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Abstract

Resource managers at parks and other protected areas are increasingly expected to factor climate change explicitly into
their decision making frameworks. However, most protected areas are small relative to the geographic ranges of species
being managed, so forecasts need to consider local adaptation and community dynamics that are correlated with climate
and affect distributions inside protected area boundaries. Additionally, niche theory suggests that species’ physiological
capacities to respond to climate change may be underestimated when forecasts fail to consider the full breadth of climates
occupied by the species rangewide. Here, using correlative species distribution models that contrast estimates of climatic
sensitivity inferred from the two spatial extents, we quantify the response of limber pine (Pinus flexilis) to climate change in
Rocky Mountain National Park (Colorado, USA). Models are trained locally within the park where limber pine is the
community dominant tree species, a distinct structural-compositional vegetation class of interest to managers, and also
rangewide, as suggested by niche theory. Model forecasts through 2100 under two representative concentration pathways
(RCP 4.5 and 8.5 W/m2) show that the distribution of limber pine in the park is expected to move upslope in elevation, but
changes in total and core patch area remain highly uncertain. Most of this uncertainty is biological, as magnitudes of
projected change are considerably more variable between the two spatial extents used in model training than they are
between RCPs, and novel future climates only affect local model predictions associated with RCP 8.5 after 2091. Combined,
these results illustrate the importance of accounting for unknowns in species’ climatic sensitivities when forecasting
distributional scenarios that are used to inform management decisions. We discuss how our results for limber pine may be
interpreted in the context of climate change vulnerability and used to help guide adaptive management.
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Introduction

Protected areas are a primary means to conserving biodiversity,

but species afforded local protection are often distributed

considerably beyond administrative boundaries [1–3]. This

challenge to place-based conservation and management is further

exacerbated by climate and other forms of environmental change

that operate over broad spatial scales [4–6]. In the US, the

Department of the Interior recognized the need for new,

landscape-level approaches to resource management and respond-

ed by establishing a system of Landscape Conservation Cooper-

atives (LCCs) [7]. LCCs are intended to facilitate the co-

management of shared species and other resources across

jurisdictional boundaries, but management decisions are still

ultimately made and enacted by individual management units

belonging to agencies and institutions with sometimes very

different missions [8], [9]. Given these challenges – and new

opportunities afforded by LCCs – managers of protected areas

require a detailed understanding of how their key, defining species

will respond at multiple scales to ongoing and future environ-

mental change. Here, we forecast possible distributional responses

of limber pine (Pinus flexilis) to climate change in Rocky Mountain

National Park (Colorado, USA) using species distribution models

parameterized at management-relevant scales.

Limber pine is a species of white pine (subgenus Strobus) in North

America that influences three major ecosystem processes impor-

tant to managers: (i) post-fire succession [10], (ii) food provisioning

for wildlife [11–13], and (iii) snow accumulation and retention

[14], [15]. Limber pine is considered a species of management

concern [16], [17], primarily due to recent and widespread tree

mortality events caused by native mountain pine beetle [18], [19]

and invasive white pine blister rust [20], [21]. Climate change is

anticipated to interact with and exacerbate these threats in

complex ways [22], [23], and it may further shorten the fire return

interval in ways that either favor (increased disturbance) or

disfavor (unable to reach reproductive age) limber pine, but at a

more proximate and tractable level for forecasting it is also
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expected to exert direct effects on particular dominance and age

classes [24–26].

Focusing on these direct effects, limber pine has the broadest

elevational range of any tree species in Colorado, ranging from

1600 m on the plains to tree-line at 3300 m [27]. The species also

occurs throughout most western states [28]. Such broad

geographical and elevational limits to distribution raise important

and unanswered questions about the spatial extent at which

climatic sensitivity (i.e., a species’ ability to tolerate a change in

climate [29]) should be inferred from limber pine occurrence data

and used to model distributional responses to climate change in

individual parks and other protected areas. On the one hand, if the

traits governing distribution are truly conserved at the species

level, inferring climatic sensitivity from limber pine occurrences in

and near Rocky Mountain National Park will underestimate the

ability of local populations to respond to future change. On the

other, if local adaptation or community dynamics largely

determine limber pine distribution in and near the park, inferring

sensitivity rangewide will overestimate the ability of local

populations to respond to future change. Because we do not

know the precise mechanisms that govern distributional limits in

limber pine, a practical compromise approach for developing

forecasts useful to managers is to parameterize models using a

range of plausible climatic sensitivities that are inferred from

multiple spatial extents [30].

