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Abstract
Landscape transcriptomics is an emerging field studying how genome- wide expres-
sion patterns reflect dynamic landscape- scale environmental drivers, including habi-
tat, weather, climate, and contaminants, and the subsequent effects on organismal 
function. This field is benefitting from advancing and increasingly accessible molecu-
lar technologies, which in turn are allowing the necessary characterization of tran-
scriptomes from wild individuals distributed across natural landscapes. This research 
is especially important given the rapid pace of anthropogenic environmental change 
and potential impacts that span levels of biological organization. We discuss three 
major themes in landscape transcriptomic research: connecting transcriptome varia-
tion across landscapes to environmental variation, generating and testing hypotheses 
about the mechanisms and evolution of transcriptomic responses to the environment, 
and applying this knowledge to species conservation and management. We discuss 
challenges associated with this approach and suggest potential solutions. We con-
clude that landscape transcriptomics has great promise for addressing fundamental 
questions in organismal biology, ecology, and evolution, while providing tools needed 
for conservation and management of species.
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2  |    KEAGY et al.

1  |  INTRODUC TION

In recent decades, advances in computation, statistics, remote 
sensing, and high- throughput molecular biology have led to the 
development of new fields of ecological research that seek to link 
fine- scale mechanisms with large scale processes and patterns (e.g., 
Buckley et al., 2010; Fisher et al., 2018; Heffernan et al., 2014; Lasky 
et al., 2020). In particular, landscape genomics has enabled ecologi-
cal study of demographic history (Rougemont & Bernatchez, 2018), 
gene flow (Grummer et al., 2019), genetic drift (Toczydlowski & 
Waller, 2019), and local adaptation (Capblancq et al., 2022; Joost 
et al., 2007; Rellstab et al., 2015) across large spatial scales, with 
important insights for species conservation (Beer et al., 2022; Di 
Santo et al., 2022; Forester et al., 2021; Hohenlohe et al., 2021; 
Shaffer et al., 2022). We use “landscape” to mean terrestrial land-
scapes as well as aquatic ones (discussed more below). Here, we 
propose that a new field of “landscape transcriptomics” is emerg-
ing that can reveal the links between genetic variation, phenotypic 
variation, and landscape- scale processes. The overall goal of land-
scape transcriptomics is to determine how patterns of gene ex-
pression across the genome link environmental variation across the 
landscape to organismal function and genetic differentiation among 
populations. Landscape transcriptomics integrates concepts from 
the fields of landscape ecology, macrosystems biology, landscape 
genomics, ecophysiology, and comparative population and ecolog-
ical transcriptomics.

Several reviews on landscape genomics have, in passing, re-
ferred to the potential for other landscape - omics approaches that 
go beyond a focus on DNA sequence variation, including using tran-
scriptomics, proteomics, and metabolomics (Balkenhol et al., 2017; 
Forester et al., 2021; Storfer et al., 2015). Although each of these 
landscape - omics approaches could advance our understanding of 
population responses to landscape- level processes, in this paper, we 
argue that transcriptomics provides us with a wealth of unique in-
formation to do this (Figures 1 and 2), while presenting some distinct 
challenges (Figure 3). Moreover, techniques for transcriptomics have 
been developed to be high- throughput, standardized, and readily 
applied to a diversity of organisms, which makes this approach more 
accessible than some other - omics approaches.

Transcriptomics is the study of the transcriptome –  or the collec-
tion of RNA transcripts present in a given tissue of an organism at the 
time the sample is collected. For landscape transcriptomics, there are 
several classes of RNA molecules of potential interest that could be 
targeted with different techniques. These include messenger RNA 
(mRNA) that are typically transcribed into proteins, and various small 
RNAs (miRNA, piRNA, siRNA, etc.; Chen & Rechavi, 2022), often in-
volved in gene regulation. Contemporary transcriptomic approaches 
use high- throughput sequencing technology to obtain sequence 
data that is converted to quantitative gene expression data (Conesa 
et al., 2016; Todd et al., 2016; Wang et al., 2009); as such, there is a 
readout of how the genome reacted in the evolutionary past (via dif-
ferences in sequence reflecting response to past selection) as well as 
the organismal past and present (via differences in identity and mag-
nitude of gene expression reflecting prior experience and current 
conditions). Gene expression is the first phenotype, the precursor 
to all other phenotypic variation, and thus transcriptomes provide 
a unique opportunity to establish links between functional genetic 
variation and environmental heterogeneity in time and/or space, and 
their associated phenotypic response.

The field of landscape transcriptomics is now poised to trans-
form how we approach ecology, evolution, and conservation for 
three reasons.

First, the opportunity is now. Two decades ago, Manel et al. (2003) 
laid the foundations of landscape genetics, which has evolved into 
landscape genomics (Balkenhol et al., 2017; Bragg et al., 2015; 
Grummer et al., 2019; Joost et al., 2007; Manel & Holderegger, 2013), 
integrating the use of genetic markers with landscape- level pro-
cesses. Since then, molecular tools and sequencing technologies 
have advanced at amazing speed allowing interrogation of sequence 
variation across the entire genome. These advances have enabled 
researchers to uncover the molecular mechanisms underlying eco-
logical and evolutionary responses within both model and non- 
model organisms (e.g., Ferrero- Serrano & Assmann, 2019; Pfeifer 
et al., 2018; Sork et al., 2013). Leveraging transcriptomes provides 
the opportunity to integrate functional mechanisms with landscape- 
level processes. The cost of RNAseq library prep and sequencing 
have decreased to <$200 a sample, and 3′ sequencing approaches 
(Lohman et al., 2016; Ma et al., 2019; Meyer et al., 2011) allow 

F I G U R E  1  Information contained in transcriptome data collected from multiple populations across a landscape. (a) Gene expression levels 
may (or may not) vary between populations, (b) gene networks (inferred from correlations between different genes in their expression) may 
vary between populations, and/or (c) the sequence itself may vary between populations (Lopez- Maestre et al., 2016; Piskol et al., 2013). 
Note that there could be biases in SNPs identified through transcriptome data compared to assumed “noncoding” DNA.

