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 ABSTRACT   

The general linear model is widely used in many scientific fields, especially biological ones. The Ordinary 

Least Squares (OLS) estimators for the coefficients of the general linear model are characterized by good 

specifications symbolized by the acronym BLUE (Best Linear Unbiased Estimator), provided that the basic 

assumptions for building the model under study are met. The failure to achieve one of the basic assumptions 

or hypotheses required to build the model can lead to the emergence of estimators with low bias and high 

variance, which results in poor performance in both prediction and explanation of the model in question. The 

hypothesis that there are no multiple linear relationships between the explanatory variables is considered one 

of the leading hypotheses on which the model is based. Thus, the emergence of this problem leads to 

misleading results and high (Wide) confidence limits for the estimators associated with those variables due 

to problems characterizing the model. Shrinkage methods are considered one of the most effective and 

preferable ways to eliminate the multicollinearity problem. These methods are based on addressing the 

multicollinearity problems by reducing the variance of estimators in the model. Ridge and Lasso methods 

represent the most and most common of these methods of shrinkage. The simulation was carried out for 

different sample sizes (40, 120, 200) and some variables (P=30, 60) in the first and second experiments 

arbitrarily and at the level of low, medium, and high correlation coefficients (0.2, 0.5, 0.8). When (p=30, 60) 

Lasso method has the smallest (MSE) than the Ridge method. The Lasso method proved its efficiency by 

obtaining the least MSE. Optimal Penalty parameter (λ) chosen from Cross-Validation through minimizing 

(MSE) of prediction. We see a rapid increase for (MSE) for both (Ridge-Lasso) where the top axis indicates 

the number of model variables, and when the correlation between variables increases and sample size too, 

we can see the (MSE) values increase in the Ridge method than the Lasso method. A ridge method gives 

greater efficiency when the sample size is more significant than variables (p<n), but the Ridge method cannot 

shrink coefficients to precisely zero. So, the elasticity of ridge coefficients decreases, but variance increases 

bias, also (MSE) first remains relatively constant and then increases fast. 
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1. Introduction 

The development of regression parameter estimation began in 1795 when Guss proposed the Ordinary Least 

Squares method, later published in 1805 by Adrine-Marie - Legendre. In 1922, Fisher Presented the Maximum 

likelihood method, characterized by a set of characteristics such as consistency, sufficiency, and efficiency 

(BLUE) [1-3]. 
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Using the Ordinary Least Squares (OLS) method to estimate the parameters of a general linear regression model 

to obtain a suitable model for the prediction can sometimes lead to wrong decisions and results (misleading) 

because of the lack of basic assumptions required to build and analyze regression models. This has necessitated, 

therefore, that researchers seek to find other methods of higher accuracy, which are often modifications made 

in one way or another to the method (OLS) [4]. 

The real relationship between the response variable (Y) and the explanatory variables (X1, X2,…Xp) if it is 

almost linear, then the OLS estimates will have a low bias, and if n<p (the size of the observations is much 

greater than the number of variables in the model), it also tends to have a low variation. But if n is not much 

more significant than P, there may be a considerable variation in the estimates, which leads to overfitting and 

weak predictive power of the model. On the other hand, if p>n, the OLS solution is not a single solution, but 

there is more than one solution to estimate the parameters [5-7]. 

In short, shrinkage is a regulation method that involves fitting a regression model using all p predictors under 

some constraint on the size of their estimated coefficients.  

The essential characteristics of this method can be summarized in the following points: 

• Reducing the variability of the estimates means improving the model's stability. 

• Setting some of the coefficients to zero allows for variable selection. 

The shrinkage method is considered one of the most effective and preferable ways to reduce the multicollinearity 

problem. It addresses that problem by reducing the variance of estimators in the model. 

This paper will highlight three estimation methods: Ridge and Lasso [2, 8]. 

In practical application, researchers face several problems, especially when the number of explanatory variables 

affecting the response variable (dependent) is  large or close to the number of observations, as well as when 

these variables are correlated to each other (multicollinearity problem) and the consequent adverse  effects of 

these problems on future predictions, Accordingly, the problem of this study is to put forward methods that 

contribute to shrinking these variables and thus shrinking the parameters of the regression model to reach an 

optimal model that has excellent and high explanatory and predictive power—reaching a statistical model that 

better represents the data through shrinkage methods. The purpose of using the shrinkage methods (Ridge and 

Lasso) is embodied in accessing the selection of the significant explanatory variables in the model under study. 

To determine the best shrinking method at different sample sizes and correlation  coefficient values, a 

comparison is made between the results of the three methods  using the mean square error criterion when there 

is a multicollinearity problem. 

2. Literature review 

Several studies and research discussed the linear relationship between the explanatory variables, methods of 

detection, and the extent of their impact on the results of the analysis, as well as ways to treat those using modern 

statistical methods. 

