
Eastern Michigan University Eastern Michigan University

DigitalCommons@EMU DigitalCommons@EMU

Senior Honors Theses and Projects Honors College

2023

Applying machine learning to categorize distinct categories of Applying machine learning to categorize distinct categories of

network traffic network traffic

Isaac M. Dunham

Follow this and additional works at: https://commons.emich.edu/honors

 Part of the Information Security Commons

Recommended Citation Recommended Citation
Dunham, Isaac M., "Applying machine learning to categorize distinct categories of network traffic" (2023).
Senior Honors Theses and Projects. 785.
https://commons.emich.edu/honors/785

This Open Access Senior Honors Thesis is brought to you for free and open access by the Honors College at
DigitalCommons@EMU. It has been accepted for inclusion in Senior Honors Theses and Projects by an authorized
administrator of DigitalCommons@EMU. For more information, please contact lib-ir@emich.edu.

https://commons.emich.edu/
https://commons.emich.edu/honors
https://commons.emich.edu/honorscollege
https://commons.emich.edu/honors?utm_source=commons.emich.edu%2Fhonors%2F785&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/1247?utm_source=commons.emich.edu%2Fhonors%2F785&utm_medium=PDF&utm_campaign=PDFCoverPages
https://commons.emich.edu/honors/785?utm_source=commons.emich.edu%2Fhonors%2F785&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:lib-ir@emich.edu

Applying machine learning to categorize distinct categories of network traffic Applying machine learning to categorize distinct categories of network traffic

Abstract Abstract
The recent rapid growth of the field of data science has made available to all fields opportunities to
leverage machine learning. Computer network traffic classification has traditionally been performed using
static, pre-written rules that are easily made ineffective if changes, legitimate or not, are made to the
applications or protocols underlying a particular category of network traffic. This paper explores the
problem of network traffic classification and analyzes the viability of having the process performed using
a multitude of classical machine learning techniques against significant statistical similarities between
classes of network traffic as opposed to traditional static traffic identifiers.

To accomplish this, network data was captured, processed, and evaluated for 10 application labels under
the categories of video conferencing, video streaming, video gaming, and web browsing as described
later in Table 1. Flow-based statistical features for the dataset were derived from the network captures in
accordance with the “Flow Data Feature Creation” section and were analyzed against a nearest centroid,
k-nearest neighbors, Gaussian naïve Bayes, support vector machine, decision tree, random forest, and
multi-layer perceptron classifier. Tools and techniques broadly available to organizations and enthusiasts
were used. Observations were made on working with network data in a machine learning context,
strengths and weaknesses of different models on such data, and the overall efficacy of the tested
models.

Ultimately, it was found that simple models freely available to anyone can achieve high accuracy, recall,
and F1 scores in network traffic classification, with the best-performing model, random forest, having 89%
accuracy, a macro average F1 score of .77, and a macro average recall of 76%, with the most common
feature of successful classification being related to maximum packet sizes in a network flow.

Degree Type Degree Type
Open Access Senior Honors Thesis

Department or School Department or School
College of Engineering and Technology

First Advisor First Advisor
Omar Darwish, Ph.D.

Second Advisor Second Advisor
James M. Banfield, Ph.D.

Third Advisor Third Advisor
Sean Che, Ph.D.

Subject Categories Subject Categories
Information Security

This open access senior honors thesis is available at DigitalCommons@EMU: https://commons.emich.edu/honors/
785

https://commons.emich.edu/honors/785
https://commons.emich.edu/honors/785

1

For Departmental & Highest Honors:

APPLYING MACHINE LEARNING TO CATEGORIZE DISTINCT CATEGORIES OF

NETWORK TRAFFIC

By

Isaac M. Dunham

A Senior Project Submitted to the

Eastern Michigan University

Honors College

In Partial Fulfillment of the Requirements for Graduation

with Departmental Honors in Information Assurance & Cyber Defense

and with Highest Honors

Approved in Ypsilanti, MI on April 20, 2023

Project Advisor: Omar Darwish, Ph.D.

Departmental Honors Advisor: James M. Banfield, Ph.D.

School Director: Sean Che, Ph.D.

Dean of The Honors College: Ann R. Eisenberg, Ph.D.

2

Abstract

 The recent rapid growth of the field of data science has made available to all fields

opportunities to leverage machine learning. Computer network traffic classification has

traditionally been performed using static, pre-written rules that are easily made ineffective if

changes, legitimate or not, are made to the applications or protocols underlying a particular

category of network traffic. This paper explores the problem of network traffic classification and

analyzes the viability of having the process performed using a multitude of classical machine

learning techniques against significant statistical similarities between classes of network traffic

as opposed to traditional static traffic identifiers.

 To accomplish this, network data was captured, processed, and evaluated for 10

application labels under the categories of video conferencing, video streaming, video gaming,

and web browsing as described later in Table 1. Flow-based statistical features for the dataset

were derived from the network captures in accordance with the “Flow Data Feature Creation”

section and were analyzed against a nearest centroid, k-nearest neighbors, Gaussian naïve Bayes,

support vector machine, decision tree, random forest, and multi-layer perceptron classifier. Tools

and techniques broadly available to organizations and enthusiasts were used. Observations were

made on working with network data in a machine learning context, strengths and weaknesses of

different models on such data, and the overall efficacy of the tested models.

 Ultimately, it was found that simple models freely available to anyone can achieve high

accuracy, recall, and F1 scores in network traffic classification, with the best-performing model,

random forest, having 89% accuracy, a macro average F1 score of .77, and a macro average

recall of 76%, with the most common feature of successful classification being related to

maximum packet sizes in a network flow.

3

Acknowledgments

This paper would not have been possible without the help of dedicated and passionate

staff at Eastern Michigan University. In alphabetical order, the author thanks Dr. Ann

Eisenberg for facilitating the author’s Honors College and project success despite his

nontraditional background and discipline, Christopher Krieger for providing excellent and

rigorous instruction on the subject of network forensics, Dr. James Banfield for critical

support and supervision of the project, Dr. Mohammed Alsaleh for providing critical early

opportunities in academic and research-oriented projects, and Dr. Omar Darwish for

immensely valuable guidance and advising of the project.

4

Table of Contents

Abstract ..2

Acknowledgments ...3

Table of Contents ..4

SECTION 1: INTRODUCTION ...6

Background and Motivation ..6

Contributions ..7

Literature Review ..7

SECTION 2: METHODOLOGY .. 10

Data Collection ... 10

Data Preparation .. 12

Traffic Labeling .. 12

Flow Data Feature Creation ... 15

Initial Feature Selection, Transformation, and Scaling ... 15

Dataset Balancing .. 16

Common Modeling and Evaluation Processes ... 18

SECTION 3: MODEL EVALUATION ... 20

Nearest Centroid ... 20

K-Nearest Neighbors ... 25

Naïve Bayes .. 29

Support Vector Machines .. 37

5

Decision Trees .. 41

Random Forest .. 51

Multilayer Perceptron .. 55

SECTION 4: CONCLUSIONS ... 61

References .. 64

6

SECTION 1: INTRODUCTION

Background and Motivation

 Applications on a computer utilize network resources on a per-port basis and are

generally standardized in use by the Internet Assigned Numbers Authority (IANA). Thus, ports

are the most typical identifier of an application. Prior to modern next-generation firewalls

(NGFWs) that are capable of performing deep packet inspection (DPI) against traffic to identify

unique traffic signatures, network traffic classification and filtering were primarily based on

network protocol (e.g., TCP, UDP) and corresponding port numbers.

However, port number usage, while standardized, is not mandated and can vary from

implementation to implementation of an application. Further compounding issues, it is trivial for

network attackers to modify the port numbers used by their tools to bypass port-based filtering

schemes. The modern basis for interest in using machine learning and statistical modeling to

perform network traffic classification lies in the fact that, like port numbers, there are no

perfectly consistent identifiers of application or traffic category in regular communications.

Instead, researchers largely seek to use machine learning to identify statistical commonalities in

traffic and to perform classification based on these commonalities.

The motivation behind this paper is to explore and evaluate how different machine

learning models may be applied in network traffic classification using easily accessible tools and

products. Where most existing literature primarily focuses on existing datasets, simple and well-

known applications, or niche aspects of the network traffic classification problem, this paper

demonstrates the creation of a simple, realistic, recent dataset purpose-built to contain a variety

of common modern applications in the most common categories of use. It does not seek to solve

the decades-old problem actively being worked on by the best and brightest in industry and

7

research, but instead to illustrate and evaluate some of the existing capabilities and difficulties

with modern, readily available solutions.

