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Active foot contact (absence of a braking impulse) during the acceleration phase of athletic 
sprinting is associated with the motion of the foot before touchdown (TD). Since the 
identification of braking impulses through force plate measurements is cost-expensive, the 
aim of this study was to develop a machine learning algorithm to predict active foot contact 

occurrences based on ankle-mounted accelerometer measurements. Ten recreationally 
active athletes (three females, seven males) performed 30 sprint-block-starts each, which 
were used as input to the machine learning model. Model performance was assessed by 
the AUC for both validation (AUC = 0.96) and testing (AUC = 0.94). It is therefore possible 
to predict active foot contact occurrence by a machine learning algorithm solely based on 
ankle-mounted accelerometer measurement data. 
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INTRODUCTION: The horizontal acceleration of the body’s center of mass (CoM) during the 
sprint start and early acceleration phase is important for overall sport performance in athletic 
sprinting (Čoh et al., 1998). Acceleration is determined by the horizontal net impulse produced 
during the stance phase. Since the horizontal net impulse in running direction equals the sum 
of posteriorly (braking) and anteriorly (propulsion) directed impulses, athletes can either try to 
increase propulsion or minimize braking (or a combination of both). Elite sprinters have even 
shown to be able to avoid braking impulses during the first ground contacts after block 
clearance. Braking impulses are believed to be a function of touchdown distance and 
touchdown velocity of the foot (Bezodis et al., 2019). The term touchdown distance refers to 
the position of the foot in the sagittal plane relative to the vertical projection of the CoM whereas 
touchdown velocity refers to the velocity of the foot shortly before ground contact. Following 
this explanation, the foot should be placed slightly behind the vertical projection of the CoM 
onto the ground (Bezodis et al., 2015) and the horizontal velocity of the foot in running direction 
should be small or even pointing posteriorly (Hay, 1994) to produce a high propulsive impulse. 
The existence of a braking impulse and its magnitude during a ground contact in sprinting can 
be easily derived from force plate signals (gold standard). However, the use of force plates in 
athletic training requires expensive equipment and building operations and skilled operators 
raising the need for a cheaper and more user-friendly alternative.  
Therefore, the aim of this study is to evaluate whether it is possible to predict the existence of 
a braking impulse with machine learning by training the model with data from ankle-mounted 
accelerometer measurements. 
 
METHODS: Three recreationally active female athletes (25.3 ± 2.1 years, 1.7 ± 0.1 m, 
64.7 ± 9.5 kg) and seven male athletes (25.4 ± 2.6 years, 1.8 ± 0.1 m, 78.6 ± 8.9 kg) 
participated in this study. After an individual warm up all participants performed 30 sprint-block-
starts and maximally accelerated for 5 m. Ground reaction forces (GRF) (2000 Hz, 
600x900mm, Kistler, Winterthur, CH) and the acceleration of the ankle (2000 Hz, dual-axial, 
operating range: ± 50 g, iMEMS®ADXL278 ANALOG Devices, Inc. Wilmington, MA) were 
sampled simultaneously using the Qualysis Track Manager (Qualysis Inc., Gothenborg, 
Sweden). The accelerometer was attached to the lateral malleolus of the ankle joint by aligning 
the vertical axis of the accelerometer with the vertical axis of the lower leg while the athlete 
was standing (Gruber et al., 2014). The collected data were filtered with a fourth order low-
pass Butterworth filter at a cutoff frequency of 50 Hz (GRF) and 20 Hz (accelerometer), 
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respectively. For each trial the accelerometer data were cut according to the time period of 
interest which was defined as the time span from initiation of the swing phase (SW; threshold: 
0.5 ms-2 in anterior direction) of the rear leg until first TD of the foot. The TD was detected by 
searching for the first peak of the time differentiated vertical acceleration signal with a minimum 
peak prominence of 70% of the maximum change of acceleration recorded for the whole trial. 
Both the threshold for the initiation of the swing phase and the peak prominence magnitude 
for TD detection were determined numerically by evaluating different thresholds with respect 
to accuracy. The accuracy of the TD detection method was checked against event detection 
from force recordings (vertical GRF exceeding 20 N) (Aubol and Milner, 2020). 
For further analysis the trials were classified into braking (braking force during the first stance 
phase exceeded 20 N) and no braking. The data were randomly split into training data (n = 237 

trials, 83%) and test data (n = 50 trials, 17%). The training data were further analyzed using 

Matlab’s Classification Learner (MATLAB, The Mathworks Inc., Natick, MA, USA). This 
machine learning approach required pairs of input and corresponding correct output values for 
training. To prevent overfitting, the model was trained by k-fold cross-validation (k = 5). Once 
the training was completed, the resulting model could be used for predictions based on test 
data (data which have not been used for training) (Kim, 2017). As input data to the model, the 
following characteristics of the acceleration signal (features) have been calculated (see Table 
1). The correct output values were obtained from the horizontal GRF by assigning the value 0 
to trials without braking (no braking) and the value 1 to trials with an existing braking impulse 
(braking). Subsequently, the input - correct output pairs were imported into the Classification 
Learner which trained linear, quadratic, cubic and gaussian support vector machine (SVM) 
models of which the model resulting in the highest model performance was chosen. Model 
performance was defined as the area under the ROC curve (AUC) for the validation data (Luo 
et al., 2016). Furthermore, the test data were used to make predictions and the corresponding 
test performance (AUC) was compared to the validation performance. 
 
