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Abstract 

 The recent rapid growth of the field of data science has made available to all fields 

opportunities to leverage machine learning. Computer network traffic classification has 

traditionally been performed using static, pre-written rules that are easily made ineffective if 

changes, legitimate or not, are made to the applications or protocols underlying a particular 

category of network traffic. This paper explores the problem of network traffic classification and 

analyzes the viability of having the process performed using a multitude of classical machine 

learning techniques against significant statistical similarities between classes of network traffic 

as opposed to traditional static traffic identifiers. 

 To accomplish this, network data was captured, processed, and evaluated for 10 

application labels under the categories of video conferencing, video streaming, video gaming, 

and web browsing as described later in Table 1. Flow-based statistical features for the dataset 

were derived from the network captures in accordance with the “Flow Data Feature Creation” 

section and were analyzed against a nearest centroid, k-nearest neighbors, Gaussian naïve Bayes, 

support vector machine, decision tree, random forest, and multi-layer perceptron classifier. Tools 

and techniques broadly available to organizations and enthusiasts were used. Observations were 

made on working with network data in a machine learning context, strengths and weaknesses of 

different models on such data, and the overall efficacy of the tested models. 

 Ultimately, it was found that simple models freely available to anyone can achieve high 

accuracy, recall, and F1 scores in network traffic classification, with the best-performing model, 

random forest, having 89% accuracy, a macro average F1 score of .77, and a macro average 

recall of 76%, with the most common feature of successful classification being related to 

maximum packet sizes in a network flow.   
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SECTION 1: INTRODUCTION 

Background and Motivation 

 Applications on a computer utilize network resources on a per-port basis and are 

generally standardized in use by the Internet Assigned Numbers Authority (IANA). Thus, ports 

are the most typical identifier of an application. Prior to modern next-generation firewalls 

(NGFWs) that are capable of performing deep packet inspection (DPI) against traffic to identify 

unique traffic signatures, network traffic classification and filtering were primarily based on 

network protocol (e.g., TCP, UDP) and corresponding port numbers.  

However, port number usage, while standardized, is not mandated and can vary from 

implementation to implementation of an application. Further compounding issues, it is trivial for 

network attackers to modify the port numbers used by their tools to bypass port-based filtering 

schemes. The modern basis for interest in using machine learning and statistical modeling to 

perform network traffic classification lies in the fact that, like port numbers, there are no 

perfectly consistent identifiers of application or traffic category in regular communications. 

Instead, researchers largely seek to use machine learning to identify statistical commonalities in 

traffic and to perform classification based on these commonalities.  

The motivation behind this paper is to explore and evaluate how different machine 

learning models may be applied in network traffic classification using easily accessible tools and 

products. Where most existing literature primarily focuses on existing datasets, simple and well-

known applications, or niche aspects of the network traffic classification problem, this paper 

demonstrates the creation of a simple, realistic, recent dataset purpose-built to contain a variety 

of common modern applications in the most common categories of use. It does not seek to solve 

the decades-old problem actively being worked on by the best and brightest in industry and 
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research, but instead to illustrate and evaluate some of the existing capabilities and difficulties 

with modern, readily available solutions.  

Contributions 

 This paper contributes not by pushing the boundary of what is possible with machine 

learning, but by evaluating and elaborating on what is already commonly available to network 

administrators today. In a bulleted list, some of the contributions of this paper are that this paper:  

• Provides a replicable workflow to use machine learning on network traffic, including the 

processes of capturing network traffic, identifying traffic of interest, labeling traffic, 

extracting useful statistical features from traffic, and training models to correctly classify 

traffic 

• Provides a performance summary of common machine learning classifiers in the context 

of a network dataset with a variety of common, modern application labels 

• Identifies important features in network traffic classification for use in feature selection 

or further feature creation 

• Reveals insight into strengths, weaknesses, and nuances of different classifiers and how 

they interact with many applications varying in nature and degree of presence  

Literature Review 

 Despite its lack of regular use in enterprise networks, the concept of machine learning is 

not new to network traffic classification. In 2005, Andrew Moore and Denis Zhuev wrote what is 

still one of the most cited papers on the subject. Their research used Bayesian analysis 

techniques to achieve up to a 95% accuracy rate using traffic featuring 248 per-flow 

discriminators, including TCP port numbers. The traffic was hand-labeled by broad categories as 

opposed to individual applications (e.g., SMTP, IMAP, and POP traffic were labeled “MAIL”) 
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(2005). That same year, 2005, researchers were able to achieve an average of 86.5% accuracy in 

traffic classification using just six features: packet inter-arrival time, packet length, mean, and 

variance, flow size, and duration, notably excluding port numbers of any sort while also using 

Bayesian techniques (Zander et al). 

 More recent research improves on the performance of past research using other 

traditional, classical learning models and also explores completely novel methods. In 2013, 

researchers used a “Bag-of-Words” (BoW) model with latent semantic analysis (LSA) to create 

similar traffic clusters capable of accurately identifying applications previously unknown to a 

network (Zhang et al). In 2015, Hajjar et al. achieved relatively high recall scores using message 

size analysis of the first few messages in a given network conversation with a combination of K-

means clustering and Dempster’s EM algorithm. In 2017, researchers evaluated different models 

and algorithms including J47, random forest, k-NN, and Bayesian networks against two datasets 

and achieved the greatest accuracy (90+%) using random forest and k-NN, depending on the 

dataset and feature sets used (Yamansavascilar et al). In 2019, researchers compared the 

accuracy of multilayer perceptron, C4.5, SVM, and naïve Bayes against specific encrypted 

network applications, achieving the best results (88.29% accuracy) using C4.5 (Al-Obaidy et al).  

 The non-academic community, too, has a number of projects adjacent to or directly 

involved in using machine learning to categorize network traffic. NFStream, which will be 

discussed later, is a Python “machine learning oriented” package that seeks to “make machine 

learning approaches for network traffic management reproducible and deployable” (“NFStream: 

Flexible Network Data Analysis”, n.d.). CANIV TECH is a network analytics-as-a-service 

organization that seeks to help predict network faults, mitigate DDoS attacks, and classify 

network traffic using machine learning (CANIV TECH, n.d.). Adjacent to network traffic 
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classification, computer network equipment manufacturers also commonly tout their use of 

machine learning for network security purposes, such as Palo Alto Networks WildFire inline ML 

antivirus offering (Palo Alto Networks, n.d.). 
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SECTION 2: METHODOLOGY 

 In data science and machine learning, there is a broad process that must be performed to 

effectively create a machine learning model that can accurately classify data. That process, as 

will be laid out below, includes data collection, data preparation, modeling, and model 

evaluation. A flowchart showing the broad process of this paper from start to finish is included 

below. 

 

Figure 1: Process overview 

Data Collection 

 Broadly speaking, most computer data that travels across a network is encapsulated into 

datagrams. At different stages of travel across a network, these datagrams exhibit different 
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properties and take on different names. Most commonly, people think of network data in terms 

of “packets,” representing network data that includes application, transport, and network layer 

properties in the traditional TCP/IP stack. Because of the quantity and variety of applications and 

protocols that underlie typical network traffic, individual recorded packets only contain a limited 

number of consistent features. This most notably includes time, length, source and destination IP 

address (IPv4 or IPv6), source and destination port, protocol, and flags. Additionally, individual 

packets associated with many similar applications are often difficult to distinguish from each 

other. As an example, fundamentally, one might expect a packet related to YouTube video and 

another packet related to Vimeo video streaming to be nearly indiscernible, aside from specific, 

non-static identifier fields like IP address.  

Therefore, much of the existing literature on network traffic classification does not rely 

on individual packets as the raw units of data, but, instead, flows. Flows are aggregations of 

packets based on a tuple consisting of five properties: source and destination IP address, source 

and destination port, and protocol. Given a flow, many different properties can be extrapolated, 

such as total packets sent and received, flow duration, average packet interarrival times, etc. In 

this paper, data is originally collected as packets in PCAP (packet capture) format, and traffic 

classification is done on the basis of 5-tuple flows with such features and statistical properties. 