In 1962, Horel presented several concepts that formed the basis of the Ridge Regression (RR) methodology. 

Then in 1970, Hoerl and Kennard presented an article considered a significant development of the RR method. 

The most important part of that article was focused on the ordinary RR estimator 𝑏𝑅𝑅 = (𝑋`𝑋 + 𝑘𝐼)−1𝑋`𝑦, 

where k is an exogenous parameter that has to be determined. Also, the article showed that there is always a 

k>0 such that the mean squared error of the (𝑏𝑅𝑅) method is less than the mean squared error of the (𝑏𝑂𝐿𝑆) 

method [1]. 

In 2018, the two researchers, Al-Hassan, Y.M., and Al-Kassab, studied the use of the RR method to determine 

the best value of the constant k and choose it to eliminate the problem of multicollinearity between the 

explanatory variables. In this context, the two researchers worked on increasing the sample size, dropping or 

deleting some variables with high correlation and finding the parameters of the linear regression model to 

represent the best model using biased estimation methods (PCR, RR). The results showed that the (RR) method 

gave the best parameter K and the highest efficiency as well for the estimators  [3]. In 2017, the researcher 

(Fatima Assim Mahdi) compared the RR and PC methods using simulation and application on real data in her 

thesis. The thesis mentioned above proposed a method for testing the bias parameter (�̂�) by modifying the 

(�̂�𝐻𝐾𝐵) method, and the proposed value gave an excellent performance in terms of reducing MSE when there is 

high multicollinearity between the explanatory variables and using the standard ridge deviation estimators [8]. 
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M. Goldsmith and A.F.M Smith proposed a new derivation for the estimator RR and its generalization. In 1977, 

Richard F. Gunst and Robert L. Mason used MSE (Mean Squared Error) criterion to compare five estimators 

of regression coefficients (least squares, principal components, ridge regression, latent root, and shrunken 

estimator). In this context, each of the biased estimators displayed improvement in mean squared error over 

least squares for a wide range of options of the parameters of the model [11-14]. Also, the results of a simulation 

encompassing all five estimators pointed out that the principal components and latent root estimators perform 

best overall, while the ridge regression estimator has the possibility of a minor mean square error than either of 

these [11, 15]. 

In 2013, a study by Irfan and Javed compared Partial Least Squares Regression with other prediction methods 

(Ordinary Least Squares, Ridge Regression and Principal Components Regression) to address the problem of 

multicollinearity in (GDP) data of Pakistan. Also, the study compared all prediction methods for efficiency by 

using RMSE and found that Partial Least Squares Regression (PLSR) provides better prediction as compared 

to the other prediction methods [15]. 

Robert TIBSHIRAN proposed a new method of estimation in linear models called the Lasso short (Least 

absolute shrinkage and selection operator). This method minimizes the residual sum of squares subject to the 

sum of the absolute value of the coefficients being less than a constant. As a result of the nature of this constraint, 

it tends to produce some coefficients that are precisely (0) and hence gives interpretable models. Simulation 

studies conducted by TIBSHIRANI indicated that the Lasso method is characterized by some favourable 

properties of subset selection and Ridge Regression. Also, the Lasso method is considered quite general and 

can be used or applied in various statistical models [16-20]. 

3. Method 

3.1. General linear model (GLM) 

The general linear model is a  procedure by which a single response variable(y) is represented by a combination 

of explanatory variables X1  ،X2  ،..., Xp, and the model can be described as follows [7, 10]: 

𝑦 = 𝑋𝛽 + 휀          … (1) 

𝑦: (n ×1) vector representing the response variable (dependent). 

X: A total-ranked matrix with dimensions (n×p) defined for explanatory variables. 

𝛽:A vector whose dimension is (p×1) for the undefined regression parameters or coefficients. 

휀 :A vector with dimensions (n×1) of random errors achieving,    E (ε) = 0 and V(ε) = σ2
In. 

 𝐼𝑛: Identity matrix with (n× n).  

The coefficient of the general linear model in equation (1) is estimated using the Ordinary Least 

Squares (OLS) method, the most common estimation method based on minimizing the sum of squared 

deviations, as shown below. 

