
Advances in
Geo-Energy Research Vol. 9, No. 1, p. 25-37, 2023

Original article

Multi-label prediction method for lithology, lithofacies and
fluid classes based on data augmentation by cascade forest

Ruiyi Han1, Zhuwen Wang1, Yuhang Guo1 *, Xinru Wang1, Ruhan A1, Gaoming Zhong2

1College of Geo-Exploration Science and Technology, Jilin University, Changchun 130021, P. R. China
2Northeast Oil and Gas Branch of Sinopec, Changchun 130000, P. R. China

Keywords:
Data augmentation
deep learning
igneous rock
multi-label learning

Cited as:
Han, R., Wang, Z., Guo, Y., Wang, X., A,
R., Zhong, G. Multi-label prediction
method for lithology, lithofacies and fluid
classes based on data augmentation by
cascade forest. Advances in Geo-Energy
Research, 2023, 9(1): 25-37.
https://doi.org/10.46690/ager.2023.07.04

Abstract:
Predicting the lithology, lithofacies and reservoir fluid classes of igneous rocks holds
significant value in the domains of CO2 storage and reservoir evaluation. However, no
precedent exists for research on the multi-label identification of igneous rocks. This study
proposes a multi-label data augmented cascade forest method for the prediction of multi-
label lithology, lithofacies and fluid using 9 conventional logging data features of cores
collected from the eastern depression of the Liaohe Basin in northeastern China. Data
augmentation is performed on an unbalanced multi-label training set using the multi-label
synthetic minority over-sampling technique. Sample training is achieved by a multi-label
cascade forest consisting of predictive clustering trees. These cascade structures possess
adaptive feature selection and layer growth mechanisms. Given the necessity to focus on all
possible outcomes and the generalization ability of the method, a simulated well model is
built and then compared with 6 typical multi-label learning methods. The outperformance
of this method in the evaluation metrics validates its superiority in terms of accuracy and
generalization ability. The consistency of the predicted results and geological data of actual
wells verifies the reliability of our method. Furthermore, the results show that it can be
used as a reliable means of multi-label prediction of igneous lithology, lithofacies and
reservoir fluids.

1. Introduction
Igneous reservoirs are widely distributed in Mesozoic-

Cenozoic terrestrial and marine basins, featuring global de-
velopment. The highly inhomogeneous nature of igneous
reservoirs leads to large variations in reservoir recovery rates,
which poses a challenge to reservoir evaluation and CO2
storage (Cai et al., 2022; Xiao, 2022; Zhang et al., 2022).
The mode of volcanism, eruption type, magma composition,
geological structure, and paleogeography all exert influences
on reservoir recovery. Thus, the accurate determination of
lithology, lithofacies and reservoir fluid classes is crucial
for the quantitative assessment of igneous reservoirs. In the
Eastern Depression of the Liaohe Basin in northeastern China,
igneous rock reservoirs of different scales are being developed
across various Cenozoic strata. These reservoirs are represen-
tative in terms of their development environments, rock types

and production distributions.
Intelligent algorithms, which have been popular in igneous

lithology identification, mainly use conventional logging data.
For example, Xiang et al. (2020) employed a depth confi-
dence network combined with conventional logging curves
to identify igneous rocks in the eastern part of the Junggar
Basin, and accurately identified thin layers of dense basalt
and dense trachyte that conventional logging interpretations
could not distinguish due to data resolution problems. Kuhn
et al. (2020) utilized the random forest method to identify
intrusive rocks in the volcanic terrain of British Columbia.
Duan et al. (2020) proposed a combination of conventional
logging, imaging logging and the decision tree method for
volcanic lithology identification.

In terms of igneous lithofacies classification, Huang et
al. (2014) proposed an igneous lithofacies delineation method
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based on drilling rock chips, logging and seismic data by
combining the geological characteristics of igneous rocks
in the Liaohe Basin. Giordano and Cas (2021) derived an
igneous lithofacies classification scheme based on volume and
diffuse area correlation. Various intelligent algorithms have
been applied to lithofacies classification. For instance, Liu et
al. (2020) devised a lithofacies identification method based
on multi-resolution image clustering. Ehsan and Gu (2020)
proposed a lithofacies identification scheme for Takhar shale
by combining neuro-fuzzy system, cross-plot and statistical
analysis. Chang et al. (2021) proposed a geophysical logging
segmentation network method for lithofacies identification,
which has shown excellent application value in the Bohai Bay
Basin. Falivene et al. (2022) developed a convolutional neural
network based on semantic partitioning architecture to identify
lithofacies in cores.