Our analyses bracket local and rangewide spatial extents to

evaluate how the size, position, and shape of limber pine

distribution in Rocky Mountain National Park may change

throughout the 21st century in response to climate change. We

address two questions important to park managers: (i) how long

will areas within the current limber pine distribution in the park

remain climatically suitable, and (ii) when and where will areas

outside this current distribution become more climatically suitable

than present? We evaluate two representative concentration

pathways (RCP 4.5 and 8.5), designed to capture uncertainty in

future greenhouse gas (GHG) emission rates, as expressed by their

equivalent radiative forcings in the year 2100 in watts per square

meter [31], and ask whether future climate uncertainty or spatial

extent has a greater effect on our confidence in distributional

responses of limber pine to climate change. We conclude with a

discussion of how results may be used to inform assessments of

climate change vulnerability [29] and guide possible management

strategies.

Materials and Methods

Species Occurrence Data
Limber pine occurrences were obtained from two data sources

that differ in spatial extent: (i) rangewide from the Whitebark and

Limber Pine Information System (WLIS) [32], and (ii) locally

within Rocky Mountain National Park from the National Park

Service (NPS) Vegetation Inventory Program (VIP) [33]. WLIS is

a database that compiles from the scientific literature all limber

pine observations throughout the species’ geographic range. While

WLIS is not a single comprehensive survey across the entire

geographic distribution of limber pine, the occurrence data

compiled by WLIS are broadly distributed and include marginal

areas of the species’ range with respect to latitude, longitude, and

elevation. Approximately 93% of the limber pine range occurs in

the US [28] – the maximum geographic extent of our climate data

(described below) – and a total of 260 georeferenced WLIS limber

pine point localities from the US were considered in the rangewide

analysis. Although 14 localities from Canada were excluded, these

observations are within 24 to 248 km (mean 68 km) of the

northernmost localities in the US (US localities span approxi-

mately 1500 km); Canadian localities are also encompassed both

longitudinally and elevationally by the US localities. Hence,

climates of Canadian localities are thought to be reasonably

approximated by the US localities. After removing duplicate point

observations at the resolution of the climate data (30 arc-seconds

or ,800 m; see below) – to reduce the effects of geographic biases

in sampling – a total of 237 spatially unique point localities were

used to train the rangewide limber pine models.

VIP data were collected within 1731 km2, including Rocky

Mountain National Park plus a 1.6 km buffer to the north, west

and south, and a 6.4 km buffer to the east, which included an

extensive urban interface. In total, 632 vegetation plots were

sampled in 2002, where plot size in habitats containing limber

pine was 400 m2. Limber pine was dominant in two woodland

National Vegetation Classification (NVC) types: Limber Pine/

Kinnikinnick Woodland (CEGL000802) and Limber Pine/Com-

mon Juniper Woodland (CEGL000807). In the plots, limber pine

also commonly co-occurred with Subalpine Fir-Engelmann

Spruce (CEGL000986) and Subalpine Fir-Krummholz Shrubland

(CEGL000985), but when mapped as a dominant class using aerial

imagery it was limited to CEGL000802 and CEGL000807, which

encompassed 309 contiguous polygons for a total of 26.81 km2

(mean: 0.087 km2; 95% CI: 0.004–0.309 km2; estimated accuracy

82.4–96.6%). From these polygons we computed the percentage

area in each ,8006800 m climate grid cell (388 grid cells

encompassing limber pine; 2646 grid cells encompassing the

extent of the park vegetation map) and used these percentages to

assign weights to point localities used to train the local limber pine

models. Assigning weights in this fashion assumes that grid cells

with a higher percentage of limber pine are climatically more

suitable or favorable than grid cells with lower percentages, due to

fine-scale topographic heterogeneity and the distribution of limber

pine suitable land facets that influence microclimates.

Climate Data
Contemporary climate data were obtained from the parameter

regression on independent slopes model, PRISM [34]. We selected

PRISM 1981–2010 normals (30 arc-seconds, ,800 m spatial

resolution) for analysis; this 30-year period provided an estimate of

contemporary climate (i.e., smoothing over interannual variability

in weather) that was also temporally concomitant with the

vegetation inventory. We obtained data for mean minimum

monthly temperature, mean maximum monthly temperature, and

total monthly precipitation.