(a) (b) (c)
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    |  3KEAGY et al.

sample library preparation and sequencing for <$100 a sample, with 
prices continuing to fall. Thus, it is now financially feasible to con-
duct large- scale sampling of transcriptomes (i.e., hundreds of indi-
viduals) across a landscape.

Second, wild populations matter. Sampling individual transcrip-
tomes in the wild across environmental gradients is not only techni-
cally feasible, but also critical for linking responses occurring at the 
cellular level to population, community, and ecosystem- level dynam-
ics (Alvarez et al., 2015). The multitude of interacting stressors in 
nature (e.g., thermal, contaminants, biotic interactions, nutritional) 
suggests that sampling wild populations is fundamental to under-
standing how species respond to changing environments. Although 
sampling wild populations can make inferences of causal drivers 
difficult compared with controlled laboratory or mesocosm exper-
iments, these experiments are often restricted to treatments that 
could miss important causal or interacting environmental factors. 
While the landscape transcriptomic approach explicitly involves 

collection of samples from across a landscape, in practice we sug-
gest that complementing studies of transcriptomes from natural 
landscapes with controlled experiments (whether in the field, lab-
oratory, or mesocosm) can provide a powerful approach for making 
inferences across multiple, often correlated, environmental axes.

Third, time is of the essence. Climate change and other anthro-
pogenic disturbances are accelerating, impacting species' distri-
butions, connectivity, and extinction risk (Barbarossa et al., 2021; 
Hughes, 2000; Hughes et al., 2018; Su et al., 2021; Telwala 
et al., 2013; Wagner et al., 2021; Walther et al., 2002). For some 
species of conservation concern, there may be few alternatives to 
sampling wild populations if we are to understand the evolution of 
adaptive phenotypes and their response to stressors. Fortunately, 
in many cases, transcriptomics can be performed using nonlethal 
sampling. Landscape transcriptomics thus provides an ability to es-
tablish mechanistic understanding of response to complex environ-
ments that may be used in predictive models for integration across 

F I G U R E  2  Inferring patterns from landscape scale transcriptomic data. The landscape transcriptomic approach involves sampling multiple 
locations. In this hypothetical example, butterflies are sampled from paired forested and meadow sites across a latitudinal transect in the 
eastern US. For simplicity, we then show hypothetical data for two of these paired sites (replicates), although additional replication would 
add power and make it easier to determine genes that are consistently associated with habitat differences (environmental main effect, 
E). Specifically, we show hypothetical gene expression data for three individuals from each population (note in practice, thousands of 
transcripts would be present in each transcriptome). Using a statistical model in which gene expression is predicted by environment (habitat 
comparison), replicate (the paired sites indicated by brown circles), and the interaction between the two (with population identity as a 
random effect or otherwise blocked), we would expect certain categories of genes to be present: (1) genes that are differentially expressed 
by habitat, (2) genes that are differentially expressed by replicate, (3) genes that are differentially expressed by population, and (4) genes that 
do not fall into these categories.

F I G U R E  3  Challenges with transcriptomic data. (a) Timing. Gene expression has a time course that can vary by gene. In fact, expression 
of some genes may affect expression of other genes in a stepwise fashion –  providing the mechanistic basis for gene networks. Therefore, 
when sampling occurs relative to an environmental stressor (yellow lightning bolt) can affect the patterns found. Gene expression levels are 
represented as a heatmap. (b) Tissue specificity. Different tissues will express different sets of genes and at different levels due to metabolic, 
physiologic, and internal environmental differences between them. Hypothetical gene expression data from three commonly assessed 
tissues in fishes are shown represented as a heatmap.

(a) (b)
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4  |    KEAGY et al.

scales of biodiversity (e.g., Bay et al., 2017). Information gained from 
such studies can be used to inform policy, conservation, and natural 
resource management decision- making that is increasingly needed 
at a landscape- scale.

2  |  FUNDAMENTAL QUESTIONS 
ADDRESSED BY L ANDSC APE 
TR ANSCRIPTOMIC S

Landscape transcriptomics is uniquely positioned to answer an array 
of questions important to ecologists, physiologists, evolutionary 
biologists, and conservation biologists. We emphasize the use of 
landscape- scale observational transcriptome sampling with each 
of these questions but encourage complementary experimental 
approaches for validation and mechanistic interrogation. The 
questions are presented as discrete entities for clarity, but their 
integration is expected in practice.

1. How does expression across the genome (transcriptome) change 
across environmental gradients?

2. How do populations differ in their transcriptomic response to 
environmental gradients?

3. How can an understanding of the relationship between the 
environment and the transcriptome be used for management or 
conservation of target populations or species?

In addition to exploring how landscape transcriptomics can in-
form these questions, we provide a general workflow for a landscape 
transcriptomic study in Box 1 and explore statistical considerations 
for analysis of landscape transcriptomic data in Box 2.

2.1  |  How does expression across the genome 
(transcriptome) change across environmental 
gradients?

One goal of landscape ecology has been to understand how fea-
tures of the environment influence the evolution and distribution 
of species (Turner, 1989). Landscape transcriptomics integrates 
the ecological and spatial contexts of landscape ecology with 
functional genomics and ecophysiology to provide a mechanis-
tic understanding of factors underlying short-  and long- term re-
sponses to biotic and abiotic factors. Abiotic factors, including 
weather (encompassing temperature, precipitation, light), habitat 
structure (which can mediate the effects of weather, influence nu-
trient availability, etc.), and presence of contaminants (emerging 
and legacy chemicals) shape the distributions of populations based 
on their tolerance of these environmental factors. Biotic factors 
such as availability of food, predators, competitors, and disease 
are also often associated with landscape features. Thus, interac-
tions between biotic factors, abiotic factors, and organismal gene 
expression patterns are expected to be complex. Identification 

of differentially expressed genes, functional groups, and/or co-
expression networks offers great promise for providing deeper 
insight into the molecular mechanisms underlying physiological 
response across spatial contexts with application to higher or-
ders of biodiversity across space and time (sensu e.g., Whitham 
et al., 2006).