Fluid identification relies heavily on pore structure, energy
spectrum analysis and cross-plot. Yue and Tao (2006) pro-
posed a reservoir fluid identification method based on wavelet
transform energy spectrum analysis. Zhang et al. (2008) used
cross-plot and the three-porosity curve overlap method to
identify igneous gas formations. However, the above studies
have been limited to considering the fluid properties under a
certain lithology, while ignoring the influence of lithology and
lithofacies on fluids in volcanic systems.

Furthermore, the previous research only considered single-
label predictions for a single property, and there is currently
no precedent for using multi-label methods to simultaneously
predict the lithology, lithofacies, and reservoir fluid classes
of igneous rocks. Multi-label learning is a learning method
where a sample has multiple labels at the same time. Com-
pared to multiple single-label classification scenarios, multi-
label classification can make better use of information in the
dataset, thereby improving the performance of the model. In
geoscience, multi-label learning has been applied to airborne
remote sensing (Li et al., 2022), formation delineation (Ho et
al., 2023) and mineral identification (Wu et al., 2022).

In reservoir evaluation, the lithology, lithofacies and fluid
class labels of each core together form a multi-label instance,
which comprises a typical multi-label unbalanced dataset. such
unbalanced datasets are commonly processed by methods such
as oversampling, undersampling, hybrid sampling, threshold
shifting, and machine learning. Zhou et al. (2020) used the
synthetic minority over-sampling technique method to balance
the dataset and combined it with gradient boosting decision
tree for lithology identification. He et al. (2020) performed
oversampling based on the theory of inheritance and the
Mahalanobis distance to process unbalanced dense sandstone
reservoir logging data for logging phase identification. Zheng
et al. (2023) used K-means combined with the synthetic
minority oversampling technique method to reconstruct the
dataset and combined it with the Markov chain to improve the
Bayesian inversion method to identify lithofacies of extremely
inhomogeneous reservoirs.

This paper proposes a multi-label data augmented cascade
forest (MLDACF) to accurately identify the lithology, lithofa-
cies and fluid classes of volcanic reservoirs in the Eastern
Depression. In this method, multi-label synthetic minority

oversampling technique (MLSMOTE) is used to achieve data
augmentation on an unbalanced multi-label dataset, and a
cascade forest integrated with predictive clustering trees (PCT)
is used as a learner to achieve classification. After validating
the effectiveness of the model, it is applied to the igneous
strata in the eastern depression of the Liaohe basin, and the
identification results are discussed in relation to each other.
The data show that the MLDACF outperforms alternative
methods and provides a reliable solution for the multi-label
identification of igneous reservoir lithofacies, lithology and
fluid classes.

2. Study area and data
The Liaohe Basin is a Cenozoic terrestrial rift basin in

northeastern China, which belongs to the northern branch of
the Bohai Bay Rift system. Its terrestrial part consists of three
uplifts and four depressions in a total of seven secondary
tectonic units (Fig. 1(a)). This basin sits on basement rocks,
which are Tertiary, Metasedimentary, Paleozoic and Mesozoic
from bottom to top. The Eastern Depression is an active rift
depression formed under the action of Tanlu fault and uplift
of the upper mantle, which also has the most complicated
geological conditions in the Liaohe Basin, covering an area
of 2,300 square kilometers (Fig. 1(b)). In the early period,
due to the northward movement of the Pacific plate and the
leftward activity of the Tanlu fault, volcanic activity in the
eastern depression increased toward the north (Busby and
Bassett, 2007). Igneous rocks there were mainly formed in
the first, second and third sections of the Shahejie Formation
and the Dongying Formation. Over time, repeated volcanic
eruptions occurred in the eastern depression, which were
mainly of the spillover type, and the eruption center shifted
to the north. The strong volcanic activity developed a large
number of igneous rocks, resulting in a complex tectonic
pattern in the eastern depression (Liu et al., 2022).

Igneous rocks of the Eastern Depression can be divided
into three main categories: Volcanic lava, volcanic clastic
rocks and sub-volcanic rocks. Among these, volcanic lavas
are widespread, which mainly include medium-basic volcanic
rocks, such as trachyte, trachyandesite and basalt. Volcanic
clastic rocks are less common, with volcanic clastic lava
and volcanic conglomerate being the most widespread. The
sub-volcanic rocks are mainly distributed in the Shahejie
Formation and are mainly diabase.