휀`휀 = 𝑌`𝑌 − 2 𝛽` 𝑋`𝑌 + 𝛽` 𝑋` 𝑋𝛽       … (2)  

And when we take the derivative of equation (ε` ε) concerning parameter (β) according to the method of least 

squares, we get the OLS estimator: 

𝑏𝑜𝑙𝑠 = (𝑋` 𝑋)−1 𝑋`𝛾            … (3) 

3.2. The collinear relationship between explanatory variables 

 One of the most important assumptions of the General Linear Model (GLM) analysis is that the explanatory 

variables are not highly correlated. The interpretation of the regression coefficient is usually the amount of 

change in the response variable when an explanatory variable is increased by one unit with all other explanatory 

variables held constant. This interpretation becomes invalid when there is high collinearity between the 

explanatory variables. On the other hand, when this collinearity is not present, the explanatory variables are 

considered orthogonal. However, the lack of orthogonality is not so important as to cause the analysis to be 

inaccurate. The absence of orthogonality with a high degree is also attributed to the problem of the data's 

linearity or multicollinearity. Accordingly, it is necessary to notice the presence or absence of the 

multicollinearity problem between the explanatory variables when building the model. [6][12] 
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3.3. Shrinkage method 

The estimator of the Ordinary Least Squares method dominated studies and research for a long time until it was 

proven to be ineffective in the case of the existence of a multicollinearity problem between the explanatory  
variables. To understand the methodology of the shrinkage estimators, we assume that we have a matrix of 

explanatory variables X with a dimension (n×p) and that the vector of the response variable is y with a dimension 

(n×1). In addition, we assume that the sample means have been excluded from the data set under study and, 

therefore, 𝟏'x = 0 and 1'y=0, where 1 is a vector (n×1) of ones. Also, the X matrix will be decomposed to get a 

more comprehensive understanding of the shrinkage estimators, and thus the X matrix can be written as follows: 

[8][15] 

𝑋 = 𝐻Λ
1

2 𝐺`  … (4) 

H: represents an (n×p) matrix that fulfils the orthogonality condition H`H=Ip.  

Λ
1

2: represents a (p×p) diagonal matrix of ordered singular values of X, that is 𝜆1

1

2 ≥ 𝜆2

1

2 ≥ ⋯ . 𝜆𝑝

1

2 ≥ 0  which 

represents the Eigenvalues and so that (β) is estimable. 

G:  represents a (p×p) orthogonal matrix, and its columns are the Eigen Vectors of the X`X matrix. 

The Information Matrix X`X can be written in the following form: 

𝑋`𝑋 = 𝐺 Λ
1

2 𝐻`𝐻 Λ
1

2 𝐺` = 𝐺 Λ 𝐺`        … (5) 

Therefore, the least squares estimator can be rewritten as: 

𝑏𝑜𝑙𝑠 = (𝑋`𝑋)−1 𝑋𝑌 = (𝐺ΛG`)−1𝐺 Λ
1
2 𝐻`𝑌 

𝑏𝑜𝑙𝑠 = 𝐺 Λ−1 𝐺`𝐺 Λ
1

2 𝐻`𝑌 = 𝐺Λ −
1

2
  𝐻`𝑌 = 𝐺𝐶       … (6) 

Where the Vector 𝐶 = Λ
−1

2  𝐻`𝑦 represents the vector of uncorrelated components of 𝑏𝑜𝑙𝑠. This leads to 

the following:  

𝐸(𝐶) = 𝐸(𝐺` 𝑏𝑜𝑙𝑠) = 𝐺`𝛽 = 𝛾(𝑠𝑎𝑦)𝑎𝑛𝑑 𝑣𝑎𝑟 (𝐶) = 𝑣𝑎𝑟 (𝐺`𝑏𝑜𝑙𝑠) 

    ∴ 𝐸(𝐶) = 𝐺`𝑣𝑎𝑟(𝑏𝑜𝑙𝑠)𝐺            … (7) 

So, 

𝑉𝑎𝑟(𝐶) = 𝜎2𝐺`(𝐺 Λ 𝐺`)−1𝐺 = 𝜎2𝐺`𝐺 Λ−1𝐺`𝐺 = 𝜎2Λ−1    .       … (8) 

It represents a diagonal matrix, and therefore the components of 𝐶 are uncorrelated due to the off-diagonal 

elements of 𝑉𝑎𝑟(𝐶), which represent the covariance values equal to zero. The shrinkage estimators are denoted 

by 𝑏𝑆𝐻and their general form is:[8,16] 

𝑏𝑆𝐻 = 𝐺𝛥𝐶 = ∑ 𝑔𝑗̅̅ ̅
𝑏

𝑖=1
𝛿𝑗𝐶𝑗              … (9) 

Where: 

𝑔𝑗⃗⃗⃗⃗ : represents the jth column of the matrix 𝐺. 

