
Advances in
Geo-Energy Research Vol. 8, No. 3, p. 206-210, 2023

Short communication

APyCE: A Python module for parsing and visualizing 3D
reservoir digital twin models

Mateus Tosta1, Gustavo P. Oliveira1, Bin Wang2 *, Zhiming Chen2, Qinzhuo Liao2

1TRIL Lab, Department of Scientific Computing, Federal University of Paraı́ba, João Pessoa 58000-000, Brazil
2National Key Laboratory of Petroleum Resources and Engineering, China University of Petroleum, Beijing 102249, P. R. China

Keywords:
Reservoir modeling
grid processing
3D visualization
digital twin

Cited as:
Tosta, M., Oliveira, G. P., Wang, B.,
Chen, Z., Liao, Q. APyCE: A Python
module for parsing and visualizing 3D
reservoir digital twin models. Advances in
Geo-Energy Research, 2023, 8(3):
206-210.
https://doi.org/10.46690/ager.2023.06.07

Abstract:
Engineers, geoscientists, and analysts can benefit from fast, easy, and real-time immersive
3D visualization to enhance their understanding and collaboration in a virtual 3D world.
However, converting 3D reservoir data formats between different software programs and
open-source standards can be challenging due to the complexity of programming and
discrepancies in internal data structures. This paper introduces an open-source Python
implementation focused on parsing industry reservoir data formats into a popular open-
source visualization data format, Visual Toolkit files. Using object-oriented programming,
a simple workflow was developed to export corner-point grids to Visual Toolkit-hexahedron
structures. To demonstrate the utility of the software, standard raw input files of reservoir
models are processed and visualized using Paraview. This tool aims to accelerate the digital
transformation of the oil and gas industry in terms of 3D digital content generation and
collaboration.

1. Introduction
Data visualization resources are indispensable for any

software intended to handle 3D models of oil and gas (O&G)
reservoirs. As never seen before, the groundbreaking power
of computer graphics and scientific visualization have brought
endless capabilities for geoscientists, engineers, and analysts
to understand subsurface phenomena. Multidimensional views
greatly improve seismic interpretation, reservoir characteriza-
tion, and real-time monitoring of producing fields, since high-
resolution images and 3D models can reconstitute the physical
world almost perfectly (Masison et al., 2021).

Despite the rapid spread of new paradigms that head up
the O&G digital transformation, such as digital twins, artificial
intelligence, and machine learning, numerical simulators are
still distinguished assets for reproducing the multiphase dy-
namics of reservoir fluids, performing history matching, and
optimizing well placement strategies (Sircar et al., 2022; Sun
and Zhang, 2020).

Many simulators with popularity among the O&G com-
munity use discrete formulations based on corner-point grids
(Ponting, 1989). Corner-point grids can be considered an inter-
national standard to represent all the geologic features found in
complex reservoirs, including dips, bends, pinches, and faults.
While many tools for post-processing of corner-point grids
are available, most of them are independent and have their
own internal semantic and object hierarchy, which prevents
their full integration. Furthermore, because the interoperability
of grid files (in terms of importing/exporting data) among
such programs depends on complex programming routines,
the representation of modeling entities and features from a
given software may be mismatched when read into another.

As seen, data integration and data visualization are perma-
nent challenges for software and algorithm developers working
on solutions for the O&G sector. In particular, researchers
often need visualization tools to communicate their discov-
eries, make reports with interactive plots, and easily generate
publication-ready graphics of post-processed data.

∗Corresponding author.
E-mail address: metzkerrr@gmail.com (M. Tosta); gustavo.oliveira@ci.ufpb.br (G. P. Oliveira); bin.wang@cup.edu.cn (B. Wang);
zhimingchn@cup.edu.cn (Z. Chen); liaoqz@cup.edu.cn (Q. Liao).
2207-9963 © The Author(s) 2023.
Received May 21, 2023; revised June 3, 2023; accepted June 9, 2023; available online June 12, 2023.

https://orcid.org/0000-0001-9214-2513
https://doi.org/10.46690/ager.2023.06.07

Tosta, L., et al. Advances in Geo-Energy Research, 2023, 8(3): 206-210 207

Fig. 1. Several models of reservoirs are shown and analyzed using APyCE.

A considerable number of commercial and open-source
software capable to deal with corner-point grids for visualiza-
tion purposes are known. Either they have embedded viewers
as secondary functionality or are primarily tailored for visual-
ization. In the first group, CMG Results© (https://www.cmgl.
ca/results), Schlumberger Petrel© (https://www.software.slb.
com/products/petrel), ESSS Kraken© (https://oilandgas.esss.
co/technologies/kraken), and Amarile RE-Studio© (https://
www.amarile.com/-RE-Studio-.html); in the second group,
SINTEF’s MRST (Lie, 2019) and Ceetron Solution’s ResIn-
sight (https://resinsight.org) are a few options. Minor open-
source software projects have been proposed by scholars
and independent scientists with an interest in O&G data,
but they are usually focused on flow simulations instead of
visualization and corner-point grid manipulation.