Since the Mesozoic, the eastern depression has undergone
several phases of magmatism. The volcanic activity of the
Eastern Depression was stronger during the period of the
Fangshenbao Formation; the volcanic activity increased toward
the north, and the stratigraphic lithology was characterized
by thick-layered basalt with thin-layered clastic rocks. The
central part of the Eastern Depression was the center of
volcanic eruption during the Eocene Shahejie Formation, and
its eruption was controlled by the NE-oriented deep fracture,
forming three superimposed oval volcanic rock bodies in the
Rehetai-Oulituozi-Huangshatuo area. This covers an area of
about 90 square kilometers. In this period, the formation of
the oil-bearing layer and volcanic reservoir occurred in the
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Fig. 1. Location of the study area. (a) Tectonic zoning of the Liaohe Basin and (b) distribution of Eastern depressional faults.

area. The Paleogene Shahejie Formation can be divided into
three stages: The main igneous rock in the first stage is tuff, the
trachyte widely developed in the second stage, and the basalt
mainly formed in the third stage. The basin extension and the
slide-slip effect of the Tanlu Fracture Zone from the Eocene
Shahejie Formation to the Paleogene Shahejie Formation are
weakened, and the volcanic activity of the eastern depression
is low, but there are still some basaltic magma eruptions.
The Tanlu fracture zone of the Dongying Formation entered
another period of strong activity, and the strong right-slip
movement led to active volcanism again in the southern part
of the Eastern Depression, forming a huge thick volcanic
rock system-mainly basaltic rocks-with a local development
of trachyte (Liu et al., 2022).

Fig. 2 illustrates the common igneous cores and core thin
sections in the Eastern Depression, with andesite shown in
Fig. 2(a). The core in the figure is glassy in structure and
with diamond-shaped fractures. The thin section identification
reveals that the form of porphyry is pyroxene, the matrix
is dominated by brown volcanic glass, a few plagioclases,
pyroxene microcrystals, glass crystal interwoven structure, and
with opaque dark minerals. Trachyandesite is presented in Fig.
2(b). In the pore amygdaloidal structure, the pores filled by
calcite also show a slight amount of zeolite filling, with the
development of irregular fissures. According to the thin section
identification, the type of porphyry is mainly plagioclase, with
a minor amount of orthoclase. The matrix is mainly a glassy
interwoven structure, and the plagioclase is partially altered to
clay minerals and calcite. Trachyte is shown in Fig. 2(c). The
core is porphyritic; the porphyritic crystals are feldspar and
contain a modest amount of plagioclase. Plagioclase can be

seen as obvious ring bands, the rock is severely broken in the
horizontal direction, a large amount of calcite is distributed
on the broken surface, and some silica-filled fractures are
seen. Fig. 2(d) depicts diabase. The thin section identification
shows that its main minerals are plagioclase and pyroxene,
with coarser crystallization, and pyroxene mostly contains
altered chlorite. The plagioclase feldspar is pockmarked and
filled with clay minerals, and a slight amount of black opaque
magnetite is seen. Volcanic breccia, lava and basalt are shown
in Figs. 2(e)-2(g), respectively. In basalt, the core is glassy,
massive, with quenched breccia structure, developing blast
fractures, irregular reticulated veins, contraction joints, filled
with calcareous, and later oblique intersections mainly filled
with silica and zeolite. The thin section features a porphyritic
texture with a pore structure containing mainly olivine (15%)
porphyritic crystals, as well as pyroxene porphyritic crystals,
interstitial matrix with microcrystalline plagioclase, and char-
acterized by a glassy matrix.

Considering that there are four modes of magmatism in
the Liaohe Basin: Eruption, overflow, extrusion, and intrusion,
there are also four in situ environments: Closed, semi-open,
open, and aquatic. Based on the magmatic mode of action and
environmental differences, Huang et al. (2014) classified the
intermediate basal volcanic rocks in the region into explosive
facies, effusion facies, volcanic sedimentary facies, volcanic
conduit facies, intrusive facies, and extrusive facies. Feng et
al. (2016) completed a volcanic lithofacies mapping of the
eastern depression using drilling data to constrain seismic
data (Fig. 3). The results showed that two main sedimen-
tary sequences exist in the area: The first set of sequences
includes volcanic conduit facies, extrusive facies, effusion
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Fig. 2. Photographs of cores and core thin sections of common igneous rocks in the Eastern Depression (orthogonal polarization
and single polarization). (a) Andesite, (b) trachyandesite, (c) trachyte, (d) diabase, (e) volcanic breccia, (f) lava and (g) basalt.
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Fig. 3. Seismic interpretation profile of volcanic lithofacies of the Eastern depression (Feng et al., 2016).