Discussion on how these properties are derived is included in the Data Preparation section.  

All network data originated from a Windows 10 system. Network traffic was captured 

using Wireshark and saved as .pcap files. In the data collection process, first, Wireshark packet 

captures would be started. Then, the application in question would be run for 10 minutes before 

being turned off. Finally, the Wireshark capture would be stopped and saved. Accompanying the 

packet capture was the collection of NetFlow data. This NetFlow data was forwarded from an 
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intermediary Palo Alto Networks PA-450 firewall able to identify applications on a per-flow 

basis to an Ubuntu server hosting Elastic Elasticsearch, Logstash, and Kibana. This NetFlow data 

was not used as the basis of any traffic classification but is used later as a tool aiding the data 

labeling process in conjunction with nDPI-identified applications and manual analysis based on 

IP addresses, protocols, and port numbers.  

 

Figure 2: Data collection process 

Data Preparation 

Traffic Labeling 

 Unfortunately, labeling network traffic is not as simple as classifying all data from a 

network capture for a specific application as belonging to that application. Most modern major 

operating systems, such as Windows, operating on modern networks inherently have a lot of 

background network noise. Whether sending heartbeats and telemetry information to a service 

provider or checking for update information, almost any network capture will include traffic 

unrelated to the primary application being run on the system at the time of capture. Therefore, 

extraneous traffic must be identified and removed from each capture file so that the rest of the 

traffic can be accurately labeled per its associated application.  
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 Isolating a particular application’s network traffic has varying degrees of difficulty. In 

using a pre-configured, well-known, simple, and consistent application, like SSH, one could 

simply remove all traffic not destined for TCP port 22 (or to some other unshared port as 

configured by the SSH server). In other situations, however, such as in trying to distinguish 

YouTube traffic from other background traffic hosted on the web via HTTPS, as is done in this 

paper, identifying undesired traffic is more difficult. To accomplish this, a mixture of methods 

was used, including nDPI-based application identification, Palo Alto App-ID identification, and 

manual analysis based on IP addresses, protocols, and port numbers. 

 nDPI-based application identification was performed using NFStream, described later in 

this paper, to identify application usage on a per-flow basis. nDPI is a popular open source 

LGPLv3 library for deep packet inspection created by ntop that is a common basis for 

application identification in products and research (Aouini, Z. & Pekar, A, 2022). Palo Alto App-

ID information is found in the NetFlow captures when the “PAN-OS Field Types” option is 

configured from the firewall. App-ID information served the same function as the information 

derived using nDPI, but the App-ID library of applications is both very different and much 

larger. Both Palo Alto App-ID and nDPI application identification are performed by analyzing 

packet contents for signatures associated with particular applications. For example, at the time of 

writing, the halflife2_and_mods.c Half-Life 2 identifier in nDPI’s GitHub repository checks 

packets for the text “halflife2 client req detected, waiting for server reply.” These application 

identification tools were used as useful indicators in trying to determine which flows in a capture 

corresponded with the application in question.  

 Manual application analysis was done primarily on the bases of IP addresses and port 

numbers. Where possible, vendor documentation pertaining to the specifics of which IP 
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addresses and port ranges were used by an application was used as a source of truth. Zoom’s 

documentation, for example, provided a list of over 300 Zoom-specific IP address ranges which 

served to identify which packets were sent to and from Zoom. In general, for each PCAP capture 

file, the following process was performed to create a display filter and to save a final 

representative file to be used in later data processing: 

1. Identify port numbers and/or IP addresses as appropriate associated with the application 

in question. 

2. In the capture file, filter out traffic not using these ports and/or IP addresses. 

3. Analyze the remaining traffic to determine if it seems to be associated with the 

application in question not using the ports discovered above. Record any newly 

discovered indicators of relevance.  

4. Repeat the above process until all traffic is generally categorized into desired and 

undesired traffic.  

5. Filter out all undesired traffic and save a new capture file with an appropriate name. 

6. Visually confirm that the saved file is appropriately filtered. 

Table 1, shown below, describes the applications and labels captured for this paper.  

Label Category Description 

csgo Video gaming Video game Counter-Strike: Global Offensive 

discord Video conferencing Discord is a popular audio/video calling platform 

hl2dm Video gaming Video game Half-Life 2: Deathmatch 

minecraft Video gaming Video game Minecraft 

netflix Video streaming Netflix streaming over website 

skype Video conferencing Skype is a popular audio/video calling platform 

vimeo Video streaming Vimeo is a popular video streaming platform 

webbrowsing Web browsing Miscellaneous web browsing on Amazon.com, 

Wikipedia, and Gmail 

youtube Video streaming YouTube is a popular video streaming platform 

zoom Video conferencing Zoom is a popular audio/video calling platform.  

Table 1: Dataset labels and categories 
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Flow Data Feature Creation 

Following the process up to this point, the data exists in a PCAP file format without 

useful features. To aggregate the data into per-flow records and to extract statistical flow 

information, NFStream was utilized. At the time of writing, NFStream’s GitHub page describes 

itself as “a multiplatform Python framework providing fast, flexible, and expressive data 

structures designed to make working with online or offline network data easy and intuitive.” 

NFStream provides a sound, consistent manner in which to derive flow information, including 

underlying application using the nDPI library, and has been used in a number of scholarly, peer-

reviewed papers. To recover useful statistical flow properties, the “statistical_analysis = True” 

argument was provided to the NFStreamer NFStream function. Resultant flows were then saved 

into a CSV format. 

Initial Feature Selection, Transformation, and Scaling 

 Different machine learning models benefit in different ways from the presence and 

absence of different features. However, it is always best practice to remove known misleading 

and effectively useless features. A table of features initially removed from the dataset is included 

below. 

Feature Removed Explanation 

Source and destination 

IP address 

Long-term, these are unreliable indicators. Source addresses change 

based on the location and ISP of the user, and destination addresses 

often change when an application provider moves servers providing 

services.  

Port numbers Port numbers are a biased and historically notably vulnerable means 

of identifying applications. Using ports could be used to achieve 

extremely high accuracy, but would render the model ineffective at 

identifying applications using deliberately irregular ports.  

Layer 2 data (MAC 

addresses, VLAN ID, 

etc.) 

Layer 2 network information is only relevant at the local network 

level and is unreliable as a general indicator for app identification. 
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All features with no 

variation in value 

Features that all had the same value (e.g., Echo of Congestion 

Encountered (ECE) packets in this dataset) were removed because 

they provide no information and add to the dimensionality problem. 

Flow start / end time  Start/end times are dependent upon when a conversation occurs and 

are unreliable indicators of an application in the context of this paper.  

Source to destination 

and destination to 

source SYN packets 

These features were redundant because they were always identical in 

the dataset; whenever TCP was the protocol, they would share a 

value of 1, else, they would share a value of 0. The bidirectional syn 

packet feature was kept to preserve this feature.  

Table 2: Features removed from NFStream defaults 

After useless features are removed, it is important to identify categorical and/or ordinal 

data types remaining in the dataset. Aside from the class labels, the only categorical variable is 

“protocol.” Its values are integers dependent upon the IANA-defined protocol number. This 

paper used one-hot encoding to transform its values into separate binary TCP, UDP, and ICMP 

features.  

 Next, the data underwent scaling. Scaling is particularly useful for machine learning 

models whose algorithms are dependent upon determining distances between a data point and 

data points associated with a particular class, such as nearest centroid or k-nearest neighbors (k-

NN). To perform data scaling, standardization was performed on appropriate features in 

accordance with x = (x − mean(x)) / σ).  

Dataset Balancing 

 A common issue in machine learning exercises is an imbalanced dataset. An imbalanced 

dataset is a dataset that has many samples of a particular class, but not many of another. Models 

trained on imbalanced datasets may believe that some classes are inherently uncommon (whether 

or not that is necessarily true) and will therefore often ignore strong indicators of their presence 

due to the perception that the likelihood that a class will be present at all is very low. If the real-

world parent distribution is similar to that of the training dataset, this problem can be difficult to 

notice in performance. Consider, for example, that to achieve 99.98% accuracy in classifying a 
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dataset of 4,999 3-leaf clovers and one 4-leaf clover, a model simply needs to classify every 

single clover as a 3-leaf clover.  

