as the seed extract 

helps dissolve renal calculi in Lithiasic rat model (5). The 

seeds have been seen to contain quite a high amount of 

Phytic acid (6) and it has been suggested that Phytic acid 

may be one of the constituents responsible for                  

antiurolithic activity of M. uniflorum (9). According to one 

report, dietary Phytate may be a safe and important agent 

to reduce the risk of kidney stone formation in young 

women (23). Various other activities of the plant such as 

antimicrobial activity, anti – helminthic activity, anti-

inflammatory and analgesic effect, anti – diabetic activity, 

anti – cholitic activity, anti – histaminic activity, anti – pep-

tic – ulcer activity, antioxidant activity and free – radical 

scavenging activity, diuretic activity, haemolytic activity, 

hepatoprotective activity etc. have been reported (10) and 

the plant has also been considered as non – toxic. M. uni-

florum leaves have been reported to have antiurolithic 

activity (7).  

Microflora associated with Macrotyloma uniflorum         

Little amount of data available about microflora associat-

ed with the M. uniflorum plant. Since this is a leguminous 

plant, it generally harbours root nodule forming rhizhobia 

just like other legumes, as well as shows good mycorrhiza-

tion. Some data regarding microflora includes mycorrhi-

zae, rhizobia, seed borne microflora, plant growth promot-

ing microbes (PGPMs) including plant growth promoting 

fungi (PGPF), plant growth promoting rhizobacteria (PGPR) 

and endophytes.  

Mycorrhizae         

Mycorrhizae are symbiotic association between fungi and 

plant roots. They cause little or no damage to plant roots 

but help the plant to gain nutrients from soil (29). The term 

‘Mycorrhizae’ was first coined by Dr. A. B. Frank (30). Infec-

tion of roots with mycorrhizal fungi extends the zone in the 

soil, from which the plant can access the nutrients (31). 

Mycorrhizae can roughly be classified into three types; i.e., 

Endomycorrhiza, Ectomycorrhiza and Ectendomycorrhiza. 

Mycorrhizae or similar structure (Paramycorrhiza sensu 

Strullu-Derrien and Strullu) (32, 33) are known to occur in 

fossil records as early as 407 million years old Devonian 

Rhynie Chert bed, where Glomeromycotina and Mucoro-

mycotina used to form root-like associations with rootless 

earliest land plants like Aglaophyton and Horneophyton 

(34). These were reported in both sporophytes and game-

tophytes of early land plants (33). They are somewhat   

allied to modern day Arbuscular Mycorrhizal symbiosis. An 

earliest of the known fungus, Glomites rhynensis is known 

to produce arbuscules, intra- and inter- cellular aseptate 

hyphae and glomoid spores with bilayered walls (35). 

However, the known oldest fossil ectomycorrhiza dates 

back to 50 million years ago only (36), and probably 

evolved through a separate evolutionary route (32), alt-

hough fossil Ascomycota were known from as early as 400 

million years old Rhynie chert, with perithecia scattered 

beneath the epidermis in the rhizomes and the upright 

stems of the early land plant Asteroxylon (37). Fossil rec-

ords are known from 443 – 359 million years old (38)   

Tortotubus protuberans which is one of the earliest       land 

– dwelling organism (39), a fungus of uncertain nature (40), 

but showing parallelism with modern Basidiomycetes (39). 

The oldest generally accepted Basidiomycetes are known 

in fern stems from Mississippian (Lower Carboniferous) 

strata of France (41).  

  Arbuscular Mycorrhizae or AM fungi or AMF (one 

kind of endomycorrhiza) belong to Glomeromycota that 

forms mycorrhizal associations with plant roots. They are 

obligate mutualistic symbionts on plants and depend on 

plant for fatty acid. Sometimes refer to as VAM (Vesicular – 

Arbuscular – Mycorrhiza), however, since members of   

Gigasporaceae does not produce vesicles (42). VAM or AMF 

are very much ubiquitous in occurrence, i.e., nearly all 

group of terrestrial plants show this type of symbiosis. AMF 

inoculants are being widely used as biofertilizers to im-

prove plant health, vigour, yield and resistance from stress 

and disease through stimulating the Systemic Acquired 

Resistance (SAR) pathway. 

 AM – fungal colonisation is known to extend the 

nutrition depletion zone in the soil, indicating a broaden-

ing of the region from which plant can access the nutrients 

(43), imparting Mycorrhiza Induced Resistance (MIR) (44) 

and improving stress tolerance such as various abiotic 

stresses such as  drought stress (45), salt stress (46), cold 

stress (47-49), heat stress (50), light stress (51), water – 

logging stress (52), heavy metal stress (53) and Oxidative 

stress (54, 55). 