Table 1: Features derived each from the vertical (y) and anterior-posterior (x) components of 
the accelerometer data with respect to the local coordinate system of the accelerometer. 

Feature Description 

Mean acceleration (x,y) The average acceleration of the foot from SW until TD 
Max. acceleration (x,y) The maximum acceleration of the foot from SW until TD 
Min. acceleration (x,y) The minimum acceleration of the foot from SW until TD 

Swing duration The duration of the swing phase in seconds 
Acceleration at TD (x,y) The acceleration of the foot at initial TD 
Acceleration ratio (x,y) The quotient of the maximum and minimum acceleration of the 

foot 

 
RESULTS: The initial TD was detected 19 ± 28 ms earlier when compared to the TD obtained 
from GRF data. The right part of Figure 1 shows the GRF curve in anterior-posterior direction 
normalized to the stance phase. During the trials classified as braking the subjects produced 
a mean braking impulse of 1.64 ± 1.12 Ns and a propulsive impulse of 71.30 ± 16.26 Ns, 
resulting in a net impulse of 69.66 ± 16.43 Ns. The net impulse of the trials classified as no 
braking amounted to 71.47 ± 13.90 Ns on average. The highest model performance (AUC = 
0.96) was reached by a cubic SVM. Subsequently, the trained model (training time: 0.26 s) 
was used to predict categories from the test data (n = 50) which resulted in correctly classifying 
40 out of 50 trials (AUC = 0.94). 
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Figure 1: Schematic chart of the machine learning classification process. The model was trained 
with matching input - correct output pairs. The acceleration of the foot during the swing phase 
served as input data, which were transformed into features (characteristics of the acceleration 
signal). The correct output was derived from the GRF of the first stance phase, classified as 0 
(no braking, n = 86) and 1 (braking, n = 201). 

 
DISCUSSION: The implemented machine learning algorithm was able to predict active foot 
contact occurrences during the acceleration phase of athletic sprinting by 88% (based on test 
data; AUC = 0.94). Assessing the performance of machine learning-based predictive 
classification tasks by held-out data is a commonly used method (Halilaj et al., 2018). However, 
comparing the achieved performance in this study with existing literature is somewhat difficult, 
because the performance is task-dependent and at the time of this study to our best 
knowledge, there were no data from comparable study designs available. The machine 
learning algorithm which led to the best performance in this study was a cubic SVM. According 
to a review article by Halilaj et al. (2018), this algorithm represents the major method used in 
biomechanical research (approx. 40%). 
As real-time feedback of biomechanical parameters is crucial for performance enhancement 
in elite sports, wearables including embedded data analysis are a suitable tool for online 
monitoring of movement parameters (Schmidt et al., 2018). Therefore, the implementation of 
the machine learning algorithm within a wearable would provide athletes and coaches with 
real-time information about active foot contact occurrence and could potentially contribute to 
performance enhancement of athletes during sprint starts in terms of fast feedback. 
Consequently, this would be a cheaper and more user-friendly alternative compared to 
expensive feedback equipment and skilled operators. Furthermore, research incorporating 
such a machine learning algorithm-based wearable is not limited to laboratory settings but can 
be conducted in real-life scenarios (training and competition) and makes time- and cost-
intensive post-processing obsolete. 
As explained in the methods section, machine learning models require input data in the form 
of features (in this case characteristics of the acceleration signal). The choice of features in 
this study was based on trial and error and was very sensitive to the overall performance of 
the model. More sophisticated, systematic methods of feature extraction such as fast Fourier 
transforms (Ahlrichs et al., 2016), hidden Markov models (Mannini et al., 2016) or wavelet 
decomposition (Nielsen et al., 2011) might yield superior results. Another challenge was the 
detection of the initial foot contact after the start, which was needed to determine the end of 
the swing phase of the leg of interest. The detection of the foot contact by searching for the 
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highest change of acceleration of the foot resulted in a deviation of 19 ± 28 ms on average 
when checking against GRF data. A pattern recognition algorithm based on a machine learning 
approach itself might further improve the accuracy of TD detection. 
Additionally, the relatively small sample size of ten athletes may have limited the performance 
of the model. Increasing sample size and the collected trials per subject could provide a higher 
performance level. However, the majority of studies using machine learning in biomechanics 
investigate sample sizes up to 10 participants (Halilaj et al., 2018). 
 
CONCLUSION: Based on the underlying performance result (AUC = 0.94), a cubic SVM 
algorithm seems to be a promising alternative to predict active foot contact occurrence 
(absence of a braking impulse) during the acceleration phase of athletic sprinting. More 
sophisticated, systematic methods of feature extraction, a more precise TD detection algorithm 
and a higher sample size might further improve the prediction accuracy of active foot contact 
occurrence. 
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