Table 1. Classification features of dataset labels.

Lithofacies Lithology Fluid

Explosive Trachyte, diabase, volcanic breccia Dry layer, oil layer, low-yield oil layer

Volcanic conduit Trachyandesite, basalt, lava Dry layer, oil layer, low-yield oil layer

Extrusive Trachyte Dry layer, low-yield oil layer

Effusion Andesite, trachyandesite, volcanic breccia, lava, basalt, trachyte Dry layer, oil layer, low-yield oil layer

facies, and volcanic sedimentary facies, while the other set
includes volcanic conduit facies, effusion facies and volcanic
sedimentary facies. Additional results revealed that the near-
caldera assemblage of volcanic conduit facies, extrusive facies
and explosive facies have excellent hydrocarbon signatures.
Therefore, based on the actual conditions of the reservoir, a
total of four lithologies were classified in this study: Effusion
facies, explosive facies, extrusive facies, and volcanic conduit
facies (Yue et al., 2021). Table 1 shows the classification
characteristics of the dataset labels.

In order to construct the dataset, this study used the cores
and core thin section identification results from consecutive
cores as labels for the lithology and the lithofacies. The
formation test results were taken as labels for fluid classes. A
total of 9 features were included in the data, namely, acous-
tic, borehole diameter, compensated neutron-porosity logging,
density, gamma ray log, deep lateral resistivity (RLLD),
shallow lateral resistivity (RLLS), micro lateral resistivity
(RMLL), and spontaneous potential (SP).

For the comparison of model generalization performance
for all possible outcomes, this study constructed simulated
well datasets with all possible outcomes. After selection, two
multi-label datasets were assembled from a total of 2,557
instances in 27 different depth intervals from 13 wells in
the Eastern Depression. Of these, 2,337 and 220 instances

were used to form the training set and simulated well dataset,
respectively. The training set and simulated wells are not
mutually exclusive in terms of well views, as they have data
from different depth intervals of the same well. It is important
to note that the spatial linkage of the dataset sources may
interfere with the prediction results to some extent and cannot
adequately evaluate the generalization ability of the model.
Therefore, to validate the model application effect, this study
also forms actual well datasets that are mutually exclusive with
the training set and simulated wells. However, it is critical to
note that the actual wells will only show some of the results
and not all of the labels will be of interest.

The multi-label dataset consists of three sets of labels:
Lithology, lithofacies and fluids. Fig. 4 depicts the Circos
plot generated from the training set data. Circos diagrams
are circular charts that precisely show the correlation between
variables. They are widely used to visualize genomic data
(Krzywinski et al., 2009). In this study, this plot type was used
to demonstrate the complexity and imbalance of the multi-
label dataset. The Circos diagram uses different colors and
widths to represent the different features, and the presence or
absence of the different features are denoted by lines. Each
feature corresponds to a sector of a circle, and the size of
the sector will be scaled according to the number of rock
types, with larger numbers of features taking up a larger
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Fig. 4. Circos plot drawn for the training set to demonstrate the interactions of different series of labels. The histogram reflects
the instance size counts.

sector area. Each line starting from the center represents a
specific feature. These feature lines are attached to the circle
corresponding to the rock type, and the thickness and color of
the line can indicate the extent or number of the feature present
in the different features. The size of the arc for each label
reflects the frequency of that label. The dry layer and effusion
facies labels occupy a significant portion of the arcs, indicating
that these labels, as the majority class of the dataset, have a
more dramatic effect on the other minority classes of labels.
In the histogram, considering the label series, the minority
class labels are obviously the oil layer, diabase, basalt, and
extrusive facies. In fact, basalt is a common igneous lithology
in the study area, and the distribution of dataset labels does
not correspond to the actual situation in the area, which may
lead to training effects deviating from the actual expectation.
Therefore, the balance of the dataset should not be neglected.