𝛿𝑗: represents the jth diagonal elements of the shrinkage factors matrix ∆, and the range of the shrinkage factors 

is usually restricted and be: 0 ≤ 𝛿𝑗 ≤ 1. 𝑗 = 1.2.… . 𝐶𝑗.In this research, several methods will be presented to 

address the problem of multicollinearity of the GLM model, the most important of which are: 

3.4.  Ridge method (RM) 

In 1970, researchers Hoerl and Kennard introduced the Ridge Estimator (RE) method, which became one of the 

most popular methods for solving the multicollinearity problem of the linear regression model. This method is 

implemented by adding a small positive amount with a specified value between zero and one (0 < 𝜆 < 1) to 

the diagonal elements of the data matrix (X`X) to obtain more accurate estimators. Also, the (RR) method leads 

to decorrelation between explanatory variables. The normal equation below is used to calculate the estimators 
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for the values of parameter 𝛽 after the response variable y, and the explanatory variables are converted to the 

standard form [16, 21]: 

(𝑋`𝑋 + 𝜆𝐼𝑝)𝛽 = 𝑋`𝑦            … (10) 

Where 𝝀 represents a nonnegative constant value (representing the bias parameter or regularization parameter) 

and is chosen by the analyst according to several criteria developed by Hoerl and Kennard, and 𝐼𝑝 represents the 

unity matrix with dimensions (p×p). 

The solution to equation (10) gives the Ridge Estimator (𝑏𝑅𝐸) as follows: 

𝑏𝑅𝐸 = (𝑋`𝑋 + 𝜆𝐼𝑝)
−1

𝑋`𝑦      … (11) 

Often, we can rewrite ridge regression in the Lagrangian form: [19] 

𝑏𝑅𝐸 = 𝑎𝑟𝑔𝑚𝑖𝑛𝛽0,𝛽  {
1

2𝑛
 ‖𝑦 − 𝑋𝛽‖2

2 + 𝜆‖𝛽‖2
2}      … (12) 

It is easy to prove that the ridge regression estimator in equation (11) is one of the classes of shrinkage 

estimators, as follows:  

𝑏𝑅𝐸 = (𝑋`𝑋 + 𝜆𝐼𝑝)
−1

𝑋`𝑦 = [𝐺(Λ + 𝜆𝐼)𝐺`]−1𝐺Λ
1
2
 𝐻`𝑦 

𝑏𝑅𝐸 = 𝐺(Λ + 𝜆𝐼𝑝)
−1

𝐺`𝐺Λ
1
2
 𝐻`𝑦 

𝑏𝑅𝐸 = 𝐺(Λ + 𝜆𝐼𝑝)
−1

 Λ
1
2
 𝐻`𝑦 

𝑏𝑅𝐸 = 𝐺 [(Λ + 𝜆𝐼𝑝)
−1

Λ]Λ−
1
2𝐻`𝑦  

𝑏𝑅𝐸 = 𝐺Δ𝐶                  … (13) 

           Where  =( +𝜆𝐼)−1 , which is a diagonal matrix, and j-th is the diagonal element of the matrix,  has 

the form: 

δj =
𝜆𝑗

𝜆𝑗+𝜆
  .     𝑗 = 1,2,… , 𝑝      

Where 𝜆𝑗  represents the j-th element (Eigen value) of the diagonal matrix  with dimension (p× p), and 𝜆 

represents the ridge (regularization) parameter [13]. 

It can be seen, from equation (11), that the ridge estimator is a biased method, and therefore the ridge estimator 

for the coefficients (𝑏𝑅𝐸
^ ) is biased, and the variance and covariance matrix for the (𝑏𝑅𝐸

^ ) estimator is as follows 

[8, 18]: 

𝑉𝑎𝑟(𝑏𝑅𝐸) = 𝜎2(𝑋′𝑋 + 𝜆𝐼𝑝)
−1𝑋′𝑋(𝑋′𝑋 + 𝜆𝐼𝑝)

−1
 

The residual sum of the square can be formulated as follows: 

𝑆𝑆𝐸(𝜆) = (𝑦 − 𝑋𝑏𝑜𝑙𝑠)′(𝑦 − 𝑋𝑏𝑜𝑙𝑠) + (𝑏𝑅𝑅 − 𝑏𝑜𝑙𝑠)′𝑋′𝑋(𝑏𝑅𝑅 − 𝑏𝑜𝑙𝑠)       … (14) 

The total mean squared error (Total MSE) can be formulated as follows:  

𝑇𝑜𝑡𝑎𝑙 𝑀𝑆𝐸(𝑏𝑅𝑅) = 𝐸(𝑏𝑅𝑅 − 𝛽)′(𝑏𝑅𝑅 − 𝛽) 

Using the linear algebra theory of the quadratic formula as follow: 

𝐸(𝑦′𝐴𝑦) = 𝑡𝑟(𝐴)Σ + 𝜇′𝐴𝜇           … (15) 

𝑇𝑜𝑡𝑎𝑙 𝑀𝑆𝐸(𝑏𝑅𝑅)   = 𝜎2𝑡𝑟 [(𝑋′𝑋 + 𝜆𝐼𝑝)
−1

𝑋′𝑋(𝑋′𝑋 + 𝜆𝐼𝑝)
−1

] + 𝛽′(𝑊 − 𝐼𝑝)′(𝑊 − 𝐼𝑝)𝛽    … (15)      

Where 𝑊 = [𝐼𝑝 + 𝜆(𝑋′𝑋)−1]
−1

, By simplifying the equation  (15), we obtain: 

𝑇𝑜𝑡𝑎𝑙 𝑀𝑆𝐸(𝑏𝑅𝑅) = 𝜎2 ∑
𝜆𝑖

(𝜆𝑖+𝜆)2
𝑝
𝑖=1 + 𝜆2𝛽′(𝑋′𝑋 + 𝜆𝐼𝑝)

−2𝛽       … (16) 
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One of the essential points that must be considered in the Ridge method is the value of the bias parameter (𝜆). 

