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Biomechanists spend significant time completing the time-consuming task of manually 

digitising 2D videos to derive kinematic spatiotemporal parameters. Recent advances in 

2D pose estimation models (PEMs) hold promise for automating the determination of 

parameters in sport. This study developed an automated PEM digitising and analysis 

pipeline (AAP) for high jump. We investigated differences in four spatiotemporal and joint 

angle outputs from traditional manual processing pipelines (MAP) and the AAP using 

paired t-tests, intra-class correlations and effect size analysis. Statistical analysis revealed 

that knee angles derived from the MAP and AAP were not different, whereas penultimate 

foot contact time and both body angle “lean” measures were different. The custom AAP 

considerably reduced processing time for the selected high jump execution parameters.  
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INTRODUCTION: The ability to reliably and efficiently assess human movement in 

ecologically valid settings is an ongoing goal for sports biomechanists. A substantial portion 

of an applied sports biomechanist’s time is spent completing laborious manual annotation of 

two dimensional (2D) videos captured during training and competition to assess key kinematic 

and spatiotemporal performance variables. An athlete’s coaching and performance team 

relies on parameters being processed swiftly, however the reliance on manual digitising leaves 

practitioners dependent on highly time-consuming manual methods that are susceptible to 

subjective error (Needham et al., 2021). Recent research to reduce reliance on these methods 

in sports biomechanics, rehabilitation and clinical settings has driven considerable advances 

in measurement technologies and methods (Colyer et al., 2018; Cronin, 2021). Computer 

vision-based human pose estimation models (PEMs) automatically identify ‘keypoints’, labels 

that sports biomechanists refer to as key anatomical landmarks, unlocking the potential of 

labour-saving methods for the discipline (Mundt et al., 2022). The reliability of publicly 

available 2D PEMs has been assessed with promising results in varying motion types, from 

running (Cronin, 2021) to more specific sporting contexts like boxing (Lahkar et al., 2022) and 

cycling (Serrancoli et al., 2020). However, further scrutiny and assessment of the reliability 

and notably, the practicality, of implementing these systems is warranted (Colyer et al., 2018). 

This study aims to investigate the reliability of a custom PEM and analysis pipeline (AAP) for 

deriving coach selected kinematic and spatiotemporal performance parameters of national 

level high jumpers. We compare the outputs to those derived from manual analysis and 

reporting pipelines (MAP) undertaken by well-trained practitioners in a high-performance 

sporting environment. 

METHODS: This study was approved by the University of Western Australia’s Human Ethics 

Committee. A total of 43 high jump attempts completed during training by two national level 

athletes (one male and one female) were used for analysis. An a priori power analysis 

determined a minimum sample size of 34 trials were required to achieve 80% power with an 

effect size of 0.5 (α = 0.05, G*Power version 3.1.9.7, Faul et al., 2007). Two cameras (50Hz) 

positioned posterior and sagittal to the bar and mat captured 43 independent jumps, resulting 

in a total of 86 videos. All videos were previously manually digitised and analysed by a single 

experienced biomechanist. A standard high-jump biomechanical report comprises 14 coach-

informed parameters used in the assessment of high jump performance. Recent findings from 

our research group found that of these 14 current high-performance parameters, four were 
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moderately to strongly correlated with jump success (Born et al., 2023). One of these 

parameters was jump height (rs = -0.67) which was not an assessable parameter for this study. 

The other three performance parameters, penultimate foot contact time (rs = 0.42), body “lean” 

measure through hip (rs = -0.42), knee angle at full foot contact for take-off (rs = 0.37) were 

selected for comparison in this study (Born et al., 2023). To increase the number of 

assessment items between the methods an additional body “lean” measure through ankle (rs 

= -0.3) was also included (Table 1). 

Table 1: Manual processing definitions and measurement examples for the four selected coach-

informed performance parameters.  

Performance 
Parameter 

Manual Processing Definition Camera 
View 

Visual  
Representation 

Penultimate foot 
contact time 
(seconds) 

For the foot contact prior to take-off: 
the total time between the frame of 
initial foot contact to the frame of toe-
off (i.e. penultimate foot stance time). 

Sagittal 
(relative 
to the bar 
and mat) 

 

Body “lean” measure 
through hip (°) 
 
[refer to blue line in 
measurement 
example] 

At take-off foot-flat, a vector from the 
centre of the ankle joint is annotated 
to intersect the hip joint centre of the 
same stance leg. “Lean” angle is 
measured as the global angle of this 
vector to global vertical. 

Sagittal 
(relative 
to the bar 
and mat) 

 

Body “lean” measure 
through shoulder (°) 
 
[refer to blue line in 
measurement 
example] 

At take-off foot-flat, a vector from the 
centre of the ankle joint is annotated 
to intersect the gleno-humeral joint 
centre. “Lean” angle is measured as 
the global angle of this vector to 
global vertical. 

Sagittal 
(relative 
to the bar 
and mat) 

 

Knee angle at full foot 
contact (take-off step) 
(°) 

First frame of full foot contact (foot-
flat) of the take-off foot. 2D relative 
(included) angle between visually 
identified ankle, knee and hip joint 
centres. 

