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H I G H L I G H T S

• Groundwater storage changes esti-
mated using ensemble remote sensing
water balance.

• Remote sensing-based method can pro-
vide reliable estimates of changes in
storage.

• Long-term changes in groundwater
storage during droughts were well cap-
tured.

• Uncertainty is highest in the water bal-
ance component evapotranspiration.

• Remote sensing data allow groundwa-
ter storage estimates at sub-annual
timescales.
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Accurate and timely estimates of groundwater storage changes are critical to the sustainable management of
aquifers worldwide, but are hindered by the lack of in-situ groundwater measurements in most regions. Hydro-
logic remote sensing measurements provide a potential pathway to quantify groundwater storage changes by
closing the water balance, but the degree to which remote sensing data can accurately estimate groundwater
storage changes is unclear. In this study, we quantified groundwater storage changes in California's Central Valley
at two spatial scales for the period 2002 through 2020 using remote sensing data and an ensemblewater balance
method. To evaluate performance,we compared estimates of groundwater storage changes to three independent
estimates: GRACE satellite data, groundwater wells and a groundwater flowmodel. Results suggest evapotrans-
piration has the highest uncertainty among water balance components, while precipitation has the lowest. We
found that remote sensing-based groundwater storage estimates correlated well with independent estimates;
annual trends during droughts fall within 15% of trends calculated using wells and groundwater models within
the Central Valley. Remote sensing-based estimates also reliably estimated the long-term trend, seasonality,
and rate of groundwater depletion during major drought events. Additionally, our study suggests that the pro-
posed method estimate changes in groundwater at sub-annual latencies, which is not currently possible using
other methods. The findings have implications for improving the understanding of aquifer dynamics and can in-
form regional water managers about the status of groundwater systems during droughts.
© 2021 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license (http://

creativecommons.org/licenses/by-nc-nd/4.0/).
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1. Introduction

Groundwater resources are critical forworldwide food andwater se-
curity. Globally, groundwater constitutes 35% of all water use, 33% of ir-
rigation water (Siebert et al., 2010), and supports the drinking water
needs of at least 2 billion people (Alley et al., 2002). Presently, ground-
water resources face unprecedented stress due to climate change and
population growth (Wada et al., 2010; Famiglietti, 2014; Bierkens and
Wada, 2019). Arid and semiarid areas rely on groundwater to meet de-
mand during droughts, but increasingly severe drought events due to
climate change (e.g. Diffenbaugh et al., 2015; Cook et al., 2015; Swain
et al., 2018) coupled with anthropogenic groundwater overdraft (e.g.
Wada et al., 2010), jeopardize the sustainability and longevity of
groundwater aquifers. These aquifers currently support thriving popu-
lation centers and economies around the world. As such, there is a
growing and critical need for reliable and timely estimates of changes
in groundwater storage to establish groundwater sustainability and in-
crease resiliency to drought events.

Central to groundwater management is the ability to reliably esti-
mate and monitor the change in stored groundwater (ΔSgw) over time
and at the spatial scale(s) of interest. Accurate estimates of ΔSgw over
a long time record and with frequent temporal sampling provide
critical information on seasonal variability, long term trend, and the
general health of a groundwater system. A number of approaches
have been explored as a means to estimate ΔSgw at various scales. Five
commonly used approaches or sources of data are: (1) satellite,
airborne and ground-based gravimetric measurements, (2) groundwa-
ter monitoring wells, (3) surface deformation data derived from GPS
and interferometric synthetic aperture radar (InSAR), (4) numerical
models, and (5) the water balance method. Although these methods
have been applied in numerous previous studies, obtaining reliable
and timely estimates of ΔSgw is still a major global challenge (Bierkens
and Wada, 2019), especially in regions without monitoring wells.

Measurements of changes in gravity can be used to directly estimate
changes in themass of subsurfacewater. At the continental and regional
scale (>150,000 km2), observations of the change in gravity from the
Gravity Recovery and Climate Experiment (GRACE) satellites, corrected
for mass variations in surface water, soil moisture, and snow, have been
used to determine ΔSgw (e.g. Rodell et al., 2009; Famiglietti et al., 2011;
Scanlon et al., 2012). Though it provides a directmeasure, the limitation
with GRACE is the footprint of the measurement, currently
>150,000 km2. Thus, although GRACE is an excellent tool for regional-
scale estimates of groundwater storage changes, it cannot providemon-
itoring capabilities at scales practical for groundwater management.
Airborne gravimetric surveys (e.g. Pool and Eychaner, 1995) can resolve
site-specific storage at higher resolution, but require corrections for soil
moisture and vegetation water to derive estimates of storage. Measure-
ments by ground-based gravimeters have been used tomonitor ΔSgw at
specific locations between the times of measurement, but cannot
realistically provide the consistent spatial and temporal coverage
needed to support groundwater management.

Water levelmeasurementsmade inwells are a common site-specific
approach to estimate ΔSgw, and can be readily upscaled when well
coverage is extensive throughout a region (e.g. Scanlon et al., 2012;
Alam et al., 2021). With densely sampled measurements of the
changes in the water levels and knowledge of the appropriate storage
coefficients, a high level of accuracy can be presumed. The highest
quality measurements are typically acquired using monitoring wells,
but these are expensive to install and often suffer from inadequate
spatial and temporal sampling and coverage. The accuracy of water
levels measured in public supply, irrigation or domestic wells is prone
to human error and the possible influence of groundwater pumping
(in the well itself or in nearby wells) on ambient groundwater levels
during the measurement. Wells also typically lack information on the
storage coefficient of the underlying aquifer needed to accurately
estimate ΔSgw from water levels.

GPS and Interferometric Synthetic Aperture Radar (InSAR) data can
provide indirect measurements of ΔSgw at the regional and sub-
regional scale (e.g. Borsa et al., 2014; Argus et al., 2017; Smith et al.,
2017). These data can be used to model the link between the observed
surface deformation andΔSgw in the underlying system (e.g. Argus et al.,
2017; Smith et al., 2017). While invaluable as a means of monitoring
changes over a large area, accurate estimates at the spatial scale
required for groundwater management would require significant
investment to determine the link between surface deformation and
ΔSgw for the specific groundwater system of interest.

Groundwater models that solve groundwater flow equations using
finite-difference or finite-element grids can also be used to estimate
ΔSgw at local to sub-regional scales (10 km2–5000 km2) (e.g. Faunt
et al., 2009; Brush et al., 2013). Groundwater models, however, require
accurate subsurface and water level data to parameterize and calibrate,
are computationally-intensive, and typically lag years behind in terms
of incorporating new data to provide ongoing estimates of ΔSgw. For
instance, regional groundwater models in the Central Valley of
California (Brush et al., 2013) run until 2015. These models are very
useful for considering the impact on ΔSgw of changing conditions, such
as climate, land use, and management practices, but are not suitable
for weekly/monthly monitoring. Moreover, developing physically-
based groundwater models in most parts of the world is not a realistic
option due to a lack of data required for model parameterization.

An alternate approach to estimate ΔSgw is through application of a
water balance equation. Such an approach has the advantage of scale
independence, rapid computation, fewer (and less expensive) on-the-
ground data requirements compared to other methods, and an increas-
ing number of data sources available to estimate the required variables
(Sahoo et al., 2011; Lakshmi, 2016; Pan et al., 2012). The change in
groundwater storage (ΔSgw) for an area can be approximated using
the equation:

ΔSgw ¼ P þ Qin –Qout –Qgw net –ΔSsm –ΔSSWE – ET –ΔSR, ð1Þ

where P is precipitation; Qin and Qout out are surface water flow in and
out of the area; Qgw net is net groundwater flow in and out of the area;
ΔSSM is the change in soil moisture, defined as moisture contained
within the soil and the top few meters of the vadose zone; ΔSSWE is
the change in snow-water-equivalent; ET is evapotranspiration; and
ΔSR is the change in surface water storage. Groundwater abstraction is
not included in the Eq. (1) because there is typically no transfer of
pumped groundwater in/out of the study domain.

Accurate data describing each hydrologic component in Eq. (1) are
needed to obtain reliable estimates of ΔSgw. There are typically three
sources of data that can be used to solve the water balance equation:
(1) ground-based measurements which include any measurement
that can be made using instruments deployed from the ground surface
(e.g., rain gauges, stream gauges, flux towers, snow pillows, reservoir
staff gauges); (2) remote sensing measurements which include any
measurements made by satellite-deployed instruments; and (3) land
surface models that solve water and energy balance equations on a
fixed-resolution grid to predict hydrologic variables. Among the three
methods, remote sensing data is uniquely capable of providing spatially
and temporally continuousmeasurement of water balance components
at high resolution and global coverage.

Reliable remotely sensed estimates of ΔSgw could eventually have
applications worldwide for groundwater science and management
where the only available data might be satellite data. Ground-based
measurements can be highly accurate, but are always limited in terms
of the spatial extent of the acquired data. Various methods are used
for upscaling or interpolation of ground-based measurements, but
such methods inevitably introduce a high level of uncertainty into the
derived estimates. Land-surface models are extremely useful for sce-
nario analysis, but do not typically account for anthropogenic interven-
tions like reservoirs and irrigation, and use a highly simplified
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representation of the groundwater system, often as a single layer with
fixed depth (Niu et al., 2011; Barlage et al., 2015); limiting their effec-
tiveness for ongoing monitoring.

