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The aim of this study was to assess whether clustering runners based on their technique 
resulted in consistent group allocations across multiple speeds. Eighty-four runners (34 
females) completed four 4-minute running stages at 10, 11, 12 and 13 km/h. For each 
stage, running technique was characterised using a set of continuous variables in the 
sagittal plane and discrete stride-based variables. An autoencoder neural network was 
used for dimensionality reduction and agglomerative hierarchical clustering was applied 
to identify groups of runners with a similar technique. Two clusters for each speed were 
selected and the clustering partitions at different incremental speeds were compared. Our 
results showed that partitions were inconsistent across speeds, and therefore clustering 
results at one single speed do not generalise to the range of speeds an athlete typically 
runs at. Single speed clustering may be limited to drive the design of cluster-specific 
running training interventions and different clustering approaches are needed to better 
capture runners’ technique at their typical speeds. 
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INTRODUCTION: Running technique plays a key role in performance due to its relation to 
running economy, and in running injury occurrence. Multiple studies have investigated 
running technique and suggested most optimal movements for runners (Moore, 2016). 
However, contrasting findings can also be found in the literature (van Hooren et al., 2020) as 
running tehcnique is thought to be highly individual (Nigg 2001), making it difficult to transfer 
running technique research into real world training practice. 

Recent studies proposed the existence of “functional groups” or clusters of runners who 
share some commonalities in their technique as a more effective way to group and analyse 
athletes. Clusters may be found based on researcher’s expertise or using data-driven 
approaches such as unsupervised learning to minimise researcher bias. Studies using 
unsupervised learning have identified groups of runners who reacted in similar ways to e.g., 
different shoe types (Hoerzer et al., 2015) or rehabilitation programmes (Watari et al., 2018). 

Unsupervised learning can also exploit multivariate datasets instead of focusing on one 
single variable and condition in isolation, allowing a more holistic description of an athlete’s 
running technique and profile. This ability can help the design of cluster-specific training that 
may better address individual technical and strength and conditioning needs. However, 
current clustering studies have typically focused on one single running speed (Hoerzer et al., 
2015; Watari et al., 2018). Given long distance runners may run at different speeds 
depending on the racing distance and change their speed within a race, understanding 
whether the clusters found at one single speed extend to the range of speeds an athlete 
typically runs becomes paramount prior to designing cluster-specific training interventions. 

Thus, the purpose of this study was to cluster the same athletes based on their technique 
running at various speeds and to assess the consistency of the clustering partitions. 

METHODS: Eighty-four runners (Table 1) were included in this study. Participants were aged 
between 18 and 50, free from injury in the preceding six months and had a recent race (or 
equivalent) 10K time under 00:57:20 for females and under 00:50:00 for males ensuring 
matched age-grading. All participants provided written informed consent before taking part in 
the study, which was approved by the Ethics Committee of the University of Bath. 

Table 1. Participants’ details (mean and standard deviation other than Count and age-grade). 

Sex Count Age (yrs) Height (m) Mass (kg) 10K time Age-grade (%) LT (km/h) 

Female 34 33(10) 1.66(0.05) 57(6) 42:33(04:49) 70.39 13.7(0.9) 
Male 50 35(10) 1.79(0.06) 73(9.8) 39:55(03:58) 66.76 14.4(1) 
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Participants completed a running test to exhaustion on a treadmill at a 1% gradient. The test 
included 4-minute stages of constant speed running with 1-minute breaks between stages. 
Running speed started at 10 km/h and was increased by 1 km/h after every completed stage. 
Blood lactate concentration was recorded (LactatePro, Nova Biomedical, USA) after every 
completed stage and individuals’ lactate threshold (LT) was estimated (Cheng et al., 1992). 
Only stages up to the first speed after LT were included in the analysis to minimise fatigue 
effects on running technique. All participants met this condition for the 10, 11, 12 and 13 
km/h stages. A 16-camera motion capture system (Oqus, Qualisys, Sweden) was used to 
record the 3D trajectories of 58 retroreflective markers (200 Hz) attached to the runner’s 
body and shoes. Marker trajectories were low-pass filtered (Butterworth, 4th order, zero-lag) 
with a cut off frequency of 10 Hz and used to estimate full body kinematics in Visual3D (C-
Motion, Inc, Rockville, MD). Foot strike and toe off were detected (Rivadulla et al., 2021) and 
trials were segmented in strides from foot-strike to foot-strike. Strides were time-registered to 
201 data points. Running technique was characterised by a set of eight continuous (1D) and 
discrete (0D) variables (Figure 1). 

For each speed, an autoencoder neural network was developed to reduce the dimensionality 
of the data. Agglomerative hierarchical clustering was then used to discover clusters of 
runners using the Ward linkage criterion and the Euclidean distance as similarity metric. The 
algorithm starts by treating each runner as a cluster and then merges the closest pair of 
clusters until every runner belongs to one single cluster. The optimal number of clusters was 
selected based on the Silhouette score (Rousseeuw, 1987) and inspection of the 
dendrogram. SPM (1D) and traditional (0D) statistical tests (alpha level = 0.05) were 
performed to assess if the differences between clusters were statistically significant and 
biomechanically meaningful (greater than systematic errors). This process (Figure 1) was 
repeated for every speed and the resulting clustering partitions at subsequent speeds were 
compared using the adjusted mutual information score (AMI) (Vinh et al., 2010). AMI looks at 
the similarity between two clustering partitions, taking a value of 1 when the two partitions 
are equal and 0 when the mutual information between two partitions is equal to the expected 
value of two random partitions. 