Future climate projections were obtained from the NASA Earth

Exchange (NEX) Downscaled Climate Projections (DCP) for the

conterminous US (NEX-DCP30) [35]. The NEX-DCP30 dataset

includes more than 100 climate simulations conducted as part of

the Coupled Model Intercomparison Project Phase 5 (CMIP5),

downscaled to 30 arc-seconds using the Bias-Correction Spatial

Disaggregation (BCSD) approach [36–38]. Monthly PRISM data

from 1950 through 2005 were used to produce the NEX-DCP30

dataset, as a training reference in BCSD. From this dataset, we

selected for analysis a yearly sequence of 30-year normals (2006–

2035, 2007–2036 … 2071–2100) designed to encompass both

near- and long-term management considerations. We also selected

two representative concentration pathways (RCP 4.5 and 8.5)

designed to reasonably bracket the lower and upper extremes of

modeled changes in temperature [31]. Individual model simula-

tions from a total of 31 general circulation models (GCMs) were

downscaled under both RCP 4.5 and 8.5: ACCESS1.0, BCC-

CSM1.1, BCC-CSM1.1(m), BNU-ESM, CanESM2, CCSM4,

CESM1(BGC), CESM1(CAM5), CMCC(CM), CNRM-CM5,

Forecasting Limber Pine Distribution
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CSIRO-Mk3.6.0, FGOALS-g2, FIO-ESM, GFDL-CM3, GFDL-

ESM2G, GFDL-ESM2M, GISS-E2-R, HadGEM2-AO, Had-

GEM2-CC, HadGEM2-ES, INM-CM4, ISPL-CM5A-LR, ISPL-

CM5A-MR, ISPL-CM5B-LR, MIROC-ESM, MIROC-ESM-

CHEM, MIROC5, MPI-ESM-LR, MPI-ESM-MR, MRI-

CGCM3, NorESM1-M. From these, we used the ensemble

averages for mean minimum monthly temperature, mean

maximum monthly temperature, and total monthly precipitation

to provide overall consensus estimates of future climate.

The gridded contemporary and future monthly climate

variables (30-year normals) were used to calculate a series of

more biologically meaningful variables, termed bioclimatic vari-

ables. A total of 19 bioclimatic variables were considered in

developing the limber pine distribution models [39] (Table 1).

Future climate data used in projecting the limber pine models

were first calculated as delta surfaces from the NEX-DCP30

1981–2010 baseline; we then added these deltas to the PRISM

data used in model training so as to ensure that predicted changes

in limber pine distribution were not due to any pixel-level artifacts

between the training and projection climate data.

Species Distribution Models
Distribution models of limber pine were developed using

MaxEnt [40], version 3.3.3k, although analyses could utilize any

of the common presence-only or presence-absence modeling

methods [41], as well as more complex dynamic range simulation

methods that rely on niche theory [42], [43]. Models were

developed at two spatial extents: rangewide (conterminous US)

and local (Rocky Mountain National Park). Importantly, this

comparison holds resolution constant (,800 m) while varying the

size of the geographic domain. Seo et al. [44] show that – holding

the spatial extent constant – this grid cell size generally results in

higher measures of model performance, compared to models

developed at coarser spatial resolutions.

The geographic domain associated with the rangewide model

was delineated by all Commission for Environmental Cooperation

Level III ecoregions [45] containing the limber pine range [28].

The geographic domain associated with the local model was

delineated by the geographic extent of the VIP map. Pseudo-

absence data (i.e., background points) were thus constrained to

each of these two spatial extents, and we generally accepted default

MaxEnt settings as tested and recommended by Phillips & Dudı́k

[46], but we did not render occurrence data spatially unique

because: (i) our rangewide point occurrence training data had

already been rendered spatially unique at the resolution of the

climate data, and (ii) we used the percentage of limber pine area in

each ,8006800 m climate pixel to weight point occurrence

training data, thus allowing climate pixels with higher cover

percentages to be more influential in training the model, under the

premise that they also have more suitable microclimates driven by

fine-scale topography.

The 19 bioclimatic variables used to parameterize the range-

wide and local models are, to varying degrees, correlated. This

knowledge, coupled with a desire to reduce unnecessary variable

interactions to simplify models for purposes of projecting to future

climates, prompted us to test among a series of 6 competing

models with different variables: (i) all 19 bioclimatic variables (Bio

1–19), (ii) annual (Bio 1–4, 7, 12, 15), (iii) monthly (Bio 2–7, 13–

15), (iv) quarterly (Bio 2–4, 7–11, 15–19), (v) temperature (Bio 1–

11), and (vi) precipitation (Bio 12–19). At the local extent, we

produced MaxEnt models for each combination of variables and

then used Environmental Niche Modeling (ENM) Tools [47],

[48], version 1.3, to calculate Akaike Information Criterion, with

correction for finite sample size (AICc), and DAICc, where models

yielding DAICc#2 were considered equally top performing [49].