The rapid advancement of remotely sensed data as a tool to acquire
information about global hydrologic systems has presented an opportu-
nity, as highlighted by Becker (2006), and Lakshmi (2016), to use satel-
lite data to determine some of the variables required to calculate ΔSgw.
The adoption of remote sensing data, wherever possible, in estimating
ΔSgw using the water balance method is appealing because of global
coverage, free and near real-time data access, and frequent revisit
time (hours to weeks), which couldmake possible continuousmonitor-
ing of ΔSgw at regional and subregional scales practical for groundwater
management and decision making. Moreover, a new generation of
satellites designed to measure unknown hydrologic variables (e.g.
streamflow), and improve the resolution of existing Earth observing
satellites, will potentially increase the value and utility of methods
that rely primarily on remote sensing data. However, one major
challenge inherent to the use of remote sensing data is the uncertainty
arising from multiple sources and the variable accuracy in different
regions (e.g. Tian and Peters-Lidard, 2010; Senay et al., 2020). Despite
widespread data availability, the strengths and weaknesses of remote
sensing data to estimate ΔSgw still remain unclear.

The objective of this studywas to assess the viability of remote sens-
ing data to accurately estimate groundwater storage changes through
the water balance method. To address this, we (1) compared the mag-
nitude, seasonality and uncertainty of multiple data sources
(i.e., remote sensing, ground-based measurements, land surface
models) for each variable in the water balance equation, (2) estimated
ΔSgw using different combinations of input datasets, and (3) assessed
the performance and uncertainty of ΔSgw estimates arising from
various combinations of datasets by validating against independent
estimates. Due to the availability of multiple independent ΔSgw
estimates from various sources and spatial scales, the Central Valley of
California and its watershed were selected as suitable study areas to
evaluate the performance of remote sensing based ΔSgw estimates.
Noting that careful attention should be given to defining boundaries
without significant net groundwater flux when performing the
analysis, results from this study can provide insights about how
remote sensing data can help quantify ΔSgw in semiarid and irrigated
regions with alluvial aquifers. Moreover, there is a critical need for
ongoing and up-to-date estimates of groundwater storage changes.
The completed research shows how remote sensing data can help pro-
duce estimates of ΔSgw on an ongoing and up-to-date basis that cannot
be achieved with other approaches.

2. Study area

The Central Valley (CV; ~55,000 km2), and Central ValleyWatershed
(CVWS; ~150,000 km2) within California were selected as target loca-
tions to test remote sensing data as a means to estimate groundwater
storage changes using the water balance method. The CV is a flat, agri-
cultural subregion within the CVWS. Shown in Fig. 1, both share a com-
mon natural watershed outlet, the confluence of the San Joaquin and
Sacramento Rivers, which drains to San Francisco Bay. The CV (Fig. 1,
green outline), located approximately parallel to the California coast-
line, receives surface water from the Sacramento River Basin, San
Joaquin River Basin, and Tulare Basin, which collectively make up the
CVWS (Fig. 1, red outline). The climate of this region is Mediterranean
in the north and semiarid in the south, with most precipitation occur-
ring in the winter (November through March), out of phase with evap-
orative demand which is high in the summer (July through September;
Cooper et al., 2018). While the CV is within the CVWS, the two regions
have a distinct hydrography. The snow-dominated Sierra Nevada
mountains within the CVWS are the primary source of the water that
eventually travels to the CV through rivers, runoff, and groundwater.
The CV, as one of the most important agricultural regions in the world,

is heavily irrigated by a vast network of reservoirs, canals, and aque-
ducts. The northern portion of the CV is characterized by a shallower
semiconfined aquifer, while the southern portion of the CV contains a
two-layer system with an unconfined aquifer overlying a deeper aqui-
fer, confined by the Corcoran Clay lithologic unit (Faunt et al., 2009).

3. Methods and data

In this study, we applied the water balance method in the Central
Valley (CV) and Central Valley Watershed (CVWS) to test the ability of
remote sensing data to estimate ΔSgw at monthly time steps from
2002 to 2020. Our methodology included three major steps. First, we
compared the magnitude, seasonality and uncertainty of each
hydrologic variable derived from multiple sources (i.e., ground-based
measurements, remotely sensed data, and land surface models). Next,
we estimated ΔSgw using different combinations of hydrologic
variables obtained from multiple sources, and assessed the net change,
trends, and seasonality in ΔSgw arising from different combinations.
Lastly, we evaluated the performance of ΔSgw estimates through
comparison with three independent estimates from wells, a
groundwater model, and GRACE. In the following sections, we
describe the water balance method, data sources, and the methods
used in each of the three major steps listed above.

3.1. Water balance method for groundwater storage changes (ΔSgw)

We applied the hydrologic water balancemethod by solving the fol-
lowing equation for ΔSgw in the CV:

ΔSCVgw ¼ P− ET − Rþ Qs −ΔSR −ΔSsm, ð2Þ

where R is net surface runoff, Qs is net surface water flux, including
imported/exported water and the other variables are as defined in
Eq. (1). We did not include changes in the volume of water stored in
lakes and rivers because they constitute a relatively small part of the
overall mass of water in this region. Net groundwater flow (Qgw net)
into the CV is relatively small (Brush et al., 2013) hence it is assumed
to be negligible.

The above equation was modified to estimate ΔSgw for the CVWS.
Removing the runoff (R) term, because the CVWS is a closed watershed,
and adding the change in Snow-Water-Equivalent (ΔSSWE) term, due to
the large amounts of water stored as snow in the Sierra Nevada, yields
the following:

ΔSCVWS
gw ¼ P− ET −Qs −ΔSR −ΔSsm −ΔSSWE ð3Þ

We evaluated the ΔSgw estimates at two spatial extents (CV and
CVWS) for three main reasons: (1) to better understand the behavior
of ΔSgw at varying spatial scales (CV vs CVWS), (2) to evaluate the
performance of the calculated ΔSgw in regions with and without snow
cover, and (3) the availability of validation datasets for both areas.
Estimates of ΔSgw from a numerical groundwater model (Brush et al.,
2013) and well-based water level measurements (Alam et al., 2021)
were used to evaluate the performance of water balance estimates for
the CV, while GRACE data were used to evaluate performance of water
balance estimates for the CVWS.

3.2. Data

Table 1 shows the data sources used in this study which can be
grouped into the following categories: (1) ground-basedmeasurements
which include those from groundwaterwells, reservoirs, stream gauges,
and interpolated measurements made with rain gauges; (2) remote
sensing measurements; and (3) land surface models (LSMs). The cate-
gories are denoted in the second column of Table 1. Remote sensing
measurements and land surface model outputs describing the terms

A. Ahamed, R. Knight, S. Alam et al. Science of the Total Environment 807 (2022) 150635

3



in Eqs. (2) and (3) were accessed primarily through the Google Earth
Engine cloud computing platform (Gorelick et al., 2017), or other public
repositories (references given in Table 1), and aggregated to monthly
time steps. Detailed descriptions of the source for each variable are pro-
vided in the following sections.

3.2.1. Precipitation (P)
Precipitation data were obtained from products utilizing remote

sensing and ground-basedmeasurementsmadewith rain gauges. Prod-
ucts based on interpolation of rain gauge measurements included the
Precipitation Regression on Independent Slopes Model (PRISM) (Daly
et al., 2015) and the Daymet meteorological model (Thornton et al.,
2018). Products based on the remote sensing measurements included
the Global Precipitation Measurement Mission (GPM) (Huffman et al.,
2019).We also used the Precipitation Estimation fromRemotely Sensed
Information using Artificial Neural Networks (PERSIANN) (Ashouri
et al., 2015) model, and the Climate Hazards Group InfraRed Precipita-
tion with Station Data (CHIRPS) (Funk et al., 2015), which combines
both ground-based and remote sensing measurements.

3.2.2. Actual Evapotranspiration (ET)
Evapotranspiration is challenging to reliably estimate (Allen et al.,

2011) through ground-based measurements (Foken, 2008), remote
sensing data (Liou and Kar, 2014), and land surface models (Kumar

et al., 2018). While Potential Evapotranspiration (PET) is the maximum
possible evaporation given current meteorological conditions at the
land-atmosphere interface, Actual Evapotranspiration (AET) is the
amount of water which physically moves from the land surface to the
atmosphere - the appropriate ET flux for the water balance method. It
can be directlymeasuredwith eddy-covarianceflux towers that provide
ground-based measurements of AET, but spatial coverage is very lim-
ited. As a result, both land surfacemodels and remote sensingmeasure-
ments have emerged as attractive upscaling approaches. Due to these
complicating factors, we estimated ET using LSMs as well as remote
sensing data.

Land surface models estimate AET by simulating mass and energy
transfer at the land surface using weather and radiation data as driving
variables. They are typically calibrated through data assimilation, a pro-
cedure in which ground-based measurements are used to update pa-
rameters of a model. In this study we used GLDAS, FLDAS, and
Terraclimate, which have global coverage and long data records, to esti-
mate AET for both the CV and the CVWS, noting that these products are
not attuned to accurately simulate irrigated or engineered regions.

In terms of remote sensing measurements, NASA's MOD16 AET
product (Mu et al., 2013), and theOperational Simplified Surface Energy
Balance (SSEBop) AET product (Senay et al., 2013) have shown good
agreement when validated against flux tower measurements and have
global coverage at 1 km resolution. We used MOD16 and SSEBop as

Fig. 1. Study Area. CVWS (red polygon), CV (green polygon), DWR CASGEMwell locations (orange circles), USGS gauge stationsmeasuring inflows (Qin; blue circles) and outflows (Qout;
purple circles) sized by monthly average (Qs), California Data Exchange Center (CDEC) reservoir locations (cyan circles) sized by mean monthly storage (SR), and the GRACE satellite
footprint from Argus et al., 2017 (black polygon).
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two of the data sources to obtain ET estimates for the CV and CVWS.
However, both MOD16 and SSEBop tend to underestimate ET in irri-
gated croplands (Velpuri et al., 2013; Mu et al., 2013).

Much of the Central Valley Watershed is heavily irrigated agricul-
ture, for which ET estimation is challenging for LSMs as well as tradi-
tional remote sensing approaches applicable for natural vegetation.