3. Method

3.1 Multi-label data augmentation cascade forest
In multi-label classification, each instance outputs not only

a single feature but also a set of feature vectors consisting
of labels (Zhang and Zhou, 2013). In classification scenarios
where the number of samples in some classes differs sig-
nificantly from that in other classes, this problem is called
unbalanced learning. Typically, the design of the learner to

pursue global accuracy will sacrifice the less representative
minority class dataset in the classification. At the same time,
noise labeling complicates the effect on the classification
results in unbalanced learning. The classifier is less effective
when using unbalanced datasets, while label imbalance is
common in multi-label data. The common approaches to
solve multi-label classification at this stage include three
ideas: Resampling, algorithmic adaptation and cost-sensitive
classification in the data preprocessing step. As a branch of
resampling techniques, original sample generation has proven
to be superior to alternative methods (Lopez et al., 2013).

In single-label imbalance learning, the synthetic minority
oversampling technique is the most popular oversampling
method, and its core idea is to interpolate between the nearest
neighbors of minority class samples to generate a certain
number of original samples, that is, the data to reach the class
equilibrium state. In multi-label classification, the presence
of multiple labels leads to an increase in the number of
minority class groups. At the same time, the need to generate
label vectors rather than individual labels in multi-label clas-
sification poses a challenge to the rebalancing process. The
MLSMOTE (Charte et al., 2015) has been shown to have
significant advantages in dealing with extremely unbalanced
classifications (Zhang et al., 2018). It uses the imbalance ratio
(I) and the mean imbalance (M) ratio to identify minority class
groups, defined as:
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Algorithm 1: Multi-label synthesis of minority over-
sampling methods.

Input: D
k

1 begin
2 Y ← labels in D
3 M← calculate M(D,Y )
4 foreach y in Y do
5 I(y)← calculate I(D,y)
6 if I(y)> M then
7 Dmin← get all instances of y
8 Di← sample i in D
9 for i in Dmin do

10 d← calculate distance (Di,Dmin)
11 sort smaller to largest (d)
12 n← get head items (d,k)
13 rn← get rand neighbor (n)
14 Dn← new sample (Di,rn,n)
15 D = D+Dn
16 end
17 end
18 end
19 end

I(y) =

Y|Y |
argmax

y=Y1

(
|D|
∑

i=1
X (y,Yi)

)
|D|
∑

i=1
X (y,Yi)

,X (y,Yi) =

 1 y ∈ Yi

0 y /∈ Y
(1)

where D represents the multi-label data, X denotes an indicator
function, Y denotes the feature vector, Y1 represents the first
label in the Y vector, and i is the ordinal number of the sample.
The parameter I(y) is the ratio of majority class label samples
to y label sample counts in the dataset, which is used to reflect
the imbalance of the dataset:

M =
1
|Y |

Y|Y |

∑
y=Y1

(I (y)) (2)

In MLSMOTE, M is used as the threshold value to judge
the minority class samples. When the I value of a label is
greater than M, this means that the count of that label is lower
than the average count of the labels within the multi-label data,
and this label is considered a minority class label.

Each label partitions the multi-label data into two subsets
via M. A small number of samples are set in which each
sample determines the set of several nearest neighbors based
on the Euclidean distance, where k is used to denote the
number of nearest neighbors. Furthermore, a new sample is
generated by interpolating the concatenation of the samples
with their nearest neighbors. The new samples are compared
with the label counts in the reference sample and the neigh-
boring labeled samples, and the new sample set is considered
feasible when the labels in the new sample set are present in
most of the comparison samples. The pseudo-code for the data
enhancement process in this study is detailed in Algorithm 1.

After obtaining the balanced dataset, the data also need to
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Fig. 5. MLDACF schematic diagram.

be pre-processed. The model effect is inversely proportional
to the difference in data distribution across the labels (Galar
et al., 2011a), so the RLLD, RLLS, and RMLL data are loga-
rithmically transformed. The SP data are also normalized to a
single well. To significantly reduce the effect of differences in
data distribution on the model, the entire dataset is normalized,
so that it follows a standard normal distribution:

Z =
D− D̄

S
(3)

where D̄ represents the mean of the data, Z represents the
standard value, and S is the standard deviation of the dataset.

In addition to preprocessing the dataset, the label set must
also be converted from multivariate labels to binary labels
to accommodate multi-label learners and evaluation metrics
(Galar et al., 2011b). This means that each label corresponds
to a property. When the result is 1, the instance is considered
to have this property, while when the result is 0, the instance
is considered not to have this property in the current model.
When the result is 0 for all of the instances in a set of labels,
the instance is considered to be others.