Bioclimatic variables associated with the top performing local

model were used to parameterize the rangewide model, thus

controlling for this factor in the comparisons.

Following model training and comparison, we used MaxEnt to

develop logistic probability projections for the top performing

models. All projections were restricted in spatial extent to the VIP

map. Hence, although models were trained at two spatial extents,

and the rangewide model was developed using occurrence data

collected throughout the US, both local and rangewide map

predictions were evaluated for areas inside and proximate to the

park (i.e., the spatial scale of influence for park managers).

Temporally, projections were developed for the training period

(1981–2010) and the full yearly sequence of future 30-year normals

(2006–2035, 2007–2036 … 2071–2100), considered under both

RCP 4.5 and 8.5. We evaluated the complete time series in order

to expose any rapid, non-linear changes in the distributional

metrics (below).

Statistical Analysis
Our analyses of the size, position, and shape of limber pine

distribution over time necessarily required us to render the logistic

projections binary. We achieved this using the MaxEnt-provided

logistic threshold equating the entropy of thresholded and original

distributions, calculated separately for the rangewide (0.159) and

local (0.174) models. To further test whether the dominant limber

pine class in the park was randomly vs. non-randomly predicted by

the rangewide model, we queried the rangewide predictions

against all and dominant-only VIP grid cells and compared the

mean and confidence interval (CI) of logistic probabilities;

evidence of a non-random distribution of dominant logistic

probabilities was assessed based on differences between the means

Table 1. Bioclimatic variables considered in the distribution
models of limber pine.

Code Name

Bio 1 Annual mean temperature

Bio 2 Mean diurnal range (mean of monthly (max temp – min temp))

Bio 3 Isothermality (Bio 2/Bio 7)

Bio 4 Temperature seasonality (standard deviation)

Bio 5 Maximum temperature of the warmest month

Bio 6 Minimum temperature of the coldest month

Bio 7 Temperature annual range (Bio 5–Bio 6)

Bio 8 Mean temperature of the wettest quarter

Bio 9 Mean temperature of the driest quarter

Bio 10 Mean temperature of the warmest quarter

Bio 11 Mean temperature of the coldest quarter

Bio 12 Annual precipitation

Bio 13 Precipitation of the wettest month

Bio 14 Precipitation of the driest month

Bio 15 Precipitation seasonality (coefficient of variation)

Bio 16 Precipitation of the wettest quarter

Bio 17 Precipitation of the driest quarter

Bio 18 Precipitation of the warmest quarter

Bio 19 Precipitation of the coldest quarter

doi:10.1371/journal.pone.0083163.t001
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and the extent to which CI’s were non-overlapping. The two

statistical distributions were considerably different, suggesting that

dominant limber pine was non-randomly predicted by the

rangewide model, so we calculated a new rangewide threshold

(0.434) that yielded the same sensitivity (true positive rate) as the

dominant model trained at the local extent.

For each model6threshold combination (local 0.174, rangewide

0.159, rangewide 0.434), we calculated the area (size), mean

elevation (position), and core patch index (shape) of each

projection; these metrics in different ways affect the ability of

limber pine to influence key ecosystem processes important to

managers. Elevations were obtained from the National Elevation

Dataset [50]; digital elevation model (DEM) data were obtained

originally at 30 m resolution and bilinearly resampled to match

the resolution of model predictions. The core patch index is a

measure of the degree to which the observed core patch area

approaches an idealized patch area, where core area is maximized

while controlling for total area. It is calculated as Ac/(!A22)2,

where Ac is the total area of core patch, estimated here with an

edge width of 1 pixel or grid cell, and A is the total area of the

predicted limber pine distribution (i.e., including edge pixels).

We then quantified over time the extent to which limber pine

distribution moved or shifted outside the current observed range of

the species, as documented and recorded by the vegetation

inventory. This was achieved by separately intersecting and taking

the union of the binary projections with the grid cells containing

dominant limber pine polygons. For each projection, we

calculated: (i) area shift as the total area intersect divided by the

total area union, (ii) elevation shift as the total elevational range

intersect divided by the total elevational range union, and (iii) core

patch area shift as the core patch area intersect divided by the core

patch area union; all ratios were multiplied by 100 and expressed

as percentages.

Finally, we used an additional feature offered by MaxEnt to

understand when and where model projections were being

extrapolated beyond the training space and into novel climates.