We therefore implemented a third approach to estimate ET which
uses the product of potential evapotranspiration (PET) and crop coeffi-
cients (Allen et al., 1998) to estimate ET in irrigated regions. Crop coef-
ficients are dimensionless scaling factors intended to approximate the
growth stage of a plant. Crop coefficient data are available through the
US Geological Survey (Schmid et al., 2004; Faunt et al., 2009). Crop

Table 1
Datasets considered in this study, including ground-based measurements (GBM), remote sensing products (RS), and land surface models (LSM).

Precipitation (P)

Source Data type Spatial resolution Availability Spatial coverage Reference

PRISM AN81 GBM 800 m or 4 km 1895–present United States Daly et al., 2008
DAYMET v4 GBM 1 km 1980–present North America Thornton et al., 2018
GPM v6* RS 10 km 2001–present Global Huffman et al., 2019
CHIRPS RS and GBM 5 km 1981–present Quasi-Global (50° N–50° S) Funk et al., 2015
PERSIANN-CDR RS and GBM 25 km 1983–2018 Quasi-Global (60° N–60° S) Ashouri et al., 2015

Actual Evapotranspiration (AET)

Source Data type Spatial resolution Availability Spatial coverage Reference

MODIS (MOD16)* RS 1 km 2001–present Global Mu et al., 2011
SSEBop (MODIS)* RS 1 km 2002–2020 United States Senay et al., 2013
Terraclimate LSM 4 km 1958–present Global Abatzoglou et al., 2018
FLDAS v1 LSM 10 km 1980–present Global McNally et al., 2017
GLDAS v2.1 LSM 25 km 1980–present Global Rodell et al., 2004

Potential Evapotranspiration (PET)

Source Data type Spatial resolution Availability Spatial coverage Reference

MODIS (MOD16)* RS 1 km 2001–present Global Mu et al., 2011

Runoff (R)

Source Data type Spatial resolution Availability Spatial coverage Reference

Terraclimate* LSM 4 km 1958–present Global Abatzoglou et al., 2018
GLDAS v2.1* LSM 25 km 1980–present Global Rodell et al., 2004
FLDAS v1* LSM 10 km 1980–present Global McNally et al., 2017

Discharge (Q)

Source Data type Spatial/temporal resolution Availability Spatial coverage Reference

DWR Dayflow* GBM Daily 1997–2020 California DWR, 2021
USGS Stream Gauges* GBM Varies, typically daily or 15 min Varies United States U.S. Geological Survey (USGS), 2021

Snow-Water-Equivalent (SWE)

Source Data type Spatial resolution Availability Spatial coverage Reference

DAYMET GBM 1 km 1980–present North America Thornton et al., 2018
SNODAS* RS 1 km 2003–present United States NOHRC SNODAS, 2004
UCB LRM* RS 500 m 2000–2019 United States Schneider and Molotch, 2016
GLDAS v2.1 LSM 25 km 1980–present Global Rodell et al., 2004
FLDAS v1 LSM 10 km 1980–present Global McNally et al., 2017
Terraclimate LSM 4 km 1958–2020 Global Abatzoglou et al., 2018

Soil moisture (SM)

Source Data type Spatial resolution/number of layers/maximum depth Availability Spatial coverage Reference

SMAP* RS 25 km/–/15–30 cm 2015–present Global Entekhabi et al., 2010
SMOS* RS 25 km/–/21 cm 2010–present Global Bolten et al., 2010
GLDAS v2.1 LSM 25 km/4/2 m 1980–present Global Rodell et al., 2004
Terraclimate* LSM 4 km/1/6 m 1958–present Global Abatzoglou et al., 2018

Reservoir storage (SR)

Source Data
type

Temporal
resolution

Availability Spatial
coverage

Reference

California Data Exchange Center (CDEC) Monthly Reservoir
Storage*

GBM Monthly Varies California California Data Exchange Center (CDEC),
2021

Landcover and crop cover

Source Data type Temporal resolution Availability Spatial coverage Reference

USGS National Landcover Database (NLCD)* RS Varies; typically once per 3 years 1992–present United States Yang et al., 2018
USDA Cropland Data Layer (CDL)* RS Annual 2008–present United States USDA, 2021

Those chosen for the Preferred Remote Sensing (PRS) scheme, described in Section 3.5, are denoted with a *. For more information on product acronyms, description of remote sensing
retrieval methods, model outputs, forcing data, resolution, availability, see the reference for each dataset.
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evapotranspiration calculated using this method is suitable for regions
characterized by irrigated agriculture (Allen et al., 1998), like the CV.
To apply the method, we identified agricultural and non-agricultural
areas in CV using the National Land Cover Database (NLCD; Yang et al.,
2018), a Landsat-based 30 m resolution remotely sensed product pro-
duced every 2–3 years for the United States Department of Agriculture.
We considered the “Cropland”, “Pasture”, and “Open Water” classes
within the Central Valley as irrigated, and all other areas as non-
irrigated agriculture or natural vegetation. To estimate AET in non-
irrigated regions, we simply used the MOD16 AET product. To estimate
AET in irrigated regions, we obtained the PET from theMOD16 PETprod-
uct, scaled by a dimensionless crop coefficient (kc) determined to be ap-
propriate for the specific crop or land cover type (Allen et al., 1998).
Crop types and land cover for each year were obtained from the Crop-
land Data Layer (CDL; USDA, 2021), and were assumed static between
2001 and 2008, for which there are no available data. Crop and land
cover categories from the CDL were mapped to classes defined in
Schmid et al. (2004) and used in Faunt et al. (2009), to obtain monthly
kc coefficients used to scale MOD16 PET values at each irrigated pixel.
The total monthly ET (MODkc)was subsequently obtained by summing
ET in irrigated and non-irrigated regions.

We note that in the MODkc approach, we selected the MOD16 PET
product over regional PET datasets, such as the Spatial California Irriga-
tion Management Information System dataset (Hart et al., 2009), be-
cause it is globally available at a spatial resolution of 1 km. In addition,
it uses the Penman-Monteith approach (Monteith, 1965), consistent
with other PET datasets, and is calculated from meteorological fields
from the Modern-Era Retrospective analysis for Research and Applica-
tions (MERRA) reanalysis dataset (Gelaro et al., 2017).

3.2.3. Discharge (Q) and runoff (R)
Discharge, the inflows and outflows to/from the study areas from

rivers and streams, can only be estimated, at present, using ground-
based measurements. Discharge was quantified using streamflow data
from the USGS (2021) and DWR (2021) (gauge stations shown in
Fig. 1). In total, we identified 41 gauges that measure streams flowing
into the CV with data covering the study period; there are no inflows
for the CVWS, by definition of the termwatershed. For both the Central
ValleyWatershed and Central Valley, the sole natural surfacewater out-
flow is from the Sacramento-San Joaquin Delta, formed by the conflu-
ence of the Sacramento and San Joaquin Rivers, which drains into the
San Francisco Bay estuary. Gauge stations record the discharge from
the delta to the bay; this is available as daily outflow estimates, released
annually through the Dayflow program (DWR, 2021). Water convey-
ance structures (e.g., the California Aqueduct, part of the State Water
Project; Fig. 1 purple circle) transportwater from the Central ValleyWa-
tershed to Southern California. This particular source of deliveredwater
is gauged and included with USGS streamflow estimates.

Discharge alone, however, does not capture all the surfacewater en-
tering the CV because some smaller watersheds cross the Central Valley
boundary (Faunt et al., 2009) and thus contribute diffuse surface water
runoff as opposed to streamflowat a single point. To account for this, we
considered runoff estimates available for the CV from GLDAS, FLDAS,
and Terraclimate LSMs. Previous studies (Nady and Larragueta, 1983;
Faunt et al., 2009) found that runoff accounts for a small percentage of
inflow relative to Q.

3.2.4. Changes in reservoir storage (ΔSR)
Fluctuations in reservoir levels constitute a large portion of the changes

in surface water stored in the Central Valley Watershed. Typically, water
depth in a reservoir is recorded on a staff gauge or data logger and con-
verted to volumes using a depth-volume curve which depends on
reservoir-specific bathymetry. Monthly reservoir storage data were
downloaded from the California Data Exchange Center (CDEC, 2021) for
all reservoirs in California. While availability varies by reservoir, many
data records span decades and are available through the present,

especially for large capacity reservoirs, which have a greater influence on
the overall water balance. CDEC (2021) contains data for 10 reservoirs
within the CV and 93 within the CVWS from 2002–present. The total vol-
umetric storage for all reservoirs within the CV or CVWS was summed to
provide monthly estimates for both the total volumes across the CV and
CVWS. The absolute volumes were differenced relative to the starting
value at the beginningof the studyperiod (October 1st 2002) to determine
storage changeswhich are inputs to thewater balancemethod. Variations
in water stored in rivers, lakes, aqueducts, and streams constitute a negli-
gible portion of the overall surface storage at the scale of the Central Valley
Watershed and Central Valley (Xiao et al., 2017); hence, they were as-
sumed to be negligible in this study.

3.2.5. Changes in soil moisture storage (ΔSSM)
Limited ground-basedmeasurements are available for soil moisture;

the Soil Climate Analysis Network, whichmaintains and operates a spa-
tially distributed in-situ soil moisture sensor network, has very sparse
coverage in California. Thus, we relied on remote sensing and LSM-
based datasets to obtain estimates of changes in soil moisture. Passive
microwave satellite data are available for 2010 to present from the
Soil Moisture Ocean Salinity satellite (SMOS; Bolten et al., 2010) and
for 2015 to present from the Soil Moisture Active-Passive satellite
(SMAP; Bolten et al., 2010; Entekhabi et al., 2010), while land surface
models including GLDAS (Rodell et al., 2004) and Terraclimate
(Abatzoglou et al., 2018) are available to estimate ΔSsm for the entirety
of our study period between 2002 and 2020.

