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A B S T R A C T   

Urban development is a process that becomes increasingly complex as the city evolves and in which unexpected 
events can happen which may alter the envisaged trend over time. To anticipate and examine the sudden 
emergence of processes that are difficult to predict over long-term future timelines, prospective methodologies 
are required to manage and implement disruptive narrative storylines in future scenario planning. In this 
research, a method that combines Land Parcel Cellular Automata (LP-CA) and participatory approaches was 
developed in order to generate land use trajectories that are spatially consistent with disruptive narrative 
storylines. The urban-industrial corridor of Henares (Spain), which has undergone important urban trans-
formations in recent decades, was chosen as the study area to test the model. In a preliminary validation of the 
LP-CA model, a Figure of Merit (FOM) value of 0.2817 indicated satisfactory performance. The results demon-
strated the usefulness of the participatory scenario-building and the workshop in supporting the configuration of 
the model parameters and the spatial representation of complex urban dynamics. In conclusion, this method-
ology can be used to generate simulations of urban land use change in disruptive future scenarios and to spatially 
observe the propagation of the uncertainty associated with future events across different urban land uses.   

1. Introduction 

Cities are becoming increasingly more complex. As they evolve, the 
interactions between their constituent parts increase (Batty, 2020), 
which makes it even more difficult for researchers to study them. This 
complexity is further accentuated by uncertainty, due to the impossi-
bility of understanding and quantifying all the exogenous factors that 
influence urbanisation processes (Mustafa, Saadi, Cools, & Teller, 2015). 

In order to face a complex and uncertain future, scenario planning 
emerges as an alternative that provides a wider range of expectations 
about the future, identifying possible directions to achieve a more 
suitable framework for consistent decision-making (Lyons & Davidson, 
2016; Peterson, Cumming, & Carpenter, 2003; Zapata & Kaza, 2015). 
However, the effectiveness of scenario planning may be limited if all the 
scenarios remain very close to the business-as-usual (BAU) projection. 
Unexpected events such as the housing bubble crisis in Spain (Burriel, 
2011), the migration crisis in Europe (Hampshire, 2015), the SARS-CoV- 
2 pandemic (Antipova, 2021) or the recent Ukrainian war undermine 

linear planning, and are difficult to envisage without imaginative and 
flexible future scenarios (Houet et al., 2016). This means that for the best 
possible management of (un)desired future urban developments, 
disruptive thinking must be part of the envisioning process, so breaking 
with the linearity of current events to encompass the unexpected (Soria- 
Lara et al., 2021). 

As part of the urban planning process, urban simulation models 
attempt to represent the future development of cities to ensure that they 
can develop in a reasonable planned way. Of these, cellular automata 
(CA) models are the most commonly used in support of urban man-
agement, especially in local or regional studies (Aburas, Ho, Ramli, & 
Ash’aari, 2016; Santé, García, Miranda, & Crecente, 2010; Triantakon-
stantis & Mountrakis, 2012). In particular, irregular CA models have 
emerged in a context of urban land use change at a local scale (Benenson 
& Torrens, 2004; O’Sullivan, 2001; Pinto & Antunes, 2010; Stevens & 
Dragićević, 2007). Most of these models focus on simulating urban 
growth using land parcels as the best base unit for their analysis 
(Abolhasani, Taleai, Karimi, & Rezaee Node, 2016; Barreira-González, 
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Aguilera-Benavente, & Gómez-Delgado, 2019; Barreira-González, 
Aguilera-Benavente, & Gómez-Delgado, 2015; Stevens, Dragicevic, & 
Rothley, 2007; Yao et al., 2017; Zhai et al., 2020). However, it is difficult 
for these models to consider the wide range of factors involved in the 
future evolution of urban areas by themselves, especially when imagi-
native, disruptive scenarios are depicted. Many parameters imple-
mented in CA models require critical and social thinking in order for 
them to be successfully adapted into future simulation. With this in 
mind, an increasing number of studies are linking narratives with 
modelling tasks in a participatory way, so as to obtain better, more 
realistic results (Hewitt, van Delden, & Escobar, 2014; Houet et al., 
2016; Kok & van Delden, 2009, 2013). 

This paper takes the intimately coupled narratives & models approach, 
a combination of the model-based approach and the narrative-based 
approach (Houet et al., 2016). It is well-adapted to enable the active 
participation of stakeholders and facilitates the integration of both 
qualitative and quantitative information when linking narrative story-
lines with urban land use models (Houet et al., 2016). This combined 
approach, integrated into participatory scenario planning, involves 
three key steps mentioned below:  

• Create a narrative storyline by engaging researchers and citizens, 
contributing ideas from a wide range of imaginative futures 
(including disruptive ones).  

• Work on the narratives in a participatory workshop involving experts 
and stakeholders to transform qualitative insights into input for the 
model.  

• Provide a map of future urban land uses in such a way as to enhance 
the value of the narrative storyline itself. 

The aim of this research is to propose an integrated methodology to 
simulate imaginative, disruptive scenarios by combining land use 
modelling techniques with participatory approaches. This methodology 
implies the use of a new land parcel cellular automata (LP-CA) model 
which uses well-defined boundaries and real dimensions of land parcels 
to make the mapped scenarios more easily understandable for the actors 
involved in the participatory scenario planning process. We believe this 
integrated approach will be helpful to support the simulation of multi-
ple, structurally distinct futures and to reproduce complex urban dy-
namics, such as land use conversion and abandonment included in 
disruptive narrative storylines. The proposed methodology has already 
been tested on a dynamic urban-industrial corridor in the Madrid 
Metropolitan Area (Spain). 