The multivariate environmental similarity surface (MESS) mea-

sures, for each pixel, the degree to which training and projection

environments are the same, where negative values identify

dissimilar pixel pairs [51], [52]. Negative MESS values are

important in management considerations because they identify

areas of extreme uncertainty. For each training spatial extent

(rangewide and local) and each RCP (4.5 and 8.5), we intersected

each binary projection with its associated MESS and calculated

the MESS mean across binary grid cells to estimate if, or when, in

the future model projections turned negative.

Results

At the local extent, the full model considering all 19 bioclimatic

variables yielded the lowest estimates for AICc (Table 2). Models

based on the quarterly variables had the second lowest estimates of

AICc, and those based on monthlies had the third lowest, but

neither of these yielded acceptably low values for DAICc (Table 2).

Hence, all rangewide and local analyses were based on full models.

Current predicted probabilities of limber pine occurrence in

and near Rocky Mountain National Park differed dramatically

between the models trained at the rangewide and local extents,

especially throughout areas where limber pine is not the dominant

vegetation class (Figure 1). In these areas, the rangewide model

predicted occurrence at relatively high probability (0.1–0.5),

whereas the local model predicted occurrence at extremely low

probability (,0.05). Within areas where limber pine is the

dominant vegetation class, both the rangewide and local models

predicted occurrence at high probability (0.5–1.0, Figure 1). This

correspondence suggests that, even at a rangewide extent,

dominant limber pine is non-randomly distributed in climatic

niche space. At the local extent of projection, this pattern is indeed

confirmed by the non-random association of logistic probabilities

for dominant-only grid cells (mean: 0.540, 95% CI: 0.258–0.716)

vs. all grid cells (mean: 0.378, 95% CI: 0.122–0.678). Despite

overlapping CIs, the differences are quite pronounced when

compared to the logistic probabilities for the local model of

dominant limber pine (mean: 0.384, 95% CI: 0.021–0.763), which

has a relatively low mean probability due to some marginal grid

cells receiving low values (Figure 1B).

Projecting the distribution of limber pine in the park through

2100, uncertainty surrounding the appropriate spatial extent for

training the models is greater than the uncertainty in future

climate conditions associated with the use of different RCPs

(Figure 2). However, even in the face of these major sources of

uncertainty, one pattern is consistent. Under both spatial extents

and both RCPs, the distribution of limber pine in the park is

projected to increase in elevation (Figure 2C). Projections for

changes in area (Figure 2A) and patch fragmentation (Figure 2E),

however, are highly variable and result in trends that occasionally

even differ in direction.

Relating these projected changes to the current distribution of

dominant limber pine in the park, the spatial extent of model

training has a substantial effect on the question of whether, and

when, to manage for stasis versus change (Figure 2). According to

the model trained at the local extent, the percentage of total area

(Figure 2B) and elevational range (Figure 2D) decreases to

approximately 60% of the current observed distribution by

2035, while core patch area (Figure 2F) decreases to approxi-

mately 20%. By 2100, the RCPs have diverged, and these same

measures decrease to approximately 50% (elevational range, RCP

4.5) to 0% (total area, RCP 8.5; core patch area, both RCPs).

Meanwhile, according to the rangewide model, the measures

decrease to a low of 90% of the current observed distribution by

2035, and by 2100 range anywhere from 100% (total and core

patch area, RCP 4.5) to 0% (core patch area, RCP 8.5). If we

restrict the rangewide model to dominant limber pine predictions,

then the measures decrease approximately 85–0% by 2100. This

restriction is reasonable since dominant limber pine in the

rangewide model is predicted non-randomly throughout the park

(Figure 1A). Thus, under a scenario that considers this threshold-

ing of the rangewide model, plus the local model, the distribution

of limber pine in the park is expected to move upslope and outside

of its current elevational range during the 21st century. Although

both the magnitude and rate of change are uncertain (Figure 2D),

a net effect is that dominant limber pine will also shift into new

areas (Figure 2B, F).

Finally, novel future climates did not constitute a major source

of uncertainty in the projections. Focusing on areas within the park

where limber pine was predicted to occur, according to the

different thresholds, mean MESS values from 2035 through 2100

were greater than zero under both spatial extents and RCPs,

except for models trained at the local extent and projected to RCP

8.5. Under this model and scenario, mean MESS values turned

negative in the year 2091, indicating that projections from this

year forward should be interpreted with caution (Figure 2).

