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ABSTRACT 

 

 

Principal Component Analysis (PCA) is capable of completely decorrelating input data in 

the transform domain. However, PCA is limited in image compression because there is a 

need to encode the eigenvectors of the input data and thereby affects the rate-distortion 

performance. In an effort to improve rate-distortion performance, this work proposed a 

block-to-row PCA (BTRPCA) algorithm that employs the eigenvectors from the model 

image of the same image modality coupled with a row vectorization approach. Region-

based compression schemes that reduce storage space while preserving the image quality 

of the region of interest (ROI) are receiving attention due to the increase in medical 

imaging data. While PCA is inherently limited by its matrix form, the Arbitrary ROI 

coding (ARC) proposed in this work models the ROI by means of a factorization approach 

and the arbitrary-shaped ROI contours and NROI are compressed using BTRPCA. In order 

to minimize user interaction, an automated brain segmentation technique based on 

midsagittal plane (MSP) and Absolute Difference Map (ADM) is then incorporated into 

the proposed Automated Arbitrary PCA (AAPCA). The presented result showed that 

BTRPCA achieves PSNR improvements of up to 10 dB compared to its PCA counterparts. 

The ARC outperforms JPEG, Embedded Zerotree Wavelet (EZW) and Embedded Block 

Coding With Optimized Truncation (EBCOT) at all tested bit rates with an average PSNR 

improvements of 6 dB, 18 dB and 12 dB respectively. Subjective performance analysis 

was in agreement with the objective performance analysis in which the AAPCA is capable 

of extending beyond the compression limits of the conventional PCA algorithm and that 

the quality of the surroundings of ROI is degrading gracefully at bpp as low as 0.25. The 

research has successfully developed an improved region-based compression scheme for 

medical images where lossy and lossless compression is implemented in one PCA 

architecture. Continuation of this study include using different encoding schemes to boost 

the rate-distortion performance and extraction of multiple ROI.  
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TEKNIK ANALISIS KOMPONEN PRINSIPAL BERASASKAN RANTAU UNTUK 

PEMAMPATAN IMEJ PERUBATAN  

 

 

ABSTRAK 

 

 

Analisis Komponen Prinsipal (PCA) berkemampuan untuk menyahsekaitan sepenuhnya 

data masukan di dalam domain jelmaan. Walau bagaimanapun, PCA adalah terhad di 

dalam pemampatan imej kerana terdapatnya keperluan untuk mengekod vektor eigen bagi 

data masukan dan oleh itu menjejaskan prestasi kadar herotan. Di dalam usaha 

meningkatkan prestasi kadar herotan, tugasan ini mencadangkan algoritma PCA blok-ke- 

baris (BTRPCA) yang menggunakan vektor eigen daripada imej model yang terdiri dari 

imej modaliti yang sama yang dipadankan dengan pendekatan penvektoran baris. Skim 

pemampatan berasaskan rantau yang mampu mengurangkan ruangan simpanan di 

samping mengekalkan kualiti imej pada rantau yang diminati (ROI) menerima perhatian 

kerana terdapat peningkatkan data di dalam data pengimejan perubatan. Walaupun PCA 

sememangnya terhad di dalam bentuk matriksnya, Pengekodan ROI Arbitrari (ARC) yang 

dicadangkan di dalam tugasan ini memodelkan ROI melalui pendekatan pemfaktoran dan 

kontur ROI serta NROI berbentuk arbitrari yang dimampatkan menggunakan BTRPCA. 

Untuk meminimumkan interaksi pengguna, satu teknik pembahagian otak berdasarkan 

Satah Midsagittal (MSP) dan Peta Bezaan Mutlak (ADM) digabungkan di dalam PCA 

Arbitrari Automatik (AAPCA) yang dicadangkan. Keputusan yang dibentangkan 

menunjukkan bahawa BTRPCA mencapai peningkatan PSNR sehingga 10 dB berbanding 

rakan PCA yang lain. ARC mengatasi prestasi JPEG, Wavelet Pokok-Sifar Terbenam 

(EZW) dan Pengekod Blok Terbenam dengan Pemepatan Optimum (EBCOT) pada semua 

kadar bit yang diuji dengan purata peningkatan PSNR sebanyak 6 dB, 18 dB dan 12 dB. 

Analisis prestasi subjektif bersepakat dengan analisis prestasi objektif, iaitu AAPCA 

berkemampuan untuk melangkaui had mampatan algoritma PCA konvensional dan kualiti 

persekitaran ROI adalah merosot dengan baik pada bpp serendah 0.25. Penyelidikan ini 

telah berjaya membangunkan skim pemampatan berasaskan rantau yang ditingkatkan 

untuk imej perubatan, di mana pemampatan hilang dan tanpa hilang dilaksanakan di 

dalam satu senibina PCA. Kesinambungan kajian ini termasuklah menggunakan skim 

pengekodan yang berbeza untuk meningkatkan prestasi kadar herotan dan pengekstrakan 

ROI berbilang.  
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