This paper is divided into seven sections. After this introduction, the 
concept of disruptive scenarios and their usefulness in future simulation 
is explored. This is followed by a description of the study area. The next 
section sets out the methodology, introducing the LP-CA model and 
assessing its performance. The participatory process of scenario building 
is then explained together with its link to modelling tasks, and the sec-
tion concludes with a partial validation of the future scenario. This is 
followed by the results and the discussion. The paper ends with brief 
concluding remarks and suggestions as to possible future lines of 
research. 

2. Disruptive scenarios to face the future 

The disruptive concept is an increasingly important feature of 
research into future scenarios. Christensen (1997) employs the term 
disruptive to indicate a change in a pre-existing trend due to innovation. 
Millar, Lockett, and Ladd (2018) define disruptive change as sudden 
change that renders the processes that preceded the change invalid as 
bases for predictive models. Within the urban planning context, disrup-
tive is used to refer to possible events that can positively or negatively 
affect the dynamics of the city (Molinero-Parejo, Aguilera-Benavente, & 
Gómez-Delgado, 2021). Unexpected disruptive events can sometimes 
alter the path outlined by urban plans and, even if they have a 

contingency plan, they may not be prepared for disruptive changes. 
Urban planners and decision-makers must therefore expand the range of 
possible future scenarios envisaged in their plans. 

To simulate disruptive scenarios, it is crucial to engage citizens, ex-
perts and stakeholders in city planning during the visioning step as they 
can add to the process outside the box thinking (Soria-Lara et al., 2021) 
and help to generate disruptive narratives. It is also necessary to rede-
velop simulation models to enable them to complement the maps of 
future urban land uses changes in line with the disruptive narrative 
storylines, where new urban processes and patterns may emerge. 
Although previous researchers have simulated off-trend scenarios 
(crisis, innovation, sustainability, etc.) (Domingo, Palka, & Hersperger, 
2021; Kok & van Delden, 2009; Plata Rocha, Gómez-Delgado, & Bosque- 
Sendra, 2011; Vaz, Nijkamp, Painho, & Caetano, 2012), there is still a lot 
of work to do, since most of the scenarios simulated using CA models 
cannot be considered disruptive in the terms evaluated by Soria-Lara 
et al. (2021), as they have not been generated through barely imaginable 
(but plausible) processes (see Table 1). The keywords “as usual”, 
“baseline”, “trend” or “natural” are used in Table 1 to refer to traditional 
thinking in scenario planning. 

Many of these scenarios fall within a narrow divergence range within 
the BAU zone (Fig. 1). This limits the ability of the integrated scenario- 
model approach to simulate unexpected events, such as gentrification or 
the abandonment of certain areas. In Western Europe, many city centres 
have undergone transformations from predominantly commercial and 
industrial uses to residential housing (Hamnett & Whitelegg, 2007). A 
reverse, but more recent process, is the adaptative reuse of old resi-
dential buildings as office buildings (Rodrigues & Freire, 2017). In the 
same way, urban regeneration necessarily involves the possibility of 
properties being used for new purposes. The renovation of abandoned 
buildings in city centres often involves a change of use (Lami, 2020), for 
example, from residential to commercial use. Another disruptive urban 
process that has affected many European cities in the last decade is 
urban shrinkage (Haase, Athanasopoulou, & Rink, 2016). As previously 
stated, models should re-adapt to simulate the abovementioned 

Table 1 
Urban scenarios simulated by CA models.  

Author(s) Purpose Scenarios 

(Yang, Zhang, 
Nan, Liu, & 
Zheng, 2019) 

Modelling urban 
expansion  

• Sustainable development  
• Dynamics as usual  
• Fragmented development  
• Unequal development  
• Conventional development 

(Liu et al., 2017) Simulating multiple 
land use scenarios  

• Baseline development  
• Fast development  
• Slow development  
• Harmonious development 

(Vaz et al., 2012) Forecast of urban 
change  

• Ecological interest  
• Business as usual  
• Economic interest 

(Feng et al., 
2018) 

Urban growth 
modelling and future 
scenario projection  

• Business as usual  
• COUNTY-dominated  
• ROAD-dominated  
• POP-dominated 

(Zhou, Dang, 
Sun, & Wang, 
2020) 

Multi-scenario 
simulation of urban land 
change  

• Natural development  
• Planning constraint 

(Yao et al., 2017) 
Simulating urban land- 
use changes  

• Disorganized urban development 
with no restrictions  

• Sustainable urban development 
with ecology control  

• Sustainable urban development 
with ecology control and “job- 
housing balance” 

(Jia et al., 2020) 
Urban modelling for 
streets  

• Trend development  
• CBD-based development  
• TOD promotion 

(Chen, Liu, & Li, 
2017) 

Urban growth 
simulation  

• Business-as-usual  
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processes, after which the integrated use of disruptive scenarios and LP- 
CA models - the objective of this research - could help create more 
resilient plans to deal with disruptive changes (Laird, 2014). 