 Network traffic is almost inherently imbalanced. Different applications make use of a 

different number of servers, services, and communication flows. The most imbalanced ratio in 

this paper’s dataset is between the CS:GO-labeled traffic (maximum sample count) and the 

Netflix-labeled traffic (minimum sample count), with the former flow count making up only 

4.5% (a ratio of roughly 1:22) of the latter flow count. There exists a great deal of literature 

covering potential solutions and proposed principles for handling the problem of imbalanced 

datasets. However, as Dr. Gary Weiss of Fordham University writes, “…ultimately what we care 

about is how the imbalance impacts learning, and, in particular, the ability to learn the rare 

classes (2013).” Different methods of undersampling overrepresented classes (e.g., CS:GO & 

Minecraft) and oversampling underrepresented classes (e.g., Netflix & YouTube) were explored, 

but neither was found to be of great benefit in improving the models. Therefore, to maintain the 

benefits of having an accurate, realistic, unbiased dataset and to reduce complexity, the dataset 

balance was left unchanged. However, to ensure that the training process did not forego certain 

classes because of their chance non-appearance in training sets, stratification (ensuring similar 

representation ratios of certain labels) was employed in k-fold cross-validation. A pie chart 

showing the relative proportions of traffic types in the dataset is shown in Figure 3 below.  
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Figure 3: Dataset label distribution 

Common Modeling and Evaluation Processes 

  Machine learning model evaluation was performed using the Scikit-Learn library for 

Python. For each model, the dataset is shuffled and stratified k-fold validation is used to evaluate 

the model against different subsets of the data for an aggregate score. As applicable, SHAP 

values, confusion matrices, permutation importance reports, and correlations are used to describe 

the performance of the models and the effect of the data on the model in question. Confusion 

matrix discussions will sometimes reference what this paper calls “confusers,” classes or class 

categories (e.g., video streaming) that are most misclassified over the true label. Confusion 

matrices showing results by class category reflect previously shown classification results binned 

into their respective categories, not results of classification using broad categories as labels. 

Permutation importance is measured using the average permutation importance value of features 

during the stratified k-fold validation process using 30 repeats in the sklearn 

“permutation_importance” function. SHAP values are measured as described in each appearance.  

Evaluation of the classifiers includes scoring based on overall accuracy, average recall, 

precision, and F1-score, and average weighted precision, recall, and F1-score. F1-score is a 

metric that accounts for both precision and recall to strike a broad balance between the two. To 
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optimize models to achieve as best scores possible, grid searching using the Python Scikit-Learn 

library for parameters of interest is performed using accuracy as the performance metric. Any 

model tests that use details deviating from what has been described thus far will have these 

exceptions noted in their discussion. 
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SECTION 3: MODEL EVALUATION 

Nearest Centroid 

 The nearest centroid classifier works by separating data points into clusters representing 

the classes that they are labeled with. The average point of these clusters is called a “centroid,” 

and given a test piece of data against a trained nearest centroid classifier, the test point would be 

classified based on what the nearest centroid to that point is using Euclidean distance.  

 The ultimate classification results of the nearest centroid classifier are shown below. 

 Precision Recall F1-Score Support 

csgo 1.00 0.74 0.85 350 

discord 0.52 0.64 0.57 22 

hl2dm 0.22 0.18 0.20 22 

minecraft 0.71 0.91 0.80 97 

netflix 0.37 0.69 0.48 16 

skype 0.25 0.16 0.19 38 

vimeo 0.27 0.50 0.35 16 

webbrowsing 0.39 0.48 0.43 31 

youtube 0.12 0.32 0.17 19 

zoom 0.38 0.54 0.45 24 

Accuracy 0.67 635 

Macro Average 0.42 0.52 0.45 635 

Weighted Average 0.75 0.67 0.69 635 

Table 3: Nearest centroid classification results 

Confusion matrices representing the total classifications and recall per label are 

respectively shown in Table 4 and Table 5. 
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Table 4: Nearest centroid confusion matrix 

 
Table 5: Nearest centroid normalized confusion matrix 
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For misclassification, one would expect that similar applications would be misclassified 

as each other. However, this doesn’t seem to be true in the results for this classifier. Table 6, 

shown below, lists each label by its strongest confuser by true label proportion. Below that, 

Table 7 is a confusion matrix representing classification summarized by broad category.  

Class Class Category Strongest 

Confuser 

Strongest Confuser Category 

csgo Video gaming youtube Video streaming 

discord Video conferencing webbrowsing Web browsing 

hl2dm Video gaming zoom Video conferencing 

minecraft Video gaming skype Video conferencing 

netflix Video streaming webbrowsing Web browsing 

skype Video conferencing zoom Video conferencing 

vimeo Video streaming minecraft Video gaming 

web 

browsing 

Web browsing vimeo/netflix Video streaming 

youtube Video streaming discord Video conferencing 

zoom Video conferencing skype/hl2dm Video conferencing/gaming 

Table 6: Nearest centroid label & confuser comparison 

 

Table 7: Nearest centroid broad category confusion matrix 

In total, if applications in the same broad category are to be considered “similar” to each 

other, applications’ most frequent classifications were only in the same category for two of the 
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ten classes, with one of those two having a tie with another category. There are no strong 

patterns for confusion between categories. Video conferencing was an overrepresented confuser 

category, whereas video gaming was an underrepresented confuser category, despite CS:GO 

traffic having the largest number of samples. To better understand this confusion, it helps to 

explore feature importance. 

The ten most important features to this model as derived from permutation importance 

are shown in Table 8 below. 

Feature Weight ± Std. Dev 

dst2src_rst_packets 0.010394 ± 0.003906 

dst2src_stddev_ps 0.007192 ± 0.006178 

src2dst_max_ps 0.007139 ± 0.005679 

bidirectional_max_ps 0.005617 ± 0.007453 

src2dst_max_piat_ms 0.005459 ± 0.005531 

bidirectional_rst_packets 0.005459 ± 0.003471 

src2dst_duration_ms 0.005249 ± 0.005148 

bidirectional_duration_ms 0.004987 ± 0.004877 

dst2src_max_piat_ms 0.004934 ± 0.005384 

bidirectional_max_piat_ms 0.004934 ± 0.005303 

Table 8: Nearest centroid feature importance by permutation importance 

The strongest features were related to packet size, packet inter-arrival times, and reset 

packet counts. Largely, these features were uncorrelated (r-correlation values lower than 0.8), 

aside from the dst2src_max_piat_ms, src2dst_max_piat_ms, and bidirectional_max_piat_ms 

group (sharing an r-correlation > .94 between each other).  

The strongest features largely make intuitive sense to be correlated on a per-application 

basis. Packet sizes are often well-correlated with specific applications as they often require 

different amounts of data. For example, file downloading might have large packet sizes to 

increase absolute throughput. Video conferencing applications, on the other hand, need to send 

data as immediately as possible, and, in the case of audio-only conferences, absolute data sizes 

are often small.  
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Packet inter-arrival times can be closely correlated with application usage because 

distinct applications typically have a pattern of sending a number of packets per second. As an 

example, a high-definition video conferencing UDP-based application, like Zoom, which has the 

3rd lowest mean packet inter-arrival time, might be expected to send a lot of packets quickly and 

thus have an average low packet inter-arrival time.  

Reset packet counts make less obvious, intuitive sense to vary on a per-application basis. 

While some applications may be designed to forcefully terminate connections using reset 

packets, this is very rare and does not seem to be the case for the applications used in this paper.  