Soil moisture is a state variable within land surface models, and the
total soil moisture at any given pixel is the sum of water stored within
each depth interval. GLDAS contains 4 depth intervals: 0–10 cm,
10–40 cm, 40–100 cm, and 100–200 cm; we summed the soil moisture
across the layers to determine the total soil moisture for a given pixel at
a given time. In contrast, Terraclimate uses spatially distributed single-
layer depth intervals, as described in Wang-Erlandsson et al. (2016),
which, within the study region, range from 1 m to 6 m in depth.

3.2.6. Changes in water stored as snow (ΔSSWE)
Snow pillows and snow courses provide ground-based measure-

ments that can be used to estimate Snow-Water-Equivalent (SWE),
the amount of water contained within a snowpack. While there are
hundreds of snow pillows and courses distributed throughout the
Western US, remote mountainous locations complicate sensor
dispatchment andmaintenance. This results in a lack of spatial coverage
and discontinuous data records, which makes it challenging to use
ground-based SWEmeasurements for long term water balance studies.
Spatial interpolation of ground-based meteorological measurements
(e.g. Daymet) can inherit these problems. SWE can also be estimated
from land surfacemodels (e.g. GLDAS, FLDAS, Terraclimate) but this ap-
proach is recognized to be highly uncertain and to generally underesti-
mate SWE, especially in theWestern US (Wrzesien et al., 2017; Broxton
et al., 2016). This underestimation is due to the forcing data and theway
in which snow ablation is accounted for within land surface models
(Wrzesien et al., 2017). Noting these limitations, we used SWE data
from Daymet, GLDAS, FLDAS, and Terraclimate in this study.

Remote sensing approaches to measure and monitor SWE are inex-
pensive, have broad spatial coverage, and have validated well against
measurements made in snow pillows and snow courses. We incorpo-
rated remote sensing-based estimates of SWE from (1) the Snow Data
Assimilation System (SNODAS; NOHRC, 2004), and (2) the Linear Re-
gression Model from University of Colorado – Boulder (UCB LRM;
Schneider andMolotch, 2016). SNODAS is an assimilation-based remote
sensing dataset which uses satellite measurements of snowcover frac-
tion, radar precipitation, and measurements made in snow pillows
and courses in the assimilation algorithm (Wrzesien et al., 2017). The
UCB LRMmodel uses satellite data from theModerate Resolution Imag-
ing Spectroradiometer (MODIS) and streamflow measurements with a
calorimetry approach to estimate SWE (Schneider and Molotch, 2016).
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3.3. Estimate of correlation in water balance components

We used the Pearson Correlation coefficient (Pearson, 1895) to as-
sess correlations between datasets describing each variable in the
water balance (Eq. (1), Table 1). The Pearson Correlation coefficient
measures the linear correlation between two variables. It is equivalent
to the covariance divided by the product of the standard deviations.
The Pearson Correlation (P) between two variables x and y is given by:

Pxy ¼
Pn

i¼1 xi − x ̄ð Þ yi − ȳð ÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn
i¼1 xi − x ̄ð Þ2

q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn
i¼1 yi − ȳð Þ2

q ; ð4Þ

where xi and yi are the elements of each variable, and x̄ and ȳ are the
mean of each variable.

3.4. Estimate of uncertainty in water balance components

Analyzing uncertainty in input hydrologic variables can help identify
sources of variability in estimates of ΔSgw and aid in the selection of
remote sensing products that capture realistic seasonal patterns. To
estimate uncertainty in the input hydrologic variables, we used Triple
Collocation (Stoffelen, 1998), a common error estimation technique
applicable when the true value of a variable is not known, but
multiple estimates are available. Triple collocation provides statistical
estimates of the random error variances (σ2) associated with a
dataset, assuming additive and multiplicative errors among at least
three independent and collocated datasets describing the same
variable. Several studies have demonstrated Triple Collocation as an
effective technique to estimate errors associated with hydrologic and
meteorological measurements (e.g. Scipal et al., 2008; Chakraborty
et al., 2013; Alemohammad et al., 2015; Gruber et al., 2016). For three
area-averaged collocated estimates of the same variable, the error vari-
ances (σ2) are given by:

σ2
x ¼ x− ysð Þ x− zsð Þh i

σ2
y ¼ y− xsð Þ y− zsð Þh i

σ2
z ¼ z− xsð Þ z− ysð Þh i

ð5Þ

where brackets denote the temporal mean, x, y, and z are the three
datasets, and the subscript s denotes scaling of the x, y, or z dataset to
the mean and standard deviation of the reference dataset (Scipal et al.,
2008). For variableswithmore than three datasets,we constructed each
unique combination of triplets, estimated σ2 as in Eq. (5), and reported
themean σ for all triplets containing each specific dataset. For instance,
there were five precipitation datasets, so the number of unique triplets
is 5!/(5-3)! = 60. Of the 60 total triplets, each individual dataset ap-
pears (3/5) ∗ 5!/(5-3)! = 36 times. The random error variance (σ) for
each dataset was then computed from the 36 triplets where it appears.
We report the mean and standard deviation of σ (in mm) as the uncer-
tainty calculated across the 36 triplets where a dataset appears. A low
mean and standard deviation of σ for a specific dataset denotes a
smaller relative error, while a high mean and standard deviation of σ
suggests a larger relative error.

3.5. Groundwater storage estimation scenarios

Estimates of ΔSgw can vary depending on the data source used in
Eqs. (2) and (3), but it is not well known to what degree input
datasets can affect the resulting magnitudes, seasonality, and trends of
ΔSgw, and how water balance-based estimates compare with other
methods. In order to compare estimates of ΔSgw derived from different
sources of data and provide an insight of the strengths and
weaknesses of remote sensing products in estimating ΔSgw, we
constructed 4 water balance scenarios for the CV and CVWS which uti-
lize data from ground-based measurements, LSMs and Remote Sensing

datasets to estimate ΔSgw. The description of each scenario is provided
below:

(1) All data scenario (ADS): An ensemble of estimates of ΔSgw was
computed using all combinations of inputs shown in Table 1.
The number of input datasets was five for P, six for ET, six for
SWE, four for SM, and three for R which resulted in 360 distinct
combinations of ΔSgw for the CV (NP × NET × NSM × NR × NQ =
5 × 6 × 4 × 3 × 1 = 360) and 720 for the CVWS
(NP × NET × NSM × NSWE × NQ = 5 × 6 × 4 × 6 × 1 = 720).

(2) Ground-Based and Land Surface Model scenario (GBLSM): An
ensemble of estimates for ΔSgw was computed using inputs
from LSMs for ET, SM, SWE, and Rwhile ground-based estimates
are used for P, resulting in 36 different combinations for the CV
(NP × NET × NSM × NR × NQ = 2 × 3 × 2 × 3 × 1 = 36) and 48
for the CVWS (NP × NET × NSM × NSWE × NQ =
2 × 3 × 2 × 4 × 1 = 48).

(3) All Remote Sensing scenario (ARS): An ensemble of estimates for
ΔSgw was computed using inputs of remotely sensed data for all
hydrologic variables when available, those being three for P,
three for ET, two for SWE, and three for SM. Because remote
sensing-based estimates of SM are available only from 2010 on-
wards, we used Terraclimate from 2002 to 2020, SMOS from
2010 to 2020, and SMAP from 2015 to 2020 for the ARS scenario
ensembles. Lastly, Rwas derived from three LSMs, resulting in 81
different combinations for the CV (NP × NET × NSM × Nr × NQ =
3 × 3 × 3 × 3 × 1 = 81) and 54 for the CVWS
(NP × NET × NSM × NSWE × NQ = 3 × 3 × 3 × 2 × 1 = 54).

(4) Preferred Remote Sensing (PRS) scenario: In this scenario, we es-
timated ΔSgw using a subset of all remote sensing datasets used
in the ARS scenario. Since the accuracy of remote sensing data
can vary between sources and regions, it remains unclear how
the use of different products will affect the accuracy of ΔSgw
estimates. We therefore selected remote sensing data for
different hydrologic components that are generally found to
exhibit lower error than others in the selected study regions.
For precipitation, we used the state-of-the-art and newly re-
leased GPM Integrated Multisatellite Retrievals (IMERG) as our
remote sensing estimate because of higher accuracies relative
to legacy products (Wang et al., 2021). For AET, we used SSEBop
and MODkc because these remote sensing approaches can more
effectively capture the ET patterns in irrigated regions (Senay
et al., 2013), which is a key feature of the CV. In contrast,
MOD16 is known to significantly underestimate ET in croplands
(Velpuri et al., 2013). For SM and SWE, we find that remotely
sensed data from different sources do not cover the whole
study period. Selection of one product would limit our analysis
to a short timespan, therefore, we used the temporal average of
sources in the ARS scenario; these being Terraclimate, SMOS,
and SMAP for SM, and SNODAS and UCB LRM for SWE; in order
to create a continuous time series. For R, we used the temporal
mean across the three LSMs, noting that the magnitude of R
was relatively small compared to other more important fluxes
(Q, ET, P). Datasets used in the PRS scenario are denoted * in
Table 1.

For the ADS, GBLSM, and ARS scenarios described above, we gener-
ated ensemble ΔSgw estimates using combinations of input datasets.
Because we were interested in both the trend and seasonality of ΔSgw
estimates produced from the water balance method, we differenced
each time series estimate of ΔSgw from the mean of the first five years
to decrease the variance among estimates while still capturing the
prevailing long-term trends. This 5-year mean differencing procedure
is consistent with the 5-year calibration period used in GRACE
processing (Wiese, 2015). In the ADS, GBLSM and RS Scenarios, we
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used mean ΔSgw across all ensembles as the final estimate to compare
with validation datasets.