3. Study area and data 

As a study area for this research, we focused on part of the Henares 
Corridor, Madrid - Guadalajara (Spain) (Fig. 2). The study area covers 
several municipalities with a total population of 419,791 inhabitants 
(National Statistics Institute, 2018). It is characterised by small and 
medium-sized towns with significant industrial fabric and a variety of 
territorial and social dynamics (Barreira-González et al., 2019; Canter-
giani & Gómez Delgado, 2020). 

As regards the input data, cadastral parcels were obtained from the 
General Directorate of the Cadastre of Spain (https://www.sedecatastro. 
gob.es/). These parcels were then classified into 5 active urban land 
use categories: (1) commercial and utilities, (2) industrial, (3) single- 
family residential, (4) multi-family residential, and (5) mixed (residen-
tial and commercial), obtaining the 2018 reference map. For the cali-
bration, simulation, and validation of the LP-CA model, reference maps 
were generated for 1986 and 2002 from the development date of the 
land parcels. 

According to these historical data, annual area growth and the cu-
mulative area growth in these land uses in the study area were analysed 
(Fig. 3) and significant fluctuations of varying intensity were identified. 
These involved a marked increase or decrease in the built-up area due to 

Fig. 1. Conceptual diagram of changes in scenario planning due to disruptive events that cause an abrupt divergence in the envisaged trend.  

Fig. 2. Study area.  
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disruptive events. For example, sharp changes can be observed in the 
early 1970s and 2000s, especially due to new urban developments 
(single-family residential growth starting in 1990) and the slowdown in 
the development of new industrial areas due to the oil crisis (early 
1970s). The impact of the global economic crisis of 2008 can also be 
observed, as the upward curve flattens out. 

4. Methodology 

The methodology is divided into five sections. In the first section, the 
LP-CA model is introduced and the parameters are described, as is the 
calculation of the transition potential. This is followed by an explanation 
of the process of evaluation of the LP-CA model and the metrics applied 
in the validation of its overall performance. Next, the scenario building 
process based on participatory approaches is explained. The fourth 
section presents new advances in the adaptation of the LP-CA model in 
combination with participatory approaches to simulate disruptive sce-
narios, while in the final part, the validation of the results of simulating 
future scenarios is described. 

4.1. The LP-CA model 

This study applied a LP-CA model derived from well-established 
models based on the work of White, Engelen, and Uljee (1997), which 
had been adapted to an irregular parcel environment (Barreira- 
González, Gómez-Delgado, & Aguilera-Benavente, 2015; Chen et al., 

2017). The transition potential of a land parcel to change its current 
state is primarily determined by a combination of several factors. The 
probabilistic formula is represented in Eq. 1 as follows: 

Pt
i,k = v ⋅ Ai ⋅ Si,k ⋅ Zi ⋅ Nt

i,k,d (1)  

where Pt
i, k is the potential for parcel i to undergo a transition to an urban 

land use k in a time t, v is the stochastic perturbation term, Ai is the 
accessibility in parcel i, Si, k is the suitability in parcel i for land use k, Zi 
is the zoning in parcel i and Nt

i, k, d is the neighbourhood effect between 
parcel i for urban land use k within a time t and the adjacent parcels 
within a buffer at a distance d. 

Stochastic perturbation. The real world is full of human decisions and 
actions that are difficult to quantify by deterministic models since many 
of them exhibit a certain degree of randomness. With this assumption in 
mind, stochastic perturbation was introduced into the calculation of 
transition potential (White & Engelen, 1993). This factor is computed 
using Eq. 2: 

v = 1+( − ln(rand) )α (2)  

where rand is a random number (0 < rand < 1) and α is a number (0 < α 
< 1) that controls the size of the disturbance. As White and Engelen 
(1993) points out, a low α value implies simpler and more compact 
growth forms, while a high α value reports a more random structure of 
the city, higher fragmentation, and higher entropy. 

Accessibility. This is defined as the ease with which people can travel 

Fig. 3. Annual and cumulative growth in the five urban land uses in the study area.  
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to a desired location, usually for leisure, study, or work purposes. This 
parameter is assessed by measuring the distance from the centroid of 
each parcel to the nearest edge of the road network (streets, roads, 
highways, and toll roads). 

Suitability. This study adopted Geographically Weighted Logistic 
Regression (GWLR) to obtain the development suitability for each urban 
land use on each parcel (Molinero-Parejo, Aguilera-Benavente, & 
Gómez-Delgado, 2021). This method is a modified GWR in its logistic 
version, adapted for its application with binary dependent variables 
(urban - nonurban). Mirbagheri and Alimohammadi (2017) showed that 
GWLR improves simulation performance in urban CA. In short, it allows 
us to investigate spatial variations in regression coefficients and the 
spatial, non-stationary relationships that are not visible in global models 
(Fotheringham, Brunsdon, & Charlton, 2002). The suitability value (Si, 

k) for a parcel i with an urban land use k was calculated as follows in Eq. 
3: 

Si,k = β0(ui, vi)+
∑

n
βn(ui, vi)xn + εi (3)  

where β0 is the intercept, βn the regression coefficient and xn the value of 
the explanatory variable n. (ui, vi) stand for the coordinates at point i and 
εi is the random error. 

Zoning. In this study, the zoning classification established by each 
town plan has been condensed into the following three categories: urban 
land, undeveloped land and protected nonurban land. This factor con-
trols the weighting assigned to each parcel based on its suitability for 
development according to the legal planning framework. 