Table 9 conveys the average packet size, packet interarrival time, and reset packet counts 

and is included below, though differences in per-feature variance should be considered. Based on 

this table alone, some of the model’s performance is explainable. CS:GO-classified was most 

often confused with YouTube traffic. It so happens that their average values for src2dst_max_ps, 

one of the most important features according to weight, are very similar to each other. However, 

because the nearest centroid model performed so poorly and there are so many potential causes 

of this performance, whether they be due to the nature of the classifier or due to statistical 

similarities across the dozens of different features, such analysis is not necessarily consistent or 

reliable for this model.  
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Label Mean 

src2dstmax_ps ± 

Std. Dev 

Mean src2dst 

max_piat_ms ± 

Std. Dev 

Mean 

dst2src_rst_packets 

± Std. Dev 

csgo 1228 ± 315 7873 ± 14040 0 ± 0 

discord 995 ± 431 7658 ± 15077 0.0455 ± 0.213 

hl2dm 235 ± 177 16465 ± 17792 0 ± 0 

minecraft 370 ± 187 5271 ± 8874 0.0619 ± 0.242 

netflix 947 ± 175 42016 ± 7168 0.0625 ± 0.250 

skype 687 ± 471 20731 ± 26197 0.316 ± 0.471 

vimeo 1051 ± 235 26698 ± 21507 0 ± 0 

webbrowsing 800 ± 335 40638 ± 11674 0 ± 0 

youtube 1126 ± 292 23823 ± 15264 0.158 ± 0.375 

zoom 439 ± 484 6659 ± 14373 0.333 ± 0.702 

Table 9: Feature means and standard deviations 

K-Nearest Neighbors 

 The k-nearest neighbors classifier (k-NN) works similarly to the nearest centroid 

classifier. Instead of computing per-class centroids, the k-NN model compares a new sample to 

the class labels assigned to a pre-defined number (k) of the nearest training samples, 

“neighbors.” For example, if using k-NN where k = 3 and a test record were found to be closest 

to two data points assigned to class A and one assigned to class B, the test point would be 

classified as belonging to class A. In essence, k-NN features no “training” whatsoever. Instead, 

new values are simply compared to existing, labeled values from the “training” set. 

The ultimate classification results of the optimized k-NN classifier are show in Table 10. 

 Precision Recall F1-Score Support 

csgo 0.97 0.97 0.97 350 

discord 0.65 0.59 0.62 22 

hl2dm 0.57 0.55 0.56 22 

minecraft 0.95 0.89 0.91 97 

netflix 0.62 0.62 0.62 16 

skype 0.58 0.68 0.63 38 

vimeo 0.67 0.75 0.71 16 

webbrowsing 0.77 0.77 0.77 31 

youtube 0.68 0.79 0.73 19 

zoom 0.72 0.54 0.62 24 

Accuracy 0.87 635 

Macro Average 0.72 0.72 0.71 635 
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Weighted Average 0.87 0.87 0.87 635 

Table 10: k-NN classification results 

To get the best performance from k-NN, the most important hyperparameter to optimize 

is k. Different data distributions and feature sets will result in different values of k being most 

effective. Ultimately, the k value providing the highest accuracy results was found to be 1.  

The primary cause of the low k value is the distribution of classes in the dataset. Indeed, 

though shuffled and stratified random train-test splits were employed, ultimately, there were not 

always more than a few samples for certain classes. An example of this issue in the dataset can 

be observed in a sample 80% training split created during cross-validation. In this training split, 

there existed only 13 total Vimeo samples. Thus, increasing the number of nearest neighbors 

from one to any higher amount easily results in misclassification. A graph comparing the 

accuracy with the number of neighbors used for the classifier fitted on a 5:1 train-test split is 

shown in Figure 4. 

 

Figure 4: Accuracy rate vs number of neighbors 

Despite the shortcomings, the results are much better than those of the nearest centroid 

model. Confusion matrices representing the total classifications and recall per label are 

respectively shown in Table 11 and Table 12. 
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Table 11: k-NN confusion matrix

 

Table 12: k-NN normalized confusion matrix 



28 

 A table comparing the k-NN classifier’s common confusers and a confusion matrix 

showing recall results by broad category are shown below in Table 13 and Table 14.  

Class Class Category Strongest 

Confuser 

Strongest Confuser 

Category 

csgo Video gaming hl2dm Video gaming 

discord 

Video conferencing skype / vimeo / 

youtube 

Video conferencing / 

video streaming 

hl2dm Video gaming csgo  Video gaming 

minecraft 

Video gaming csgo / skype Video gaming / Video 

conferencing 

netflix 

Video streaming hl2dm / 

webbrowsing 

Video gaming / web 

browsing 

skype 

Video conferencing csgo / minecraft / 

vimeo / zoom  

Video gaming, video 

streaming, video 

conferencing 

vimeo 

Video streaming discord / netflix / 

webbrowsing / 

youtube 

Video conferencing, video 

streaming, web browsing 

web 

browsing 

Web browsing netflix / youtube Video streaming 

youtube Video streaming skype Video conferencing 

zoom Video conferencing skype Video conferencing 

Table 13: k-NN label & confuser comparison 

 

Table 14: k-NN normalized broad category confusion matrix 
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The ten most important features to this model as derived from permutation importance 

are shown below in Table 15. 

Feature Weight ± Std. Dev 

src2dst_max_ps 0.065722 ± 0.015302 

dst2src_rst_packets 0.036115 ± 0.008005 

src2dst_rst_packets 0.031129 ± 0.006146 

src2dst_stddev_ps 0.023832 ± 0.010014 

dst2src_min_piat_ms 0.021312 ± 0.005587 

dst2src_mean_ps 0.016063 ± 0.010617 

bidirectional_mean_ps 0.014698 ± 0.011116 

bidirectional_max_piat_ms 0.014646 ± 0.009183 

dst2src_max_piat_ms 0.014593 ± 0.009097 

src2dst_max_piat_ms 0.012651 ± 0.009345 

Table 15: k-NN feature importance by permutation importance 

In nearly every meaningful way, the results of the k-NN classifier are better and make 

more intuitive sense than those of the nearest centroid. Confusers are significantly more 

understandable, with three broad categories directly matching between classes and their 

confusing classes, as opposed to only one, and four broad categories being tied with their correct 

match and other broad confusing classes. The most important features, similar to those of nearest 

centroid, are related to packet sizes, packet interarrival times, and packet reset counts. The 

relatively frequent misclassification of HL2:DM traffic as CS:GO traffic is also expected as both 

applications are not only video games but are also built on the same underlying game engine. 

Naïve Bayes 

 The naïve Bayes classifier’s logic is built on Bayes’ theorem in calculating the 

probability that a piece of data belongs in a particular class. In doing this, it assumes that features 

are statistically independent (hence being called “naïve”). While this is rarely the case, naïve 

Bayes often perform well, despite the generally incorrect assumption.  

 There are different categories of naïve Bayes classifiers. Commonly used ones in popular 

tools and libraries include Bernoulli, categorical, complement, multinomial, and Gaussian, with 
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Gaussian being one of the most commonly employed. In optimization, these different methods of 

implementing a naïve Bayes classifier were tested and Gaussian was found to perform the best.  

The ultimate classification results of the optimized Gaussian naïve Bayes classifier are 

shown below. 

 Precision Recall F1-Score Support 

csgo 0.97 0.87 0.92 350 

discord 0.57 0.55 0.56 22 

hl2dm 0.28 0.59 0.38 22 

minecraft 0.77 0.91 0.83 97 

netflix 0.31 0.69 0.42 16 

skype 0.39 0.18 0.25 38 

vimeo 0.36 0.25 0.30 16 

webbrowsing 0.39 0.55 0.45 31 

youtube 0.44 0.37 0.40 19 

zoom 0.42 0.21 0.28 24 

Accuracy 0.74 635 

Macro Average 0.49 0.52 0.48 635 

Weighted Average 0.77 0.74 0.74 635 

Table 16: Naïve Bayes classification results 

 To optimize the performance of the classifier, the most important parameter to consider 

in the sklearn library is the var_smoothing parameter, which represents the percentage of the 

variance of all features added to maximize calculation stability. Grid searching between 5,000 

evenly spaced numbers in a logarithmic space between 100 and 10-9
 found that the best-

performing value ≅ .26983 performed best.  