Contributions

 This paper contributes not by pushing the boundary of what is possible with machine

learning, but by evaluating and elaborating on what is already commonly available to network

administrators today. In a bulleted list, some of the contributions of this paper are that this paper:

• Provides a replicable workflow to use machine learning on network traffic, including the

processes of capturing network traffic, identifying traffic of interest, labeling traffic,

extracting useful statistical features from traffic, and training models to correctly classify

traffic

• Provides a performance summary of common machine learning classifiers in the context

of a network dataset with a variety of common, modern application labels

• Identifies important features in network traffic classification for use in feature selection

or further feature creation

• Reveals insight into strengths, weaknesses, and nuances of different classifiers and how

they interact with many applications varying in nature and degree of presence

Literature Review

 Despite its lack of regular use in enterprise networks, the concept of machine learning is

not new to network traffic classification. In 2005, Andrew Moore and Denis Zhuev wrote what is

still one of the most cited papers on the subject. Their research used Bayesian analysis

techniques to achieve up to a 95% accuracy rate using traffic featuring 248 per-flow

discriminators, including TCP port numbers. The traffic was hand-labeled by broad categories as

opposed to individual applications (e.g., SMTP, IMAP, and POP traffic were labeled “MAIL”)

8

(2005). That same year, 2005, researchers were able to achieve an average of 86.5% accuracy in

traffic classification using just six features: packet inter-arrival time, packet length, mean, and

variance, flow size, and duration, notably excluding port numbers of any sort while also using

Bayesian techniques (Zander et al).

 More recent research improves on the performance of past research using other

traditional, classical learning models and also explores completely novel methods. In 2013,

researchers used a “Bag-of-Words” (BoW) model with latent semantic analysis (LSA) to create

similar traffic clusters capable of accurately identifying applications previously unknown to a

network (Zhang et al). In 2015, Hajjar et al. achieved relatively high recall scores using message

size analysis of the first few messages in a given network conversation with a combination of K-

means clustering and Dempster’s EM algorithm. In 2017, researchers evaluated different models

and algorithms including J47, random forest, k-NN, and Bayesian networks against two datasets

and achieved the greatest accuracy (90+%) using random forest and k-NN, depending on the

dataset and feature sets used (Yamansavascilar et al). In 2019, researchers compared the

accuracy of multilayer perceptron, C4.5, SVM, and naïve Bayes against specific encrypted

network applications, achieving the best results (88.29% accuracy) using C4.5 (Al-Obaidy et al).

 The non-academic community, too, has a number of projects adjacent to or directly

involved in using machine learning to categorize network traffic. NFStream, which will be

discussed later, is a Python “machine learning oriented” package that seeks to “make machine

learning approaches for network traffic management reproducible and deployable” (“NFStream:

Flexible Network Data Analysis”, n.d.). CANIV TECH is a network analytics-as-a-service

organization that seeks to help predict network faults, mitigate DDoS attacks, and classify

network traffic using machine learning (CANIV TECH, n.d.). Adjacent to network traffic

9

classification, computer network equipment manufacturers also commonly tout their use of

machine learning for network security purposes, such as Palo Alto Networks WildFire inline ML

antivirus offering (Palo Alto Networks, n.d.).

10

SECTION 2: METHODOLOGY

 In data science and machine learning, there is a broad process that must be performed to

effectively create a machine learning model that can accurately classify data. That process, as

will be laid out below, includes data collection, data preparation, modeling, and model

evaluation. A flowchart showing the broad process of this paper from start to finish is included

below.

Figure 1: Process overview

Data Collection

 Broadly speaking, most computer data that travels across a network is encapsulated into

datagrams. At different stages of travel across a network, these datagrams exhibit different

11

properties and take on different names. Most commonly, people think of network data in terms

of “packets,” representing network data that includes application, transport, and network layer

properties in the traditional TCP/IP stack. Because of the quantity and variety of applications and

protocols that underlie typical network traffic, individual recorded packets only contain a limited

number of consistent features. This most notably includes time, length, source and destination IP

address (IPv4 or IPv6), source and destination port, protocol, and flags. Additionally, individual

packets associated with many similar applications are often difficult to distinguish from each

other. As an example, fundamentally, one might expect a packet related to YouTube video and

another packet related to Vimeo video streaming to be nearly indiscernible, aside from specific,

non-static identifier fields like IP address.

Therefore, much of the existing literature on network traffic classification does not rely

on individual packets as the raw units of data, but, instead, flows. Flows are aggregations of

packets based on a tuple consisting of five properties: source and destination IP address, source

and destination port, and protocol. Given a flow, many different properties can be extrapolated,

such as total packets sent and received, flow duration, average packet interarrival times, etc. In

this paper, data is originally collected as packets in PCAP (packet capture) format, and traffic

classification is done on the basis of 5-tuple flows with such features and statistical properties.

Discussion on how these properties are derived is included in the Data Preparation section.

All network data originated from a Windows 10 system. Network traffic was captured

using Wireshark and saved as .pcap files. In the data collection process, first, Wireshark packet

captures would be started. Then, the application in question would be run for 10 minutes before

being turned off. Finally, the Wireshark capture would be stopped and saved. Accompanying the

packet capture was the collection of NetFlow data. This NetFlow data was forwarded from an

12

intermediary Palo Alto Networks PA-450 firewall able to identify applications on a per-flow

basis to an Ubuntu server hosting Elastic Elasticsearch, Logstash, and Kibana. This NetFlow data

was not used as the basis of any traffic classification but is used later as a tool aiding the data

labeling process in conjunction with nDPI-identified applications and manual analysis based on

IP addresses, protocols, and port numbers.

Figure 2: Data collection process

Data Preparation

Traffic Labeling

 Unfortunately, labeling network traffic is not as simple as classifying all data from a

network capture for a specific application as belonging to that application. Most modern major

operating systems, such as Windows, operating on modern networks inherently have a lot of

background network noise. Whether sending heartbeats and telemetry information to a service

provider or checking for update information, almost any network capture will include traffic

unrelated to the primary application being run on the system at the time of capture. Therefore,

extraneous traffic must be identified and removed from each capture file so that the rest of the

traffic can be accurately labeled per its associated application.

13

 Isolating a particular application’s network traffic has varying degrees of difficulty. In

using a pre-configured, well-known, simple, and consistent application, like SSH, one could

simply remove all traffic not destined for TCP port 22 (or to some other unshared port as

configured by the SSH server). In other situations, however, such as in trying to distinguish

YouTube traffic from other background traffic hosted on the web via HTTPS, as is done in this

paper, identifying undesired traffic is more difficult. To accomplish this, a mixture of methods

was used, including nDPI-based application identification, Palo Alto App-ID identification, and

manual analysis based on IP addresses, protocols, and port numbers.

 nDPI-based application identification was performed using NFStream, described later in

this paper, to identify application usage on a per-flow basis. nDPI is a popular open source

LGPLv3 library for deep packet inspection created by ntop that is a common basis for

application identification in products and research (Aouini, Z. & Pekar, A, 2022). Palo Alto App-

ID information is found in the NetFlow captures when the “PAN-OS Field Types” option is

configured from the firewall. App-ID information served the same function as the information

derived using nDPI, but the App-ID library of applications is both very different and much

larger. Both Palo Alto App-ID and nDPI application identification are performed by analyzing

packet contents for signatures associated with particular applications. For example, at the time of

writing, the halflife2_and_mods.c Half-Life 2 identifier in nDPI’s GitHub repository checks

packets for the text “halflife2 client req detected, waiting for server reply.” These application

identification tools were used as useful indicators in trying to determine which flows in a capture

corresponded with the application in question.

 Manual application analysis was done primarily on the bases of IP addresses and port

numbers. Where possible, vendor documentation pertaining to the specifics of which IP

14

addresses and port ranges were used by an application was used as a source of truth. Zoom’s

documentation, for example, provided a list of over 300 Zoom-specific IP address ranges which

served to identify which packets were sent to and from Zoom. In general, for each PCAP capture

file, the following process was performed to create a display filter and to save a final

representative file to be used in later data processing:

1. Identify port numbers and/or IP addresses as appropriate associated with the application

in question.

2. In the capture file, filter out traffic not using these ports and/or IP addresses.

3. Analyze the remaining traffic to determine if it seems to be associated with the

application in question not using the ports discovered above. Record any newly

discovered indicators of relevance.

4. Repeat the above process until all traffic is generally categorized into desired and

undesired traffic.

5. Filter out all undesired traffic and save a new capture file with an appropriate name.

6. Visually confirm that the saved file is appropriately filtered.

Table 1, shown below, describes the applications and labels captured for this paper.