Discussion

A distinct advantage of the species distribution models

developed here is that they consider uncertainty in the spatial

extent at which climatic sensitivities should be inferred and used to

Forecasting Limber Pine Distribution
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project local responses to climate change in individual parks and

other protected areas. When applied to limber pine in Rocky

Mountain National Park, results show: (i) the distribution is

consistently predicted across models to move upslope in elevation

and into new areas, and (ii) magnitudes and rates of change are

more uncertain due to questions surrounding the appropriate

spatial extent for inferring climatic sensitivity than they are to

either future climate scenario (RCP 4.5 or 8.5) or the existence of

novel future climates (MESS values). Combined, these results

suggest that reducing uncertainty in the correlative model of

limber pine distribution is presently more dependent on improving

our integration of the species’ geographical ecology than on

refining our predictions of future environments.

Species often vary by age in their sensitivity to climate [53],

[54]. In our analysis of limber pine in Rocky Mountain National

Park, we had reason to believe that age classes were mixed within

the dominant class, and most importantly, included seedlings and

young trees that were recruited during the period of model

training (1981–2010). Although older (200–300 year old) limber

pine can succumb to drought stress [24], seedlings are an

Table 2. Akaike Information Criterion, with finite sample size correction (AICc), for distribution models of limber pine trained at the
local extent using six different combinations of bioclimatic variables.

Bioclimatic variables Log Likelihood Parameters Sample Size AICc score DAICc

All 225503.98 225 4297 51482.94 0.00

Annual 226874.08 138 4297 54033.39 2550.45

Month 226427.78 157 4297 53181.55 1698.61

Quarter 225842.27 196 4297 52095.37 612.43

Temperature 226725.58 164 4297 53792.27 2309.33

Precipitation 226992.15 161 4297 54318.91 2835.97

doi:10.1371/journal.pone.0083163.t002

Figure 1. Predicted probability of current (1981–2010) limber pine occurrence in Rocky Mountain National Park. MaxEnt models
trained at two spatial extents: A) rangewide, and B) at the local extent considering only those areas where limber pine is the dominant vegetation
class.
doi:10.1371/journal.pone.0083163.g001
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Figure 2. Future projections (2035–2100) of the distribution of limber pine in Rocky Mountain National Park. MaxEnt models trained at
two spatial extents (rangewide and local) and projected under two future climate scenarios reflecting different GHG concentration pathways (RCP 4.5
and 8.5). Distributional summaries calculated from probability of occurrence maps rendered binary by the model thresholds reported in parentheses:
A) total area; B) percentage area, within current observed area where limber pine is dominant; C) mean elevation; D) percentage elevational range,
within current observed elevational range where limber pine is dominant; E) core patch index, and F) percentage core area, within current observed
core area where limber pine is dominant.
doi:10.1371/journal.pone.0083163.g002

Forecasting Limber Pine Distribution

PLOS ONE | www.plosone.org 6 December 2013 | Volume 8 | Issue 12 | e83163



especially climate-sensitive life-stage [25]. In Rocky Mountain

National Park, limber pine seedlings were found in 57% of plots

surveyed and throughout all five major conifer vegetation types

[55]. Hence, recruitment in the park appears to have been

ongoing during the 1981 to 2010 period in which climatic

sensitivity was inferred, suggesting that – despite the long-lived

nature of limber pine at higher elevations [56] – it is reasonable to

train a distribution model in contemporary time. An alternative

approach would have been to reconstruct past climatic conditions

of trees or stands based on their age [24], [57], but this was not

possible due to a lack of available dendrochronological data at the

necessary spatial extents. Importantly, extension of these analyses

to other species should similarly consider both potential domi-

nance and age effects on the forecasts, ensuring that any bias in

either factor is accounted for in model interpretation. This is

especially important given that disturbance history may not only

impact community dominance, but also age class distributions,

thus potentially causing age class disequilibrium with respect to

climate, which in turn biases climate sensitivities inferred from

occurrence data.

Our focus on areas where limber pine is the community

dominant tree species was motivated by the fact that this

structural-compositional vegetation class is relevant to park

management because of the ecosystem processes it mediates

[10–15]. The local model was trained on the dominant class while

the rangewide model was indiscriminate with respect to domi-

nance. This difference in dominance between the two models was

intentional in that it allowed us to bracket the range of climatic

sensitivities inferred from the observed species-climate associa-

tions. The low to moderate probabilities of occurrence predicted

by the rangewide model throughout most areas of the park are

plausible because limber pine is outcompeted by more shade-

tolerant and rapidly maturing conifers [58–60], but exists rather

pervasively as a minor component of other structural-composi-

tional vegetation classes [33], [55]. Furthermore, the rangewide

model predicted dominant limber pine almost exclusively at high

probabilities, suggesting that predictions associated with this

dominance class scale geographically and thus offer insights into

future distributional responses that are independent of the model

trained at the local extent. For managers seeking to integrate

forecasts of species’ distributional responses to environmental

change into management scenarios, the benefits of this are two-

fold: (i) when inferring environmental sensitivities from species’

occurrences, it reasonably brackets plausible estimates of this

important source of biological uncertainty, and (ii) when needing

to look beyond protected area boundaries (e.g., to broader LCC-

partnerships), it provides an opportunity to hierarchically evaluate

distributional responses of particular management classes or

categories at multiple spatial extents.