Broadly speaking, the naïve Bayes classifier with all features performs better than nearest 

centroid but worse than k-NN. This is not unexpected. Many of the features in the dataset are 

known to not be statistically independent of each other, such as features related to the “total” of 

some trait and the separate “source to destination” and “destination to source” features that 

contribute to the total feature. Furthermore, Gaussian naïve Bayes classifiers simply perform best 

when the underlying data is of a Gaussian/normal distribution. Many features of the dataset are 
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not normally distributed, even on a per-class basis, nor are real-world networks inclined to 

inherently have normally distributed properties. 

The ten most important features to this model as derived from permutation importance 

are shown below. 

Feature Weight ± Std. Dev 

bidirectional_syn_packets 0.024987 ± 0.008751 

tcp 0.023937 ± 0.008300 

udp 0.022310 ± 0.008289 

dst2src_rst_packets 0.018950 ± 0.007448 

dst2src_stddev_ps 0.017690 ± 0.008738 

dst2src_max_ps 0.017585 ± 0.009955 

bidirectional_max_ps 0.017270 ± 0.009816 

src2dst_max_ps 0.015801 ± 0.009320 

dst2src_mean_piat_ms 0.011811 ± 0.007253 

src2dst_stddev_ps 0.011759 ± 0.005768 

Table 17: Naïve Bayes feature importance by permutation importance 

 Interestingly, many of the most important features are in some way related to one 

another. bidirectional_max_ps, src2dst_max_ps, and dst2src_max_ps are related to each other in 

that the bidirectional property is the maximum of the other two. The binary presence of TCP was 

directly related to the presence of bidirectional SYN packets and was nearly a mutually exclusive 

feature with UDP (r-correlation <-.99, on account of the low presence of ICMP packets). Having 

such interdependent features rank so highly in importance for the naïve Bayes classifier is a sign 

that the dataset should be investigated for tuning further, as, ideally, the classifier cares the most 

about statistically independent features.  

 To attempt to better fulfill the statistical independence assumption of naïve Bayes, model 

evaluation was performed against the dataset with some mathematically related features 

removed. This proved to slightly improve the performance of the classifier. Accuracy and score 

improvements were not universal for all classes, but were broad improvement and noticeable.  
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The results of classification using a dataset with some select features removed are 

included below:  

 Precision Recall F1-Score Support 

csgo 0.99 0.87 0.93 350 

discord 0.57 0.55 0.56 22 

hl2dm 0.28 0.59 0.38 22 

minecraft 0.73 0.91 0.81 97 

netflix 0.33 0.69 0.45 16 

skype 0.38 0.13 0.20 38 

vimeo 0.57 0.50 0.53 16 

webbrowsing 0.49 0.65 0.56 31 

youtube 0.45 0.53 0.49 19 

zoom 0.38 0.25 0.30 24 

Accuracy 0.75 635 

Macro Average 0.52 0.57 0.52 635 

Weighted Average 0.78 0.75 0.76 635 

Table 18: Improved naïve Bayes classification results 

To achieve this moderately better result, manual and statistical analysis was performed on 

the relationships between different features. While the most helpful features to remove were 

often highly correlated with one feature or another, simply removing one highly correlated 

feature from each pair of related features did not produce results as effective as intermingling 

manual analysis with statistical analysis. To achieve the above result, the following features were 

removed: tcp, bidirectional_psh_packets, bidirectional_min_ps, bidirectional_ack_packets, 

bidirectional_rst_packets, bidirectional_packets, and bidirectional_bytes. Removing these same 

features did not notably improve the performance of other classifiers in this paper; these features’ 

removal’s positive effect on the performance of the naïve Bayes classifier is likely due to its 

underlying assumption of statistical independence of features. 

The features ranked by permutation importance in accordance with the new, more tuned 

feature set are included in Table 19. 
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Feature Weight ± Std. Dev 

bidirectional_syn_packets 0.038688 ± 0.011815 

udp 0.034541 ± 0.011819 

dst2src_rst_packets 0.033228 ± 0.011074 

dst2src_max_ps 0.026457 ± 0.012369 

src2dst_max_ps 0.019580 ± 0.009276 

bidirectional_max_ps 0.019108 ± 0.009909 

src2dst_mean_ps 0.017848 ± 0.010379 

src2dst_fin_packets 0.017743 ± 0.008775 

bidirectional_mean_ps 0.014331 ± 0.006812 

src2dst_stddev_ps 0.014278 ± 0.007613 

Table 19: Improved naïve Bayes feature importance by permutation importance 

Many of the most valuable features by permutation are still greatly correlated with each 

other, but further feature removal only reduced classifier performance. For instance, the UDP 

feature had an r-correlation with a magnitude greater than .93 with the bidirectional_syn_packets 

feature, but the removal of either feature harmed performance. A heatmap showing features by 

their absolute r-correlation values with each other is shown in Table 20.  
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Table 20: Feature and absolute r-correlation heatmap 

 Still notable, however, is that of these important features, none constitute an effective 

standard distribution. Most of the features’ distributions peak, valley, and then peak again in a 

manner much the opposite of a normal distribution, even on a per-class basis. Density plots for 

the four most important features of the feature-tuned Gaussian classifier with accompanying 

reference normal distributions are shown below. Where this paper was able to improve the 

performance of the Gaussian classifier by removing statistically dependent features, it was 

unable to use a similar process with features following a non-Gaussian distribution as few 
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features follow a normal distribution and data normalization and standardization methods had no 

effect on distribution density.  

 

 

Figure 5: Feature value distribution vs. normal distribution 

 Finally, confusion matrices representing the total classifications, recall per label, and 

results by broad category are respectively shown below for the feature-tuned naïve Bayes 

classifier.  
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Table 21: Improved naive Bayes confusion matrix 

 

Table 22: Improved naive Bayes normalized confusion matrix 
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Table 23: Improved NB normalized broad category confusion matrix 

Support Vector Machines 

 Support vector machines (SVM) operate on the basis that there exists a mathematical 

hyperplane that can separate data points into different classes. This hyperplane is separated by an 

optimally large margin as distant as possible from different training samples defining the 

boundaries of different classes. These training samples, called support vectors, define the margin. 

A kernel function is used to optimize the location of the hyperplane that produces the maximum 

possible margin between the hyperplane and its support vectors.  

 The classification results of SVM using the Python sklearn library’s C-Support Vector 

Classification (SVC) using an optimized RBF function are included in Table 24.  
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 Precision Recall F1-Score Support 

csgo 0.97 0.98 0.97 350 

discord 0.58 0.64 0.61 22 

hl2dm 0.64 0.64 0.64 22 

minecraft 0.90 0.92 0.91 97 

netflix 0.77 0.62 0.69 16 

skype 0.62 0.66 0.64 38 

vimeo 0.73 0.69 0.71 16 

webbrowsing 0.82 0.74 0.78 31 

youtube 0.76 0.84 0.80 19 

zoom 0.71 0.62 0.67 24 

Accuracy 0.88 635 

Macro Average 0.75 0.73 0.74 635 

Weighted Average 0.88 0.88 0.88 635 

Table 24: SVM classification results 

 Optimization of the SVM classifier found that the best underlying kernel was a radial 

basis function. Two other parameters, γ and C, were found to be optimal at values ~0.020236 and 

39.07, respectively.  

  The SVM classifier performed well. Support vector machines are most well-known for 

producing good results without the need for extensive computational resources when compared 

to similar traditional models. There is little to comment on regarding the dataset or the classifier 

based on its performance. It largely does well at what most of the other classifiers shown thus far 

do and poorly where other classifiers also tend to fail. The rest of this section will include 

summary information for reference in later discussion. 