Neighbourhood. There is no consensus among researchers on how to 
implement the neighbourhood factor (Chen et al., 2017). In this 
research, the vector Enrichment Factor (vF) was implemented in the 
model (van Vliet et al., 2013; Verburg et al., 2004). This index is 
calculated using a boundary buffer intersect traced at a specified dis-
tance around the spatial feature due to the irregular shape and size of the 
land parcels in the study area. All the parcels that intersect with this 
buffer zone are considered as neighbours. 

The vector Enrichment Factor (Eq. 4) calculates the proportion of a 
given urban land use within a specific distance from the target parcel 
with respect to the proportion of said urban land use within the entire 
study area. 

vFi,k,d =
1
N

∑

i∈I

ak,d,i
/
ad,i

Ak/A
(4)  

where I indicates the set of all the parcels in the study area, i each of 
them and N their sum, ai, k, d is the sum of the total area of the parcels 
with urban land use k within the distance buffer d, ai, d is the sum of the 
total area of the parcels within the distance buffer d, Ak is the total area 
occupied by an urban land use k in the study area and A is the total area 
of the study area. Applying this formula, a total of 25 attraction- 
repulsion functions were generated for all possible combinations of 
each pair of land uses, capturing possible effects of land use segregation/ 
mixing and distance-dependent processes. These functions were calcu-
lated using a distance range of 50 to 800 m, in steps of 50. 

4.2. Model calibration and validation 

The three-step modelling approach (calibration, simulation and 
validation) was employed to ensure that the model was operating 
correctly (Camacho Olmedo, Paegelow, Mas, & Escobar, 2018) before 
disruptive scenario simulation. Since the horizon for future simulation is 
32 years (2018–2050), it was decided to use the same time looking 
backwards for the training period. This was divided into calibration 
(1986–2002) and simulation (2002–2018), with the last year used for 
validation (2018). This period was considered long enough to minimise 
the impact of non-representative characteristics. 

In order to assess the results obtained in the calibration and valida-

tion processes, Figure of Merit (FOM) and its complements Producer Ac-
curacy (PA) and User Accuracy (UA) were used (Eqs. 5, 6 and 7 
respectively) (Pontius et al., 2008). The proportion of area that has 
changed with respect to the total of the study area is low, justifying the 
use of FOM instead of Overall Accuracy (Pontius et al., 2008). FOM is a 
ratio between 0 and 1 that compares the simulated change with the 
reference change in the analysed period. 0 indicates no overlap between 
simulated and reference changes and 1 indicates 100% agreement be-
tween them. 

FOM =
Hits

Misses + Hits + Wrong Hits + False Alarms
(5)  

PA =
Hits

Misses + Hits + Wrong Hits
(6)  

UA =
Hits

Hits + Wrong Hits + False Alarms
(7) 

The model was calibrated using the period 1986–2002. For this 
purpose, neighbourhood and stochastic perturbation parameters were 
analysed. First, the neighbourhood was fitted independently for the 
model, using it as a single factor. For this purpose, buffer sizes between 
50 m and 800 m (in intervals of 50 m) were tested. After selecting the 
best performing buffer size, 30 simulations were run for each α value 
between 0 and 1 (in intervals of 0.1). 

After that, a simulation was carried out for the period 2002–2018 
using the parameters that best fitted the model to the study area. Model 
validation attempts to indicate the goodness of fit, on which the credi-
bility of the model will depend (Camacho Olmedo et al., 2018). Thus, 
once calibration and simulation had been completed, the next stage was 
to validate the model by assessing the accuracy of the results of the 
simulation step with the metrics described above. This was done by 
comparing the 2018 simulated map with the 2018 reference map. 

4.3. Participatory scenario-building 

During the course of this research, seven narrative storylines on the 
evolution of land use and transport by 2050 were created by conducting 
semi-structured interviews with a sample of 129 local people in the 
study area, incorporating wild cards to stimulate more disruptive 
thinking (Soria-Lara et al., 2021). Wild cards are defined as turning 
points in the trend, caused by sudden incidents (Mendonça, Pina e 
Cunha, Kaivo-oja, & Ruff, 2004). This methodology allowed us to 
envision imaginable and unimaginable, but plausible, futures. The most 
disruptive narrative according to Soria-Lara et al. (2021), High levels of 
lack of security in urban areas, was chosen to test the model. During the 
narrative assessment process, 71% of the experts indicated that this 
narrative was very disruptive, and 10% described it as highly disruptive. 
A summary of this narrative is described below: 

The 2050 future is characterised by a high level of lack of security in the 
population as a consequence of increasing social inequalities. Public green 
areas would be converted into private spaces, with some of them used for 
additional car infrastructures. There would be a preference among high- 
income families for living in the periphery of the city in private residential 
communities because the city centres have become unsafe. Consequently, the 
modal split would be drastically altered, with the private car being by far the 
most popular option for all daily trips. As a result, urban land uses would be 
highly segregated into homogenous areas connected by motorised in-
frastructures. Lack of security in the city centres would lead to their aban-
donment, with just a few specific economic activities (retail, restaurants, 
offices, etc.) and low-income families remaining in these areas. 