 Some AM fungi including Glomus aggregatum,         G. 

constrictum, G. deserticola, G. margarita, Acaulospora mor-

rawae, Sclerocystis rubiformis and Scutellospora    calospo-

ra have been reported to present in mycorhizosphere of M. 

uniflorum. M. uniflorum, inoculated with        G. deserticola 

has shown significant increase in nutrient uptake and bio-

mass production compared to                     uninoculated 

plant set (56). Inoculation of G. fasciculatum on M. uniflo-

rum, grown in soil in iron mine area has been reported to 

increase nodule formation, nodule fresh weight (75%), 

nodule dry weight (100%), shoot dry weight (94.4%) (57). 

Under water stress condition, application of G. fascicula-

tum and G. mosseae in soil has been observed to improve 

nodulation in M. uniflorum and increase      nodule number, 

nodule weight and leghaemoglobin content in nodules 

(58). It has been demonstrated that crop rotation (maize - 

horse gram/rice rotation) is the most effective in promot-

ing indigenous AMF population which significantly increas-

es crop yield and total productivity (59).  

 Microscopic views of mycorrhizal association with 

M. uniflorum roots have been captured in our lab (60-63) 

which are presented in Fig. 4.  

Rhizobia         

Rhizobia are symbiotic nitrogen-fixing (diazotrophic) Gram

-negative bacteria capable of colonizing plant roots of  

Leguminosae and forming root nodules in legumes. Rhizo-

bia are paraphyletic group, consisting of alpha and beta 

proteobacteria (64). They are allied to Agrobacterium      
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tumifaciens that is widely used in transgenic approach 

(65). Rhizobia were first discovered in 1988 by Beijerinck 

who isolated root nodule bacteria in pure culture from 

nodules of leguminous plants and showed the nitrogen 

fixation capacity of those (64). They are predominantly 

aerobic chemo-organotrophs. Some of them are easy to 

culture, where as some are non culturable (66). Although 

conventionally root nodules have been reported from   

legumes but there are more diversities than this. The inter-

action of rhizobia (Rhizobium, Mesorhizobium,                Brad-

yrhizobium) with Non – legumes has been reported (67). A 

broad range of nitrogen fixing rhizobia are non – nodule 

forming endophytes (68). Whereas non – legume plant 

such as Parasponia may form nodules with Bradyrhizobi-

um sp. (69). Sometimes rhizobia form stem nodule in tropi-

cal legumes (70). Rhizobium rhizogenes, a pathogenic 

strain of Rhizobium has been shown to attack a broad 

range of hosts causing hairy root disease and transferring 

genetic material (T-DNA) to plants (71). Rhizobium sp. 

NGR234, Sinorhizobium meliloti and Mesorhizobium loti has 

also found to transfer T-DNA (72). Rhizobia improve crop 

productivity by plant growth promoting (PGP) characteris-

tics such as direct food supply nitrogenous matter by fixing 

nitrogen, as well as solubilising phosphate, producing si-

derophores, stimulating growth by producing IAA etc. (64). 

Phylogeny of naturally occurring rhizobia from           M. uni-

florum roots have been studied (73). All the isolates were of 

slow grower, Bradyrhizobium type. Some of them were 

previously reported exclusively from African continent and 

may have biogeographical implications. Some of the iso-

lates have showed their ability to cross infect and nodulate 

several other legumes like, Soybean and several species of 

Vigna (73). Application of fast grower type rhizobia isolated 

from wild leguminous plants (several species of Canavalia 

sp., Crotalaria sp. and Derris sp.) on                  M. uniflorum 

and some other legumes has been reported to improve 

plant biomass and nodulation (74). However, Rhizobium 

pusence AS05 (MT645243) isolated from contaminated 

sites has been reported to mitigate Cr (VI) stress effect on 

M. uniflorum var. Madhu (75). It has been documented that 

rhizobia associated with M. uniflorum are involved in phy-

toremediation of Nickel (76). The potential of Rhizobium 

strains in improving plant height, number of branches, 

number of nodules, fresh weight, dry weight, nitrogen con-

tent, nitrogen uptake, number of pods per plant and seeds 

per pod of M.  uniflorum has been demonstrated (77). Rhi-

zobia, obtained from root nodules of         M. uniflorum Lam 

verdc. have been found to exert antagonistic and antibac-

terial activity through the production of Bacteriosin (78). 