After preprocessing, the dataset and labels are fed into
the cascade forest. The multi-label cascade forest is a
tree-integrated multi-label deep learning method (Yang et
al., 2020). It has a multi-layer cascade structure, with each
layer consisting of multiple complete random forests and
regular random forests. The basic unit of random forest is the
predictive clustering tree. The complete random forest uses
random features for branching, and the regular random forest
selects the features with the highest Gini coefficients. The
feature vector output from several random forests in each layer
is used as the input for the next layer, and after several layers,
the mean of the output results is used as the final prediction
result. Fig. 5 shows a schematic diagram of MLDACF.

The multi-label cascade forest uses the metric-aware fea-
ture reuse method in each layer of the cascade structure to
determine the availability of the output feature vector. The
metric-aware feature reuse effectively improves the model
effectiveness in terms of evaluation metrics. The stopping rule
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Table 2. Performance of back-judgment models.

Algorithm Hamming loss One-error Coverage Ranking loss Average precision F1 Macro-AUC

MLDACF 0.0079 0.003 0.1477 0.0033 0.9929 0.9794 0.9998

MLExtraTrees 0.0024 0.0036 0.1504 0.0111 0.9927 0.994 0.9941

MLRidgeCV 0.0788 0.0716 0.4387 0.3138 0.7771 0.5977 0.7685

MLRF 0.1174 0.2017 0.5712 0.4966 0.6602 0.3571 0.6592

MLMLP 0.1415 0.1874 0.6088 0.5943 0.5952 0.2678 0.6229

MLKNN 0.0012 0.0036 0.1456 0.0044 0.9976 0.9976 0.998

MLDT 0.189 0.0179 0.1897 0.0498 0.9579 0.9489 0.9679

of the cascade forest is metric-aware layer growth, which sets
an initial model evaluation metric P. In this study, Hamming
loss is used as a metric to evaluate the stopping mechanism.
This metric measures the number of incorrectly predicted
labels as a percentage of the number of labels in all samples.
For each additional layer of the model, the current model
evaluation metric Pc is used to compare with P. If Pc is better
than P, the model is updated; if Pc is better than P, Pc is
updated to P; if Pc is not updated, the model moves to the
next layer. The stopping mechanism is triggered when the Pc
is not updated for three consecutive cascade levels. Metric-
aware layer growth can prevent the occurrence of overfitting.
In this study, the number of nearest neighbors is set to 5, the
number of forests is set to 4, and the number of PCT in each
forest is set to 15.

3.2 Comparison methods and evaluation indexes
Six typical multi-label machine learning methods are used

for comparison, of which multi-label Decision Trees (MLDT),
multi-label Extra Trees (MLExtraTrees), and multi-label Ran-
dom Forest (MLRF) are represented as tree-based learners;
Multi-label K-Nearest Neighbor (MLKNN) is a typical multi-
label learning method (Zhang and Zhou, 2007); Multi-label
Ridge with cross-validation (MLRidgeCV) is represented as
a support vector machine learner; and multi-label Multi-layer
Perceptron (MLMLP) is a neural network multi-label method
(Chu et al., 2023). The parameter settings of the different
methods are listed below. For the tree-based learner, the
random states are all set to 0 to make the stochastic process
consistent. For MLExtraTrees, the number of trees is set
to 1,000. For MLRF, the maximum depth is set to 2. For
MLKNN, the number of nearest neighbors is set to 3. For
MLRidgeCV, alpha is set to 1e-3, 1e-2, 1e-1, and 1. For
MLMLP, alpha is set to 1e-5, 5 neurons are set for the first
hidden layer, and 2 neurons are set for the second hidden layer.

Performance evaluation in multi-label learning is a more
complex process than in traditional single-label learning. The
traditional, commonly used metrics such as accuracy and
F-measure are not suitable for direct use. To evaluate the
performance, this study uses seven widely used multi-label
evaluation metrics (Wu and Zhou, 2017), namely, Hamming
loss, one-error, coverage, ranking loss, average precision,
F-measure (F1), and the macro area under curve (macro-

AUC). These evaluation metrics are considered from differ-
ent perspectives of modeling effectiveness. F1 and macro-
AUC are labeled perspective evaluation metrics. Among the
other instance-based evaluation metrics, Hamming Loss is
concerned with the correctness of each element and is a
classification-based evaluation metric, while the rest are all
ranking-based metrics. For Hamming Loss, ranking loss, one-
error, and coverage, the smaller the value, the better the model
performance. For the other metrics, the larger the value, the
better the model performance.