3.6. Evaluation of RS-based ΔSgw estimates

An effective method of estimating ΔSgw should be able to capture
long-term net changes, accelerated depletion during droughts, recovery
during wet years and seasonal fluctuations. To evaluate the perfor-
mance of ΔSgw estimates produced from the water balance method,
we compared the ADS, GBLSM, ARS, and PRS scenarios with indepen-
dent estimates of ΔSgw from GRACE, wells, and the C2VSim groundwa-
ter model, detailed below. We evaluated the performance of ΔSgw
estimates for the CV region by comparing with two estimates based
on: (1) groundwater levels measured in wells, available from 2002 to
2019 (Alam et al., 2021), and (2) the C2VSim groundwater model
(Brush et al., 2013), available from 2002 to 2019. For the CVWS region,
we evaluated the performance of ΔSgw estimates through comparison
with ΔSgw estimates from NASA's Gravity Recovery and Climate
Experiment (GRACE; Swenson, 2012), available from 2002 to 2017,
and corrected for fluctuations in ΔSSWE, ΔSSM and ΔSR. In the following
sections, we first discuss the use of GRACE, groundwater well data,
and a groundwater model to estimate ΔSgw, and then describe the
performance evaluation metrics used in this study.

3.6.1. GRACE
GRACE satellites (Swenson, 2012) measure changes in Earth's grav-

ity field and have been previously used to estimate changes in ground-
water storage for the CV (e.g., Famiglietti et al., 2011; Scanlon et al.,
2012; Argus et al., 2017; Xiao et al., 2017). GRACE data are available
from 2002 to 2017, all over the globe, with a spatial resolution of
150,000 km2 (National Aeronautics and Space Administration (NASA),
2021).

In this study, we used the GRACE Mass Concentration Blocks (mas-
cons) which, relative to the traditional spherical harmonic approach, al-
lows for more robust a priori geophysical constraints, thereby reducing
noise and leakage errors (Watkins et al., 2015). We applied the Coast-
lineResolution Improvement (CRI)filter (Wiese et al., 2016),which bet-
ter separates terrestrial and oceanic contributions to mass changes.
Spatially distributed gain factors described in Wiese et al. (2016) were
also applied to the gridded GRACE data to further increase the signal
to noise ratio.

The GRACE domain, shown in Fig. 1 as a black outline, follows 0.5°
gridlines and is consistent with the domain defined in Famiglietti et al.
(2011), Wiese et al. (2016), and Argus et al. (2017) as the area over
which a valid estimate of ΔSgw can be obtained. As can be seen, this
approximately covers the extent of the CVWS. A second-degree polyno-
mial fit was used to interpolate missing values which occur from 2011
onwards, when battery saving measures caused data gaps approxi-
mately every 5–6 months. The use of different fitting functions exhib-
ited very minor changes in the resulting timeseries. Similar to the
procedure outlined in Famiglietti et al. (2011), Scanlon et al. (2012),
and Argus et al. (2017), GRACE-based changes in terrestrial water stor-
age were corrected for changes in soil moisture and snow-water-
equivalent, and changes in reservoir storage for the GRACE study do-
main. To adequately capture uncertainty, we applied an ensemble cor-
rection using all SM and SWE datasets shown in Table 1 and described
in Sections 3.2.5 and 3.2.6, and used the ensemble mean as our best
estimate.

3.6.2. Groundwater storage changes from wells
Weused groundwater level time series obtained fromwells to calcu-

late ΔSgw for the CV for 2002–2019 (Alam et al., 2021). Previous studies
(e.g. Scanlon et al., 2012) have also used water level data from ground-
water level measurements to estimate ΔSgw for the CV. Groundwater
level data were compiled from the California Department of Water
Resources (DWR) California Statewide Groundwater Elevation

Monitoring (CASGEM) database (DWR CASGEM, 2021). The database
contains measurements from 43,987 wells which are used for
monitoring, irrigation, domestic uses, and other purposes. Of these,
23,014 groundwater wells are located within CV (Fig. 1).

Estimates ofΔSgwwere computed bymultiplying groundwater level
changes with the area of the CV and a spatially dependent storage coef-
ficient, which describes the volume of water released from an aquifer
per unit decrease in water level. Noting that both groundwater level
changes and the storage coefficient are uncertain and sparsely observed
in space and time, we followed three steps to estimate ΔSgw from well
data: First, groundwater levels measured in wells were spatially
interpolated using Inverse Distance Weighting at a 10 km cell size.
Next, month-to-month changes were calculated for each grid cell from
water level data. Lastly, month-to-month water levels were multiplied
by storage coefficient values determined from statistically weighting
Specific Storage and Specific Yield values from the Central ValleyHydro-
logic Model (CVHM; Faunt et al., 2009) and C2VSim, based on the mag-
nitude of water level fluctuation at a given grid cell. The full statistical
weighting procedure and complete details of the method are described
in Alam et al. (2021).

3.6.3. California Central Valley groundwater-surface water simulation
model (C2VSim)

The California Central Valley Groundwater-Surface Water Simula-
tion Model (C2VSim) (Brush et al., 2013) is a finite element numerical
groundwater flow model of the CV developed by the California DWR
that simulates water flux through the land surface and root zone, and
into the groundwater system. The model calculates land surface, root
zone, and groundwater hydrologic budgets at monthly time steps
from 1921 to 2009. Grouped into 21 subregions, the C2VSim fine grid
version (C2VSimFG) contains over 35,000 elements and covers the
1975–2015 hydrologic years with a spatial resolution that varies, but
is typically ~1.5 km. The model is available at https://data.cnra.ca.gov/
dataset/c2vsimfg-version-1-0 (last accessed: March 2021). We used
Version 1.0, the current version of the C2VSim fine grid model (Inte-
grated Water Flow Model-2015 version) in this study, herein simply
called C2VSim (see Alam et al., 2021; S3 and S4 for more detail). Esti-
mates of ΔSgw in the CV from this model are similar to those obtained
from the CVHM (Faunt et al., 2009; Faunt and Sneed, 2015) over the
1975–2003 period where both models overlap.

The C2VSim simulation was extended from 2015 until 2019 by run-
ning themodel with three inputs for the extended period: precipitation,
surfacewater inflow to the CV and surfacewater diversions (Alamet al.,
2021). Monthly precipitation was estimated from PRISM (Daly et al.,
2015), the same sources as for the base model (DWR, 2021). Inflow
time series for the extended period were created using observations
and simulated outputs from the VIC model (Alam et al., 2021). The
third input, surface water deliveries, included agricultural, industrial,
and residential deliveries, and was computed following the method of
Hanson et al. (2012), who estimate a percentage of delivery for a
given year depending if it is dry or wet, based on precipitation anomaly.
The full procedure used to generate inputs required to extend the
C2VSim time series is described in greater detail in Alam et al. (2021).

3.6.4. Metric for evaluating the performance of RS-based ΔSgw
While the appropriate model or method to estimate changes in

groundwater storage depends largely on the area of investigation, de-
gree of spatiotemporal granularity required, and current and historic in-
strumentation within the area, a reasonable estimate of ΔSgw must
capture the seasonality, long term change, and be able to reproduce
the dynamics during extreme events (e.g., drought). As such, intercom-
parison and benchmarking between independent estimates derived
from a variety of datasets and models can facilitate an understanding
of which method(s) can best capture the dynamics of hydrologic sys-
tems, especially across spatial scales. However, it is also important to
note that each of the validation datasets has limitations (described in
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Sections 3.6.1–3.6.3). Here, we used multiple ΔSgw estimates from
different sources to enhance the confidence in our evaluation. We
found that earlier studies have successfully used similar datasets to
understand ΔSgw behavior in CV and CVWS (Faunt et al., 2009;
Famiglietti et al., 2011; Scanlon et al., 2012; Brush et al., 2013; Xiao
et al., 2017; Argus et al., 2017; Hanak et al., 2019; Yin et al., 2021).

In this study, we considered three metrics to evaluate the perfor-
mance of ΔSgw estimates computed from the water balance method.
These were (1) the net change in ΔSgw for three time windows
(droughts: October 2006–September 2009. October 2011–September
2015; long term: 2002–2020) during the 2002–2020 study period for
which independent estimates are available, (2) the rate of change in
ΔSgw (km3/year) during recent droughts (2006–2009 and 2011–2015)
determined using least squares, and (3) the seasonal amplitude of
ΔSgw estimates derived from the ADS, GBLSM, ARS, and PRS scenarios
evaluated against validation datasets (GRACE, well data, C2VSim).

4. Results and discussion

Estimates ofΔSgwwere produced for CV andCVWSand thequality of
remote sensing datawas investigated through analysis ofmultiple input
scenarios. First, correlations and uncertainty among input datasets
(Table 1)were determined for each hydrologic variable. Next, ensemble

estimates ofΔSgwwere calculated for the following scenarios: ADS, LSM,
ARS, and PRS. Then, the performance of ΔSgw estimates was evaluated
through comparison with three independent estimates from wells,
groundwater models, and GRACE, as well as through comparison with
previous studies.

4.1. Uncertainty in input hydrologic variables

Estimates of (1) precipitation, (2) evapotranspiration,
(3) streamflow (stream discharge and runoff), (4) soil moisture, and
(5) snow-water-equivalentwere compared for a variety of data sources
encompassing ground-based measurements, land surface models, and
remotely sensed data. In the following section, we discuss the seasonal-
ity, variability, magnitude, and uncertainty among datasets available to
estimate each variable.