Label Category Description

csgo Video gaming Video game Counter-Strike: Global Offensive

discord Video conferencing Discord is a popular audio/video calling platform

hl2dm Video gaming Video game Half-Life 2: Deathmatch

minecraft Video gaming Video game Minecraft

netflix Video streaming Netflix streaming over website

skype Video conferencing Skype is a popular audio/video calling platform

vimeo Video streaming Vimeo is a popular video streaming platform

webbrowsing Web browsing Miscellaneous web browsing on Amazon.com,

Wikipedia, and Gmail

youtube Video streaming YouTube is a popular video streaming platform

zoom Video conferencing Zoom is a popular audio/video calling platform.

Table 1: Dataset labels and categories

15

Flow Data Feature Creation

Following the process up to this point, the data exists in a PCAP file format without

useful features. To aggregate the data into per-flow records and to extract statistical flow

information, NFStream was utilized. At the time of writing, NFStream’s GitHub page describes

itself as “a multiplatform Python framework providing fast, flexible, and expressive data

structures designed to make working with online or offline network data easy and intuitive.”

NFStream provides a sound, consistent manner in which to derive flow information, including

underlying application using the nDPI library, and has been used in a number of scholarly, peer-

reviewed papers. To recover useful statistical flow properties, the “statistical_analysis = True”

argument was provided to the NFStreamer NFStream function. Resultant flows were then saved

into a CSV format.

Initial Feature Selection, Transformation, and Scaling

 Different machine learning models benefit in different ways from the presence and

absence of different features. However, it is always best practice to remove known misleading

and effectively useless features. A table of features initially removed from the dataset is included

below.

Feature Removed Explanation

Source and destination

IP address

Long-term, these are unreliable indicators. Source addresses change

based on the location and ISP of the user, and destination addresses

often change when an application provider moves servers providing

services.

Port numbers Port numbers are a biased and historically notably vulnerable means

of identifying applications. Using ports could be used to achieve

extremely high accuracy, but would render the model ineffective at

identifying applications using deliberately irregular ports.

Layer 2 data (MAC

addresses, VLAN ID,

etc.)

Layer 2 network information is only relevant at the local network

level and is unreliable as a general indicator for app identification.

16

All features with no

variation in value

Features that all had the same value (e.g., Echo of Congestion

Encountered (ECE) packets in this dataset) were removed because

they provide no information and add to the dimensionality problem.

Flow start / end time Start/end times are dependent upon when a conversation occurs and

are unreliable indicators of an application in the context of this paper.

Source to destination

and destination to

source SYN packets

These features were redundant because they were always identical in

the dataset; whenever TCP was the protocol, they would share a

value of 1, else, they would share a value of 0. The bidirectional syn

packet feature was kept to preserve this feature.

Table 2: Features removed from NFStream defaults

After useless features are removed, it is important to identify categorical and/or ordinal

data types remaining in the dataset. Aside from the class labels, the only categorical variable is

“protocol.” Its values are integers dependent upon the IANA-defined protocol number. This

paper used one-hot encoding to transform its values into separate binary TCP, UDP, and ICMP

features.

 Next, the data underwent scaling. Scaling is particularly useful for machine learning

models whose algorithms are dependent upon determining distances between a data point and

data points associated with a particular class, such as nearest centroid or k-nearest neighbors (k-

NN). To perform data scaling, standardization was performed on appropriate features in

accordance with x = (x − mean(x)) / σ).

Dataset Balancing

 A common issue in machine learning exercises is an imbalanced dataset. An imbalanced

dataset is a dataset that has many samples of a particular class, but not many of another. Models

trained on imbalanced datasets may believe that some classes are inherently uncommon (whether

or not that is necessarily true) and will therefore often ignore strong indicators of their presence

due to the perception that the likelihood that a class will be present at all is very low. If the real-

world parent distribution is similar to that of the training dataset, this problem can be difficult to

notice in performance. Consider, for example, that to achieve 99.98% accuracy in classifying a

17

dataset of 4,999 3-leaf clovers and one 4-leaf clover, a model simply needs to classify every

single clover as a 3-leaf clover.

 Network traffic is almost inherently imbalanced. Different applications make use of a

different number of servers, services, and communication flows. The most imbalanced ratio in

this paper’s dataset is between the CS:GO-labeled traffic (maximum sample count) and the

Netflix-labeled traffic (minimum sample count), with the former flow count making up only

4.5% (a ratio of roughly 1:22) of the latter flow count. There exists a great deal of literature

covering potential solutions and proposed principles for handling the problem of imbalanced

datasets. However, as Dr. Gary Weiss of Fordham University writes, “…ultimately what we care

about is how the imbalance impacts learning, and, in particular, the ability to learn the rare

classes (2013).” Different methods of undersampling overrepresented classes (e.g., CS:GO &

Minecraft) and oversampling underrepresented classes (e.g., Netflix & YouTube) were explored,

but neither was found to be of great benefit in improving the models. Therefore, to maintain the

benefits of having an accurate, realistic, unbiased dataset and to reduce complexity, the dataset

balance was left unchanged. However, to ensure that the training process did not forego certain

classes because of their chance non-appearance in training sets, stratification (ensuring similar

representation ratios of certain labels) was employed in k-fold cross-validation. A pie chart

showing the relative proportions of traffic types in the dataset is shown in Figure 3 below.

18

Figure 3: Dataset label distribution

Common Modeling and Evaluation Processes

 Machine learning model evaluation was performed using the Scikit-Learn library for

Python. For each model, the dataset is shuffled and stratified k-fold validation is used to evaluate

the model against different subsets of the data for an aggregate score. As applicable, SHAP

values, confusion matrices, permutation importance reports, and correlations are used to describe

the performance of the models and the effect of the data on the model in question. Confusion

matrix discussions will sometimes reference what this paper calls “confusers,” classes or class

categories (e.g., video streaming) that are most misclassified over the true label. Confusion

matrices showing results by class category reflect previously shown classification results binned

into their respective categories, not results of classification using broad categories as labels.

Permutation importance is measured using the average permutation importance value of features

during the stratified k-fold validation process using 30 repeats in the sklearn

“permutation_importance” function. SHAP values are measured as described in each appearance.

Evaluation of the classifiers includes scoring based on overall accuracy, average recall,

precision, and F1-score, and average weighted precision, recall, and F1-score. F1-score is a

metric that accounts for both precision and recall to strike a broad balance between the two. To

19

optimize models to achieve as best scores possible, grid searching using the Python Scikit-Learn

library for parameters of interest is performed using accuracy as the performance metric. Any

model tests that use details deviating from what has been described thus far will have these

exceptions noted in their discussion.

20

SECTION 3: MODEL EVALUATION

Nearest Centroid

 The nearest centroid classifier works by separating data points into clusters representing

the classes that they are labeled with. The average point of these clusters is called a “centroid,”

and given a test piece of data against a trained nearest centroid classifier, the test point would be

classified based on what the nearest centroid to that point is using Euclidean distance.

 The ultimate classification results of the nearest centroid classifier are shown below.

 Precision Recall F1-Score Support

csgo 1.00 0.74 0.85 350

discord 0.52 0.64 0.57 22

hl2dm 0.22 0.18 0.20 22

minecraft 0.71 0.91 0.80 97

netflix 0.37 0.69 0.48 16

skype 0.25 0.16 0.19 38

vimeo 0.27 0.50 0.35 16

webbrowsing 0.39 0.48 0.43 31

youtube 0.12 0.32 0.17 19

zoom 0.38 0.54 0.45 24

Accuracy 0.67 635

Macro Average 0.42 0.52 0.45 635

Weighted Average 0.75 0.67 0.69 635

Table 3: Nearest centroid classification results

Confusion matrices representing the total classifications and recall per label are

respectively shown in Table 4 and Table 5.

21

Table 4: Nearest centroid confusion matrix

Table 5: Nearest centroid normalized confusion matrix

22

For misclassification, one would expect that similar applications would be misclassified

as each other. However, this doesn’t seem to be true in the results for this classifier. Table 6,

shown below, lists each label by its strongest confuser by true label proportion. Below that,

Table 7 is a confusion matrix representing classification summarized by broad category.

Class Class Category Strongest

Confuser

Strongest Confuser Category

csgo Video gaming youtube Video streaming

discord Video conferencing webbrowsing Web browsing

hl2dm Video gaming zoom Video conferencing

minecraft Video gaming skype Video conferencing

netflix Video streaming webbrowsing Web browsing

skype Video conferencing zoom Video conferencing

vimeo Video streaming minecraft Video gaming

web

browsing

Web browsing vimeo/netflix Video streaming

youtube Video streaming discord Video conferencing

zoom Video conferencing skype/hl2dm Video conferencing/gaming

Table 6: Nearest centroid label & confuser comparison

Table 7: Nearest centroid broad category confusion matrix

In total, if applications in the same broad category are to be considered “similar” to each

other, applications’ most frequent classifications were only in the same category for two of the

23

ten classes, with one of those two having a tie with another category. There are no strong

patterns for confusion between categories. Video conferencing was an overrepresented confuser

category, whereas video gaming was an underrepresented confuser category, despite CS:GO

traffic having the largest number of samples. To better understand this confusion, it helps to

explore feature importance.