There are examples of smaller- scale transcriptomic studies that 
point to the potential of scaling up to larger landscape- scale studies 
(i.e., the landscape transcriptomic approach). For example, a study 
in great tits, Parus major, found distinct differences between rural 
and urban birds in expression of >300 genes in liver and blood tis-
sues, despite small sample sizes (6 rural males and 6 urban males, 
1 site each, Watson et al., 2017). Specifically, urban birds upregu-
lated genes involved in adaptive immune response, detoxification, 
and lipid metabolism. In the declining bumble bee, Bombus terricola, 
comparison of gene expression between foraging workers collected 
from agricultural sites (n = 18 workers, 6 sites) with those collected 
from nonagricultural sites (n = 12 workers, 4 sites) identified tran-
scriptome differences consistent with exposure to pesticides and 
pathogens in agricultural sites (Tsvetkov et al., 2021). Thus, the tran-
scriptomes of bees in agricultural landscapes suggested they were 
exposed more than bees in nonagricultural sites to fitness- reducing 
agents (pesticides and pathogens), highlighting a tool for efficiently 
interrogating wild bee health (see also Box 3). A study of transcrip-
tomes from the parasitic plant, Striga hermonthica, found unique 
expression patterns dependent on the biotic environmental factor 
of current host, where host varies across an agricultural landscape 
(maize = 3 sites or sorghum = 11 sites, 1 pool for each of two tissues 
from each site, Lopez et al., 2019). By increasing replicates of the 
environmental gradient of interest and choosing sites in a way that 
breaks correlations between the environmental variable of interest 
and other nuisance variables, the landscape transcriptomic approach 
could increase the inferential ability of these studies.

Where replicate environmental gradients are sampled, and a re-
lationship between the focal environmental variation and gene ex-
pression is observed, this provides evidence that gene expression is 
dependent on the environmental factor of interest (e.g., habitat type 
in Figure 2). A number of critical questions relevant to finding such 
a statistical environment main effect can be answered, especially 
when individuals within a replicate are closely related (in the ideal 
case, clones), thus avoiding confounding genotype and environment. 
For example, what genes specifically have expression levels associ-
ated with the environmental variation of interest? Do these genes 
share similar functions? Does our knowledge of molecular physiol-
ogy and systems biology allow us to infer how changes across the 
transcriptome work together to generate the physiological and 
whole- organismal responses to the environment we observe? Are 
associations between gene expression and environmental varia-
tion seen across the whole transcriptome, suggesting a dramatic 
range of phenotypes respond, or are they narrower and modular, 
suggesting a specific subset of traits is responding? While assessing 
transcriptomes across a landscape offers a powerful avenue to ad-
dressing these questions, even more can be learned by incorporating 
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    |  5KEAGY et al.

BOX 1 Considerations for designing and conducting a landscape transcriptomic study

Collecting and analysing transcriptomes from across a landscape will not be trivial and careful decisions will need to be made each 
step of the way from study conception to study completion. Here, we highlight considerations for designing and conducting a land-
scape transcriptomic study. For basic information on how to conduct transcriptomics, the reader is encouraged to examine other re-
views on that topic (Alvarez et al., 2015; Chung et al., 2021; Conesa et al., 2016; Lowe et al., 2017; Stark et al., 2019; Todd et al., 2016; 
Wolf, 2013).

1. Define study question(s) and priorities, with special attention for the need for statistical power in the face of likely high variance in 
gene expression and potential trade- offs between different study questions. The intended statistical analysis (point 5b) should be 
carefully considered now to inform sampling decisions (point 2).

2. Study design and field sampling. Replicated transects or paired site selection allow for more controlled variance than a random 
design, which may result in multiple intercorrelated environmental variables. Whether or not to pool samples is an important 
consideration and there is some disagreement on its utility (Alvarez et al., 2015; Rajkumar et al., 2015; Takele Assefa et al., 2020; 
Todd et al., 2016). Pooling increases the amount of RNA available, homogenizes within- site variance, and is a cost- effective 
strategy to increase population sampling and environmental gradient replicates. Pooling, however, will de- emphasize genes with 
lower average expression and individual variation may be important for the study question or follow- up questions (e.g., associating 
gene expression differences with sequence differences). Consider extraneous sources of variation, including temporal variation, 
temperature, humidity, or light intensity as well as biological variables like sex, reproductive status, or age class/developmental 
stage and either standardize, stratify, or record these variables as covariates. Consider nonlethal sampling approaches. Use a 
sampling method that ensures rapid stabilization of tissue samples to avoid transcriptional changes due to collection or handling 
stress.

3. RNA extraction. The ideal homogenization and extraction procedure will depend on the particular sample tissue and quantity. 
Because landscape transcriptomics will tend to involve many samples, adequate randomization of samples included in each 
extraction batch will be necessary to not confound technical error with other sources of variation.

4. Generate sequencing libraries and sequence. This is an area that is undergoing great technical improvement (Stark et al., 2019). An 
important consideration here is the particular sequencing technology to be used (e.g., short or long reads, single- end or paired- 
end, RNAseq or 3′seq) as this affects both library preparation and subsequent inference. The other important consideration is 
sequencing depth as greater depth enables more precise capture of genes with lower expression as well as more accurate gene 
expression inferences, but at a greater financial cost that likely sacrifices replicate numbers. The sequencing depth could be 
optimized after an initial pilot study by in silico subsampling to make saturation curves.

5. Bioinformatics
a. Counting transcripts. There are many options to get from sequencing data to inferred counts of transcribed genes and other re-

views have compared some of them (Chung et al., 2021; Conesa et al., 2016; Stark et al., 2019). Which tool to use depends in part 
on whether there is a reference transcriptome or genome available. Alternatively, a reference transcriptome could be assembled 
de novo from the data. Consider whether the reference represents population variation adequately so that read counts do not 
overreflect sequence divergence from the reference.

b. Statistical analysis. See Box 2 for a more in- depth discussion of some statistical considerations for analysing counts of transcripts.
c. Functional interpretation. After genes have been identified in statistical analysis, characterizing their potential function using gene 

annotations and gene ontology terms is often desired to connect change in gene expression with a potential phenotypic effect. 
However, gene ontology databases are often underdeveloped for nonmodel systems (Courtier- Orgogozo et al., 2020).

d. Consider other - omics data. Pairing transcriptomic data with whole genome sequencing data would allow interrogation of base- pair 
changes linked to differences in transcription (eQTLs) or assessing signatures of past selection on implicated genes or putative 
regulatory regions for those genes. Similarly, transcriptomic data could be paired with information on chromatin accessibility (e.g., 
ATACseq) or methylation to understand environmental regulation of gene expression.