4.1.1. Precipitation (P)
All estimates of precipitation, when aggregated to monthly sums,

produced similar estimates of total precipitation for both the CV
(Figs. 2 and 3) and CVWS (Figs. 4 and 5) for the length of the study pe-
riod. The mean and variability in precipitation are consistent among
sources, and the lowest error was found in ground-based products
PRISM and Daymet. Remote sensing-based estimates of P derived

Fig. 2.Time series plots for datasets used in theCentral Valleywater balancemodel. The rows depict themonthly time series inmillimeters from2002 to 2020 for (A) P, (B) ET, (C)ΔSSM and
ΔSR, and (D) Q and R.
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fromGPMhad similarmean triple collocation errors but larger standard
deviations compared to those for the ground-based estimates, shown in
Figs. 3 and 5. Ground-based estimates of maximum P during the very
wet 2017 winter were greater than remotely sensed estimates during
this time. One anomalous result that contrasted with others is the
high precipitation estimate for the PERSIANN dataset during summer
2017,which resulted in a larger triple collocation error (10mm) relative
to other estimates; we interpret this outlier as a regional error associ-
ated with the PERSIANN data. The overall agreement among datasets
and low triple collocation errors for remotely sensed estimates gave
us confidence that the adoption of the remote sensing measurements
of P in thewater balancewould not sacrifice accuracy. The strong agree-
ment among precipitation datasets found in this regional study is in
contrast with global water balance studies performed on a number of

watersheds (Sahoo et al., 2011; Pan et al., 2012) who found P to be
the most uncertain flux.

4.1.2. Evapotranspiration (ET)
A comparison of ET estimates for Land Surface models and remote

sensing data is shown in Figs. 2 and 3 (CV) and Figs. 4 and 5 (CVWS).
As expected, the MODkc approach we used in this study shows consid-
erably higher monthly and annual ET than other estimates for the CV.
Estimates from MOD16 and land surface models for the CV show ET
peaking in March, whereas SSEBop and the MODkc capture the mid-
summer peak resulting from irrigated agriculture. Terraclimate consis-
tently shows a slight increase in ET for October and November, which
is likely due to the inability of LSM-based ET approaches to adequately
capture irrigated conditions. The magnitude of the increases is still

Fig. 3. Plots summarizing datasets describing variables used in the Central Valley water balance model. From top to bottom, the panels depict (A) P, (B) ET, (3) ΔSSM/ΔSR, and (4) Q/R. The
columns, from left to right, depict (1) box and whisker plots showing annual means, standard deviations, and outliers, (2) monthly means, with error bars corresponding to standard
deviations, (3) Pearson Correlation matrix describing correlations between datasets, (4) box and whisker plots showing Triple Collocation errors (mm).
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significantly less than themidsummer peak for SSEBop andMODkc. Tri-
ple collocation analysis for ET in the CV suggests comparable mean er-
rors between all sources of data - approximately 15–30 mm - with the
highest mean error being attributed to the MODkc method. This may
be due to the overall larger magnitude of MODkc estimates, the timing
and magnitude of which contrast significantly with LSM-based esti-
mates and remote sensing estimates fromMOD16.

The results suggest that evapotranspiration is the most uncertain
flux term in the balance because it had both the lowest overall correla-
tion and the highest triple collocation error among datasets (Figs. 3, 5).
This finding contrasts with water balance studies of other regions (e.g.
Sahoo et al., 2011; Pan et al., 2012), which cited precipitation as the
most uncertain term. The uncertainty and disagreement among ET
datasets likely arises because the CV is one of themost irrigated regions
in the world, and the overwhelming influence of irrigation in the CV
confounds conventional methods of estimating ET (e.g. LSMs,
MOD16), which are known to generally underestimate ET for irrigated
regions (Velpuri et al., 2013; Mu et al., 2013).

Many opportunities exist to improve ET estimates, particularly in
irrigated regions. The ability to accurately identify irrigated areas (e.g.
Deines et al., 2017) at sub-annual timescales would improve ET derived
from crop coefficient-based approaches like the MODkc estimate
produced here. Satellite-based estimates of crop coefficients (e.g.
Mendiguren et al., 2017) can also be used to improve ET estimates. Fu-
ture research could evaluate the accuracy of satellite-based kc estimates

in the CV, and incorporate these data to improve ET estimates used in
the ΔSgw calculation. In-situ measurements obtained at flux towers are
critical in order to assess the quality of remotely sensed ET estimates
and improve the estimation of regional accuracies and biases. Finally,
the development of new tools, such as the OpenET platform (http://
etdata.org), can facilitate the distribution and comparison of numerous
high-resolution ET datasets over large areas. Available models within
OpenET include the Mapping Evapotranspiration with Internalized Cal-
ibration (METRIC) model (Allen et al., 2007), Satellite Irrigation Man-
agement Support (SIMS) model (Melton et al., 2012; Pereira et al.,
2020), Atmosphere Land Exchange Inverse (ALEXI) model (Anderson
et al., 1997; Anderson et al., 2007a,b), and Priestly-Taylor JPL model
(Fisher et al., 2008). These data do not require crop maps, are able to
better estimate ET in irrigated regions, and improve upon the 1 km res-
olution ET estimates fromMOD16 and SSEBop used in this study, aswell
as ET estimates derived from LSMs.

4.1.3. Changes in soil moisture (ΔSSM)
Estimates of ΔSSM from remote sensing measurements and land

surface models are shown for the CV in Figs. 2 and 3 and for the CVWS
in Figs. 4 and 5. Variability among estimates of ΔSSM is higher than for
P, but lower than ET. Seasonality is consistent among datasets, but the
magnitude of ΔSSM tends to be greater in LSMs than microwave-based
estimates. Thismay be due to the lack of inclusion of an explicit ground-
water component to LSMs – the high magnitude soil moisture

Fig. 4. Time series plots for datasets used in the Central Valley Watershed water balance model. The rows depict the monthly time series in millimeters from 2002 to 2020 for (A) P,
(B) ΔSSWE, (C) ET, and (D) ΔSSM/ΔSR.
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fluctuations may be capturing partial fluctuations in the groundwater
system. While GLDAS and FLDAS consistently estimate larger magni-
tude fluctuations than passive microwave-based products derived
from SMAP and SMOS, the Terraclimate Land Surface Model exhibits a
high correlation (0.85–0.9) with both SMOS and SMAP, as shown for
the CV in Fig. 3 and the CVWS in Fig. 5. This agreement may be due to
the spatially distributed single-layer depth intervals, as described in
Wang-Erlandsson et al. (2016). The high level of agreement of
Terraclimate with reliable passive microwave-based products gave us
confidence of the temporal extrapolation performed in the PRS Sce-
nario, where we used Terraclimate to estimate ΔSSM for the time
period 2002 to 2010, which predates availability of passive microwave
remote sensing products.

4.1.4. Discharge (Q) and runoff (R)
Discharge and runoff data, shown in Figs. 2 and 3, agree in terms of

seasonality, and have relatively consistent magnitudes across data
sources. The outflow to the San Francisco Bay, the outlet of both the
CV and CVWS, peaks around March, while inflow to the CV peaks
around May. Discharge and runoff estimates show a relatively high
agreement between datasets as suggested by Pearson Correlation

coefficients between 0.6 and 0.9; higher than correlations for other var-
iables. Triple collocation performed on discharge and runoff datasets re-
sulted in errors of 10–20 mm, with Terraclimate having the highest
uncertainty among LSM-based approaches.

4.1.5. Changes in Snow-Water-Equivalent (ΔSSWE)
In Figs. 4 and 5, we compare estimates of ΔSSWE for the CVWS based

on ground-based measurements (Daymet), remote sensing measure-
ments (SNODAS, UCB LRM), and land surface models (GLDAS,
Terraclimate, FLDAS). Similar to ΔSSM, there is a high degree of
variability among datasets. The remote sensing-based approaches gen-
erally produced larger magnitude estimates of ΔSSWE than LSM and
ground-based approaches, consistent with findings of previous studies
which suggest that LSMs significantly underestimate SWE, especially
in theWestern US (Wrzesien et al., 2017; Broxton et al., 2016). Remote
sensing products also demonstrated the lowest triple collocation errors,
while ground-based observations had the highest. The high correlation
between remote sensing-based SWE products (>0.9, shown in Fig. 5)
(UCB LRM, available 2001–2019 and SNODAS; available 2002–2020)
suggested that it was reasonable to extend the time period of ΔSSWE

for the PRS scenario by using UCB LRM from 2002 to 2003, using the

Fig. 5. Plots summarizing datasets describing variables used in the Central Valley Watershed water balance model. From top to bottom, the panels depict (A) P, (B) ΔSSWE, (3) ET, and
(4) ΔSSM/ΔSR. The columns, from left to right, depict (1) box and whisker plots showing annual means, standard deviations, and outliers, (2) monthly means, with error bars
corresponding to standard deviations, (3) Pearson Correlation matrix describing correlations between datasets, (4) box and whisker plots showing Triple Collocation errors (mm).
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average of SNODAS and UCB LRM between 2003 and 2019, and using
SNODAS from 2019 to 2020 (described in Section 3.5).

4.2. Comparison of water balance estimates of ΔSgw

We compared the ΔSgw estimated for four scenarios (Section 3.5) at
monthly time steps from 2002 to 2020 (Fig. 6). The ensemble mean
calculated from the ADS, GBLSM, ARS and PRS scenarios are shown in
black, purple, red and blue lines, respectively. Each scenario suggests a
net loss of stored groundwater during the study period in both the CV
and CVWS. The results indicate the most rapid depletion occurred dur-
ing periods of severe drought between 2006–2009 and 2011–2015.
There is a high degree of variance among individual ensembles, shown
in Fig. 6 in light gray, which suggests that certain combinations of
datasets can produce very high/low ΔSgw estimates.

The net change in ΔSgw derived from each water balance scenario is
shown for the CV and CVWS in Table 2. ΔSgw estimates are provided for
the study period (2002–2020), the first drought (2006–2009), and the
second drought (2011–2015). For the duration of the study period in
both the CV and CVWS, the ARS scenario estimates the greatest ground-
water depletion, followed by the PRS scenario, the ADS scenario, and the
GBLSM scenario. Each scenario shows an accelerated loss of groundwa-
ter during the 2011–2015 drought relative to the 2006–2009 drought,
with the exception of the PRS scenario in the CVWS, which shows a

higher rate of depletion during 2006–2009 (Fig. 6B). Further, for the
2011–2015 drought, the rate of depletion generated from the PRS sce-
nario for the CV (−15.2 km3/year) is greater than the rate of estimated
depletion from the PRS scenario in the CVWS (−13.5 km3/year). While
physically possible, this implies net recharge in the CVWS, which is un-
realistic, and a limitation associatedwith the simplemodeling approach
we adopted.