4. Model validation

4.1 Model performance
During training, 30% of the instances in the training set

were randomly selected as the test set to evaluate the model,
and the model was subjected to a random sampling process
10 times to take the mean of the evaluation metrics. The
final performance of the models is shown in Table 2. The
optimal evaluation indicators are bolded. First, MLDACF and
MLExtraTrees perform well in most metrics, such as Ham-
ming Loss, one-error and average precision, which means that
they are able to predict and rank labels accurately. In addition,
these two models also perform well in F1 and macro-AUC
metrics, indicating that they have advantages in balancing
precision and recall. Second, MLRidgeCV and MLRF perform
slightly worse. Although they perform moderately well on
some metrics, their higher one-error, coverage and F1 values
and their lower average precision and macro-AUC compared
to the first two models imply that they have some difficulties
in predicting the correct labels. Finally, MLMLP, MLKNN
and MLDT are three models with poor performance in most
metrics, with MLMLP in particular performing the worst in
terms of F1 and macro-AUC, showing a clear challenge in
balancing accuracy and recall. In summary, based on these
performance metrics, MLDACF and MLExtraTrees are the
best choices, which perform well in several metrics and
demonstrate higher accuracy and recall in the label prediction
task. Considering the possibility of overfitting in the back-
judgment model, the generalization ability of the model needs
to be evaluated.

In order to further evaluate the model effectiveness, all la-
bels were considered, and to evaluate the generalization ability
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Table 3. Performance of different simulated wells.

Algorithm Hamming loss One-error Coverage Ranking loss Average precision F1 Macro-AUC

MLDACF 0.0565 0.05 0.1906 0.0336 0.9308 0.853 0.9816

MLExtraTrees 0.0316 0.0868 0.2495 0.1312 0.9155 0.9312 0.9416

MLRidgeCV 0.1438 0.2466 0.5698 0.5064 0.5064 0.4901 0.7092

MLRF 0.1722 0.3973 0.6976 0.6924 0.5197 0.2406 0.5894

MLMLP 0.1882 0.4064 0.7061 0.7418 0.4883 0.2334 0.5963

MLKNN 0.0385 0.0776 0.2166 0.0973 0.9252 0.9147 0.951

MLDT 0.0691 0.0959 0.2945 0.1771 0.8515 0.7852 0.8781

Fig. 6. Graph of predicted results of simulated well.

of the model, multi-label predictions were performed using the
simulated well dataset. Table 3 includes the comparison of the
prediction performance of simulated wells for each model.
It can be found that five of the seven metrics are superior
to MLKNN. MLExtraTrees is slightly inferior for Hamming
loss and F1 metrics. MLDACF performs the best in all four
evaluations metrics based on ranking. In addition, MLDACF
performs the best on the label-based macro-AUC metrics.

Fig. 6 shows a graph of the prediction results of the
simulated wells, providing a visual comparison of the actual
prediction results of each method under each label series.
For lithology identification, MLRidgeCV, MLRF and MLMLP
identify the vast majority of instances as others. MLExtraTrees
has multiple layer sections and yields identification results as

others. MLKNN has a large number of identification errors
in the 2,007.5-2,016 m interval. The identification errors of
MLDT are mainly concentrated in the 2,006-2,016 m inter-
val. MLDACF identifies some of the trachyandesite as other
lithologies and some of the trachyte as lava. In lithofacies
identification, MLRF, MLMLP and MLRidgeCV produce a
large number of identification errors. MLExtraTrees identifies
instances of six layers as others. MLKNN identifies some of
the effusion instances as volcanic conduit, and also it identifies
the explosion instances as extrusive. MLDT yields the same
error. MLDACF partially identifies volcanic conduit facies
as other lithofacies and partially identifies effusion facies
as volcanic conduit facies. In terms of fluid identification,
MLRF, MLMLP, MLExtraTrees, and MLRidgeCV produce
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a large number of identification errors. In the layer segment
below 2,018 m, the identifications of MLDACF, MLDT and
MLDACF are highly accurate, but all three methods feature
dry layer identification errors. MLDACF partially identifies
low-yield oil layers as other fluids and dry layers, and partially
identifies dry layers as oil layers. Overall, the simulated well
identification by MLDACF is in line with the expectations.