The ten most important features to this model as derived from permutation importance

are shown in Table 8 below.

Feature Weight ± Std. Dev

dst2src_rst_packets 0.010394 ± 0.003906

dst2src_stddev_ps 0.007192 ± 0.006178

src2dst_max_ps 0.007139 ± 0.005679

bidirectional_max_ps 0.005617 ± 0.007453

src2dst_max_piat_ms 0.005459 ± 0.005531

bidirectional_rst_packets 0.005459 ± 0.003471

src2dst_duration_ms 0.005249 ± 0.005148

bidirectional_duration_ms 0.004987 ± 0.004877

dst2src_max_piat_ms 0.004934 ± 0.005384

bidirectional_max_piat_ms 0.004934 ± 0.005303

Table 8: Nearest centroid feature importance by permutation importance

The strongest features were related to packet size, packet inter-arrival times, and reset

packet counts. Largely, these features were uncorrelated (r-correlation values lower than 0.8),

aside from the dst2src_max_piat_ms, src2dst_max_piat_ms, and bidirectional_max_piat_ms

group (sharing an r-correlation > .94 between each other).

The strongest features largely make intuitive sense to be correlated on a per-application

basis. Packet sizes are often well-correlated with specific applications as they often require

different amounts of data. For example, file downloading might have large packet sizes to

increase absolute throughput. Video conferencing applications, on the other hand, need to send

data as immediately as possible, and, in the case of audio-only conferences, absolute data sizes

are often small.

24

Packet inter-arrival times can be closely correlated with application usage because

distinct applications typically have a pattern of sending a number of packets per second. As an

example, a high-definition video conferencing UDP-based application, like Zoom, which has the

3rd lowest mean packet inter-arrival time, might be expected to send a lot of packets quickly and

thus have an average low packet inter-arrival time.

Reset packet counts make less obvious, intuitive sense to vary on a per-application basis.

While some applications may be designed to forcefully terminate connections using reset

packets, this is very rare and does not seem to be the case for the applications used in this paper.

Table 9 conveys the average packet size, packet interarrival time, and reset packet counts

and is included below, though differences in per-feature variance should be considered. Based on

this table alone, some of the model’s performance is explainable. CS:GO-classified was most

often confused with YouTube traffic. It so happens that their average values for src2dst_max_ps,

one of the most important features according to weight, are very similar to each other. However,

because the nearest centroid model performed so poorly and there are so many potential causes

of this performance, whether they be due to the nature of the classifier or due to statistical

similarities across the dozens of different features, such analysis is not necessarily consistent or

reliable for this model.

25

Label Mean

src2dstmax_ps ±

Std. Dev

Mean src2dst

max_piat_ms ±

Std. Dev

Mean

dst2src_rst_packets

± Std. Dev

csgo 1228 ± 315 7873 ± 14040 0 ± 0

discord 995 ± 431 7658 ± 15077 0.0455 ± 0.213

hl2dm 235 ± 177 16465 ± 17792 0 ± 0

minecraft 370 ± 187 5271 ± 8874 0.0619 ± 0.242

netflix 947 ± 175 42016 ± 7168 0.0625 ± 0.250

skype 687 ± 471 20731 ± 26197 0.316 ± 0.471

vimeo 1051 ± 235 26698 ± 21507 0 ± 0

webbrowsing 800 ± 335 40638 ± 11674 0 ± 0

youtube 1126 ± 292 23823 ± 15264 0.158 ± 0.375

zoom 439 ± 484 6659 ± 14373 0.333 ± 0.702

Table 9: Feature means and standard deviations

K-Nearest Neighbors

 The k-nearest neighbors classifier (k-NN) works similarly to the nearest centroid

classifier. Instead of computing per-class centroids, the k-NN model compares a new sample to

the class labels assigned to a pre-defined number (k) of the nearest training samples,

“neighbors.” For example, if using k-NN where k = 3 and a test record were found to be closest

to two data points assigned to class A and one assigned to class B, the test point would be

classified as belonging to class A. In essence, k-NN features no “training” whatsoever. Instead,

new values are simply compared to existing, labeled values from the “training” set.

The ultimate classification results of the optimized k-NN classifier are show in Table 10.

 Precision Recall F1-Score Support

csgo 0.97 0.97 0.97 350

discord 0.65 0.59 0.62 22

hl2dm 0.57 0.55 0.56 22

minecraft 0.95 0.89 0.91 97

netflix 0.62 0.62 0.62 16

skype 0.58 0.68 0.63 38

vimeo 0.67 0.75 0.71 16

webbrowsing 0.77 0.77 0.77 31

youtube 0.68 0.79 0.73 19

zoom 0.72 0.54 0.62 24

Accuracy 0.87 635

Macro Average 0.72 0.72 0.71 635

26

Weighted Average 0.87 0.87 0.87 635

Table 10: k-NN classification results

To get the best performance from k-NN, the most important hyperparameter to optimize

is k. Different data distributions and feature sets will result in different values of k being most

effective. Ultimately, the k value providing the highest accuracy results was found to be 1.

The primary cause of the low k value is the distribution of classes in the dataset. Indeed,

though shuffled and stratified random train-test splits were employed, ultimately, there were not

always more than a few samples for certain classes. An example of this issue in the dataset can

be observed in a sample 80% training split created during cross-validation. In this training split,

there existed only 13 total Vimeo samples. Thus, increasing the number of nearest neighbors

from one to any higher amount easily results in misclassification. A graph comparing the

accuracy with the number of neighbors used for the classifier fitted on a 5:1 train-test split is

shown in Figure 4.

Figure 4: Accuracy rate vs number of neighbors

Despite the shortcomings, the results are much better than those of the nearest centroid

model. Confusion matrices representing the total classifications and recall per label are

respectively shown in Table 11 and Table 12.

27

Table 11: k-NN confusion matrix

Table 12: k-NN normalized confusion matrix

28

 A table comparing the k-NN classifier’s common confusers and a confusion matrix

showing recall results by broad category are shown below in Table 13 and Table 14.

Class Class Category Strongest

Confuser

Strongest Confuser

Category

csgo Video gaming hl2dm Video gaming

discord

Video conferencing skype / vimeo /

youtube

Video conferencing /

video streaming

hl2dm Video gaming csgo Video gaming

minecraft

Video gaming csgo / skype Video gaming / Video

conferencing

netflix

Video streaming hl2dm /

webbrowsing

Video gaming / web

browsing

skype

Video conferencing csgo / minecraft /

vimeo / zoom

Video gaming, video

streaming, video

conferencing

vimeo

Video streaming discord / netflix /

webbrowsing /

youtube

Video conferencing, video

streaming, web browsing

web

browsing

Web browsing netflix / youtube Video streaming

youtube Video streaming skype Video conferencing

zoom Video conferencing skype Video conferencing

Table 13: k-NN label & confuser comparison

Table 14: k-NN normalized broad category confusion matrix

29

The ten most important features to this model as derived from permutation importance

are shown below in Table 15.

Feature Weight ± Std. Dev

src2dst_max_ps 0.065722 ± 0.015302

dst2src_rst_packets 0.036115 ± 0.008005

src2dst_rst_packets 0.031129 ± 0.006146

src2dst_stddev_ps 0.023832 ± 0.010014

dst2src_min_piat_ms 0.021312 ± 0.005587

dst2src_mean_ps 0.016063 ± 0.010617

bidirectional_mean_ps 0.014698 ± 0.011116

bidirectional_max_piat_ms 0.014646 ± 0.009183

dst2src_max_piat_ms 0.014593 ± 0.009097

src2dst_max_piat_ms 0.012651 ± 0.009345

Table 15: k-NN feature importance by permutation importance

In nearly every meaningful way, the results of the k-NN classifier are better and make

more intuitive sense than those of the nearest centroid. Confusers are significantly more

understandable, with three broad categories directly matching between classes and their

confusing classes, as opposed to only one, and four broad categories being tied with their correct

match and other broad confusing classes. The most important features, similar to those of nearest

centroid, are related to packet sizes, packet interarrival times, and packet reset counts. The

relatively frequent misclassification of HL2:DM traffic as CS:GO traffic is also expected as both

applications are not only video games but are also built on the same underlying game engine.

Naïve Bayes

 The naïve Bayes classifier’s logic is built on Bayes’ theorem in calculating the

probability that a piece of data belongs in a particular class. In doing this, it assumes that features

are statistically independent (hence being called “naïve”). While this is rarely the case, naïve

Bayes often perform well, despite the generally incorrect assumption.