Moreover, rhizobia associated with           M. uniflorum 

(Lam.) verdc. have been considered as important agents 

for building plant tolerance to toxicity of Iron, Nickel, Lithi-

um and Aluminium (76, 79- 81).  

PGPMs (PGPF and PGPB)       

The term PGPMs and all its subsets are presented in Fig.5. 

 PGPMs are microbes that promote plants growth, 

Fig. 4. Microscopic view of mycorrhizal association associated with Macrotyloma uniflorum (where, A- arbuscular mycorrhizal association, B- intracellular arbus-
cular mycorrhizal association,  C, F- mycorrhizal spore, D- mycorrhiza with extraradical and intraradical hyphae, E- arbuscular mycorrhizal association and dark 
septate endophyte). Photographs A-D by Rajarshi Rit, distributed under a CC BY 4.0 license.  

Fig. 5. PGPM and all its subsets. PGPM, PGPB, PGPR and PGPF represent Plant 
Growth Promoting Microbes, Plant Growth Promoting Bacteria, Plant Growth 
Promoting Rhizobacteria and Plant Growth Promoting Fungi respectively. 
PGPM includes PGPB and PGPF. PGPR, endophytic bacteria and phyllospheric 
bacteria remain under PGPB. PGPF include endophytic fungi, rhizospheric 
fungi and phyllospheric fungi.  
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preferably in friendly manner. However, the term PGPM 

(82) has been quite interchangeably used as PGPR. PGPMs 

have been considered as separate group than the Biocon-

trol Agents (BCA), where PGPM activity indicates direct 

plant growth promoting activity (82). Although it has been 

acknowledged that same organism can have PGPM activity 

and BCA activity on the same time. However, any means of 

improved plant protection (including microbial biocontrol 

agents or microbial biopesticides) within PGPM has been 

included (83). 

 PGPMs are expected to be beneficial. There are 

many disease-causing microbes that promotes plant 

growth, or hypertrophy and hyperplasia; such as the fun-

gus Gibberella fujikuroi that causes bakanae disease of 

rice, or the bacteria Agrobacterium tumefaciens that   caus-

es crown gall disease; they are not generally considered as 

PGPMs, however, many PGPMs are hypovirulent strains of 

well-known plant pathogens (84). PGPMs exert plant 

growth promoting (PGP) traits. PGP activities are some-

times broadly classified into direct and indirect activities 

(85). 

 Direct plant growth promotion occurs when a bac-

terium facilitates the acquisition of essential nutrients or 

modulates the level of hormones within the plant (86). 

Direct PGP activities include: 

A. Stimulating Plant Growth – IAA synthesis, Gibberellin 

synthesis, Polyamine synthesis etc. 

B. Increasing Nutrient Bioavailability – Nitrogen fixa-

tion, Ammonia Production, Phosphate Solubilisa-

tion, Siderophore secretion etc. 

C. Stress Alleviation – ACC Deaminase activity, ROS 

Scavenging activity, Antioxidant production etc.  

 Indirect promotion of plant growth occurs when a 
PGPB decrease the damage to plants caused by various 

phytopathogens (86). Indirect PGP activity includes myco-

parasitism, antibiosis, induced systematic resistance (ISR), 

exopolysaccharide production, antipathogenicity and pro-

tective enzyme production (87).  

 The term PGPF, in its broadest sense, are group of 

fungi that promotes growth of plant, regardless of the  

location (Rhizospheric or Phyllospheric or Endophytic) or 

habitat of the fungus. However, according to a more      

restrictive definition such as by Elizabeth Bent, PGPF     

excludes mycorrhizal fungi (84). However, a broader view 

considers mycorrhizal fungi within PGPF (88).  

 The term PGPB (Plant Growth Promoting Bacteria) 

in its broadest sense, is any kind of (rhizospheric or phyllo-

spheric or endophytic) bacteria that promotes plant 

growth. PGPB can be classified into two subgroups – PGPR 

(those typically found in rhizosphere) and Plant-growth-

promoting bacterial endophytes (those are found within 

any of the tissues of host plant) (89).  

 The term PGPR was first used by Klopper and co-

workers around 1970 (90). Rhizobacteria can create three 

effects: beneficial, neutral, or deleterious (91). The term 

PGPR is defined as rhizobacteria beneficial to the plant 

(92). Induced Systemic Resistance has been reported to 

mediate by PGPR and PGPF (84). PGPR are non-pathogenic 

bacteria that colonize in the rhizosphere, around root   

tissues and improve plant growth and yield (87). Phos-

phate is one of the important factors for plant growth. 

Phosphate solubilizing bacteria convert insoluble form of 

phosphate to soluble-plant usable form (93). Phosphate 

solubilizing bacteria from rhizosphere of M. uniflorum have 

been reported (94). 