4.2 Discussion of model effects
Combining the model back-judgment performance and

simulated well performance, the evaluation metrics of each
method become less effective in the simulated well data. As
shown in Fig. 7, the mean absolute deviation is the average
of the absolute values of changes in the evaluation metrics
of each model. The smaller the mean absolute deviation in
this study, the weaker the model degradation effect after using
the simulated well dataset, and the stronger generalization
performance. The mean absolute deviation of MLDACF is
0.0536, which is the lowest among the seven methods. In
contrast, MLKNN and MLExtraTrees outperform MLDACF
in some of the model metrics, but MLDACF dominates in
more metrics and has better generalization performance.

5. Practical strata applications
In order to verify the applicability of the MLDACF model,

it was applied to actual wells. Fig. 8 shows the prediction
results for 2,921-3,179 m in well A. The results show that
the main lithofacies in the basaltic section is the effusion
facies and the reservoir is the dry layer. With increasing depth,
the lithofacies of the trachyte section changes to explosive
facies, and the reservoir is mainly oil layer accompanied by
some dry and low-yielding oil layers. From the predicted
results, the appearance of oil can be related to the change
in lithofacies and lithology. The results from successive cores
show that there is a transition from basalt to trachyte in
lithology from top to bottom, and from effusion facies to
explosive facies in lithofacies from top to bottom. This part
of explosive pyroclastic flow moves along the surface with
the hot clastic mixture under the promotion of the subsequent
ejecta and its own gravity, forming a high-density gravity flow
accumulation. This type of stratum is usually accompanied by
the development of intergranular and dissolution pores. The
identification results of core at 3,001.1 m indicate that the
lithology is trachytic breccia lava interspersed with trachyte,
and this lithology transition may be the reason why part of the
lithology is predicted to be different. There is a collapse of well
diameter at 3,040 m, resulting in a significant change in the
density curve, so the lithology is identified as other lithologies.
In general, the prediction of lithology and lithofacies in well
A is basically consistent with the core data, and the predicted
fluid property results are consistent with the formation test
results.

Fig. 9 illustrates the predicted results for 2,636-2,684 m in
well B, which show that this formation section is trachyte that
changes from effusion facies to explosive facies from top to
bottom. In the effusion facies section, it mainly consists of dry
layer and low-yield oil layer, and when the lithofacies changes
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Fig. 7. Mean absolute deviation of the model in the evaluation
metrics of the two datasets.

to explosive facies, the reservoir changes to oil layer. From
the predicted results, the transition from dry layer to oil layer
can be related to the transition of lithofacies. The continuous
coring results show that the upper part of the interval is dense
trachyte that transitions to trachyte. The lithofacies changes
from effusion facies to explosive facies from top to bottom.
The upper dense part may be the result of the rapid flow of
magma along the surface after the overflow of this section from
the channel to form a thick slab lava flow. As the lithofacies
changes to explosive facies, the slab lava flow becomes a
massive lava flow. At the same time, core identification data
from 2,682.44 m show that an alteration has occurred there,
which may be the reason for the change in reservoir fluid
class. Combined with the curve, the lithology of the upper
part of the formation is predicted to be different, probably
due to dense formation. In general, the predicted lithology and
petrography results of well B are basically consistent with the
core data, and the predicted fluid properties are consistent with
the formation test results.

6. Conclusions
In volcanic systems, the lithology, lithofacies and fluids

of igneous rocks are correlated. Using conventional logging
data, this study proposes a multi-label method for lithology,
lithofacies and fluid identification. This method employs the
MLSMOTE for data augmentation and the multi-label cascade
forest for prediction. The MLDACF performs optimally in
one-error, ranking loss and macro-AUC in the back-judgement
model. In the simulated well, MLDACF performs the best in
terms of one-error, coverage, ranking loss, average precision,
and macro-AUC. Meanwhile, the lowest mean absolute de-
viation among all mentioned methods means that MLDACF
has the best generalization ability. Overall, MLDACF has the
best prediction among the mentioned methods. In actual wells,
MLDACF predictions are consistent with the formation tests
and core results, and the data show that MLDACF can be used
as a reliable method for the multi-label prediction of igneous
lithology, lithofacies and reservoir fluids.

The reasons for the “other” formation prediction results
were further analyzed using real data, and it was found that
more data support is needed to reduce this effect, which will
be the focus of our next research.
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Fig. 8. Predicted results of well A for 2,921-3,179 m.
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