 There are different categories of naïve Bayes classifiers. Commonly used ones in popular

tools and libraries include Bernoulli, categorical, complement, multinomial, and Gaussian, with

30

Gaussian being one of the most commonly employed. In optimization, these different methods of

implementing a naïve Bayes classifier were tested and Gaussian was found to perform the best.

The ultimate classification results of the optimized Gaussian naïve Bayes classifier are

shown below.

 Precision Recall F1-Score Support

csgo 0.97 0.87 0.92 350

discord 0.57 0.55 0.56 22

hl2dm 0.28 0.59 0.38 22

minecraft 0.77 0.91 0.83 97

netflix 0.31 0.69 0.42 16

skype 0.39 0.18 0.25 38

vimeo 0.36 0.25 0.30 16

webbrowsing 0.39 0.55 0.45 31

youtube 0.44 0.37 0.40 19

zoom 0.42 0.21 0.28 24

Accuracy 0.74 635

Macro Average 0.49 0.52 0.48 635

Weighted Average 0.77 0.74 0.74 635

Table 16: Naïve Bayes classification results

 To optimize the performance of the classifier, the most important parameter to consider

in the sklearn library is the var_smoothing parameter, which represents the percentage of the

variance of all features added to maximize calculation stability. Grid searching between 5,000

evenly spaced numbers in a logarithmic space between 100 and 10-9
 found that the best-

performing value ≅ .26983 performed best.

Broadly speaking, the naïve Bayes classifier with all features performs better than nearest

centroid but worse than k-NN. This is not unexpected. Many of the features in the dataset are

known to not be statistically independent of each other, such as features related to the “total” of

some trait and the separate “source to destination” and “destination to source” features that

contribute to the total feature. Furthermore, Gaussian naïve Bayes classifiers simply perform best

when the underlying data is of a Gaussian/normal distribution. Many features of the dataset are

31

not normally distributed, even on a per-class basis, nor are real-world networks inclined to

inherently have normally distributed properties.

The ten most important features to this model as derived from permutation importance

are shown below.

Feature Weight ± Std. Dev

bidirectional_syn_packets 0.024987 ± 0.008751

tcp 0.023937 ± 0.008300

udp 0.022310 ± 0.008289

dst2src_rst_packets 0.018950 ± 0.007448

dst2src_stddev_ps 0.017690 ± 0.008738

dst2src_max_ps 0.017585 ± 0.009955

bidirectional_max_ps 0.017270 ± 0.009816

src2dst_max_ps 0.015801 ± 0.009320

dst2src_mean_piat_ms 0.011811 ± 0.007253

src2dst_stddev_ps 0.011759 ± 0.005768

Table 17: Naïve Bayes feature importance by permutation importance

 Interestingly, many of the most important features are in some way related to one

another. bidirectional_max_ps, src2dst_max_ps, and dst2src_max_ps are related to each other in

that the bidirectional property is the maximum of the other two. The binary presence of TCP was

directly related to the presence of bidirectional SYN packets and was nearly a mutually exclusive

feature with UDP (r-correlation <-.99, on account of the low presence of ICMP packets). Having

such interdependent features rank so highly in importance for the naïve Bayes classifier is a sign

that the dataset should be investigated for tuning further, as, ideally, the classifier cares the most

about statistically independent features.

 To attempt to better fulfill the statistical independence assumption of naïve Bayes, model

evaluation was performed against the dataset with some mathematically related features

removed. This proved to slightly improve the performance of the classifier. Accuracy and score

improvements were not universal for all classes, but were broad improvement and noticeable.

32

The results of classification using a dataset with some select features removed are

included below:

 Precision Recall F1-Score Support

csgo 0.99 0.87 0.93 350

discord 0.57 0.55 0.56 22

hl2dm 0.28 0.59 0.38 22

minecraft 0.73 0.91 0.81 97

netflix 0.33 0.69 0.45 16

skype 0.38 0.13 0.20 38

vimeo 0.57 0.50 0.53 16

webbrowsing 0.49 0.65 0.56 31

youtube 0.45 0.53 0.49 19

zoom 0.38 0.25 0.30 24

Accuracy 0.75 635

Macro Average 0.52 0.57 0.52 635

Weighted Average 0.78 0.75 0.76 635

Table 18: Improved naïve Bayes classification results

To achieve this moderately better result, manual and statistical analysis was performed on

the relationships between different features. While the most helpful features to remove were

often highly correlated with one feature or another, simply removing one highly correlated

feature from each pair of related features did not produce results as effective as intermingling

manual analysis with statistical analysis. To achieve the above result, the following features were

removed: tcp, bidirectional_psh_packets, bidirectional_min_ps, bidirectional_ack_packets,

bidirectional_rst_packets, bidirectional_packets, and bidirectional_bytes. Removing these same

features did not notably improve the performance of other classifiers in this paper; these features’

removal’s positive effect on the performance of the naïve Bayes classifier is likely due to its

underlying assumption of statistical independence of features.

The features ranked by permutation importance in accordance with the new, more tuned

feature set are included in Table 19.

33

Feature Weight ± Std. Dev

bidirectional_syn_packets 0.038688 ± 0.011815

udp 0.034541 ± 0.011819

dst2src_rst_packets 0.033228 ± 0.011074

dst2src_max_ps 0.026457 ± 0.012369

src2dst_max_ps 0.019580 ± 0.009276

bidirectional_max_ps 0.019108 ± 0.009909

src2dst_mean_ps 0.017848 ± 0.010379

src2dst_fin_packets 0.017743 ± 0.008775

bidirectional_mean_ps 0.014331 ± 0.006812

src2dst_stddev_ps 0.014278 ± 0.007613

Table 19: Improved naïve Bayes feature importance by permutation importance

Many of the most valuable features by permutation are still greatly correlated with each

other, but further feature removal only reduced classifier performance. For instance, the UDP

feature had an r-correlation with a magnitude greater than .93 with the bidirectional_syn_packets

feature, but the removal of either feature harmed performance. A heatmap showing features by

their absolute r-correlation values with each other is shown in Table 20.

34

Table 20: Feature and absolute r-correlation heatmap

 Still notable, however, is that of these important features, none constitute an effective

standard distribution. Most of the features’ distributions peak, valley, and then peak again in a

manner much the opposite of a normal distribution, even on a per-class basis. Density plots for

the four most important features of the feature-tuned Gaussian classifier with accompanying

reference normal distributions are shown below. Where this paper was able to improve the

performance of the Gaussian classifier by removing statistically dependent features, it was

unable to use a similar process with features following a non-Gaussian distribution as few

35

features follow a normal distribution and data normalization and standardization methods had no

effect on distribution density.

Figure 5: Feature value distribution vs. normal distribution

 Finally, confusion matrices representing the total classifications, recall per label, and

results by broad category are respectively shown below for the feature-tuned naïve Bayes

classifier.

36

Table 21: Improved naive Bayes confusion matrix

Table 22: Improved naive Bayes normalized confusion matrix

37

Table 23: Improved NB normalized broad category confusion matrix

Support Vector Machines

 Support vector machines (SVM) operate on the basis that there exists a mathematical

hyperplane that can separate data points into different classes. This hyperplane is separated by an

optimally large margin as distant as possible from different training samples defining the

boundaries of different classes. These training samples, called support vectors, define the margin.

A kernel function is used to optimize the location of the hyperplane that produces the maximum

possible margin between the hyperplane and its support vectors.

 The classification results of SVM using the Python sklearn library’s C-Support Vector

Classification (SVC) using an optimized RBF function are included in Table 24.

38

 Precision Recall F1-Score Support

csgo 0.97 0.98 0.97 350

discord 0.58 0.64 0.61 22

hl2dm 0.64 0.64 0.64 22

minecraft 0.90 0.92 0.91 97

netflix 0.77 0.62 0.69 16

skype 0.62 0.66 0.64 38

vimeo 0.73 0.69 0.71 16

webbrowsing 0.82 0.74 0.78 31

youtube 0.76 0.84 0.80 19

zoom 0.71 0.62 0.67 24

Accuracy 0.88 635

Macro Average 0.75 0.73 0.74 635

Weighted Average 0.88 0.88 0.88 635

Table 24: SVM classification results

 Optimization of the SVM classifier found that the best underlying kernel was a radial

basis function. Two other parameters, γ and C, were found to be optimal at values ~0.020236 and

39.07, respectively.

 The SVM classifier performed well. Support vector machines are most well-known for

producing good results without the need for extensive computational resources when compared

to similar traditional models. There is little to comment on regarding the dataset or the classifier

based on its performance. It largely does well at what most of the other classifiers shown thus far

do and poorly where other classifiers also tend to fail. The rest of this section will include

summary information for reference in later discussion.

The permutation importance-derived most important features are included in Table 25.