Despite opportunities to reduce uncertainty in this fashion in the

present analysis, it is noteworthy that elevation emerged as the

only distributional metric where predictions were consistent

enough across spatial extents and climate scenarios to draw

conclusions useful to park managers. This finding underscores the

importance of understanding the scales at which species or taxa

are in states of distributional equilibrium with respect to the

environment, and how such uncertainty can have a dramatic effect

on the utility of forecasts made from correlative models. In the case

of limber pine, more certain predictions of total and core areas

were desirable because these distributional metrics are believed to

relate strongly to the potential for establishment in new areas [59],

including especially those predicted at higher elevations beyond

the current upper elevational limit of the species in the park. In an

assessment of climate change vulnerability, such insights are

valuable for quantifying the adaptive capacity of limber pine to

colonize new environments and areas. However, important

insights into adaptive capacity may also be gleaned from local

field studies confirming the climatic changes, soils, and land facets

needed for upslope establishment in areas that are currently above

tree-line [25], [26], [61]. These studies collectively suggest that

limber pine seedling establishment is not precluded by alpine soils

and microenvironments, but also that moisture stress will impose

major limits on upslope recruitment. Under the most extreme

climate scenario considered in the present analysis (RCP 8.5),

temperatures are projected to increase in the park, but so are

annual and most seasonal measures of precipitation (except for Bio

14 (stable) and Bio 18 (decreasing); see also [62]). How exactly

these translate to soil moisture content and seedling moisture stress

– especially given interactions with nurse objects that further

influence seedling microenvironments [63] – merits further study,

but mechanistically, the increasing precipitation seen in the

ensemble mean of the climate forecasts suggests the possibility

that soil moisture conditions will remain – or perhaps become

more – favorable. Soils are not presumed to be limiting because

soil classes associated with limber pine inside the park also exist at

higher elevations in areas that are presently alpine [64]. Of further

note are transplantations made at Niwot Ridge, Colorado –

immediately south of Rocky Mountain National Park – that show

how limber pine seedlings can maintain key physiological

functions at elevations above 3500 m [25]. This elevation is

higher than all forecasted mean elevations for the year 2100,

except for the most extreme forecasts captured by the local model

projected to RCP 8.5, which, due to novel climates, are uncertain.

Hence, projected future upslope movements of limber pine above

tree-line are plausible given what is known about the high-

elevation biology of the species.

Future increase in the mean elevation of dominant limber pine

in the park is further mediated by a concomitant increase in the

lower elevational limit, as evident by a decrease in distributional

area. Importantly, this does not equate to a loss of limber pine per

se, but rather a loss of dominance status from lower elevations.

Furthermore, the loss of dominant limber pine at lower elevations

in the park is not explained by sampling constraints preventing

immigration because even the rangewide model under RCP 8.5

predicted loss. Mechanistically, such loss is facilitated by succession

and limber pine gradually becoming out-competed by more

shade-tolerant and rapidly maturing conifers (Douglas-fir, Pseu-

dotsuga menziesii; Engelmann spruce, Picea engelmannii; lodgepole

pine, Pinus contorta; subalpine fir, Abies lasiocarpa). According to the

vegetation inventory [33], some of this succession at low and high

elevations may already be underway. At higher elevations, limber

pine occurs in multiple strata of three of the alpine vegetation

classes (herbaceous upland alpine .9600 ft, herbaceous upland

alpine fellfield, shrub upland alpine). At lower elevations, but

within the dominant limber pine vegetation class, all plots and

strata containing limber pine also contain one or more of the

shade-tolerant competitors (Douglas-fir, Engelmann spruce, lodge-

pole pine, subalpine fir), and in a subset of these the percentage

cover of the competitor species combined represents 50–100% of

the percentage cover reported for limber pine. Field photos from

limber pine plots that span the compositional gradient further

show what successional dynamics might look like on the ground

(Figure 3). Combined, these observations from the vegetation

inventory suggest the possibility that limber pine is already in the

process of moving upslope, and that projected distributional

increases in elevation from 2035 to 2100 are an acceleration of

ongoing successional dynamics.
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If the projected upslope movements occur, there may be some

future need to manage limber pine for change, yet, from a

management standpoint, it is useful to place both the magnitude

and direction of elevational change in a longer term paleoclimatic

perspective. In the early Holocene, limber pine was more common

throughout lower elevations (,2500 m) than it is today [65], and

many of the now isolated populations are believed to be remnants

left behind by recent range retraction from lower elevations [66].