Several methods are proposed to find the best value of (𝜆) [21]. When the value of (𝜆 =0), the ridge estimators 

are equal to the least squares estimators, and when (𝜆 >0), the ridge regression estimators tend to stabilize at a 

specific value relative to changes in the data, but there is a bias.  

In addition, the mean squares error (MSE) of the ridge method is lower than the MSE of the least square method, 

so the amount of bias is accepted against the reduction of the variance of the estimators [20]: 

𝑉𝑎𝑟(𝑇) ≥
[1+𝐵(𝜃)]2

𝐸[
𝜕𝑙𝑛𝐿

𝜕𝜃
 ]

2                … (17) 

Where B ()is the bias of the estimator. 

On this basis, 𝑏𝑅𝐸is the best linear estimator for 𝛽. Also, the ridge regression estimator is the Bayes estimator 

when the coefficients for the prior distribution are Gaussian distribution and represent the least squared error of 

the Penalty Function as a result of minimizing the objective function according to the Formula: 

(𝑦 − 𝑋𝛽)`(𝑦 − 𝑋𝛽) + 𝜆(𝛽`𝛽 − 𝑐)               … (18) 

There are several ways to test the bias parameter 𝜆. There are several ways to test the bias parameter λ. The most 

popular is the Hoerl-kennard-Baldwin method, according to the following formula: 

�̂�𝐻𝐾𝐵 =
𝑃�̂�2

∑ (�̂�𝑂𝐿𝑆
2 )

𝑝
𝑖=1 2

                     … (19) 

And that �̂�  and �̂�2 are obtained by the method of OLS  

�̂�2 =
𝑦`𝑦 − 𝛽𝑂𝐿𝑆

′ 𝑋′𝑦

𝑛 − 𝑝
 

3.5.  Least Absolute shrinkage and selection Operator (LASSO) 

Robert Tibshirani proposed the Lasso method in 1996. The essence of this method is based on minimizing the 

Sum of Squared Errors (SSE) with attention to the sum of the absolute value of the coefficients being less than 

a constant. Due to the nature of this constraint, it tends to generate some coefficients equal to (0). In return, the 

variables greater than zero are determined after reduction and adopted as part of the model, contributing to 

minimizing the prediction error. This method is of great importance in addressing the problem of 

multicollinearity between explanatory variables [20]. 

The widespread use of the lasso method in the treatment of estimation problems is due to its statistical accuracy 

in the prediction and selection of explanatory variables and its computational accuracy. But on the other hand, 

the Lasso estimator is unstable when the number of explanatory variables is higher than the number of 

observations. Also, if there is high multicollinearity among the explanatory variables, ridge regression 

dominates the Lasso in prediction performance. 

To address this problem in the general linear model in equation (1), the variables X1, X2,…, Xp  are converted to 

the standard Formula (standardization), and therefore E(X)=0 and Var(X)=1, and let  �̂� = (�̂�1. �̂�2 . … . �̂�𝑝)
𝑇

, So 

the lasso estimator represents the solution as in the following equation [2, 5, 17]: 

 𝑏𝐿𝑎𝑠𝑠𝑜 = argmin
                       𝛽

(𝑦 − 𝑋𝛽)` (𝑦 − 𝑋𝛽)   ;            𝑠. 𝑡 ∑ |𝛽𝑗| ≤ 𝑡
𝑝−1
𝑗=1         … (20) 

Where 𝑡 represents a tuning parameter and controls the amount of shrinkage applied to the estimates when 𝑡 ≥

0, to determine 𝑡, let  𝑏𝑜𝑙𝑠 be the full least squares estimates and 𝑡 = ∑|�̂�𝑂𝐿𝑆|, and then, values of 𝑡 < 𝜆𝑂𝐿𝑆 will 

cause shrinkage of the solutions towards (0), Then equation (20) can be reformulated according to Lagrange's 

Formula to become as follows: 

𝑏𝐿𝐴𝑆𝑆𝑂 = min
𝛽

{(𝑦 − 𝑋𝛽)′(𝑦 − 𝑋𝛽) + 𝜆∑ |𝛽𝑗|
𝑞
𝑗=1 }   ;   𝑞 = 1,2,… , 𝑝 − 1    ... (21) 