The information provided by narrative storylines is mainly qualita-
tive, and it is a challenge to obtain quantitative information as inputs for 
modelling scenarios (Hewitt et al., 2014; van Delden & Hagen-Zanker, 
2009; White, Straatman, & Engelen, 2004). This issue was addressed 
by combining a participatory workshop with narrative storylines. In the 
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first part of the workshop (Molinero-Parejo, Aguilera-Benavente, 
Gómez-Delgado, & Soria-Lara, 2021), stakeholders (urban planners, 
transport planners, real estate developers, civil engineering lecturers 
and environmental consultants) quantified the growth of each urban 
land use for the selected scenario, basing themselves on their knowledge 
of its past trajectory in order to establish consistent and plausible values. 
They also assessed the degree of land use mixing and urban sprawl 
scored on a 5-point Likert scale. Land use mixing was evaluated as low 
(2), while urban sprawl was evaluated as very high (5). Later, stake-
holders created an overview and dynamic map (represented by markers) 
of the narrative storyline to spatially represent its main characteristics in 
a general overview, considering new urban developments and drawing 
new transport infrastructures (Fig. 4). This map, besides serving as input 
for some factors of the model, is an essential piece of the scenario 
evaluation process, as it allows to compare and evaluate the consistency 
of the results under combined methods. 

4.4. Linking participatory approaches with LP-CA to simulate disruptive 
processes 

There is insufficient information to fit the model to simulations of 
disruptive futures. In order to overcome this problem, the workshop 
results, derived from the interaction between participants, were semi- 
quantified and linked to the parameters of the LP-CA model, which 
therefore processed both land use quantity and allocation information. 
The neighbourhood and stochastic perturbation factors were calibrated 
using a past time period and multiple model runs, however, the acces-
sibility, suitability and zoning factors have been fitted based on the 
expert knowledge obtained from the participatory workshop. The par-
ticipants began by indicating the quantity of growth for each urban land 
use, taking urban growth over the period 1986–2018 as a reference, and 
were free to indicate the quantity of loss if they considered it, according 
to the narrative. The proportions were adapted as percentages to make it 
easier for participants to understand them. Raw quantities were avoi-
ded. The percentages were as follows:  

• (− ) [1986–2018 growth] - (25% of [1986–2018 growth])  
• (=) [1986–2018 growth]  
• (+) [1986–2018 growth] + (25% of [1986–2018 growth])  
• (++) [1986–2018 growth] + (50% of [1986–2018 growth])  
• (+++) [1986–2018 growth] + (75% of [1986–2018 growth]) 

These percentages were converted into quantitative values as inputs 
for the LP-CA model, establishing the gains and losses for the selected 
period (Table 2). 

Another key component addressed during the workshop was acces-
sibility. When making simulations, only the transport infrastructures 
already existing in the reference year are taken into consideration. 

However, any new infrastructures constructed during the selected 
period will inevitably influence future urban growth. The experts were 
therefore asked to draw possible new transport infrastructures on the 
map, which were included in the accessibility calculations. 

In terms of spatial allocation, markers were used to allocate different 
land uses to different places on the overview map. This provided an 
important input for calculating suitability maps. The growth hotspots 
identified by the experts were selected as a dependent variable for the 
GWLR. To obtain a suitability value for each urban land use on each 
parcel, we used factors such as elevation, slope, distance to parks, dis-
tance to interurban bus stops or distance to facilities or amenities, as 
applied in similar studies on simulating large-scale urban land use 
change (Abolhasani et al., 2016; White et al., 1997). 

If the envisioned futures are disruptive, zoning also has to be 
adjusted in line with the selected scenario. For example, users could 
establish a weighting value for each zoning category so as to prioritize 
new urban development on undeveloped land. Similarly, building on 
protected land could be completely restricted by giving such areas a zero 
weighting. Alternatively, users could give protected areas a slightly 
higher weighting, so allowing for a scenario in which some illegal 
development of protected land occurs. Based on the overview map 
created by the experts, values of 0.95, 0.03 and 0.02 were established for 
urban land, undeveloped land and protected nonurban land 
respectively. 

It should also be noted that most buildings require a significant 
initial investment, and in some cases, such as commercial or industrial 
uses, it may take several years for them to become profitable. This makes 
a short-term change in land use unlikely (van Vliet et al., 2013). For this 
reason, the model also takes into account the conversion inertia of those 
parcels that already have a particular urban land use. For this purpose, 
the percentage of markers in which the land use exchanged (as denoted 
in the overview map created during the workshop) was considered. It is 
also important to remember that land use can also change from urban to 
nonurban. This is often due to the abandonment of buildings or the 
reclamation of natural areas. The ability to simulate this transition was 
also integrated into the model as part of its adaptation to disruptive 
scenarios. For the selected scenario, a loss probability map was calcu-
lated based on the distance to the centre of the medium-sized cities (as 
reflected in the narrative storyline) and the markers removed from each 
urban land use. A summary of the overall operation and adaptation of 
the model can be seen in Fig. 5. 

4.5. Partial validation of simulated future scenarios 

To evaluate the results of the simulated future scenario, a partial 
validation was carried out. First, a detailed visual analysis was con-
ducted, identifying and linking most characteristic urban processes with 
the narrative storyline. A frequency map for each urban land use was 
also obtained, representing the number of times the model has allocated 
a particular use to each parcel, bearing in mind the stochastic pertur-
bation. To this end, a total of 30 simulations were run with the alpha 
value for stochastic perturbation set to 0.2. In addition to their spatial 
representation on the frequency map, the percentage of land parcels in 
which land use changed was statistically analysed. In previous research, 

Fig. 4. Participants discussing the High levels of lack of security in urban areas 
scenario during the participatory workshop. 