6. Conduct follow- up experiments. Identification of putative sources of variation in gene expression can lead to more controlled 
follow- up designs such as greenhouse or mesocosm experiments for confirmation of hypothesized causal links between envi-
ronmental variation and gene expression. Under these scenarios, manipulation of the expression of focal genes themselves using 
RNAi, viral- mediated transfer of RNA, CRISPER/Cas, or related technologies could also be possible.
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6  |    KEAGY et al.

BOX 2 Statistical considerations for landscape transcriptomics

As described in the main text, landscape transcriptomic studies can potentially address several key questions. We illustrate with a toy 
example in Figure 2 how gene expression data collected across environmental gradients in a replicate manner can allow for descrip-
tion of consistent relationships between environmental variation and gene expression (Question 1) and generate hypotheses about 
population differences in gene expression response to the environment (Question 2), which will aid development of applied use of 
gene expression for conservation and management (Question 3). The data represented in Figure 2 can be statistically modelled as 
expression of a given gene being predicted by the fixed effects of the environmental variable of interest, the replicate of the envi-
ronmental gradient, and the interaction between the two, with other fixed effects to incorporate covariates and random effects to 
incorporate other sources of variance (e.g., a genetic relatedness matrix, or other matrices capturing other forms of autocorrelation). 
This model will be more complex if a repeated measures design is implemented in which populations (or individuals) are sampled at 
more than one time point. As we describe below, tools developed for assessing differential gene expression are not necessarily ad-
equate for analysing this model and we suggest several solutions in addition to calling for further tool development.

Transcriptomic data have some features which current tools for assessing differential gene expression are designed to deal with effectively. 
For example, transcriptomic data consist of many more genes (tens of thousands) than individual samples (tens to hundreds). Because 
gene expression data are based on counts of reads, the resulting data are non- normal and the variance depends positively on the mean. 
These data are also potentially zero- inflated. Commonly, expression of individual genes is modelled one- by- one, increasing the potential 
for Type 1 error, and so tools implement strategies for correcting for that issue. Experimental transcriptomic studies typically involved 
study designs with few factors (often one or two) with few levels and therefore relatively simple design matrices (which is why differential 
expression of genes is discussed, as a control is compared to an experimental group or one level of a treatment is compared to another). 
Current popular statistical packages for gene expression data (e.g., DESeq2: Love et al., 2014, edgeR: Robinson et al., 2010, lima- voom: Law 
et al., 2014) have a similar workflow but differ in the details. In general, these tools first normalize the count data (i.e., adjust for differences 
between samples in sequencing depth; they might also account for gene length differences and other biases that occur with some se-
quencing libraries but not others), transform it to be appropriate for linear modelling through either a link function (gene expression data is 
similar to an overdispersed Poisson distribution, making negative binomial models and a logarithmic link function a common choice) or ap-
plying weights, and then apply a linear model. To deal with the typically small number of biological replicates, especially with respect to the 
number of genes quantified, analyses of gene expression estimate within- gene variance using data for all or most genes (Todd et al., 2016).

One limitation of these current tools for analysing gene expression data is the inability to have mixed effects models with random 
effects. For example, although lima- voom has a method for approximating a single random effects variable (the duplicateCorrelation 
function), DESeq2 and edgeR do not have this capability, and none of these tools allow for more complex nested random- effects 
designs or modelling of autocorrelation that likely occurs with landscape transcriptomic studies. For example, sequence information 
from the transcriptome itself or from ancillary genomic data would make it possible to build a matrix of similarity in genotype and 
thus control for relatedness by incorporating this matrix into the statistical model. Including relatedness in the model could lead to 
stronger inferences about genetic, environmental, and gene × environment interactive effects. Therefore, we encourage additional 
work on improving the statistical workflow. Until then, one could normalize counts from a bioinformatic pipeline using their favourite 
gene expression analysis package and then use those counts in the statistical modelling package of their choice whether that is a 
general linear mixed effects modelling package or a Bayesian modelling package, properly accounting for multiple testing. This will 
be computationally intensive and so access to a high- performance computing cluster will be helpful.

Another feature of gene expression data is that the expression level of one gene is often correlated with the level of expression of 
other genes. One common approach to account for this and to explore the functional relevance of this coexpression is to cluster 
genes into groups based on correlated expression patterns. Summary statistics from these techniques (e.g., eigengene expression 
from WGCNA, Langfelder & Horvath, 2008) can then be used with any standard statistical modelling approach.

For landscape transcriptomics, a univariate gene- by- gene or module- by- module analysis is a good starting point. However, more 
flexible modelling approaches will likely be advantageous to accommodate the complex data structures that result from sampling 
organisms across space and time at broad spatial extents. Specifically, the use of multivariate statistical models that explicitly account 
for the dependency among genes and potential spatiotemporal or genetic dependencies will be advantageous. One such approach 
that may be useful for landscape transcriptomic data is generalized joint attribute modelling (gjam, Clark et al., 2017). Although 
motivated by the challenges in modelling species distributions, gjam can accommodate the data structures likely generated through 
landscape transcriptomic studies. Importantly, to borrow (and modify) language from Clark et al. (2017), gjam can accommodate the 
“big gene, small n” problem in transcriptomics, where the number of genes we are interested in modelling may exceed n by orders 
of magnitude. Certainly, there are other modelling approaches that could be applied to data generated by landscape transcriptomic 
studies, but the rigorous analysis of such data may require the application of new methods or the development of novel approaches.
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    |  7KEAGY et al.