Where 𝜆 ≥0 represents the penalty parameter controlling the shrinkage amount and 𝜆 ∑ |𝛽𝑗|
𝑝
𝑗=1 represents the 

penalty term (norm L1). The penalty parameter (𝜆 ) controls the strength of the penalty function for the 

coefficients of the general linear model. For every 𝑡 > 0, there is 𝜆 > 0, and therefore equations (20) and (21) 

become identical for any given value when 𝜆 ∈ [0.∞)  , then both formulas have a solution and vice versa. 
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In equation (21), penalty parameter 𝜆 (which is always positive(nonnegative)) is multiplied by the penalty 

function L1 of vector (�̂�1. �̂�2 . … . �̂�𝑝−1). Therefore some coefficients are estimated to be zero when the value of 

𝜆 is significant, while minimal values of 𝜆 can lead to mischaracterization—as in the case of ridge regression, 

choosing different values for 𝜆  results in different estimators of the parameters vector                                       

�̂�𝐿𝑎𝑠𝑠𝑜 = (�̂�1. �̂�2 . … . �̂�𝑝−1)
𝑇

  ,which is why it is so important to choose an appropriate value for the 

regularization parameter.  

It is important to indicate that choosing the value of the regularization parameter 𝜆 for the Lasso estimator is 

critical because minimal values of 𝜆 can lead to a misdescription of the model, meaning that the model can tend 

to describe errors in the data. The results become close to the results of estimators of the OLS method. In both 

cases mentioned for the value of 𝜆 a high variance value will be obtained when applied to the data under study. 

The parameter 𝜆 in equation (21) is estimated through the Cross-Validation technique to find a suitable Value 

for that parameter.[9][14] 

The suitable or appropriate value of parameter 𝜆 means that value that contributes to predicting the values of 

the response variable with the highest possible accuracy (less variance). To perform the Cross-validation 

technique, the data set is first divided into two subsets or folds (Say Q) of approximately equal size. The first 

set is called the training set, and the second is called the test set. Next, the training set is used to compute 

coefficient estimates, and these estimates are then validated by the test set where the fold is assigned to one of 

the folds while the remaining Q – 1 folds together form the training set. Usually, the number of folds Q is set to 

be equal to 5 or 10. 

Then a grid of 𝜆 = [𝜆𝑠] values is chosen, and model coefficients are computed for all 𝜆𝑠 values according to 

which the Residual Sum Squares (RSS) are calculated: 

𝑅𝑆𝑆𝜆𝑠 

𝑞
= ∑ (𝑦𝑖 − ∑ 𝑏𝑗(𝑞. 𝜆𝑠 )𝑥𝑖𝑗

𝑝−1
𝑗=0 )

2
𝑛
𝑖=1       … (22) 

Where 𝑞 represents the list of folds selected as a test set, the average RSS values for all folds can be obtained 

according to the following: 

𝐶. 𝑉(𝜆) = 𝑀𝑆𝐸𝜆𝑠 =
1

𝑄
∑ 𝑅𝑆𝑆𝜆𝑠 

𝑞𝑄
𝑞=1             …(23) 

Then a value of 𝜆 equal to which provides the lowest MSE 

�̂�𝑚𝑖𝑛 = min𝐶𝑉(𝜆)                        … (24) 

3.5.  Simulation procedure 

The simulation method has been used to compare shrinkage methods (Ridge-Lasso) clarified in this study to 

reach the best method among the applied estimation methods. The comparison, as mentioned earlier, was made 

by relying on the Least Mean Squares Error (MSE) criterion. In the same context, the stages of building a 

simulation can be summarized as follows:   

1- The sample size (n) includes three sample sizes (n=40, n=120, n=200). 

2- Determine the value of the correlation coefficient, which includes three levels low, medium and high so (𝜌 = 

0.2, 0.5, 0.8).      

3- Determine the mean and variance value of the generated variables (𝜇 = 5, 𝜎2 = 2). 

5- Determine the repetition value for each experiment (500). 

6- Determine the initial values for the parameters:   For the first experiment   , 𝛽 = (3.2,1.8,0,0,2.2,2,0,… ,0); 

For the second experiment,  β = (2.8,2.9,2.9,3,3,3,3,0… ,0). 

7- The explanatory variables are generated assuming they have a normal distribution 𝑥𝑖~ 𝑁(𝜇, 𝜎2). As for the 

error, it is typically distributed with a mean of zero and a Variance of (1), 𝑒𝑖~ 𝑁(0,1). 