Table 2 
Gains and losses in each urban land use over the period 2018–2050.  

Land use Growth rate Gain (ha) Loss (ha) 

Commerce & utilities = 1141.17 81.30 
Industrial − 717.66 113.27 
Single-family residential +++ 1163.55 88.26 
Multi-family residential = 67.77 52.31 
Mixed (Residential & commercial) − 0.00 18.44 

*These quantities were estimated in line with expert opinion, bearing in mind 
the changes over the period 1986–2018. 
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methods like these have been used to validate simulation results and to 
observe the propagation of error due to uncertainty (Barreira-González, 
Gómez-Delgado, & Aguilera-Benavente, 2015). 

5. Results 

5.1. Model calibration and validation results 

The calibration results for the period 1986–2002 report a maximum 
FOM value of 0.2617 using a neighbourhood size of 200 m for the 
calculation of the attraction-repulsion effects. As illustrated in Fig. 6, the 

Fig. 5. Flowchart of the adapted LP-CA model.  

Fig. 6. Accuracy assessments for different neighbourhood sizes.  
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LP-CA model is sensitive to neighbourhood size, showing a variation in 
FOM of up to 0.067. PA and UA accuracy metrics have a greater range of 
variation. However, although PA values show a similar trend to FOM 
values, UA values reach their maximum value at 750 m. Over this dis-
tance, a significant decrease in accuracy can be observed in the three 
metrics. In this case, an excessively large neighbourhood size can cause 
the capture of too many land parcels, so producing an overestimation of 
the attraction-repulsion effects. 

Once the neighbourhood factor had been fitted, 30 simulations were 
carried out to identify the most suitable α value for stochastic pertur-
bation. An analysis of the mean values for the distribution derived from 
the results for each α value showed that the best results were achieved 
with α = 0.2, with a mean FOM value of 0.2666 (Fig. 7). 

The model validation results indicate a satisfactory performance of 
the model (FOM = 0.2817), with an accuracy value in the general range 
reported in other studies that simulate urban land uses with vector- 
based or land parcel CA models (Yao et al., 2017; Zhai et al., 2020; 
Zhu, Sun, Song, Yang, & Ding, 2020). In the research conducted by 
Pontius et al. (2008), regions with net changes of <10% of the total area 
did not exceed FOM values of 0.15. This means that simulating large 
areas and periods with few changes can result in low FOM values. 

Therefore, we can conclude that the results obtained in the calibra-
tion and validation of the model (FOM values of 0.26 and 0.28 respec-
tively) are good enough for their main purpose, since they exceed the 
range of 0.15, indicating a higher value than expected in other appli-
cations with net changes of <10% of the total study area. It should be 
noted that the changes that occurred in the period 2002–2018 affected 
3.42% of the total area. 

5.2. Results for the simulation of disruptive future scenarios 

Fig. 8 shows the future scenario simulated in the Henares Corridor, 
Madrid - Guadalajara (Spain) for the period 2018–2050. Several urban 
processes can be identified. In the first zoomed-in area (1), significant 
changes can be observed from multi-family residential to single-family 
residential. This conversion phenomenon is also found in several other 
urban centres in the study area, leading to a process of homogenisation 
of the urban landscape. This is linked to the segregation of urban land 
uses, one of the characteristics highlighted in the narrative. In the sec-
ond zoomed-in area (2), urban land has been lost as a result of the 
abandonment of built-up areas in city centres. This is a typical charac-
teristic of shrinking cities. In fact, during the past decade, the munici-
pality of Alcalá de Henares has suffered a significant decline in 
population. Finally, in the third zoomed-in area (3) in a peripheral 
municipality, dramatic growth can be observed in single-family resi-
dential. Thus, if we analyse the overall spatial configuration, major 

urban growth can be observed in the peripheral areas. This results in 
significant urban sprawl within the metropolitan areas. 

If the results are analysed in quantitative terms, with the given pa-
rameters, the model reports that 0.61% of the study area would be 
abandoned during the study period (2018–2050). It also found, by 
contrast, that 6.64% of the total area would be developed (nonurban to 
urban). In addition, 1304 land parcels - just 0.2% of the total area - 
would undergo a change of use. This means that, in total, 7.45% of the 
study area would experience changes, while the other 92.54% would 
remain stable over this period. Table 3 shows the area and the number of 
parcels covered by each urban land use in the reference map and the 
simulated map. 

If the total area by 2050 (far right-hand column) is compared with 
the total area in 2018 (bottom row), there is growth in all urban land 
uses, apart from mixed residential which has declined slightly. The 
number of parcels covered by multi-family residential use has also fallen 
slightly despite an increase in the total area. This is due to the process of 
urban land use conversion, and the use of irregular land parcels. The 
highlighted values on the diagonal show the stable land that did not 
change in each category, while the off-diagonal values show the tran-
sitions from one urban land use to another. The largest transition is from 
multi-family residential to single-family residential. 

5.3. Mapping of the most frequently developed land parcels 

By integrating stochastic perturbation into the simulation, it is 
possible to get some idea of the possible directions in which the different 
urban land uses may grow under the selected scenario and consider the 
possible associated errors. On the basis of 30 model executions, fre-
quency maps were generated showing the number of times the same 
land use was allocated to the same land parcel (Fig. 9). 