BOX 3 Potential for landscape transcriptomics to inform conservation and management

Landscape transcriptomics can be used to identify populations that are experiencing stress, allowing conservationists to target these 
sites to reduce levels of these stressors. Alternatively, by comparing populations that are experiencing a particular biotic or abiotic 
stressor, landscape transcriptomics can identify populations that are more resilient to this stress, which can be used to identify 
populations for assisted migration. Finally, by considering genome- wide responses to a given stressor, landscape transcriptomics 
may reveal unexpected molecular and physiological pathways that respond to a given stressor, which can be leveraged to improve 
landscape conditions (such as availability of a particular nutrient) to mitigate the impacts of particular stressors. Below are examples 
in which these approaches have been or could be used in salmon, bees, corals, and plants.

Salmonid management

The development of transcriptional biomarkers, especially those that can be assessed nonlethally, have great promise for a variety of 
conservation and aquaculture applications. In fact, it has been argued that such nonlethal sampling for transcriptomics should be rou-
tinely used to study response to stressors in wild fishes, including thermal stress, salinity, disease, and contaminants (Connon et al., 2018; 
Jeffries et al., 2021; Semeniuk et al., 2022). For example, increasing water temperature represents one of the primary threats to cold 
water stenotherms such as salmonids and identifying thermal stress biomarkers is a conservation priority (Akbarzadeh et al., 2018). 
Houde et al. (2019) identified stressor- specific gene expression biomarkers in Chinook salmon, Oncorhynchus tshawytscha, related to sa-
linity and temperature in a multi- stressor experimental design. Using the gill transcriptome, Jeffries et al. (2012) were experimentally able 
to identify physiological mechanisms involved in mortality and thermal stress in wild- caught sockeye salmon, O. nerka. Such laboratory 
studies provide a strong scientific knowledge base for applying a landscape transcriptomic approach across multiple wild populations.

In addition, transcriptional response could identify adaptive genetic variants to be utilized in breeding or translocation efforts (Hayes & 
Banish, 2017). For example, brook trout, Salvenlinus fontinalis, have a narrow thermal window in which they can succeed (optimal tempera-
ture for growth = 12– 16°C; upper critical maximum temperature = 28– 31°C). One possible management approach would be to introduce 
genotypes from a donor population that are adapted to warmer streams northward as streams warm from climate change. However, iden-
tifying suitable populations to move is challenging as it is not always clear that just because a population is currently in a location it is locally 
adapted. There are often time lags in an environment shifting outside the range at which a population is optimally adapted and that popu-
lation becoming extirpated. Thus, distinguishing between populations that are surviving vs. thriving is critical for translocation efforts.

Bee conservation

Bees are critical pollinators of flowering plants in both agricultural and natural landscapes (Ollerton et al., 2011). However, globally, 
populations of bees are showing significant population declines (Cameron et al., 2011; Soroye et al., 2020). Different factors have 
been attributed to bee declines, including pathogens, pesticides, poor nutrition due to reduced availability of flowering plants, and 
climate change (Wagner et al., 2021). Prioritizing conservation efforts is often difficult and based on incomplete information.

A priori knowledge of the pathways induced by specific environmental stressors from laboratory- based experiments could be used to 
develop libraries of transcriptional stress responses which could be evaluated against observations in nature. In this way, these libraries 
of transcriptional responses may be used to infer landscape- specific stressors in more complex environments. Such an approach 
would allow for ecologically defined functional categories of genes, rather than relying only on genes identified according to their 
annotated molecular function or known role in a model organism. Indeed, studies in honey bees demonstrated that transcriptional 
responses to pathogens and parasites included many more genes than canonical immune response genes (Richard et al., 2012), and 
similarly, responses to pesticides included many more genes than those involved in detoxification processes (Schmehl et al., 2014).

Sampling bees in the field and evaluating their transcriptome profiles can thus be used to identify populations that are experiencing spe-
cific stressors or combinations of stressors (Tsvetkov et al., 2021), which would allow conservationists to target those sites for additional 
management. Alternatively, if certain sites are known to have biotic and abiotic stressors, the transcriptomes of populations at these 
different sites could be evaluated to determine if some populations are more resilient to these stressors (i.e., not showing an elevated 
stress response in a stressful environment), and thus could be used for assisted migration. Finally, transcriptomic studies under controlled 
conditions or from field- collected samples could determine how different biotic and abiotic factors may interact to reduce the impacts 
of a particular stressor, which could then inform management practices. For example, honey bees exposed to pesticides showed altered 
expression of genes related to metabolism and nutrition (Schmehl et al., 2014), which led to studies demonstrating that bees fed a pol-
len diet with a specific macronutrient ratio are more resilient to pesticide stress, and thus selecting species with pollen in this nutritional 
range for planting may improve fitness of bees in areas where they are consistently exposed to pesticide stress (Crone & Grozinger, 2021).

(Continues)
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8  |    KEAGY et al.

additional information and utilizing more complex study designs as 
explained in the next section.

2.2  |  How do populations differ in their 
transcriptomic response to environmental gradients?

Above, we described how landscape transcriptomic studies, designed 
to evaluate populations across replicate gradients, can identify 
genes that are differentially expressed on average across replicates 
based on environmental variation (a statistical environment main ef-
fect, Figure 2). However, researchers are also interested in popula-
tion differences in environmental response for various reasons (Des 
Marais et al., 2013; Saltz et al., 2018), including understanding how 
repeatable evolution is (Birkeland et al., 2022), what evolutionary 
processes maintain variation, and the role for plasticity in adaptive 
evolution (Anderson et al., 2012; Kingsolver & Buckley, 2017). In ad-
dition, these differences in response are relevant to understanding 
important applied questions such as the potential consequences of 
assisted migration (Chen et al., 2022) and the predicted differences 
between populations or species in response to habitat and/or cli-
mate change (Oomen & Hutchings, 2022).