8- The dependent variable was generated through the following equation: 

𝑦𝑖 = 𝑏0 + 𝑏1𝑥1 + 𝑏2𝑥2 + 𝑏3𝑥3 + 𝑏4𝑥4 + 𝑏5𝑥5 + 𝑏6𝑥6 + 𝑏7𝑥7 + 𝑏8𝑥8 + 𝑏9𝑥9 + 𝑏10𝑥10 + ⋯ 
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As for the comparison criteria, and as we explained above, the (MSE) criterion was relied upon, which 

represents the predicted error for the estimators, according to the following Formula: 

𝑀𝑆𝐸 (�̂�∗(𝛼)) =
1

𝑛
(𝑦𝑛𝑒𝑤 − 𝑋𝑛𝑒𝑤�̂�∗(𝛼))

′
(𝑦𝑛𝑒𝑤 − 𝑋𝑛𝑒𝑤�̂�∗(𝛼))       … (36) 

𝑋𝑛𝑒𝑤 and 𝑌𝑛𝑒𝑤 are good observations that were not used to estimate parameters �̂�∗(𝛼). Simulations and model 

estimation were performed using R software. 

4.  Results and discussions 

Data were generated with three levels of correlation coefficient value (low = 0.2, medium = 0.5 and high= 0.8). 

Two shrinkage methods (Ridge Method (RM), and Least Absolute shrinkage and Selection Operator (Lasso)) 

were used to address the multicollinearity problem with small, medium, and large sample sizes (40,120,200) 

and at two sets of several explanatory variables (30, 60) with (500) repetition. The best shrinkage parameter (λ) 

was selected through the least standard MSE at different sample sizes and correlation levels for each shrinkage 

method. As a result, the following tables show the estimators of the parameters for the explanatory variables in 

the general linear model. Table 1, it is clear to us the results of the simulation experiment when several variables 

(p = 30) with sample size (n = 40, 120, 200) and correlation coefficient (0.2, 0.5, 0.8) for (500) repetition. The 

Lasso method has the smallest (MSE) than the Ridge method. The Lasso method proved its efficiency by 

obtaining the least MSE. Optimal Penalty parameter (λ) chosen from Cross-Validation through minimizing 

(MSE) of prediction. Mean squared error (MSE) remains relatively constant and increases fast. In the Ridge 

Method, the penalty parameter (λ) increases, and the elasticity of ridge coefficients decreases, but variance 

increases bias. Also (MSE) first remains relatively constant and then increases fast. 

Table 1. (RE, Lasso) with (MSE) when (p=30) and best Penalty parameter 𝜆 
Sample Size Correlation 

Coefficient 

MSE  

Best Penalty parameter 

RM Lasso 

40 

0.2 
0.256398 

𝝀 = 𝟎. 𝟒𝟕𝟓𝟏𝟒𝟒 

0.040111 

𝝀 = 𝟎. 𝟎𝟎𝟒𝟑𝟖 

0.5 
0.354806 

𝝀 = 𝟎. 𝟕𝟓𝟖𝟔𝟐𝟑 

0.0504465 

𝝀 = 𝟎. 𝟎𝟎𝟒𝟒𝟏 

0.8 
0.439002   

 𝝀 = 𝟎. 𝟖𝟐𝟏𝟒𝟓𝟖 

0.051536 

𝝀 = 𝟎. 𝟎𝟎𝟐𝟓𝟐𝟑 

120 

0.2 
0.644263 

𝝀 = 𝟎. 𝟒𝟕𝟏𝟑𝟑𝟏 

0.5478987 

𝝀 = 𝟎. 𝟎𝟓𝟑𝟗𝟓𝟒 

0.5 
0.750828 

𝝀 = 𝟎. 𝟔𝟔𝟓𝟒𝟔 

0.5546814 

𝝀 = 𝟎. 𝟎𝟕𝟒𝟕𝟔 

0.8 
0.922708                   𝝀 =

𝟎. 𝟖𝟎𝟔𝟏𝟎𝟕 

0.511579 

𝝀 = 𝟎. 𝟎𝟐𝟓𝟏𝟗𝟕 

200 

0.2 
0.722982 

𝝀 = 𝟎. 𝟒𝟒𝟒𝟕𝟑𝟓 

0.619208 

𝝀 = 𝟎. 𝟎𝟒𝟐𝟒𝟓𝟐 

0.5 
0.83579 

𝝀 = 𝟎. 𝟓𝟖𝟏𝟑𝟑𝟔 

0.615111 

𝝀 = 𝟎. 𝟎𝟒𝟐𝟒𝟏𝟖 

0.8 
1.053697            

 𝝀 = 𝟎. 𝟖𝟎𝟗𝟐𝟖 

0.600951 

𝝀 = 𝟎. 𝟎𝟏𝟕𝟑𝟑𝟗 

 

Figure 1. The fast increase for (MSE) for both (Ridge-Lasso), where the Top axis indicates the number of 

model variables 

Figure 1 shows the fast increase for (MSE) for both (Ridge-Lasso), where principal axis indicates the number 

of model variables—the number of variables p=30, sample size n=200 with high correlation. 
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When the correlation between variables increases and the sample size too, we can see the (MSE) values increase 

in the Ridge method than in the Lasso method, as in Figure 2. 