Fig. 6. (A) Changes in groundwater storage for the CV calculated from: (1) ADS Scenario (gray), and ADS-based ensemblemean (black dashed), (2) GBLSM scenario and (light purple) and
GBLSM-based ensemblemean (purple dashed), (3) ARS Scenario (light red) andARS-based ensemblemean (red dashed), (4) PreferredRemote Sensing (PRS) Estimate (blue), (5) C2VSim
(green), and (6) wells (orange). (B) Changes in groundwater storage calculated from: (1) ADS Scenario (gray), and ADS-based ensemble mean (black dashed), (2) GBLSM scenario and
(light purple) and GBLSM-based ensemblemean (purple dashed), (3) ARS Scenario (light red) and ARS-based ensemblemean (red dashed), (4) Preferred Remote Sensing (PRS) Estimate
(blue), (5) GRACE (green).

Table 2
Comparison of ΔSgw (km3) for each scenario within the CV and CVWS for the period
2002–2020, the 2006–2009 drought, and the 2011–2015 drought.

Scenario Net ΔSgw (km3)
2002–2020

Drought 1 Net ΔSgw
(km3) 2006–2009

Drought 2 Net ΔSgw
(km3) 2011–2015

CV
ADS −39 (−2/yr) −19 (−6/yr) −44 (−11/yr)
GBLSM −8 (0/yr) −8 (−3/yr) −22 (−6/yr)
ARS −75 (−4/yr) −29 (−10/yr) −67 (−17/yr)
PRS −67 (−4/yr) −31(−10/yr) −61 (−15/yr)

CVWS
ADS −85 (−5/yr) −25 (−8/yr) −70 (−18/yr)
GBLSM −39 (−2/yr) −18 (−6/yr) −78 (−20/yr)
ARS −246 (−14/yr) −56 (−19/yr) −111 (−28/yr)
PRS −165 (−9/yr) −50 (−17/yr) −54 (−14/yr)

Values inside parenthesis indicate changes per year.
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4.3. ΔSgw estimates from GRACE, wells, and C2VSim

We computed ΔSgw estimates derived from GRACE, wells, and
C2VSim. We note that well-based and C2VSim estimates of ΔSgw cover
the CV, while the footprint of GRACE-based estimates covers the entire
CVWS (Fig. 1). Estimates of ΔSgw are available from 2002 to 2019 for
wells and C2VSim; and from 2002 to 2017 for GRACE. Table 3 shows
the net change in ΔSgw derived from each validation dataset in the left
column, net change during the 2006–2009 drought in the middle col-
umn, and net change during over the 2011–2015 drought in the right
column. Each validation dataset suggests a net loss of stored groundwa-
ter during the period of data availability, and shows a larger net de-
crease in stored groundwater for the 2011–2015 drought relative to
the 2006–2009 drought. Among the three validation datasets, GRACE
shows the highest rate of decline during droughts, but also considerable
groundwater recovery toward the end of the data record (Fig. 6B).

A number of previous studies also estimatedΔSgw in the CV or CVWS
using a variety of methods, including groundwater wells (Scanlon et al.,
2012), CVHM (Faunt et al., 2009), Land Surface Model outputs gener-
ated using the North American Land Data Assimilation System
(NLDAS; Xiao et al., 2017), vertical displacement data from GPS (Argus
et al., 2017), and GRACE (Famiglietti et al., 2011; Scanlon et al., 2012).
Because these studieswere published at different times, and span differ-
ent periods of investigation, we qualitatively compare, when available,
estimates of ΔSgw during the 2006–2009 drought and 2011–2015
drought to estimates reported in this study. Table 3 shows the net
changes in ΔSgw for previous studies for the two drought periods.

Although the magnitude and trend in ΔSgw varies between different
methods, there are a few important patterns highlighted by all
independent methods. These includes (1) the long-term groundwater
depletion, (2) accelerated depletion during droughts, (3) recovery dur-
ing wet years, and (4) seasonal fluctuations. An effective method for
ΔSgw estimation should be able to capture all these patterns. To
evaluate the performance of ΔSgw estimates produced from the water
balance method, we compared patterns (1)–(4) generated for each
scenario with the independent estimates (i.e., GRACE, well, C2VSim
groundwater model). The results are detailed in Section 4.4.

4.4. Evaluation of remote sensing-based ΔSgw estimates

We compared ΔSgw estimates derived from four water balance
scenarios (i.e., ADS, GBLSM, ARS, PRS) with validation datasets
(i.e., GRACE, wells, C2VSim) for the CV and CVWS. In the following sec-
tions, we discuss the net change, seasonality, and the trends in ΔSgw
during drought and non-drought periods in the CV and CVWS as esti-
mated by the water balance method and other approaches.

4.4.1. Evaluation of ΔSgw within CV region
In general, we observe that ensemble remote sensing data driven

ΔSgw estimates can provide upper and lower bounds to the net change
(2002–2020), and effectively capture seasonality and depletion during
drought events (2006–2009 and 2011–2015 drought) in the Central

Valley region. ΔSgw was −39 km3, −8 km3, −75 km3, and−67 km3 in
CV during 2002–2020 under ADS, GBLSM, ARS, and PRS scenarios, re-
spectively (Table 2). Well-based estimates and the C2VSim groundwa-
ter model, available from 2002 to 2019, suggest net ΔSgw of −36 km3

and −41 km3, respectively. Among the four scenarios (ADS, GBLSM,
ARS, and PRS), remote sensing-based scenarios (ARS and PRS) showed
a net change that is much closer to the C2VSim and well-based ΔSgw
estimates (Fig. 6A). We found a high Pearson correlation in ΔSgw
between the PRS and well-based (0.87) and C2VSim-based (0.94) esti-
mates during 2002–2019 period. Both remote sensing-based estimates
(ARS and PRS) showed similar seasonality, while seasonal amplitudes
derived from the ARS estimate (mean) were slightly lower than the
PRS amplitudes. The relatively higher net depletion found in the ARS
and PRS scenarios are attributable to the higher ETmagnitudes from re-
mote sensing data compared to LSMs (Figs. 2 and 3).

The results show that the remote sensing-based ΔSgw estimates
(ARS and PRS) effectively capture the groundwater depletion during
the two major droughts in the past two decades (2006–2009 and
2011–2015). ΔSgw changed by −31 km3 and −29 km3 during October
2006 through October 2009 under the PRS and ARS scenarios. These es-
timates compare favorably to estimates of−32 km3 from CVHM (Faunt
et al., 2009);−41 km3 from C2VSim (Brush et al., 2013);−29 km3 from
the analysis of groundwater wells (Alam et al., 2021); −24 ± 6 km3

from GRACE reported in Famiglietti et al. (2011) for the time period
April 2006 to March 2010; and −27 km3 and −28 km3 calculated
from wells and GRACE, respectively reported in Scanlon et al. (2012)
for the time period April 2006–September 2009. For the 2011–2015
drought, estimates of ΔSgw within the CV determined from the ARS
and PRS scenarios agree well with independent estimates of storage
losses. Both C2VSim and thewell data suggest−71 km3 of groundwater
storage decline, while the PRS water balance scenario suggests
−61 km3 and the ARS water balance scenario suggest−67 km3. These
estimates are considerably higher than the ADS and GBLSM scenarios,
which suggest−44 km3 and−21 km3, respectively; and are also higher
than the−30 km3 reported in Xiao et al. (2017). Remote sensing-based
estimates of the annual rate of ΔSgw CV during droughts fall within 15%
of groundwater models and wells. Remote sensing estimates also sug-
gest higher depletion during 2011–2015 drought than 2006–2009, con-
sistent with other methods, and capture the groundwater recovery
during wet years (e.g., 2006, 2011, 2017). The general agreement be-
tween the PRS and ARS scenario and independent validation datasets
suggests that a remote sensing-based water balance methodology can
produce reliable and timely estimates capable of capturing trends and
net changes of ΔSgw during droughts in a heavily irrigated region.

Seasonal fluctuations in ΔSgw within the CV are reproduced in the
both the ARS and PRS scenarios, shown in Fig. 6A. The ARS and PRS sce-
narios suggest that most recharge occurs from October to May, and
most depletion occurs between May and September. Fig. 6A also
shows that ARS and PRS scenarios produce seasonal fluctuations similar
in magnitude to well-based estimates, but larger in magnitude than es-
timates fromC2VSim. The timingof seasonalfluctuations from remotely
sensed estimates of ΔSgw is synchronous with C2VSim and slightly

Table 3
Comparison of net changes in ΔSgw (km3) derived from validation datasets within the CV and CVWS during the 2006–2009 drought (second from right column), and the 2011–2015
drought (right column).

Method and source Study area Drought 1 Net ΔSgw (km3) 2006–2009 Drought 2 Net ΔSgw (km3) 2011–2015

Wells (this study) CV −29 −71
Wells (Scanlon et al., 2012) CV −27 ± 3 NA
C2VSim (this study) CV −35 −71
CVHM (Faunt et al., 2009) CV −32 NA
NLDAS LSM (Xiao et al., 2017) CV −16 −30
GPS (Argus et al., 2017) CVWS −59 ± 28 −104 ± 30
GRACE (this study) CVWS −40 −95
GRACE (Famiglietti et al., 2011) CVWS −24 ± 6 NA
GRACE (Scanlon et al., 2012) CVWS −28 ± 5 NA
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precedes those in the well-based estimates. A clear seasonal cycle is not
reproduced by the ADS (black dashed) and GBLSM-based scenarios
(purple dashed). The ability of the remote sensing-basedwater balances
to reproduce seasonal fluctuations suggests the possibility of monitor-
ing ongoing seasonal or monthly ΔSgw changes, which is very difficult
using other methods if not impossible.