39

Feature Weight Std. Dev

src2dst_max_ps 0.083465 ± 0.017599

dst2src_rst_packets 0.033333 ± 0.008511

dst2src_min_piat_ms 0.024462 ± 0.006562

bidirectional_max_ps 0.018320 ± 0.007033

src2dst_stddev_ps 0.018320 ± 0.008716

src2dst_max_piat_ms 0.016535 ± 0.007807

bidirectional_max_piat_ms 0.014961 ± 0.007388

dst2src_max_piat_ms 0.014593 ± 0.007233

dst2src_stddev_ps 0.014541 ± 0.010175

src2dst_fin_packets 0.013228 ± 0.006173

Table 25: SVM feature importance by permutation importance

Confusion matrices representing the total classifications, recall per label, and results by

broad category are respectively shown below.

Table 26: SVM confusion matrix

40

Table 27: SVM normalized confusion matrix

Table 28: SVM normalized broad category confusion matrix

41

Decision Trees

 Functionally, decision trees are one of the most easily understood classification models.

Decision trees consist of nodes that define a condition and branch based on whether that

condition is fulfilled. The conditions set at each node are based on brute force determinations of

which features and criteria most purely split the dataset samples by class in accordance with a

purity function, such as Gini impurity. They can be thought of as elaborate flow diagrams and

are frequently visually represented using tree diagrams.

Unlike some of the other models used in this paper, tree-based algorithms like decision

trees are not sensitive to the magnitude of feature variance. Therefore, standardization was not

necessary on the dataset and, in fact, for k-folds cross-validation, the decision tree classifier’s

performance between a standardized dataset and a non-standardized dataset was completely

identical.

Decision trees are very sensitive to the features upon which decisions can be made. With

misleading features, model performance can significantly decrease. Throughout the process of

testing the decision tree classifier, two separate feature sets were tested: the full feature set, and a

feature set consisting of only the ten most important items for the decision tree classifier as

determined using permutation importance. Classification results for an optimized decision trees

classifier using a standardized dataset with all features are included in Table 29.

42

 Precision Recall F1-Score Support

csgo 0.95 0.97 0.96 350

discord 0.62 0.68 0.65 22

hl2dm 0.63 0.55 0.59 22

minecraft 0.95 0.90 0.92 97

netflix 0.83 0.62 0.71 16

skype 0.67 0.63 0.65 38

vimeo 0.67 0.62 0.65 16

webbrowsing 0.61 0.74 0.67 31

youtube 0.85 0.89 0.87 19

zoom 0.57 0.50 0.53 24

Accuracy 0.87 635

Macro Average 0.73 0.71 0.72 635

Weighted Average 0.87 0.87 0.86 635

Table 29: Decision tree classification results

 Hyperparameter optimization of the sklearn library’s implementation of the decision tree

classifier was employed against multiple parameters. When using all features, the most effective

quality function was Gini impurity (as opposed to entropy or logistic loss), and the most effective

class weight function was “balanced,” in which weights are inversely proportional to class

frequencies.

Classification results for a decision tree evaluated using a dataset with only the ten most

important features to the previous decision tree are included in Table 30. These ten most

important features were bidirectional_min_ps, src2dst_max_ps, src2dst_min_ps,

dst2src_mean_ps, src2dst_stddev_ps, bidirectional_stddev_ps, dst2src_stddev_ps,

dst2src_ack_packets, src2dst_duration_ms, and dst2src_max_piat_ms.

43

 Precision Recall F1-Score Support

csgo 0.96 0.98 0.97 350

discord 0.60 0.68 0.64 22

hl2dm 0.65 0.50 0.56 22

minecraft 0.90 0.88 0.89 97

netflix 0.92 0.75 0.83 16

skype 0.57 0.61 0.59 38

vimeo 0.62 0.62 0.62 16

webbrowsing 0.73 0.77 0.75 31

youtube 0.80 0.84 0.82 19

zoom 0.74 0.58 0.65 24

Accuracy 0.87 635

Macro Average 0.75 0.72 0.73 635

Weighted Average 0.87 0.87 0.87 635

Table 30: Decision tree feature importance improved classification results

 When using only these features, the optimized parameters were the same as for the

decision tree using all features. The reason this second set of classification results is included is

to show how nearly identical and even numerically better results can be achieved using higher

quality, but significantly fewer features.

Simple decision tree classifiers have some noteworthy problems. As will be discussed

further below, they are prone to overfitting on meaningless statistical nuances of a particular

dataset. For a particular training set, some features may hold some meaningless information that

happens to form a relative pattern between classes that is not typically reflected in reality.

Decision trees can often make significant use of every feature they are given, even if they are

effectively noise, leading to overfitting and meaningless features being interpreted as valuable.

The issues of overfitting and attributing importance to unimportant features can be better

resolved by using a random forest classifier, which this paper explores later.

The decision tree diagram drawn from a decision tree classifier ran against the dataset

using all features is too large to display, with over 40 individual nodes. However, examining just

the top of a decision tree can be highly informative. If there are indeed very strong features and

44

commonalities that can accurately separate different classes, one can develop a strong

understanding of some statistical commonalities in a dataset and obtain an inherent explainer of

how the decision tree classifier works. The root of a tree using all features and its immediate two

sub nodes are shown in Figure 6.

Figure 6: Root of all features decision tree

 The root most important distinguishing feature in this decision tree classifier was

src2dst_min_ps. A reasonably tight 59.8:40.2 split was made based on its condition.

Significantly, with just one decision at the root of the tree, 40% of the samples were already

classified.

 The better-performing decision tree, using features derived from the permutation

importance of the “all features” decision tree classifier, has a different decision tree diagram. Its

root can be examined below.

Figure 7: Root of better-performing decision tree

45

 Both the better-performing narrow feature set decision tree and the “all features” decision

tree start with some form of minimum packet size as the root of their tree. Like the last one, the

root of this decision tree was able to classify about 40% of the flow with one single decision.

Given its presence in both decision tree roots, minimum packet size seems to be a very high-

quality feature. Note that the field “value,” representing the relative proportion of samples

present, is shown to be apparently equal at the root of the above tree because the classes are

adjusted to be balanced in weight, as opposed to only being based on sample count.

 Not all nodes make equally valid splits, even using only 10 features from the better-

performing decision tree, many of the end leaf nodes are fairly overfitted and invalid in their

assumptions. Consider the bottom nodes shown below from a decision tree using the better-

performing feature set.

Figure 8: Example best-performing decision tree leaf nodes

 Exact statistical relationships, such as minute range differences between this dataset’s

dst2src_mean_ps and src2dst_max_ps features, are rarely exactly generalizable to new data in

the context of network traffic. While the final shown decision’s conditionality was a determinant

in only 0.4% of the data samples, it can also be thought of as only having been true for 0.4% of a

46

subset of a very specific dataset representing just a single experiment in time. It is almost

certainly not a broadly, legitimately meaningful determinant of a class of network traffic.

 Tree classifiers are a category of classifiers easily and broadly supported by a popular

modern feature importance explanation technique, Shapley (SHAP) values. SHAP values have

their origin in game theory and show the effect a particular data point’s feature values had in the

determination of its label. Where permutation importance can help explain model performance,

SHAP values are best suited for understanding how a model makes classifications. A bar plot

showing the average SHAP value across folds in the cross-validation process for the classifier

using all features for the entire dataset is shown below.

Figure 9: Top features by absolute SHAP value importance

47

Just as might be inferred from the classifier’s tree diagram, some of the most important

features in determining a class are located near the top of the tree: src2dst_max_ps and

src2dst_min_ps. The most important feature in the figure, bidirectional_min_ps, was the root of

the fewer-featured decision tree. The SHAP values in this bar plot also help in understanding

what features most strongly affect classification on a per-label basis. For example, CS:GO-

tagged traffic was strongly impacted by the bidirectional minimum packet size, but was not

strongly affected by the source-to-destination maximum packet size. HL2:DM-tagged traffic, on

the other hand, exhibited the opposite relationship.

In addition to the magnitude of the effect of a feature, SHAP values can explain the

directionality of how a feature affects the classification of a sample. A beeswarm chart for Skype

traffic classification in order of most impactful features is shown below.

Figure 10: Beeswarm chart for Skype traffic classification

48

 From this beeswarm chart, it can be observed that a high value for the

bidirectional_stddev_ps feature was a light indicator that a traffic flow did not belong to Skype,

whereas low values were a generally positive indicator that a flow belonged to Skype.

Feature importances as measured by permutation importance are shown in Table 31 for

the decision tree classifier using all features. When the dataset was isolated to only these

features, it produced the second-shown and better-performing decision tree classifier in this

section.