 
Figure 2. Comparisons between (Lasso-Ridge) via MSE 

Table 2 shows the results of the simulation experiment when the number of variables (p = 60) with sample size 

(n = 40, 120, 200) and correlation coefficient (0.2, 0.5, 0.8) for (500) repetition. The Lasso method still has most 

minor (MSE) than the Ridge method. The optimal Penalty parameter (λ) is also chosen from Cross-Validation 

through minimizing (MSE) of prediction. Mean squared error (MSE) remains relatively constant and increases 

fast. In the Ridge Method penalty parameter (λ) increases when the sample size is less than several variables, a 

ridge method gives greater efficiency when the sample size is more significant than variables (p<n). The 

elasticity of ridge coefficients decreases, but variance increases bias. Also (MSE) first remains relatively 

constant and then increases. 

Table 2. (RE, Lasso) with (MSE) when (p=60) and best Penalty parameter 𝜆  
Sample 

Size 

Correlation 

Coefficient 

MSE  

Best Penalty parameter 

RR Lasso 

40 

0.2 
42.08362 

𝝀 = 𝟏𝟎𝟎. 𝟏𝟐𝟐𝟒 

0.142217 

𝝀 = 𝟎. 𝟑𝟏𝟔𝟎𝟎𝟖 

0.5 
33.96404 

𝝀 = 𝟏𝟑𝟖. 𝟐𝟒𝟐𝟏 

0.316008 

𝝀 = 𝟎. 𝟏𝟖𝟓𝟐𝟐 

0.8 
19.15464          

𝝀 = 𝟏𝟕𝟓. 𝟒𝟎𝟔𝟎 

0.324045 

𝝀 = 𝟎. 𝟐𝟕𝟗𝟓𝟗 

120 

0.2 
0.8025667 

𝝀 = 𝟎. 𝟗𝟖𝟖𝟓𝟖 

0.338470 

𝝀 = 𝟎. 𝟎𝟐𝟓𝟔𝟓 

0.5 
1.290703 

𝝀 = 𝟏. 𝟒𝟔𝟐𝟐𝟓𝟒 

0.4653562 

𝝀 = 𝟎. 𝟎𝟐𝟖𝟎𝟑𝟐 
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Sample 

Size 

Correlation 

Coefficient 

MSE  

Best Penalty parameter 

RR Lasso 

0.8 
1.576712         

𝝀 = 𝟏. 𝟖𝟏𝟑𝟑𝟏𝟐 

0.6714721 

𝝀 = 𝟎. 𝟔𝟏𝟕𝟎𝟏𝟖 

200 

0.2 
1.000841 

𝝀 = 𝟎. 𝟗𝟓𝟐𝟏𝟖 

0.7238574 

𝝀 = 𝟏. 𝟒𝟒𝟏𝟔𝟐𝟖 

0.5 
1.277283 

𝝀 = 𝟏. 𝟑𝟑𝟖𝟑𝟒𝟔 

0.6224570 

𝝀 = 𝟎. 𝟎𝟒𝟔𝟐𝟑𝟒 

0.8 
2.104713          

𝝀 = 𝟐. 𝟎𝟒𝟔𝟕𝟓 

0.7074679 

𝝀 = 𝟎. 𝟏𝟖𝟒𝟏𝟒𝟑 

Figure 3 shows the fast increase for (MSE) for both (Ridge-Lasso), where the top axis indicates the number of 

model variables—the number of variables p=60, sample size n=200 with high correlation. We can see in Figure 

4 that values of (MSE) in Ridge are increased more than in the Lasso method. 

 

 

Figure 3. The fast increase for (MSE) for both (Ridge-Lasso) where the top axis indicates the number of model 

variables. Several variables p=60, sample size n=200 with high correlation. 

 

 

Figure 4. Comparisons between (Lasso-Ridge) via MSE 
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5.  Conclusions 

When (p=30, 60) Lasso method has more minor (MSE) than the Ridge method. The Lasso method proved its 

efficiency by obtaining the least MSE. Optimal Penalty parameter (λ) chosen from Cross-Validation through 

minimizing (MSE) of prediction. We see a rapid increase for (MSE) for both (Ridge-Lasso) where the Top axis 

indicates the number of model variables, and when the correlation between variables increases and the sample 

size too, we can see the (MSE) values increase in the Ridge method, then the Lasso method. A ridge method 

gives greater efficiency when the sample size is more significant than variables (p<n), but the Ridge method 

cannot shrink coefficients to precisely zero. So the elasticity of ridge coefficients decreases, but variance 

increases bias, also (MSE) first remains relatively constant and then increases fast. 
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