4.4.2. Evaluation of ΔSgw within CVWS region
In the CVWS, there are fewer studies and datasetswhich can be used

to validate estimates of ΔSgw. GRACE-based estimates of ΔSgw for the
CVWS region (red outline in Fig. 1) have previously been compared to
estimates describing the CV (e.g. Scanlon et al., 2012; Xiao et al.,
2017), but have also been compared to estimates for the entire CVWS
(e.g. Famiglietti et al., 2011; Argus et al., 2017). Within the CVWS,
Xiao et al. (2017; SI) estimated approximately −30 km3 net ΔSgw
between 2002 and 2017; of this, −10 km3 was attributable to the
non-CV region. Argus et al. (2017) used GPS and the a priori hydrology
model given in Xiao et al. (2017) to estimate approximately−100 km3

netΔSgw between 2005 and 2017. Within the CVWS for the time period
2002–2020, the ADS, GBLSM, ARS, and PRS scenarios suggest net ΔSgw
changes of −85 km3, −39 km3, −246 km3, and −165 km3,
respectively (Table 2). The net change in ΔSgw for the duration of the
study period is more negative when calculated using remotely sensed
data (i.e., ARS and PRS scenarios), than ground-based data and LSMs
(i.e. ADS and GBLSM scenarios). This may be due to the larger-
magnitude estimates of SWE derived from remotely sensed datasets, a
key variable for large, snow-dominated regions like the CVWS, as well
as inability of remotely sensed P to capture the highest magnitude
events over mountainous terrain (Wang et al., 2021).

During the 2006–2009 drought, the PRS and ARS scenarios suggest
−56 km3 and −50 km3 of ΔSgw, respectively. During the same time
period, Argus et al. (2017) estimate −59 ± 28 km3 net change in
ΔSgw, while Xiao et al. (2017) estimated−16 km3. Our GRACE-based es-
timate suggests net change inΔSgw of−40 km3, while previous GRACE-
based estimates given in Famiglietti et al. (2011) and Scanlon et al.
(2012), which used the older GRACE releases and spherical harmonic
solution instead of the MASCON solution, suggest 24 ± 6 km3, and
−28 ± 5 km3, respectively. During the 2011–2015 drought, the ARS
and PRS scenarios produce estimates of −111 km3 and −54 km3, re-
spectively. The PRS scenario underestimates ΔSgw significantly relative
to estimates of ΔSgw determined from GRACE, which suggests
−95 km3, and from GPS in Argus et al. (2017), who estimated
−104± 30 km3. However, the PRS estimate is still 20% larger inmagni-
tude than the estimate of −42 km3 given in Xiao et al. (2017). Argus
et al. (2017) suggested that this large depletion was driven primarily
by a loss of deep soil moisture or a large loss of groundwater in river al-
luvium and in crystalline basement in the Sierra Nevada.

While the ARS and PRS scenarios reproduce trends during droughts
similar to what is found by GRACE and GPS-based approaches, the ARS
and PRS water balance scenarios applied to the CVWS struggle to cap-
ture significant recharge events, which are clearly captured by GRACE
in 2011 and 2017. The ARS and PRS estimates instead show a steady de-
cline in ΔSgw. This may be due to an underestimation of extreme
precipitation in remotely sensed products (Wang et al., 2021). For
example, the 2017 winter was one of the wettest on record in
California; Fig. 4 shows that the peak precipitation derived from
ground-based observations (Daymet, PRISM) exceeds the peaks of pre-
vious years, but GPM-based estimates have a magnitude comparable to
that in previous wet years occurring in 2006 and 2011. In contrast with
estimates ofΔSgwderived from remotely sensed precipitation, estimates
ofΔSgw derived using in situ data from PRISM and Daymet (i.e. ADS and
GBLSM scenarios) do exhibit post drought recovery following 2015 as
expected.

Estimates ofΔSgw generated in theCVWS fromboth theARS scenario
and PRS Scenario reproduce seasonal fluctuations (Fig. 6B), showing
most recharge occurring from October to May, and most depletion

occurring between May and September. However, the magnitude of
seasonal fluctuations is significantly lower than that suggested by
GRACE (shown in green in Fig. 6B). The ADS (black dashed) and
GBLSM-based scenarios (purple dashed) are not able to reproduce sea-
sonal fluctuations within the CVWS.

4.4.3. Potential evaluation of ΔSgw in other regions
In this paper, we outlined a procedure to use ensemble remote sens-

ing data in a water balance approach to estimate changes in groundwa-
ter storage for the CV and CVWS.While themethodmay be extended to
other areas, there are a fewkey stepswhich should be undertaken to en-
sure reasonable results. Firstly, a literature review should be conducted
todetermine and assess availability, knownbiases, and other limitations
specific to the performance of certain datasets in the region of interest.
Next, comparison and error analysis of available datasets describing
each variable should be performed in order to select the optimal
datasets. Lastly, ensemble calculations of ΔSgw should be compared to
any available existing independent estimates derived from e.g. GRACE
or well data in order to assess accuracy.

4.5. Limitations and future outlook

Despite many advantages, a remote sensing-based solution using
the water balance method is currently limited in terms of general prac-
tical applicability by a number of key factors.

Firstly, the remote sensingdatasets utilized heremay performdiffer-
ently in regions with different climates or when applied at finer scales.
Random error and biases in remote sensing products (e.g., due to eleva-
tion, temperature) can be minimized by averaging over large areas, but
can persist at finer scales (Almazroui, 2011). All forms of on-the-ground
data collected using, for example, snow pillows, rain gauges, stream
gauges, flux towers, and groundwater monitoring wells with high sam-
pling frequency, are therefore invaluable for assessing the regional ac-
curacies of remotely sensed products (i.e., Table 1), and can provide
an opportunity to bias-correct existing data and models to be more re-
flective of regional conditions. The lack of on-the-ground data in many
parts of the world, to conduct the level of assessment we have com-
pleted in this study, will make it challenging to adopt, with a high
level of confidence, a remote sensing-based approach for estimating
ΔSgw.

Secondly, it remains challenging to apply the water balance method
to estimate ΔSgw in agriculturally intensive regions that are heavily
dependent on surface water diversions. As an example, had we
elected to work at a finer scale in the Central Valley, we would have
required accurate quantification of water delivered through surface
water infrastructure (canals, aqueducts) to apply the water balance
approach. This issue is also challenging to solve using LSM-based ap-
proaches, which do not typically account for surface water infrastruc-
ture. Recent research, which uses historical climate data to estimate
surface water deliveries (Goodrich et al., 2020) can help alleviate
these data requirements.

Thirdly, the remote sensing-basedwater balance approach proposed
here is suitable for regions where net groundwater inflow/outflow is
relatively small compared to other water balance components. Regions
with significant groundwater inflow/outflow would require additional
measurements and modeling approaches in order to accurately esti-
mate changes in groundwater storage.

Themethod presented in this study focused on a semiarid andhighly
irrigated region so it required in-situ measurements of streamflow (Qin

and Qout) and reservoir storage changes (ΔSR), as well as LSM-based es-
timates of runoff (R). These measurements are unavailable in many re-
gions globally where the water in rivers and reservoirs are important
components of the water balance, thus limiting the application of the
proposed method. However, the data requirements of discharge and
reservoir storage changes may be alleviated in the near future by the
SurfaceWater Ocean Topography (SWOT) satellite mission (est. launch
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date: November 2022, https://swot.jpl.nasa.gov/mission.htm) that will
use altimetry to measure reservoir heights and water levels in rivers.
Measurements of river stage can be combined with hydrologic rating
curves to estimate discharge, thereby providing the necessarymeasure-
ments to apply the water balance method in geographies lacking
mature in-situ data collection networks. The current study is an impor-
tant step toward developing a framework that can be applied to esti-
mate ΔSgw globally in all regions relying exclusively on remote sensing
data.

5. Conclusions

Advancements in groundwater science andgroundwatermanagement
require an improved ability to estimate and monitor ΔSgw. Water balance
methods have the ability to investigate scales finer than the GRACE foot-
print, but without the well data requirements and computational com-
plexity of groundwater flow models. Through validation against
independent estimates, this study demonstrated the fidelity of remote
sensing data to estimate ΔSgw in a semiarid and agriculturally intensive
region at two spatial scales using the water balance method. An
ensemble procedure to estimate ΔSgw using multiple remotely sensed
data sources was outlined, and methods for assessing uncertainties and
errors among water balance inputs were presented.

A remote sensing-based method is a promising approach for
obtaining timely estimates of ΔSgw. Our developed approach can
provide estimates of ΔSgw as soon as the required data become
available, which is approximately 1 to 6 months for the data used
here. This could be extremely valuable in drought-prone regions
where the current practice is to use streamflow or precipitation data
to determine drought severity without direct awareness of the state of
the groundwater system in terms of ΔSgw. Adopted for monitoring
throughout a drought, this method could provide the critical, near-
real-time information about ΔSgw needed to avoid failed wells,
subsidence of the ground surface, negative impacts on groundwater
dependent ecosystems, and reduction of water quality. In this study,
we were able to provide estimates of ΔSgw until the end of 2020,
which is not currently practical for other methods.

The combined use of remote sensing data and the water balance
method is a promising approach that, with further testing and develop-
ment, could be applied in a wide range of locations to obtain estimates
of ΔSgw. The rapid advancement in the types, quality, and quantity of
remote sensing data make it inevitable that these data will, in the not-
too-distant future, become central to groundwater science andmanage-
ment.
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