 

 
Figure 1: Data processing for each speed. The variables characterising an athlete’s running 
technique (left) were the average vertical displacement of the centre of mass (vCOM) 
normalised to leg length, and the trunk to pelvis, pelvis segment, hip, knee and ankle angles 
in the sagittal plane (1D) during a right leg stride and the average stride frequency and duty 
factor (0D). These variables were concatenated in a 1x1208 array. An autoencoder (centre) 
was used to reduce the dimensionality of the data from a 1x1208 array to a 1x8 array. 
Agglomerative hierarchical clustering was then applied (right). 
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RESULTS: Based on the Silhouette scores, two clusters were selected for each speed 
(Figure 2). There were statistically significant and biomechanically meaningful differences 
between clusters (see Figure 3 for an example at 11 km/h). The Silhouette scores were 
generally low indicating low separability of the data. The AMI scores were also low, indicating 
poor agreement between clustering partitions of individual athletes at different speeds. 

 

 
• 43 (65.1 %) 
• 41 (14.6 %) 
Silh = 0.19 

 

 
• 66 (43.9 %) 
• 18 (27.7 %) 
Silh = 0.25 
AMI < 0.01 

 

 
• 32 (46.9 %) 
• 52 (36.5 %) 
Silh = 0.21 
AMI < 0.01 

 

 
• 26 (19.2 %) 
• 58 (50 %) 
Silh = 0.16 
AMI = 0.17 

Figure 2: Dendrogram for each speed (10-13 km/h, top to bottom, respectively). To the right 
of each dendrogram the number of members for each cluster (and the percentage of 
females) and the Silhouette score (Silh) for the chosen number of clusters. Small vertical 
lines underneath each branch were coloured as per the cluster that participant belonged to 
at the previous stage and the corresponding AMI scores are reported on the right hand side. 

 

 
Figure 3: Cluster (green and orange) average patterns (and standard deviation clouds) for 1D 
variables and violin plots for 0D variables at 11 km/h. Statistically significant differences 
found by SPM non-parametric and 0D parametric t-tests respectively are highlighted in grey 
(vCOM: t* = 2.15; trunk to pelvis: t* = 2.40, p = p < 0.001 entire stride; pelvis; t* = 2.53, p < 
0.001 entire stride; hip: t* = 2.74, p < 0.001 and p = 0.001 at 0-112 and 142-201 stride time, 
respectively; knee: t* = 3.08, p = 0.01 at 11-16 stride time; ankle: t* = 2.94; stride frequency: t 
= 1.26, p = 0.22 and duty factor: t = 0.91, p = 0.36). 

DISCUSSION: The purpose of this study was to assess the consistency of clustering 
partitions of the same athletes running at different speeds. The agreement between partitions 
was not greater than what could be expected due to chance when comparing the clusters at 
10 km/h and 11 km/h; and 11 km/h and 12 km/h and was low when comparing 12 km/h to 13 
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km/h. Clustering results from studies using a single speed should therefore be interpreted 
with caution as they might fail to generalise to the range of speeds a runner typically uses. 

The selected number of clusters was low compared to previous literature (Hoerzer et al., 
2015). The generally low Silhouette scores indicate low separability of the clusters and may 
explain the inconsistencies in cluster size and in cluster membership across speeds. Low 
separability of the data would suggest that, overall, athletes’ running technique was not so 
different considering the selected variables. Indeed, even at 11 km/h, where clusters yielded 
the greatest separability according to the Silhouette score, the biomechanically meaningful 
differences between clusters were limited and mostly related to the pelvis (Figure 3). 

The current results suggest that runners who react similarly to one speed may adapt to 
changes in speed in different ways. Clustering studies looking at one single speed (Hoerzer 
et al., 2015; Watari et al., 2018) may be limited in their ability to capture the full profile of 
runners who participate in different long-distance races in which multiple speeds are 
required. In future work we will aim at using methodologies that can capture runners’ 
response to a range of speeds, as this may provide a better understanding of running 
technique and a more comprehensive grouping of runners. 

Our selection of variables provides a holistic description of running technique, but it was 
limited to kinematics. Kinetic and EMG variables may have enriched the description of 
running technique, the dynamics and muscle coordination patterns behind it. Our choice of 
clustering method using Ward linkage and Euclidean distance favours spheroid clusters 
which may or may not suit our data well and is sensitive to outliers. More flexible density-
based algorithms could be an alternative, but they require larger datasets and can also pose 
challenges as internal validity scores for such methods are not as well established. 

CONCLUSION: Clustering runners based on their technique at different individual speeds 
may not lead to consistent clusters across speeds. Clustering runners at one single speed 
may fail at capturing the full profile of long-distance runners and therefore, might be 
unsuitable to drive the design of cluster-specific training interventions. Clustering approaches 
that can capture the range of speeds a runner might use are needed to get a more 
comprehensive description of running profiles that may assist the design of better targeted 
running training interventions. 
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