Feature Weight ± Std. Dev

bidirectional_min_ps 0.286404 ± 0.029184

src2dst_max_ps 0.192913 ± 0.024339

src2dst_min_ps 0.085564 ± 0.010584

dst2src_mean_ps 0.040997 ± 0.009049

src2dst_stddev_ps 0.040630 ± 0.012795

bidirectional_stddev_ps 0.035066 ± 0.011234

dst2src_stddev_ps 0.028084 ± 0.008489

dst2src_ack_packets 0.027454 ± 0.005766

src2dst_duration_ms 0.026089 ± 0.007620

dst2src_max_piat_ms 0.025039 ± 0.005454

Table 31: All feature decision tree feature importance by permutation importance

Notably, many of the ten most permutation importance-determined important features are

shared with the SHAP-determined important features, though not always sharing the same

position and weight. A comparison of the most important features derived using these two

methods is shown below.

Permutation

Importance

Position

SHAP Value

Importance

Position

Shared Important Feature

1 1 birectional_min_ps

2 2 src2dst_max_ps

3 3 src2dst_min_ps

5 4 src2dst_stddev_ps

6 5 bidirectional_stddev_ps

4 7 dst2src_mean_ps

10 8 dst2src_max_piat_ms

Table 32: Feature importance from permutation importance and SHAP value comparison

49

 Confusion matrices showing the recall results for the decision tree classifier evaluated

against the entire feature set and against the optimized feature set are shown below. Additionally,

a broad category confusion matrix is shown for the optimized feature set classifier.

Table 33: All features decision tree normalized confusion matrix

50

Table 34: Better-performing decision tree normalized confusion matrix

Table 35: Better-performing DT normalized broad category confusion matrix

51

Random Forest

 Decision trees have the previously discussed issue of overfitting on statistical nuances of

a particular dataset. To remedy this, one can employ a random forest of decision trees. Random

forests employ many different decision tree classifiers to, as an ensemble, vote on data

classification. To avoid overfitting and to ensure that individual decision trees are not completely

identical, random forest classifiers typically resample training data with replacement to create

new training sets through a process called bagging. Bagging employs bootstrap sampling, which

allows training samples to be selected more than once. Furthermore, to reduce bias from highly

predictive features, the “random” component of random forest will randomly select a subset of

features that each decision tree will be trained on. In practice, each tree is typically trained using

randomly selected features totaling the square root of the number of features.

The ultimate classification results of the optimized random forest classifier are shown in

Table 36.

 Precision Recall F1-Score Support

csgo 0.97 0.98 0.97 350

discord 0.72 0.59 0.65 22

hl2dm 0.71 0.55 0.62 22

minecraft 0.89 0.92 0.90 97

Netflix 0.93 0.81 0.87 16

skype 0.63 0.63 0.63 38

vimeo 0.80 0.75 0.77 16

webbrowsing 0.71 0.94 0.81 31

youtube 0.81 0.89 0.85 19

zoom 0.74 0.58 0.65 24

Accuracy 0.89 635

Macro Average 0.79 0.76 0.77 635

Weighted Average 0.89 0.89 0.89 635

Table 36: Random forest classification results

The most notable parameter to optimize in a random forest classifier is the number of

decision trees, “estimators,” to use. There is rarely a classification performance downside to

52

using a large number of estimators, but there are diminishing returns as the number of estimators

increases. For the above results, 100 estimators were used in accordance with the results of the

graph in Figure 11 comparing the accuracy with the number of estimators used for the classifier

fitted on a 5:1 train-test split.

Figure 11: accuracy vs number of estimators

As Figure 11 shows, the accuracy score of the random forest classifier reaches a

relatively steady state somewhere between 50 and 100 estimators, and thus 100 estimators were

ultimately chosen. The accuracy results achieved at 100 estimators were approximately as good

as results achieved with more estimators but did not require significantly more processing power.

Other parameters optimized were those related to the performance of the individual decision

trees. The optimized results varied slightly from those of the decision tree classifier section of

this paper: Gini impurity was used as a purity function, and unbalanced class weights were used.

Of the paper thus far, these classification results are roughly the best according to F1

score and accuracy. It is not unexpected for a random forest classifier to perform well compared

to the rest of the classifiers, particularly the single decision tree. Random forests generally

perform better than any individual well-performing decision tree because they are more resistant

53

to overfitting. Furthermore, random forest classifiers are typically better capable of classifying

completely new data of the often chaotic nature of the data in this dataset.

Confusion matrices representing the total classifications, recall per label, and results by

broad category are respectively shown in Table 37, Table 38, and Table 39.

Table 37: Random forest confusion matrix

54

Table 38: Random forest normalized confusion matrix

Table 39: Random forest normalized broad category confusion matrix

The most important features as measured by permutation importance for the random

forest classifier are shown below.

55

Feature Weight ± Std. Dev

src2dst_max_ps 0.007979 ± 0.008899

dst2src_max_piat_ms 0.006352 ± 0.003669

dst2src_mean_piat_ms 0.002992 ± 0.002974

bidirectional_fin_packets 0.002257 ± 0.003784

dst2src_stddev_piat_ms 0.001890 ± 0.003402

src2dst_duration_ms 0.001732 ± 0.004728

bidirectional_ack_packets 0.001417 ± 0.004108

bidirectional_min_ps 0.000577 ± 0.003625

bidirectional_max_ps 0.000157 ± 0.003439

bidirectional_syn_packets 0.000105 ± 0.001568

Table 40: Random forest feature importance by permutation importance

Interestingly, there is a noticeable difference between the most important features of the

individual decision tree classifier as evaluated against all features and the random forest

classifier’s most important features. Between the two classifiers, only four of the most important

features are shared, including bidirectional_min_ps, max_piat_ms, src2dst_duration_ms, and

src2dst_max_ps. A question that may arise is, if a random forest is an ensemble of decision trees,

are its important features valuable to a decision tree classifier? To test this, a decision tree

classifier was trained, optimized, and evaluated using only the ten features shown in Table 40.

While the results were good, they were not significantly better or different from either the

decision tree classifier using all features or the feature-tuned decision tree classifier, and as such,

their results are not included for discussion.

Multilayer Perceptron

 Increasingly available and of interest to the general public are neural networks. Neural

networks are composed of “layers” of “neurons” that process input data in the pursuit of

performing accurate classification. Layers in a neural network appear as an input layer (the

inputs to the model), an output layer (the classification/regression ultimately determined), and

intermediary “hidden” layers populated by neurons whose purpose is to perform activation

functions on the inputs they receive before passing them onto the next layer. Modern deep

56

learning is built on the concept of neural networks using many hidden layers (hence being called

“deep”) and is most often preferred in the context of extremely large and complex datasets.

Multilayer perceptron is one of the simplest popular neural network models. The classification

results for an optimized multilayer perceptron classifier are shown below:

 Precision Recall F1-Score Support

csgo 0.96 0.98 0.97 350

discord 0.61 0.64 0.62 22

hl2dm 0.65 0.59 0.62 22

minecraft 0.90 0.93 0.91 97

netflix 0.77 0.62 0.69 16

skype 0.68 0.68 0.68 38

vimeo 0.79 0.69 0.73 16

webbrowsing 0.76 0.81 0.78 31

youtube 0.75 0.79 0.77 19

zoom 0.79 0.62 0.70 24

Accuracy 0.88 635

Macro Average 0.77 0.73 0.75 635

Weighted Average 0.88 0.88 0.88 635

Table 41: MLP classification results

 The sklearn library implementation of the multilayer perceptron model’s optimized

results used a weight optimization solver parameter of “adam” (a stochastic gradient-based

optimizer), an activation function of “relu” (a Rectified Linear Unit function of f(x) = max(0, x)),

and a maximum number of epochs (“max_iter”) of 800 was chosen based on early stop analysis

to avoid common overfitting issues and to preserve performance. The network architecture

included a single hidden layer with 68 neurons. A single hidden layer was chosen because it

performed the best, as will be discussed later. A graph showing the error rate of the classifier by

the maximum number of epochs used by the stochastic solver is shown in Figure 12 below.

Below that, Table 42 compares error rate with hidden layer size (neuron count in the first hidden

layer).

57

Figure 12: Error rate vs epoch count (K)

Table 42: Error rate vs hidden layer size (neuron count)

 In distinguishing a simple neural network from one engaged in “deep learning,” the

number of hidden layers used by the classifier is typically considered. “Wide” neural networks

contain few layers, whereas deep neural networks contain many. This classifier performed best

with a single hidden layer and thus cannot be considered to have engaged in deep learning. This

58

is not unexpected for a small dataset containing a limited number of features. The purpose of

having many layers in a neural network is to identify more detailed and more nuanced

relationships in data. Small, non-complex, linearly separable datasets (as shown to generally be

the case by the performance of a linear SVM classifier discussed below) are not expected to

require more than a single hidden layer to perform well. Adding additional layers of the same or

different sizes at best (using a similar number of neurons per layer) had no impact on the

classifier’s performance, and at worst (using a significantly higher or lower number of neurons

per layer) reduced performance.