The permutation importance-derived most important features are included in Table 25. 
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Feature Weight Std. Dev 

src2dst_max_ps 0.083465 ± 0.017599 

dst2src_rst_packets 0.033333 ± 0.008511 

dst2src_min_piat_ms 0.024462 ± 0.006562 

bidirectional_max_ps 0.018320 ± 0.007033 

src2dst_stddev_ps 0.018320 ± 0.008716 

src2dst_max_piat_ms 0.016535 ± 0.007807 

bidirectional_max_piat_ms 0.014961 ± 0.007388 

dst2src_max_piat_ms 0.014593 ± 0.007233 

dst2src_stddev_ps 0.014541 ± 0.010175 

src2dst_fin_packets 0.013228 ± 0.006173 

Table 25: SVM feature importance by permutation importance 

Confusion matrices representing the total classifications, recall per label, and results by 

broad category are respectively shown below. 

 

Table 26: SVM confusion matrix 



40 

 

Table 27: SVM normalized confusion matrix 

 

Table 28: SVM normalized broad category confusion matrix 
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Decision Trees 

 Functionally, decision trees are one of the most easily understood classification models. 

Decision trees consist of nodes that define a condition and branch based on whether that 

condition is fulfilled. The conditions set at each node are based on brute force determinations of 

which features and criteria most purely split the dataset samples by class in accordance with a 

purity function, such as Gini impurity. They can be thought of as elaborate flow diagrams and 

are frequently visually represented using tree diagrams.  

Unlike some of the other models used in this paper, tree-based algorithms like decision 

trees are not sensitive to the magnitude of feature variance. Therefore, standardization was not 

necessary on the dataset and, in fact, for k-folds cross-validation, the decision tree classifier’s 

performance between a standardized dataset and a non-standardized dataset was completely 

identical. 

Decision trees are very sensitive to the features upon which decisions can be made. With 

misleading features, model performance can significantly decrease. Throughout the process of 

testing the decision tree classifier, two separate feature sets were tested: the full feature set, and a 

feature set consisting of only the ten most important items for the decision tree classifier as 

determined using permutation importance. Classification results for an optimized decision trees 

classifier using a standardized dataset with all features are included in Table 29. 
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 Precision Recall F1-Score Support 

csgo 0.95 0.97 0.96 350 

discord 0.62 0.68 0.65 22 

hl2dm 0.63 0.55 0.59 22 

minecraft 0.95 0.90 0.92 97 

netflix 0.83 0.62 0.71 16 

skype 0.67 0.63 0.65 38 

vimeo 0.67 0.62 0.65 16 

webbrowsing 0.61 0.74 0.67 31 

youtube 0.85 0.89 0.87 19 

zoom 0.57 0.50 0.53 24 

Accuracy 0.87 635 

Macro Average 0.73 0.71 0.72 635 

Weighted Average 0.87 0.87 0.86 635 

Table 29: Decision tree classification results 

 Hyperparameter optimization of the sklearn library’s implementation of the decision tree 

classifier was employed against multiple parameters. When using all features, the most effective 

quality function was Gini impurity (as opposed to entropy or logistic loss), and the most effective 

class weight function was “balanced,” in which weights are inversely proportional to class 

frequencies.  

Classification results for a decision tree evaluated using a dataset with only the ten most 

important features to the previous decision tree are included in Table 30. These ten most 

important features were bidirectional_min_ps, src2dst_max_ps, src2dst_min_ps, 

dst2src_mean_ps, src2dst_stddev_ps, bidirectional_stddev_ps, dst2src_stddev_ps, 

dst2src_ack_packets, src2dst_duration_ms, and dst2src_max_piat_ms. 
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 Precision Recall F1-Score Support 

csgo 0.96 0.98 0.97 350 

discord 0.60 0.68 0.64 22 

hl2dm 0.65 0.50 0.56 22 

minecraft 0.90 0.88 0.89 97 

netflix 0.92 0.75 0.83 16 

skype 0.57 0.61 0.59 38 

vimeo 0.62 0.62 0.62 16 

webbrowsing 0.73 0.77 0.75 31 

youtube 0.80 0.84 0.82 19 

zoom 0.74 0.58 0.65 24 

Accuracy 0.87 635 

Macro Average 0.75 0.72 0.73 635 

Weighted Average 0.87 0.87 0.87 635 

Table 30: Decision tree feature importance improved classification results 

 When using only these features, the optimized parameters were the same as for the 

decision tree using all features. The reason this second set of classification results is included is 

to show how nearly identical and even numerically better results can be achieved using higher 

quality, but significantly fewer features.  

Simple decision tree classifiers have some noteworthy problems. As will be discussed 

further below, they are prone to overfitting on meaningless statistical nuances of a particular 

dataset. For a particular training set, some features may hold some meaningless information that 

happens to form a relative pattern between classes that is not typically reflected in reality. 

Decision trees can often make significant use of every feature they are given, even if they are 

effectively noise, leading to overfitting and meaningless features being interpreted as valuable. 

The issues of overfitting and attributing importance to unimportant features can be better 

resolved by using a random forest classifier, which this paper explores later.  

The decision tree diagram drawn from a decision tree classifier ran against the dataset 

using all features is too large to display, with over 40 individual nodes. However, examining just 

the top of a decision tree can be highly informative. If there are indeed very strong features and 
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commonalities that can accurately separate different classes, one can develop a strong 

understanding of some statistical commonalities in a dataset and obtain an inherent explainer of 

how the decision tree classifier works. The root of a tree using all features and its immediate two 

sub nodes are shown in Figure 6.  

 

Figure 6: Root of all features decision tree 

 The root most important distinguishing feature in this decision tree classifier was 

src2dst_min_ps. A reasonably tight 59.8:40.2 split was made based on its condition. 

Significantly, with just one decision at the root of the tree, 40% of the samples were already 

classified.  

 The better-performing decision tree, using features derived from the permutation 

importance of the “all features” decision tree classifier, has a different decision tree diagram. Its 

root can be examined below.  

 

Figure 7: Root of better-performing decision tree 
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 Both the better-performing narrow feature set decision tree and the “all features” decision 

tree start with some form of minimum packet size as the root of their tree. Like the last one, the 

root of this decision tree was able to classify about 40% of the flow with one single decision. 

Given its presence in both decision tree roots, minimum packet size seems to be a very high-

quality feature. Note that the field “value,” representing the relative proportion of samples 

present, is shown to be apparently equal at the root of the above tree because the classes are 

adjusted to be balanced in weight, as opposed to only being based on sample count. 

 Not all nodes make equally valid splits, even using only 10 features from the better-

performing decision tree, many of the end leaf nodes are fairly overfitted and invalid in their 

assumptions. Consider the bottom nodes shown below from a decision tree using the better-

performing feature set.  

 

Figure 8: Example best-performing decision tree leaf nodes 

 Exact statistical relationships, such as minute range differences between this dataset’s 

dst2src_mean_ps and src2dst_max_ps features, are rarely exactly generalizable to new data in 

the context of network traffic. While the final shown decision’s conditionality was a determinant 

in only 0.4% of the data samples, it can also be thought of as only having been true for 0.4% of a 
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subset of a very specific dataset representing just a single experiment in time. It is almost 

certainly not a broadly, legitimately meaningful determinant of a class of network traffic.  

 Tree classifiers are a category of classifiers easily and broadly supported by a popular 

modern feature importance explanation technique, Shapley (SHAP) values. SHAP values have 

their origin in game theory and show the effect a particular data point’s feature values had in the 

determination of its label. Where permutation importance can help explain model performance, 

SHAP values are best suited for understanding how a model makes classifications. A bar plot 

showing the average SHAP value across folds in the cross-validation process for the classifier 

using all features for the entire dataset is shown below.  

 

Figure 9: Top features by absolute SHAP value importance 
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Just as might be inferred from the classifier’s tree diagram, some of the most important 

features in determining a class are located near the top of the tree: src2dst_max_ps and 

src2dst_min_ps. The most important feature in the figure, bidirectional_min_ps, was the root of 

the fewer-featured decision tree. The SHAP values in this bar plot also help in understanding 

what features most strongly affect classification on a per-label basis. For example, CS:GO-

tagged traffic was strongly impacted by the bidirectional minimum packet size, but was not 

strongly affected by the source-to-destination maximum packet size. HL2:DM-tagged traffic, on 

the other hand, exhibited the opposite relationship.  