In Colorado, compared to present day, upper tree-line was

generally higher in elevation from the early to middle-late

Holocene, and generally at comparable or lower elevation over

most of the last 3500 years [67]. More recently, since the end of

the Little Ice Age (c. 1890), upper tree-lines have been re-

advancing in elevation [61], [67], [68]. Combined, these past

changes in elevation illustrate the degree to which tree-line has

been in a state of flux, and suggest perhaps that some of the

upslope movement predicted in the park throughout the 21st

century will constitute a re-colonization of alpine habitats by

subalpine species. However, it is important to note that most of the

paleoclimatic changes in tree-line elevation [67] are smaller in

magnitude than those forecasted here, especially for the more

extreme model projections. Hence, undoubtedly some of the late

21st century projections reflect elevational changes that – should

they occur – exceed a historical range of variability.

Given the elevational changes forecasted for limber pine in

Rocky Mountain National Park, what might be some reasonable

and feasible next steps to consider in an adaptive management

context? One relates to monitoring and a test of the model

prediction that limber pine is moving upslope. Even looking to the

year 2035, the magnitudes of elevational change are sufficiently

large that one would expect some limber pine recruitment to

already be occurring in the lower alpine. The NPS Rocky

Mountain Inventory and Monitoring Network has implemented

an alpine vegetation monitoring protocol [69]. By c. 2090 under

RCP 8.5, climates are projected to favor limber pine establishment

in two of the four alpine monitoring sites [70], and forecasts

presented here could be used to identify and prioritize additional

sites to monitor for possible upslope movements. Another

opportunity relates to co-opting management strategies that are

more practically developed and implemented in response to some

other issue of management concern. In the face of climate change,

limber pine management may require efforts to ensure enough

individuals establish in diverse land facets or microclimates in

order to increase the odds of some persisting as refugia and future

seed sources. A very similar management strategy has been

advanced in response to white pine blister rust, where the

enrichment planting of seedlings from rust resistant parents is

considered a potential approach to reducing vulnerability [71].

Hence, implementation of this management strategy to reduce

limber pine vulnerability to the rust pathogen would have the

added benefit of reducing vulnerability to climate change. Two

possible modifications would need to be considered: (i) ensuring a

planting coverage of heterogeneous environments that may serve

as future climate refugia, and (ii) adoption of seed sources that – in

addition to exhibiting rust resistance – have known physiological

responses to climate change [25]. This co-opting of management

strategies is also noteworthy in that it allows climate change and

rust impacts to be jointly managed without having to explicitly

forecast their complex yet weakly understood interactions.

Ultimately, the value judgments that direct management actions

at Rocky Mountain National Park remain to be seen. The

modeling presented here offers significant insights into future

scenario planning efforts and will assist in dialog necessary to

Figure 3. Examples of field plots containing limber pine in Rocky Mountain National Park, according to photos collected as part of
the vegetation inventory [33]. A) Plot number 318, representative of the subalpine (dominant) limber pine map class. B) Plot number 303,
representative of the subalpine (dominant) limber pine map class. C) Plot number 506, representative of the herbaceous upland alpine fellfield map
class. D) Plot number 311, representative of the lodgepole pine – low elevation ,9500 ft map class.
doi:10.1371/journal.pone.0083163.g003
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reconcile disparate social values related to active management and

intervention in a national park that is 95% designated wilderness.

Finally, stepping back from a focus on limber pine and Rocky

Mountain National Park, the conceptual and analytical framework

presented here affords new opportunities to evaluate the potential

impacts (i.e., exposure6sensitivity [29]) of future climate change

on species’ distributions at management-relevant scales. Although

the use of correlative distribution models to quantify such impacts

is not new, an important advancement for management is the

ability to explicitly quantify uncertainty introduced by not

knowing the spatial extent at which species’ climatic sensitivities

should be inferred and used to project responses to climate change.

In this context, the framework for better linking correlative species

distribution models to management needs benefits in full from all

of the various modeling methods available [41–43]. Applications

in other species and geographies have the potential to encourage

the use of correlative distribution models in developing 21st

century management scenarios for protected areas, LCCs, and

other landscape-scale partnerships.
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