 One indicator that the dataset is linearly separable can be shown in the performance of a

linear SVM classifier. Without going into great detail, a linear SVM classifier with an optimized

C value achieves an accuracy/weighted average recall of 87%, macro average precision of 72%,

macro average recall of 70%, macro average F1 score of .71, weighted average precision of 87%,

and a weighted average F1 score of .87. These are very adequate results.

 Confusion matrices representing the total classifications, recall per label, and results by

broad category are respectively shown in Tables 43, 44, and 45.

59

Table 43: MLP confusion matrix

Table 44: MLP normalized confusion matrix

60

Table 45: MLP normalized broad category confusion matrix

 Perhaps the most notable trait of the multi-layer perceptron classifier in this context is its

generally very good performance despite the relatively limited dataset. While it does not perform

as well as a random forest, it, by its and other neural network algorithms’ nature, would almost

certainly be better able to handle a larger quantity of more complex data. It would not be at all

remarkable if this or another neural network classifier would quickly outpace the others used in

this paper in a larger production network with a more elaborate and all-encompassing data

labeling process.

 Whereas classical machine learning models have mature, well-established, easily-

accessible methods of identifying feature importance, neural network models remain somewhat

immature on the subject. There are cutting-edge solutions and projects that seek to remedy this

issue, but they often vary in implementation and do not always have universally accepted

wisdom regarding their usage. This paper does not seek to explore neural networks, or, by

extension, deep learning, in great detail, but only to touch upon its performance and usefulness,

even in its simplest of forms. As such, feature importance is not discussed.

61

SECTION 4: CONCLUSIONS

 In order of macro F1 score, the best-performing classifiers were random forest (.77),

multi-layer perceptron (.75), SVM (.74), the feature-optimized decision tree (.73), the “all

features” decision tree (.72), k-NN (.71), the feature-selected naïve Bayes classifier (.52), and

nearest centroid (.45). The macro F1 score is likely the best, most useful metric because of the

imbalanced nature of the dataset produced from a network traffic capture.

If looking at accuracy, the order of performance is the same, with the most accurate

classifier, random forest, achieving 89% accuracy, and the least accurate classifier, nearest

centroid, achieving 67% accuracy. This is significantly better than random guessing between ten

classes (which would result in 10% accuracy scores for all classifiers). Even using macro

average recall, scores are always better than random guessing, with the lowest scoring classifier,

nearest centroid, achieving 52% macro average recall.

In all likelihood, the scores shown in this paper would all be improved if the dataset were

larger and presented more opportunities for trends to make themselves known. Still, despite the

limited dataset, the scores are very workable, and classifiers achieving these scores could prove

useful in identifying network traffic. While not all the applications used in this paper have

perfect, common means of identification using tools easily incorporated into a workflow, it

would not be difficult to employ a similar machine learning process against traffic automatically

labeled based on deep packet inspection tools. Then, statistical similarities between applications

could be identified to enhance application identification beyond what deep packet inspection can

provide.

One potentially useful output of this paper is a list of the most commonly important

features of the dataset. While the dataset used is indeed limited, because of the variety of

62

applications used, its features could potentially prove useful if more broadly applied. Whether or

not all these features are generally useful or are just specifically useful on this dataset would

require further study. A table summarizing ten of the most common important shared features as

derived from the permutation importance of the classical models is shown in Table 46.

Feature Count Classifiers

src2dst_max_ps 6 Random Forest, Decision Trees (all features), SVM, k-

NN, Nearest Centroid, Optimized Naive Bayes

dst2src_max_piat_ms 5 Nearest Centroid, k-NN, SVM, Decision Tree (all

features), Random Forest

bidirectional_max_ps 4 Nearest Centroid, Optimized Naive Bayes, SVM,

Random Forest

dst2src_rst_packets 4 Nearest Centroid, k-NN, Optimized Naive Bayes, SVM

src2dst_stddev_ps 4 k-NN, Optimized Naive Bayes, SVM, Decision Tree

(all features)

bidirectional_max_piat_ms 3 Nearest Centroid, k-NN, SVM

dst2src_stddev_ps 3 Nearest Centroid, SVM, Decision Tree (all features)

src2dst_duration_ms 3 Nearest Centroid, Decision Tree (all features), Random

Forest

src2dst_max_piat_ms 3 Nearest Centroid, k-NN, SVM

bidirectional_mean_ps 2 k-NN, Optimized Naive Bayes

Table 46: Most common important features by classifier(s)

Another useful output is an aggregate comparison of broad category performance for the

classical models in this paper (nearest centroid, k-NN, best-performing naïve Bayes, SVM, best-

performing decision tree, and random forest). This comparison is useful in identifying how

applications are generally misclassified in machine learning. The table below averages the results

of the broad category confusion matrices for this purpose. Based on its results, it can be inferred

that video gaming traffic is most commonly misclassified as video streaming traffic, video

streaming traffic is most commonly misclassified as video conferencing traffic, web browsing

traffic is most commonly misclassified as video streaming traffic, and video conferencing traffic

is most commonly misclassified as video gaming traffic.

63

Table 47: Averaged broad category normalized confusion matrix

There are many opportunities for future work based on the results of this paper. Simply

performing much the same testing on a significantly larger dataset would almost certainly be

very informative. Expanding the number of applications identified to more accurately cover the

scope of typical traffic on enterprise networks could reveal traffic identification opportunities

and challenges. Additionally, while network traffic is almost inherently imbalanced, taking

further steps to balance the dataset without compromising its legitimacy could reveal new

strengths, weaknesses, and common properties of machine learning in traffic classification. A

promising workflow that could be easily implemented today in a regular enterprise network is to

perform network captures and then use application information derived from deep packet

inspection tools, like NFStream, as the basis for training a machine learning classifier to gain

enhanced visibility into a computer network.

64

References

Al-Obaidy, F., Momtahen, S., Hossain, M. F., & Mohammadi, F. (2019, May). Encrypted traffic

classification based ml for identifying different social media applications. In 2019 IEEE

Canadian Conference of Electrical and Computer Engineering (CCECE) (pp. 1-5).

IEEE.

Aouini, Z., & Pekar, A. (2022). NFStream: A flexible network data analysis

framework. Computer Networks, 204, 108719.

CANIV TECH. (n.d.). Rethink network operations with predictive analytics. Retrieved March 1,

2023, from http://caniv-tech.com/.

Hajjar, A., Khalife, J., & Díaz-Verdejo, J. (2015). Network traffic application identification

based on message size analysis. Journal of Network and Computer Applications, 58, 130-

143.

Moore, A. W., & Zuev, D. (2005, June). Internet traffic classification using bayesian analysis

techniques. In Proceedings of the 2005 ACM SIGMETRICS international conference on

Measurement and modeling of computer systems (pp. 50-60).

Ntop/NDPI: Open source deep packet inspection software toolkit. (n.d.). GitHub. Retrieved

March 1, 2023, from https://github.com/ntop/nDPI.

NFStream: flexible network data analysis framework. (n.d.). NFStream. Retrieved March 1,

2023, from https://www.nfstream.org/.

Palo Alto Networks. (n.d.). Wildfire inline ML. Retrieved March 23, 2023, from

https://docs.paloaltonetworks.com/pan-os/10-1/pan-os-admin/threat-prevention/wildfire-

inline-ml.

65

Weiss, G. M. (2013). Foundations of imbalanced learning. Imbalanced Learning: Foundations,

Algorithms, and Applications, 13-41.

Yamansavascilar, B., Guvensan, M. A., Yavuz, A. G., & Karsligil, M. E. (2017, January).

Application identification via network traffic classification. In 2017 International

Conference on Computing, Networking and Communications (ICNC) (pp. 843-848).

IEEE.

Zander, S., Nguyen, T., & Armitage, G. (2005, November). Automated traffic classification and

application identification using machine learning. In The IEEE Conference on Local

Computer Networks 30th Anniversary (LCN'05) l (pp. 250-257). IEEE.

Zhang, J., Xiang, Y., Zhou, W., & Wang, Y. (2013). Unsupervised traffic classification using

flow statistical properties and IP packet payload. Journal of Computer and System

Sciences, 79(5), 573-585.

	Applying machine learning to categorize distinct categories of network traffic
	Recommended Citation

	Applying machine learning to categorize distinct categories of network traffic
	Abstract
	Degree Type
	Department or School
	First Advisor
	Second Advisor
	Third Advisor
	Subject Categories

	tmp.1688073311.pdf.ju32I