In fact, we expect genes could be categorized into several classes 
based on whether their expression was correlated with the environ-
ment, the replicate, the population, or none of these (Figure 2). We 

expect one important area of future research will be to determine 
whether there are theoretical predictions for how the relative pro-
portion of these different classes of genes might vary under dif-
ferent scenarios. Combining landscape transcriptomic data with 
landscape genomic data or the sequence data contained in the tran-
scriptome (Figure 1) could allow characterization of the genetic re-
latedness between individuals and populations which could further 
aid interpretation of landscape transcriptomic data. As an extreme 
example, in Figure 2 if butterflies from a given geographic site were 
not genetically differentiated between habitats, but rather com-
pletely admixed, some of the genes that show population specific 
responses may actually be indicative of different genomic reaction 
norms, a genotype- by- environment (GxE) interaction. Landscape 
transcriptomics has the potential for establishing a hypothesis- 
testing framework for the relationship between functional genetic 
variation and the environment that is essential for species conserva-
tion and management.

Populations may adapt to stressors either by changing mean 
expression (baseline expression) or transcriptional response (slope, 
transcriptional plasticity) to environmental fluctuations (Oomen & 
Hutchings, 2022; Rivera et al., 2021). Therefore, transcriptional plas-
ticity itself may be a key trait under selection (Kenkel & Matz, 2017; 
Lasky et al., 2014; Logan & Cox, 2020), as it is a mechanistic basis 
for plasticity of other phenotypes. This flexible nature of transcrip-
tomes creates novel challenges compared to DNA sequencing data 

Corals and climate change

Climate warming has led to declines in coral populations globally, with coral reefs projected to disappear by 2030– 2050 with no 
adaptation (Donner et al., 2005). As foundational species, like trees, coral loss could lead to the collapse of entire ecosystems. Reef 
restoration efforts and human interventions are currently underway to rebuild reefs decimated by hurricanes, disease, and marine 
heatwaves (National Academies of Sciences, Engineering, and Medicine, 2019). These efforts require the identification of stress re-
sistant individuals that can withstand future conditions. Landscape transcriptomics is proving to be a useful technique for identifying 
heat tolerant coral individuals and populations. For example, baseline gene expression across locations has been used to identify 
coral gene modules predictive of future heat tolerance in American Samoa (Naugle et al., 2021) and/or recovery following bleaching 
(Thomas et al., 2018). Surveys of transcriptomic resilience (defined as return to baseline or control levels of gene expression, Franssen 
et al., 2011; Rivera et al., 2021) are also underway on field- collected corals worldwide (e.g., Voolstra et al., 2021) to determine the 
generality and limitations of transcriptomic markers for conservation purposes across populations.

Plant breeding

Plant breeding has historically focused on selection for yield under optimum field conditions. In the face of climate change and the 
need to reduce reliance on agricultural inputs, breeding programs and the research community are giving greater attention to crop 
stability –  the capacity to maintain productivity under changing or stressful environmental conditions. Transcriptomic approaches 
have been used extensively, typically in the greenhouse or growth chamber, to describe crop molecular responses to a broad range of 
stressors such as drought, extremes of temperature, salinity, nutrient deficiency, and pathogen attack (e.g., Secco et al., 2013), provid-
ing potential libraries of transcriptomic stress response. Transcriptome data from agricultural fields across large landscape scales could 
provide one more layer of information to help understand why certain varieties tolerate given stressors better than others, and, impor-
tantly, to predict which associated genotypes will show superior tolerance further on in a breeding programme. Where such studies 
are applied to traditional locally adapted varieties in their native environments, there are strong parallels with the goals of landscape 
transcriptomics as applied to wild populations (e.g., Hu et al., 2022).

BOX 3 (Continued)
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    |  9KEAGY et al.

(see more below). Careful sampling across time (Aubin- Horth & 
Renn, 2009) could reveal such expression plasticity (e.g., sampling 
populations repeatedly across a heat wave). However, a substantial 
portion of transcriptomic response to environment may be maladap-
tive and indicate symptoms of a failure to maintain homeostasis, 
in which case additional information from experimental evolution 
(Ghalambor et al., 2015) or an understanding of the functional role 
of the differentially expressed genes is required.

Experiments could be used to test hypotheses generated from 
landscape transcriptomic studies. For example, one could determine 
whether apparent G × E has an alternative explanation such as geno-
types within replicates segregating to particular environments –  that 
is, a correlation between genotype and environment generating spu-
rious genetic associations with environmentally- responsive pheno-
types (Saltz et al., 2018). Specifically, one could (1) bring populations 
into the laboratory for controlled comparisons (e.g., stress tests, 
Logan & Cox, 2020), or (2) conduct reciprocal transplant or com-
mon garden experiments (Gould et al., 2018; Kenkel & Matz, 2017; 
Oomen & Hutchings, 2022; Palumbi et al., 2014). Admittedly these 
types of experiments will be more logistically difficult than the cor-
relational landscape transcriptomic approach described earlier, but 
they would allow more definitive parsing of G, E, and G × E effects.

Studies with the green anole, Anolis carolinensis, used a combi-
nation of a single latitudinal transect and laboratory stress tests to 
reveal mechanistic details of the evolution of thermal tolerance in 
ectotherms. Campbell- Staton et al. (2017) collected anoles across 
a latitudinal transect in Texas both before and after a severe cold 
event (polar vortex), brought them into the laboratory, and tested 
gene expression in response to different acclimation temperatures. 
This study implicated temperature as the key abiotic factor driving 
adaptive differentiation across the latitudinal cline. In particular, 
coexpression modules that distinguished the populations across 
the latitudinal gradient showed shifts in expression in the south-
ernmost population after the polar vortex that converged upon 
patterns more typical of northern populations (consistent with a 
phenotypic shift in cold tolerance). Further work with animals col-
lected from this latitudinal transect revealed that cold tolerance is 
driven by physiological adaptations that enable more efficient ox-
ygen consumption (Campbell- Staton et al., 2018). Thus by pairing 
physiological measurements with tissue- specific gene expression 
analyses, the authors were able to show that while temperature is 
a key stressor driving the evolution of A. carolinensis as populations 
move north (as previously established, Campbell- Staton et al., 2016), 
more specifically it is respiration that was under selection. Recently, 
the nonmodel A. cristellatus was examined with a similar approach 
conducting experiments on anoles in the laboratory collected from 
four replicated pairs of forest versus urban populations (Campbell- 
Staton et al., 2020), again showing that temperature is the key factor 
driving gene expression differences in populations across heteroge-
neous environments.