Endophyte 

 Endophytes are microbes that inhabit inside plant tissue, 

and usually with no visible manifestation to plant, and 

often have beneficial (mutualistic) relations with plants 

(95). Commonly they are either fungi or bacteria (95), but 

can sometimes be algae or anything else (96). Some evi-

dence is telling that many endophytic fungi (97) and bacte-

ria (98, 99) are not culturable (100) - perhaps they grow 

exclusively inside plant host. Endophyte occurrence may 

vary greatly according to geographic location (101, 102), 

season (103, 104), a range of host species (95, 105) and 

tissue or organ (105) and their localization may be intracel-

lular (106) or intercellular (107). Endophytes have been 

reported to occur in xylem vessels, inner tissues of flower, 

fruits, or seeds and even pollen grains of pine (95). Endo-

phytes may transmit through a horizontal mode (infected 

plant to uninfected plant) or a vertical mode (parent plant 

to offspring plant) mode and may involve interaction with 

insects (105). A large portion of endophytes are also can 

show plant growth promotion (PGP) functions and can 

protect the plant against biotic and   abiotic stress (95). 

Many endophytes and other PGPMs are nowadays being 

used as biofertilizers with less harmful and more sustaina-

ble activities than chemical fertilizers. Their beneficial ac-

tivities are already proven. Now, our civilization needs to 

find various endophytic-PGPM and other PGPMs to en-

hance plant growth and metabolite production in a sus-

tainable way. They usually locate in the intercellular space 

of the plant tissue though they can form more intrusive 

structures toward plant cells. They are thought to have 

very complex mechanisms to establish an association with 

plant tissues. The associations are often mutualistic-

symbiotic, i.e., besides taking some advantage from the 

plants, they help the plant in some way, such as vegetative 

growth promotion (95, 108), nutrient absorption, improve-

ment of stress-tolerance and disease  resistance, second-

ary metabolite productions (of the endosymbiont’s own) 

(109, 110) and increase the production of plant secondary 

metabolites that protect plants against herbivores, includ-

ing insects and grazing animals (111). Neurotoxic alkaloids 

produced by clavicipitaceous endophytes protect grasses 

from grazing herbivores (95). Plants seemingly bear com-

plex mechanisms to recognise and harbour the endo-

phytes (112) but little is known about the mechanisms.  

 Endophytic associations are very ancient and prob-
ably occurring from the time of origin of land plants, and 
perhaps played role in land colonisation by plants (113). 
These associations have been changed lot with time (114). 
Among bacterial endophytes, some common groups are 
alpha-proteobacteria, beta-proteobacteria, gamma-
proteobacteria, firmicutes, actinobacteria etc.  Among 
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fungal endophytes, members of Glomeromycota and Asco-
mycota are common. Bacillus aryabhattai AS03 and Rhizo-
bium pusense AS05, native nodule endophytic bacteria 
have been considered as important agents to minimize 
Chromium (Cr) toxicity on M. uniflorum (75). Application of 
endophytic bacterial strains Bacillus and Rhizobium has 
been proved to improve photosynthetic performance of  
M. uniflorum, grown in Cr contaminated soil (115). Several 
members of the genus Bradyrhizobium have been reported 
as symbionts of M. uniflorum that are also capable of nodu-
lating other plants (73).     

 

Conclusion   

Although this plant Macrotyloma uniflorum (Lam.) Verdc., 
is able to form vesicular arbuscular mycorrhizal associa-
tion, the diversity and distribution of naturally occurring 
mycorrhizae in this plant needs to be worked out. The 
plant naturally harbours the rhizobia mostly the members 
of Bradyrhizobium and apparently, they have been found 
capable of infecting and nodulating several other legumi-
nous crops. However, Rhizobium pusence has been known 
to occur. Little is known about rhizospheric and phyllo-
speric microbes especially those with PGP activities. This 
opens a wide door of opportunity including exploration of 
symbiosis and nodulation genes, exploration of symbiosis 
mechanism, exploration of biodiversity and distribution of 
different microbes (Endophyte, PGPR, PGPF etc), improv-
ing yield and medicinal constituents by applying endo-
phytes, PGPR, PGPF etc., metabolite documentation of 
endophytes, PGPF etc, studying potential of using               
M. uniflorum  for soil restoration and cross – infecting    
other pulse crops for nodulation, improvement of nitrogen 
fixation from the native rhizobia from this plant and study-
ing the potential of M. uniflorum to use as a host for propa-
gation of VAM fungi.   
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