Posterior 
(relative 
to the bar 
and mat) 

 
 

OpenPose (Cao, Hidalgo, Simon, Wei, & Sheikh, 2021), a free publicly available 2D PEM, was 

implemented in Python (Python Software Foundation, v.3.9) and used to estimate 25 

keypoints, of which only keypoints of the bilateral hip, foot, knee, ankle, and shoulder joint 

centres were used in the present comparison. Identification of the key event frames of initial 

foot contact (IF), foot flat to ground (FF), and toe-off (TO) were defined according to the 

definitions used in the MAP.  IF, FF, and TO were identified in the AAP through threshold 

implementation utilising the keypoints of the heel and toes. OpenPose keypoints u, v values 

were extracted for the relevant frames and the four high jump parameters calculated. Paired 

t-tests were used to assess for differences between the same four MAP parameters and the 

AAP calculated parameters. A two-way random effects intraclass correlation model (ICC), with 

absolute agreement and single rating, was used to measure the reliability of performance 

parameters between assessment methods. Descriptive data were presented as group means 

with standard deviation (SD). Cohen’s d was used to calculate effect sizes, with 0.2, 0.5, and 

0.8 representing small, medium, and large effect sizes respectively (Cohen, 2013). 

RESULTS: Spatiotemporal and joint angle output differences between the MAP and the AAP 

are illustrated in Table 2. The MAP consistently reported a longer penultimate foot contact 
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time (0.29s, t = 3.82, p = 0.003, d = 0.93) than the AAP (0.21s), along with a smaller spread 

(SD = 0.02 and SD = 0.12). The MAP reported a greater body “lean” angle measure for vertical 

relative to hip (34.8°, t = 10.49, p < 0.001, d = 2.29) when compared to the AAP (28.5°), along 

with greater manual “lean” angle measures relative to shoulder (32.3°, t = 10.67, p < 0.001, d 

= 2.33) compared to the AAP (23.7°). The AAP reported slightly smaller distribution 

dispersions for both hip (SD = 2.2 and SD = 3.1) and shoulder (SD = 1.88 and SD = 2.8) body 

“lean” measures. For knee angle at full foot contact (take-off step) no significant difference 

was observed between the MAP (170.9°) and the AAP approaches (169.1°, t = 0.77, p = 0.44, 

d = 0.17). However, the knee angle did return the largest variation in distribution dispersion 

between the two pipelines (SD = 14.77 and SD = 3.22). The ICCs were all below 0.51, with 

95% confidence intervals between 0.1 - 0.56, indicative of poor reliability between methods 

(Koo & Li, 2016).  

Table 2: Spatiotemporal and joint angle performance parameters (mean ± SD) for manual and 

automatic processing and analysing pipelines. (*p < 0.05) 

  

Manual 
Processing/ 

Analysis Pipeline 
(MAP) 

Automatic 
Processing/ 

Analysis Pipeline 
(AAP) 

Intraclass 
Correlation  

t-
value 

P 
Cohen's 

d 

Penultimate last 
contact (seconds) 

0.29 ± 0.02 0.21 ± 0.12 0.51 3.82 0.003* 0.93 

Body “lean” measure 
through hip (°) 

34.81 ± 3.16 28.53 ± 2.26 0.21 10.49 <0.001* 2.29 

Body “lean” measure 
through shoulder (°) 

32.37 ± 2.84 26.77 ± 1.88 0.16 10.67 <0.001* 2.33 

Knee angle at foot 
contact (last step) (°) 

170.91 ± 3.22 169.11 ± 14.77 0.07 0.77 0.44 0.17 

 

Notably, the AAP processed a single video in 40 seconds compared to 1,440 seconds, or 24 

minutes, for the MAP. In the time taken to manually process one jump the AAP completed 

analysing 36 videos.  

DISCUSSION: This study aimed to investigate select spatiotemporal and joint angle output 
differences between MAP and AAP methods for high jump 2D video assessment. Three of the 
four assessed performance parameters returned statistically, and likely functionally, significant 
differences in mean values (large effect sizes), alongside poor ICC repeatability (Table 2). 
This finding was unexpected, given previous literature establishing non-significant differences 
in manual versus automated 2D kinematic analysis methods (Colyer et al., 2018; Cronin, 
2021). Temporally dependent parameter differences observed in the present study may be 
attributed to between-method inconsistency in key event frame identification (e.g., initial foot 
contact, foot-flat). An additional explanation is the influence of knowledge bias in manual 
digitising processes as well-trained practitioners anticipate the “normative” or expected values, 
biasing event detection toward an expected outcome. The smaller AAP standard deviation in 
body “lean” angles provides support for the standardisation of the AAP method, something 
that would be beneficial in a high-performance sports system where multiple practitioners 
across various geographical locations are charged with undertaking MAPs. Implementing AAP 
methods facilitates the standardisation of performance parameter measurement, an action 
known to improve the reliability of measurements provided to coaches and athletes (de 
Oliveira et al., 2019). It was notable that the MAP and AAP achieved similar mean take-off 
knee angles (differed by < 2°) given the parallax error associated with the posterior camera 
not being orthogonal to the femur and shank at take-off (Payton & Burden, 2018). The in-field 
limitations of camera placement supports the ongoing call for further refinement and validation 
of three-dimensional PEMs from 2D video (Nakano et al., 2020; Pagnon et al., 2022), 
alongside the call for PEMS to be biomechanically informed for use in sport with complex, fast 
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and multiplanar movements (Mundt et al., 2022). This research highlights that an automated 
approach analyses 36 jumps with the same time burden as manually processing a single jump, 
with the biomechanist only required to initiate the automated processing. This dramatic time-
cost reduction means sport biomechanists can service a greater absolute number of athletes 
and increase their availability to the athletes and coaches they already work with. 

CONCLUSION: This study investigated selected spatiotemporal and joint angle output 

differences derived from a traditional MAP and a newly developed AAP for the reporting of 

high jump performance parameters. The AAP significantly reduced processing and analysis 

time compared with the MAP. Although this study shows promise for automated 2D video 

analysis, further research is needed to identify the causal mechanisms of between-method 

output differences. This research highlights the importance of ensuring consistent key event 

and parameter definitions to generate implementable automated pipelines. The custom AAP 

approach in this study offers a substantial saving in the labour costs required to produce high 

priority training reports for coaches and athletes. 
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