Finally, combining landscape transcriptomic data with land-
scape genomic data is a potentially powerful approach for un-
derstanding the evolution of gene expression. For example, 

it has been suggested that cis regulatory mutations are more 
likely to underlie adaptation than amino acid changes because of 
smaller effect size and a reduced chance of negative pleiotropy 
(Wray, 2007). Indeed, there are examples of local adaptation that 
use cis regulatory mutations (e.g., EDA in stickleback fish, O'Brown 
et al., 2015). However, there is often substantial gene flow across 
landscapes, which can swamp small- effect, locally adaptive al-
leles. This suggests that only larger effect variants will be stably 
maintained (Yeaman & Whitlock, 2011). In this case, expression 
may alternatively evolve due to changes in regulators (trans muta-
tion) such as transcription factors that control expression of many 
genes (e.g., CBF2 in Arabidopsis, Des Marais et al., 2017; Monroe 
et al., 2016; Novillo et al., 2007). Such an integration of transcrip-
tomic and genomic data across a single latitudinal gradient re-
vealed rapid evolution of the relevant gene regulatory pathways 
in anoles (Campbell- Staton et al., 2017).

2.3  |  How can an understanding of the relationship 
between the environment and the transcriptome 
be used for management or conservation of target 
populations or species?

Quantifying the impact of the potential stressors associated with 
complex environments is a fundamental aim of organismal biology, 
with implications for species management and conservation (Box 3). 
Environmental stressors include abiotic and biotic factors in natural 
and human- mediated environments, such as exposure to pests or 
pathogens, extreme climatic events, pollutants, and nutrient limita-
tions (Killen et al., 2013). The duration of exposure to environmen-
tal stressors need not be long to cause significant and long- term 
effects to organismal health and function, and transcriptomes may 
provide an efficient evaluation of organismal response to the envi-
ronment. For example, exposure to an environmental contaminant 
at one point in life, such as a pesticide, may trigger transcriptional 
changes that lead to developmental, physiological, or behavioural 
changes that impact the future health, longevity, and fitness of the 
organism. Yet while the pesticide itself may no longer be detected 
in the organism or environment when these changes are realized 
(Sponsler et al., 2019), the genetic networks underlying biological 
response may have been modified. Finally, exposure to stressors can 
influence gene expression in later generations after the stress has 
ended through a variety of mechanisms (Duempelmann et al., 2020; 
Liberman et al., 2019).

Landscape transcriptomics provides an efficient method to 
screen wild- caught specimens' response to acute, chronic, or prior 
exposure to a stressor or combination of stressors. For example, glu-
cocorticoids in vertebrate animals (involved in, among other things, 
the stress response) can directly affect gene expression because 
glucocorticoid receptors act as transcription factors for diverse gene 
networks (Weikum et al., 2017). If the transcriptional responses to 
particular stressors are well- defined through prior work (including 
studies proposed in number 2 above), landscape transcriptomics 
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10  |    KEAGY et al.

can allow us to identify what stressors exist (or existed) in a par-
ticular location and potentially map these stressors across larger 
geographic regions (Connon et al., 2018; Jeffries et al., 2021; 
Semeniuk et al., 2022). Landscape transcriptomics potentially allows 
monitoring exposure to multiple and diverse stressors, simultane-
ously. Where tissue can be sampled in a nonlethal way (e.g., leaves 
in plants, gill tissue in fish, blood in multiple organisms), repeated 
measures of transcriptomes may provide an ability to differentiate 
the type of stress response (acute vs. chronic) that organisms ex-
hibit. This approach might be logistically simpler than arrays of en-
vironmental monitoring systems and is increasingly biologically and 
ecologically relevant as transcriptional responses reflect immediate 
functional change associated with stress exposure. Thus, landscape 
transcriptomics identifies the environmental stressor, quantifies the 
response in the organism to the stress, and allows us to assess the 
long- term consequences of exposure to the stress. In summary, tran-
scriptomic signatures can be used to identify where to focus man-
agement and conservation strategies. We give specific examples of 
these opportunities in Box 3.

3  |  CHALLENGES AND SOLUTIONS

3.1  |  Confounding variables in field sampling

While landscape transcriptomics can address a variety of ques-
tions, each with their own considerations, there are a number of 
general challenges facing collection, analysis, and interpretation of 
transcriptome- level data based on samples from natural environ-
ments. Whether interested in documenting how transcriptomes vary 
with specific conditions, which environmental conditions most alter 
transcriptomes, identifying genes involved in adaptive phenotypes, 
or using transcriptional data as bioindicators, there is an overarch-
ing problem of environmental stochasticity. In addition, a random 
selection of individuals from the environment may be influenced by 
numerous, sometimes unknown, variables. A given organism's tran-
scriptome can vary due to factors other than environmental stress-
ors, and how individual variation in transcriptomes naturally change 
in response to environmental variation over short-  and long- time 
scales is poorly understood for most organisms. For example, circa-
dian rhythms can have a large influence on transcriptional profiles 
(Bonnot et al., 2021; Prokkola & Nikinmaa, 2018, see below); in ad-
dition, developmental age (Li et al., 2016; Rahman et al., 2021), sex 
(Brivio et al., 2020; Hellmann et al., 2020), reproductive status (Niño 
et al., 2013), and immune/disease condition (Doublet et al., 2017) all 
can influence transcriptional patterns (Grozinger & Zayed, 2020). 
These factors can generate considerable variance in gene expression 
that can make it challenging to separate transcriptomic responses to 
the environment from that of other sources of individual variance.

One (partial) solution to this problem is to record extensive data 
on the potential confounding variables for inclusion in statistical 
models (e.g., weather conditions if weather is not the focus of the 
study) and to seek to control extraneous variables (e.g., time of day) 

when sampling. Statistically controlling for potential confounding 
variables will require an increase in sample size, increasing costs in 
time and money. The reason we believe these studies are feasible, 
however, is that the cost of sequencing continues to come down.