In this regard, Table 3 offers a detailed picture of how the model 
performs with the integration of stochastic perturbation. The industrial 
and single-family residential uses are quite consistent, with around 90% 
of the simulated land parcels being allocated in the same location. 
However, commerce and utilities and multi-family residential uses show 
more variability. For both these land uses, about 30% of all the land 
parcels that changed across the 30 model executions were allocated in 
the same location (see Table 4). The fact that commerce and utilities, 
and multi-family residential uses show greater variability in parcel 
allocation is linked to the fact that both are under-represented in the 
study area. 

Fig. 7. Accuracy assessments (FOM) for the different α values used in the calibration of stochastic perturbation.  
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Fig. 8. Reference map (2018), simulated map (2050), and change map (land use changes 2018–2050) of the study area. The zoomed windows show detailed views of 
the urban areas of (1) Ajalvir, (2) Alcalá de Henares and (3) Los Santos de la Humosa. 
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Table 3 
Area-based matrix for the transitions between different urban land use categories for the simulated period (2018–2050) in hectares. Values in brackets denote the 
number of parcels.   

2018 

2050 Commerce & utilities Industrial Single-family Multi-family Mixed Nonurban Total in 2050 

Commerce & utilities 
805.37 
(1470) 

0 
(0) 

5.47 
(302) 

0 
(0) 

0 
(0) 

185.46 
(340) 

996.29 
(2112) 

Industrial 
0.43 
(6) 

1379.74 
(4344) 

0.01 
(1) 

0 
(0) 

0 
(0) 

794.13 
(1189) 

2174.33 
(5540) 

Single-family 14.57 
(83) 

18.38 
(312) 

847.24 
(24100) 

26.78 
(399) 

0.04 
(1) 

1143.70 
(4892) 

2050.75 
(29787) 

Multi-family 0 
(0) 

0.03 
(7) 

3.25 
(193) 

281.49 
(3130) 

0 
(0) 

138.97 
(375) 

423.77 
(3705) 

Mixed 
0 
(0) 

0 
(0) 

0 
(0) 

0 
(0) 

75.06 
(1002) 

0 
(0) 

75.07 
(1002) 

Nonurban 
62.84 
(191) 

58.78 
(355) 

32.43 
(1441) 

48.26 
(782) 

6.32 
(111) 

26,552.47 
(10194) 

26,761.14 
(13074) 

Total in 2018 883.22 
(1750) 

1456.95 
(5018) 

888.41 
(26037) 

356.56 
(4311) 

81.44 
(1114) 

28,814.76 
(16990) 

32,481.34 
(55220)  

Fig. 9. Frequency maps showing the number of times the same land use was allocated to the same land parcel in 30 model executions with stochastic perturbation (α 
= 0.2). Dark grey represents urban areas in the reference year. 
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6. Discussion 

6.1. Integrating modelling and participation to envision disruptive futures 

Uncertainty arising from the occurrence of sudden unexpected 
events is one of the major challenges facing urban planning (Goodspeed, 
2020). This has become particularly clear during the SARS-CoV-2 
pandemic, one of whose side effects was the huge increase in people 
working from home. It also led to changes in people’s lifestyles (Bel-
zunegui-Eraso & Erro-Garcés, 2020) with short journeys (to work, 
school, shops, etc.) falling by 50% compared to the pre-pandemic period 
(Fatmi, 2020). These changes may result in a spatial redistribution of 
urban land uses. Therefore, the use of multiple disruptive scenarios and 
the inclusion of stakeholders in urban and regional planning practices 
would assist in minimising uncertainty and managing such complex 
phenomena in a comprehensive manner. 

The importance of participation in urban and regional planning has 
been emphasised in the literature (Brown & Wei Chin, 2013), however, 
engaging the general public in processes of this kind is a complicated 
task that requires a major two-way collaborative effort between re-
searchers and the public. In this context, the ideas provided through 
semi-structured interviews allowed for the creation of multiple narrative 
storylines. The use of wild cards as conditioners or breakpoints proved a 
crucial factor in inspiring more disruptive thinking (Soria-Lara et al., 
2021). Some of these narratives were subsequently used in a workshop 
in which a range of experts in this field were invited to participate. These 
experts collaborated in the analysis, design, and discussion tasks in 
relation to the spatial configuration of urban land uses and the transport 
network, so generating inputs for the LP-CA model. 

Another challenge is to explain to stakeholders how the CA models 
work. Even the simplest of these models are primarily designed for use 
by a specialised research audience. By holding the workshop, this gap 
between stakeholders and researchers was minimized, the necessary 
know-how was collected and converted into inputs for the LP-CA model, 
and the quality of the information was improved by integrating the 
human component. The quantity of growth for each urban land use was 
added at the discretion of experts and stakeholders, while the accessi-
bility, suitability and zoning maps were generated later with the support 
of the information obtained from the overview map. It should also be 
noted that both the workshop map and the simulated map are comple-
mentary, providing under-recognized aspects or gaps not visible one- 
sidedly, and checking the entire process of modelling future scenarios 
for greater consistency of the outcomes. 