In addition to the magnitude of the effect of a feature, SHAP values can explain the 

directionality of how a feature affects the classification of a sample. A beeswarm chart for Skype 

traffic classification in order of most impactful features is shown below.  

 

Figure 10: Beeswarm chart for Skype traffic classification 
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 From this beeswarm chart, it can be observed that a high value for the 

bidirectional_stddev_ps feature was a light indicator that a traffic flow did not belong to Skype, 

whereas low values were a generally positive indicator that a flow belonged to Skype.  

Feature importances as measured by permutation importance are shown in Table 31 for 

the decision tree classifier using all features. When the dataset was isolated to only these 

features, it produced the second-shown and better-performing decision tree classifier in this 

section.  

Feature Weight ± Std. Dev 

bidirectional_min_ps 0.286404 ± 0.029184 

src2dst_max_ps 0.192913 ± 0.024339 

src2dst_min_ps 0.085564 ± 0.010584 

dst2src_mean_ps 0.040997 ± 0.009049 

src2dst_stddev_ps 0.040630 ± 0.012795 

bidirectional_stddev_ps 0.035066 ± 0.011234 

dst2src_stddev_ps 0.028084 ± 0.008489 

dst2src_ack_packets 0.027454 ± 0.005766 

src2dst_duration_ms 0.026089 ± 0.007620 

dst2src_max_piat_ms 0.025039 ± 0.005454 

Table 31: All feature decision tree feature importance by permutation importance 

Notably, many of the ten most permutation importance-determined important features are 

shared with the SHAP-determined important features, though not always sharing the same 

position and weight. A comparison of the most important features derived using these two 

methods is shown below. 

Permutation 

Importance 

Position 

SHAP Value 

Importance 

Position 

Shared Important Feature 

1 1 birectional_min_ps 

2 2 src2dst_max_ps 

3 3 src2dst_min_ps 

5 4 src2dst_stddev_ps 

6 5 bidirectional_stddev_ps 

4 7 dst2src_mean_ps 

10 8 dst2src_max_piat_ms 

Table 32: Feature importance from permutation importance and SHAP value comparison 
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 Confusion matrices showing the recall results for the decision tree classifier evaluated 

against the entire feature set and against the optimized feature set are shown below. Additionally, 

a broad category confusion matrix is shown for the optimized feature set classifier.  

 

Table 33: All features decision tree normalized confusion matrix 
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Table 34: Better-performing decision tree normalized confusion matrix 

 

Table 35: Better-performing DT normalized broad category confusion matrix 
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Random Forest 

 Decision trees have the previously discussed issue of overfitting on statistical nuances of 

a particular dataset. To remedy this, one can employ a random forest of decision trees. Random 

forests employ many different decision tree classifiers to, as an ensemble, vote on data 

classification. To avoid overfitting and to ensure that individual decision trees are not completely 

identical, random forest classifiers typically resample training data with replacement to create 

new training sets through a process called bagging. Bagging employs bootstrap sampling, which 

allows training samples to be selected more than once. Furthermore, to reduce bias from highly 

predictive features, the “random” component of random forest will randomly select a subset of 

features that each decision tree will be trained on. In practice, each tree is typically trained using 

randomly selected features totaling the square root of the number of features.  

The ultimate classification results of the optimized random forest classifier are shown in 

Table 36. 

 Precision Recall F1-Score Support 

csgo 0.97 0.98 0.97 350 

discord 0.72 0.59 0.65 22 

hl2dm 0.71 0.55 0.62 22 

minecraft 0.89 0.92 0.90 97 

Netflix 0.93 0.81 0.87 16 

skype 0.63 0.63 0.63 38 

vimeo 0.80 0.75 0.77 16 

webbrowsing 0.71 0.94 0.81 31 

youtube 0.81 0.89 0.85 19 

zoom 0.74 0.58 0.65 24 

Accuracy 0.89 635 

Macro Average 0.79 0.76 0.77 635 

Weighted Average 0.89 0.89 0.89 635 

Table 36: Random forest classification results 

The most notable parameter to optimize in a random forest classifier is the number of 

decision trees, “estimators,” to use. There is rarely a classification performance downside to 
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using a large number of estimators, but there are diminishing returns as the number of estimators 

increases. For the above results, 100 estimators were used in accordance with the results of the 

graph in Figure 11 comparing the accuracy with the number of estimators used for the classifier 

fitted on a 5:1 train-test split.  

 

Figure 11: accuracy vs number of estimators 

As Figure 11 shows, the accuracy score of the random forest classifier reaches a 

relatively steady state somewhere between 50 and 100 estimators, and thus 100 estimators were 

ultimately chosen. The accuracy results achieved at 100 estimators were approximately as good 

as results achieved with more estimators but did not require significantly more processing power. 

Other parameters optimized were those related to the performance of the individual decision 

trees. The optimized results varied slightly from those of the decision tree classifier section of 

this paper: Gini impurity was used as a purity function, and unbalanced class weights were used. 

Of the paper thus far, these classification results are roughly the best according to F1 

score and accuracy. It is not unexpected for a random forest classifier to perform well compared 

to the rest of the classifiers, particularly the single decision tree. Random forests generally 

perform better than any individual well-performing decision tree because they are more resistant 
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to overfitting. Furthermore, random forest classifiers are typically better capable of classifying 

completely new data of the often chaotic nature of the data in this dataset.  

Confusion matrices representing the total classifications, recall per label, and results by 

broad category are respectively shown in Table 37, Table 38, and Table 39. 

 

Table 37: Random forest confusion matrix 
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Table 38: Random forest normalized confusion matrix 

 

Table 39: Random forest normalized broad category confusion matrix 

The most important features as measured by permutation importance for the random 

forest classifier are shown below.  
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Feature Weight ± Std. Dev 

src2dst_max_ps 0.007979 ± 0.008899 

dst2src_max_piat_ms 0.006352 ± 0.003669 

dst2src_mean_piat_ms 0.002992 ± 0.002974 

bidirectional_fin_packets 0.002257 ± 0.003784 

dst2src_stddev_piat_ms 0.001890 ± 0.003402 

src2dst_duration_ms 0.001732 ± 0.004728 

bidirectional_ack_packets 0.001417 ± 0.004108 

bidirectional_min_ps 0.000577 ± 0.003625 

bidirectional_max_ps 0.000157 ± 0.003439 

bidirectional_syn_packets 0.000105 ± 0.001568 

Table 40: Random forest feature importance by permutation importance 

Interestingly, there is a noticeable difference between the most important features of the 

individual decision tree classifier as evaluated against all features and the random forest 

classifier’s most important features. Between the two classifiers, only four of the most important 

features are shared, including bidirectional_min_ps, max_piat_ms, src2dst_duration_ms, and 

src2dst_max_ps. A question that may arise is, if a random forest is an ensemble of decision trees, 

are its important features valuable to a decision tree classifier? To test this, a decision tree 

classifier was trained, optimized, and evaluated using only the ten features shown in Table 40. 

While the results were good, they were not significantly better or different from either the 

decision tree classifier using all features or the feature-tuned decision tree classifier, and as such, 

their results are not included for discussion.  

Multilayer Perceptron 

 Increasingly available and of interest to the general public are neural networks. Neural 

networks are composed of “layers” of “neurons” that process input data in the pursuit of 

performing accurate classification. Layers in a neural network appear as an input layer (the 

inputs to the model), an output layer (the classification/regression ultimately determined), and 

intermediary “hidden” layers populated by neurons whose purpose is to perform activation 

functions on the inputs they receive before passing them onto the next layer. Modern deep 
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learning is built on the concept of neural networks using many hidden layers (hence being called 

“deep”) and is most often preferred in the context of extremely large and complex datasets. 