As discussed in number 2 above, populations may vary in their 
transcriptional response, and this can make detection of an aver-
age population response to the environment difficult. When possi-
ble, studies should attempt to have good replication of transects/
pairs used in environmental gradient comparisons. Quantitative 
genetics has shown there are trade- offs between increasing the 
number of additional families sampled versus sampling additional 
individuals within a family, and the resolution of these trade- offs 
depends on the particular research question. For example, when es-
timating additive genetic variance, increasing the number of families 
rather than individuals often gives better “bang- for- buck” (Lynch & 
Walsh, 1998). Similar trade- offs for landscape transcriptomic studies 
surely exist and their resolution will also depend on the research 
question. For example, if the question is about genes whose expres-
sion are most affected by a landscape variable, then sites (and rep-
licates of environmental gradients) should likely be prioritized over 
individuals within sites. However, the best approach is likely the op-
posite if the interest is primarily in gene expression variation within 
sites. Simulation studies could help define these trade- offs (Wagner 
et al., 2016). Finally, pooling samples is common, especially for small 
organisms or tissues, and these will amplify mean differences be-
tween populations and downplay individual variation. In summary, 
how best to sample for landscape transcriptomic studies is an open 
and not trivial question that will depend to a large extent on study 
question and species of interest. While such challenges have been 
covered elsewhere (e.g., Alvarez et al., 2015), we summarize some 
specific issues and considerations related to landscape transcrip-
tomics below.

3.2  |  Temporal scales of gene expression

To match temporal changes in the environment, most organisms 
have evolved biological rhythms in behaviour, physiological pro-
cesses, and regulation of gene expression (Figure 3a). Circadian 
rhythms in gene expression are broadly found across taxa, from 
prokaryotes to plants, fungi and animals, and may be particularly 
important for sessile species. For example, approximately one third 
of expressed Arabidopsis genes are known to be circadian regulated 
(Covington et al., 2008). Further, circadian rhythms can interact 
with other temporal rhythms in gene expression. Intertidal mus-
sels are known to oscillate the expression of >40% of their genes 
in response to circadian and tidal rhythms (Connor & Gracey, 2011). 
Interestingly, the majority of oscillatory genes (80%– 90%) are tied to 
circadian rhythms rather than tidal rhythms that coincide with ex-
treme exposure to temperature and desiccation stress. Reef- building 
corals are also known to modulate gene expression (thousands of 
genes) in response to seasonal temperature, the lunar cycle, and 
diurnal rhythms (Wuitchik et al., 2019). These studies highlight the 
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importance of designing experiments that include multiple time-
points and account for temporal environmental changes that may 
not be aligned across geographic regions (e.g., the timing of tides, 
phenology). Alternatively, a more cost- effective strategy would be 
to choose a single point in time and development (and tissue, see 
below) and restrict inference to that particular moment (e.g., morn-
ing temperature effects on gene expression in adult nonreproduc-
tive fish gills, or daylength effects on gene expression at midday in 
1- month old plant leaves).

3.3  |  Tissue specific responses

Another important consideration for landscape transcriptomic stud-
ies involving multicellular organisms is tissue choice. For early life 
stages or smaller organisms (e.g., arthropods, fish fry, seeds), tran-
scriptomic studies have often homogenized the whole organism 
or even pooled across individuals for practical reasons. However, 
tissue- specific differences in gene expression (Figure 3b) can be 
substantial and may differ across populations. For example, in a 
study of Atlantic killifish, Fundulus heteroclitus, 76% of metabolic 
genes were differentially expressed among brain, heart, and liver 
tissues (Whitehead & Crawford, 2005). Of these, only 31% of tissue- 
specific differences were consistent in expression among fish origi-
nating from three populations along the U.S. east coast. Even within 
a single organ, differences between cell types of that tissue can be 
substantial (Colquitt et al., 2021; Seyfferth et al., 2021). Therefore, 
it is necessary to have careful consideration of which tissue is cho-
sen and acknowledgement of the limits of inference created by that 
choice.

3.4  |  Defining spatial scale

A central feature at the heart of landscape ecology is the issue of 
scale. The term “landscape” is often understood to mean very large- 
scale geographic areas (e.g., continental). However, landscapes can 
be defined in reference to spatial heterogeneity rather than physical 
geographic distance per se (Balkenhol et al., 2017), with the scale 
of landscapes dependent on organism body size and dispersal abil-
ity. For example, a large animal moving from one edge to another 
of a 1 km2 forest plot might not experience high environmental het-
erogeneity, so this area would not constitute a landscape. On the 
other hand, this same area could be a landscape for an insect, and 
even more so for a microbe. Small features like rocks and logs will 
alter conditions of the local microenvironment for small organisms 
(e.g., temperature, light, humidity), and thus could provide gradients 
conceptually comparable to macroscale latitudinal and elevational 
ones. Given the potential to use very small areas, microbial systems 
could serve as experimentally tractable models for probing land-
scape transcriptomic questions relevant to macroscopic organisms 
at larger scales, in addition to addressing questions relevant specifi-
cally to microbes.

3.5  |  The benefits of supplementing with a 
controlled design experiment

An advantage of landscape transcriptomics is that in natural envi-
ronments, we may be more likely to detect genes that are only ex-
pressed in natural conditions. However, interpretation of results can 
be complicated by the multivariate nature of environments and lack 
of true replicates and controls. When possible, we advocate con-
sidering controlled, replicated experiments to be done either first 
or in combination with landscape transcriptomics to aid inference. 
This will be especially important when asking questions related to 
transcriptional plasticity.

4  |  CONCLUSION

What's in a name? It could be argued that because landscape tran-
scriptomics is adjacent to other currently named fields, there is no 
need for a separate label. And it turns out that “landscape tran-
scriptomics” was in fact coined >10 years ago (Hansen, 2010) and 
continues to be mentioned obliquely in some reviews of landscape 
genomics. However, we argue that there are unique strengths and 
challenges to using transcriptomics in a landscape context that call 
attention to important study design details and interpretation. By 
emphasizing the label “landscape transcriptomics” and describing 
the strengths and challenges of this approach, we hope to generate 
exciting new research effectively capitalizing on sampling transcrip-
tomes from across the landscape. We also see the great potential for 
this approach to generate tools for conservation and management 
of species.
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