This participatory process made it possible to configure several pa-
rameters of the model by providing a critical and objective perspective 
of the spatial configuration of urban land use as reflected in the narrative 
storyline. The use of land parcels also offers the stakeholders a much 
clearer picture of the outcomes, so facilitating the interpretation pro-
cess. It is also necessary to explore other possible methods for validating 
and/or evaluating future disruptive scenarios, as the future by its very 
nature is unknown and we have no on-the-ground evidence with which 
to compare it. A crucial step in successfully completing this participatory 

planning process through disruptive future scenarios is to hold a new 
workshop, in which citizens, experts and stakeholders collaborate to 
visualise, analyse, and evaluate the outcomes of the simulated urban 
land use maps that they themselves helped generate. 

6.2. Practical considerations of LP-CA model in simulating disruptive 
scenarios 

The main purpose of the LP-CA model is to generate land use tra-
jectories that are spatially consistent with the disruptive narrative 
storylines. The accuracy metrics used to assess the model indicated that 
it was operating correctly. In this respect, it is worth remembering that 
the FOM values are not only affected by the size of the study area or by 
the percentage of the total area in which land use changes, and that 
simulating separate urban areas makes it even more difficult to allocate 
new urban land uses. Another problem that can complicate the simu-
lation of large study areas is the competition between different urban 
areas, which can lead to the expected quantity of growth being 
concentrated in a single municipality, so preventing the others from 
growing. 

The results of the disruptive scenario simulation were consistent with 
the description of the selected narrative storyline. Processes described in 
the scenario narrative (segregation of urban land uses, significant 
expansion of single-family residential on the periphery, and the aban-
donment of city centres) were identified in simulated maps, as shown in 
Fig. 8. Moreover, the use of land parcels as the spatial unit enabled the 
model to reproduce more realistic urban dynamics, which adapted to the 
spatial boundaries defined by legislative planning. 

In addition, internal transitions between the urban land uses of 
already developed parcels, and transitions from urban to nonurban, 
have been critical components in the simulation of disruptive future 
scenarios. Although these urban dynamics are integrated into most of 
the simulation models based on regular CA, they are not normally found 
in irregular models, especially in those that use land parcels as the 
spatial unit (Barreira-González et al., 2019; Zhai et al., 2020). This is a 
significant step forward. 

The influence of stochastic perturbation was also spatially repre-
sented for each urban land use. In this family of CA-models, it is 
particularly important to reflect the impact of randomness as a way of 
measuring those urban processes that do not respond to deterministic 
causes (Barreira-González et al., 2019). Single-family residential and 
industrial uses were allocated in the same places in around 90% of the 
runs, so indicating that stochastic perturbation has little influence. This 
suggests a greater robustness of both urban land uses in terms of their 
spatial distribution. In the Spanish case, the industrial fabric and single- 
family housing developments have well-defined locations, tending to 
grow in a compact and segregated manner. By contrast, multi-family 
residential and commercial and utilities uses were strongly affected by 
this parameter, as manifested in greater spatial variation in the places 
allocated to these uses. The development of these two urban land uses is 
more scattered and heterogeneous, which makes it more difficult to 
establish rules or factors that explain their spatial distribution. 

7. Concluding remarks and further research 

The authors consider that the methodology developed in this study 
makes an important contribution to research in this field, in that it 
complements the multi-scenario approach as a tool for supporting local 
urban management and decision-making processes, by allowing a better 
understanding of uncertainty in urban environments. It prepares plan-
ners to act in a wide range of situations, enabling them to make more 
informed decisions. It is particularly relevant today in a period of strong 
uncertainty, as can be observed in the growing trend of publications 
focusing on disruption in the anticipation of future events. 

The results show that this model successfully simulates urban 
expansion (growth), the change from one urban land use to another 

Table 4 
Percentage of land parcels that have been allocated to the same location and 
category of all the land parcels that changed across 30 model executions.  

Times 
simulated 

Commerce and 
utilities 

Industrial Single- 
family 

Multi- 
family 

1 12.01% 1.90% 0.69% 8.03% 
2–5 41.22% 4.44% 1.84% 15.78% 
6–10 4.97% 0.95% 0.74% 5.41% 
11–15 3.46% 0.71% 0.64% 3.34% 
16–20 2.19% 1.27% 0.59% 6.85% 
21–25 2.89% 1.03% 0.61% 8.03% 
26–29 11.89% 2.38% 1.78% 31.47% 
30 33.37% 89.22% 93.79% 29.13%  
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(conversion), and the abandonment of urban areas (loss) at parcel level 
as relevant processes in the mapping of disruptive scenarios. Further-
more, the improvement from previous versions of the model in terms of 
the number of simulated land uses and urban dynamics (Barreira- 
González et al., 2019; Barreira-González, Gómez-Delgado, & Aguilera- 
Benavente, 2015) provides a better picture of the general distribution 
of city functions, so allowing a more accurate spatial simulation of 
multi-future scenario narratives. This approach contributes to the 
exploration of imaginable and unimaginable futures (that may or may 
not happen) and the envisioning of spatial consequences they may have 
on urban environments, providing support in anticipatory decision- 
making in land use planning. 

Lastly, to complete the cycle of prospective scenario planning, a final 
step focusing on scenario evaluation and the identification of associated 
impacts is required. A new method for validating future disruptive 
scenarios through a participatory workshop, in which stakeholders and 
experts collaborate to analyse the outcomes of the simulation is being 
explored. However, it is important that the process in which urban land 
uses are allocated to the different parcels provides easily interpretable, 
clear outcomes for the actors who assess and analyse the scenarios, so 
assisting in the decision-making process and in the design of policy 
packages. 
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