Multilayer perceptron is one of the simplest popular neural network models. The classification 

results for an optimized multilayer perceptron classifier are shown below: 

 Precision Recall F1-Score Support 

csgo 0.96 0.98 0.97 350 

discord 0.61 0.64 0.62 22 

hl2dm 0.65 0.59 0.62 22 

minecraft 0.90 0.93 0.91 97 

netflix 0.77 0.62 0.69 16 

skype 0.68 0.68 0.68 38 

vimeo 0.79 0.69 0.73 16 

webbrowsing 0.76 0.81 0.78 31 

youtube 0.75 0.79 0.77 19 

zoom 0.79 0.62 0.70 24 

Accuracy 0.88 635 

Macro Average 0.77 0.73 0.75 635 

Weighted Average 0.88 0.88 0.88 635 

Table 41: MLP classification results 

 The sklearn library implementation of the multilayer perceptron model’s optimized 

results used a weight optimization solver parameter of “adam” (a stochastic gradient-based 

optimizer), an activation function of “relu” (a Rectified Linear Unit function of f(x) = max(0, x)), 

and a maximum number of epochs (“max_iter”) of 800 was chosen based on early stop analysis 

to avoid common overfitting issues and to preserve performance. The network architecture 

included a single hidden layer with 68 neurons. A single hidden layer was chosen because it 

performed the best, as will be discussed later. A graph showing the error rate of the classifier by 

the maximum number of epochs used by the stochastic solver is shown in Figure 12 below. 

Below that, Table 42 compares error rate with hidden layer size (neuron count in the first hidden 

layer).  
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Figure 12: Error rate vs epoch count (K) 

 

Table 42: Error rate vs hidden layer size (neuron count) 

 In distinguishing a simple neural network from one engaged in “deep learning,” the 

number of hidden layers used by the classifier is typically considered. “Wide” neural networks 

contain few layers, whereas deep neural networks contain many. This classifier performed best 

with a single hidden layer and thus cannot be considered to have engaged in deep learning. This 
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is not unexpected for a small dataset containing a limited number of features. The purpose of 

having many layers in a neural network is to identify more detailed and more nuanced 

relationships in data. Small, non-complex, linearly separable datasets (as shown to generally be 

the case by the performance of a linear SVM classifier discussed below) are not expected to 

require more than a single hidden layer to perform well. Adding additional layers of the same or 

different sizes at best (using a similar number of neurons per layer) had no impact on the 

classifier’s performance, and at worst (using a significantly higher or lower number of neurons 

per layer) reduced performance. 

 One indicator that the dataset is linearly separable can be shown in the performance of a 

linear SVM classifier. Without going into great detail, a linear SVM classifier with an optimized 

C value achieves an accuracy/weighted average recall of 87%, macro average precision of 72%, 

macro average recall of 70%, macro average F1 score of .71, weighted average precision of 87%, 

and a weighted average F1 score of .87. These are very adequate results.  

 Confusion matrices representing the total classifications, recall per label, and results by 

broad category are respectively shown in Tables 43, 44, and 45. 
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Table 43: MLP confusion matrix 

 

Table 44: MLP normalized confusion matrix 
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Table 45: MLP normalized broad category confusion matrix 

 Perhaps the most notable trait of the multi-layer perceptron classifier in this context is its 

generally very good performance despite the relatively limited dataset. While it does not perform 

as well as a random forest, it, by its and other neural network algorithms’ nature, would almost 

certainly be better able to handle a larger quantity of more complex data. It would not be at all 

remarkable if this or another neural network classifier would quickly outpace the others used in 

this paper in a larger production network with a more elaborate and all-encompassing data 

labeling process.  

 Whereas classical machine learning models have mature, well-established, easily-

accessible methods of identifying feature importance, neural network models remain somewhat 

immature on the subject. There are cutting-edge solutions and projects that seek to remedy this 

issue, but they often vary in implementation and do not always have universally accepted 

wisdom regarding their usage. This paper does not seek to explore neural networks, or, by 

extension, deep learning, in great detail, but only to touch upon its performance and usefulness, 

even in its simplest of forms. As such, feature importance is not discussed.  
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SECTION 4: CONCLUSIONS 

 In order of macro F1 score, the best-performing classifiers were random forest (.77), 

multi-layer perceptron (.75), SVM (.74), the feature-optimized decision tree (.73), the “all 

features” decision tree (.72), k-NN (.71), the feature-selected naïve Bayes classifier (.52), and 

nearest centroid (.45). The macro F1 score is likely the best, most useful metric because of the 

imbalanced nature of the dataset produced from a network traffic capture.  

If looking at accuracy, the order of performance is the same, with the most accurate 

classifier, random forest, achieving 89% accuracy, and the least accurate classifier, nearest 

centroid, achieving 67% accuracy. This is significantly better than random guessing between ten 

classes (which would result in 10% accuracy scores for all classifiers). Even using macro 

average recall, scores are always better than random guessing, with the lowest scoring classifier, 

nearest centroid, achieving 52% macro average recall.  

In all likelihood, the scores shown in this paper would all be improved if the dataset were 

larger and presented more opportunities for trends to make themselves known. Still, despite the 

limited dataset, the scores are very workable, and classifiers achieving these scores could prove 

useful in identifying network traffic. While not all the applications used in this paper have 

perfect, common means of identification using tools easily incorporated into a workflow, it 

would not be difficult to employ a similar machine learning process against traffic automatically 

labeled based on deep packet inspection tools. Then, statistical similarities between applications 

could be identified to enhance application identification beyond what deep packet inspection can 

provide. 

One potentially useful output of this paper is a list of the most commonly important 

features of the dataset. While the dataset used is indeed limited, because of the variety of 
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applications used, its features could potentially prove useful if more broadly applied. Whether or 

not all these features are generally useful or are just specifically useful on this dataset would 

require further study. A table summarizing ten of the most common important shared features as 

derived from the permutation importance of the classical models is shown in Table 46.  

Feature Count Classifiers 

src2dst_max_ps 6 Random Forest, Decision Trees (all features), SVM, k-

NN, Nearest Centroid, Optimized Naive Bayes 

dst2src_max_piat_ms 5 Nearest Centroid, k-NN, SVM, Decision Tree (all 

features), Random Forest 

bidirectional_max_ps 4 Nearest Centroid, Optimized Naive Bayes, SVM, 

Random Forest 

dst2src_rst_packets 4 Nearest Centroid, k-NN, Optimized Naive Bayes, SVM 

src2dst_stddev_ps 4 k-NN, Optimized Naive Bayes, SVM, Decision Tree 

(all features) 

bidirectional_max_piat_ms 3 Nearest Centroid, k-NN, SVM 

dst2src_stddev_ps 3 Nearest Centroid, SVM, Decision Tree (all features) 

src2dst_duration_ms 3 Nearest Centroid, Decision Tree (all features), Random 

Forest 

src2dst_max_piat_ms 3 Nearest Centroid, k-NN, SVM 

bidirectional_mean_ps 2 k-NN, Optimized Naive Bayes 

Table 46: Most common important features by classifier(s) 

Another useful output is an aggregate comparison of broad category performance for the 

classical models in this paper (nearest centroid, k-NN, best-performing naïve Bayes, SVM, best-

performing decision tree, and random forest). This comparison is useful in identifying how 

applications are generally misclassified in machine learning. The table below averages the results 

of the broad category confusion matrices for this purpose. Based on its results, it can be inferred 

that video gaming traffic is most commonly misclassified as video streaming traffic, video 

streaming traffic is most commonly misclassified as video conferencing traffic, web browsing 

traffic is most commonly misclassified as video streaming traffic, and video conferencing traffic 

is most commonly misclassified as video gaming traffic.  
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Table 47: Averaged broad category normalized confusion matrix 

There are many opportunities for future work based on the results of this paper. Simply 

performing much the same testing on a significantly larger dataset would almost certainly be 

very informative. Expanding the number of applications identified to more accurately cover the 

scope of typical traffic on enterprise networks could reveal traffic identification opportunities 

and challenges. Additionally, while network traffic is almost inherently imbalanced, taking 

further steps to balance the dataset without compromising its legitimacy could reveal new 

strengths, weaknesses, and common properties of machine learning in traffic classification. A 

promising workflow that could be easily implemented today in a regular enterprise network is to 

perform network captures and then use application information derived from deep packet 

inspection tools, like NFStream, as the basis for training a machine learning classifier to gain 

enhanced visibility into a computer network.  
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