This paper introduces a lightweight Python-based package
for the plotting of reservoir models discretized through Carte-
sian or corner-point grids called APyCE. The objective of this
software is to provide a simple pipeline for post-processing
through the PyVista module (Sullivan and Kaszynski, 2019)
and Visual Toolkit (VTK) exporting for 3D visualization inside
Kitware Paraview software (Ayachit et al., 2015).

APyCE is an enhanced version of the early project Py-
GRDECL (Wang, 2018), developed to handle Schlumberger
Eclipse© (Schlumberger, 2014) deck files for visualization.
APyCE is multi-platform and easy to use, being prepared to
fulfill its objectives with only 4 lines of code and requiring
no background in Python to be run. It is recommended for
researchers who need to render high-quality figures for in-
clusion into scientific papers, reports, presentations, handouts,
interactive notebooks, and general documents for teaching
purposes.

Next, the computational framework is discussed in Section
2, examples of use are provided in Section 3, and lastly, some

concluding remarks and perspectives for future development
are drawn.

2. Background
APyCe is developed on top of Eclipse deck files’ structure

(Schlumberger, 2014). However, one should stress that similar
topologies are found in most of the input files managed by
competing software. Such files are internally divided into
sections. Each section admits a broad set of keywords that
reflect the model’s complexity. The higher is the number of
keywords to be processed, the greater is the level of details on
stratigraphy, fluid properties, well control, numerical settings,
and so on.

In particular, Eclipse’s more general files that contain
grid specifications have a .GRDECL extension. Initially, we
implemented a parser routine that recognizes only the essential
keywords to build either a corner-point or block-centered grid
(Ponting, 1989). All keywords of the file are identified by a
regular expression like ˆ[A-Z][A-Z0-9]{0,7} (Fig. 2).

2.1 Corner-point grids
Corner-point is a grid format for 3D geometries that

enables us to describe reservoirs with geological realism.
Sometimes it is referred to as “pillar grid” because of en-
sembles of pillars that span from the top to the bottom of
the model. The grid cells are then defined by eight paired
nodes encountered over four adjacent pillars (Fig. 3). Since
the nodes are free to slide along the pillars, several features,
such as pinch-outs, and folds are accurately and consistently
represented, even with degenerated or nonconform cells.

2.2 Block-centered grids
Block-centered grids are Cartesian-like domains specified

by multidirectional step sizes and top reference coordinates

https://www.cmgl.ca/results
https://www.cmgl.ca/results
https://www.software.slb.com/products/petrel
https://www.software.slb.com/products/petrel
https://oilandgas.esss.co/technologies/kraken
https://oilandgas.esss.co/technologies/kraken
https://www.amarile.com/-RE-Studio-.html
https://www.amarile.com/-RE-Studio-.html
https://resinsight.org

208 Tosta, L., et al. Advances in Geo-Energy Research, 2023, 8(3): 206-210

SPECGRID

20 20 4 1 F /

COORD

0.60814319E+03 -0.12195820E+04 0.22497217E+04 0.59895313E+03 -0.12417069E+04 0.24990918E+04

0.65048248E+03 -0.12046404E+04 0.22456648E+04 0.64349963E+03 -0.12271340E+04 0.24927664E+04

0.69211285E+03 -0.11901328E+04 0.22466001E+04 0.68799969E+03 -0.12132166E+04 0.24919016E+04

0.73225159E+03 -0.11736407E+04 0.22484019E+04 0.73173944E+03 -0.11976670E+04 0.24935242E+04

0.78713696E+03 -0.11509646E+04 0.22498828E+04 0.79193066E+03 -0.11765302E+04 0.24963970E+04

...

Fig. 2. Excerpt of a .GRDECL file for a reservoir model highlighting the SPECGRID and COORD keywords. The ellipsis
are not part of the syntax and here they only illustrate continuity of the file content.

Fig. 3. Simple illustration of adjacent cells in a typical corner-
point grid underpinned by arbitrary pillars. Adapted from (Lie,
2019).

(keywords DX, DY, DZ, and TOPS). In this type of grid, the
cells are sugar cuboids that arrange to approximate a regular
three-dimensional volumes, i.e., “shoebox” models (Fig. 4).

3. Methodology

3.1 File processing
The processing of the file, where the topology and ge-

ometry of the grid will be calculated, takes place in the
process_grid function. For each of the NX ∗ NY ∗ NZ
cells present in the mesh, the algorithm will retrieve the raw
corner-point data from the keywords COORD and ZCORN or,
it will retrieve the raw block-centered geometry data from the
keywords DX, DY, DZ and TOPS.

For corner-point geometries, X and Y values are interpo-
lated from the ZCORN. It is assumed by APyCE that all
pillars are straight lines, making linear interpolation sufficient.
In special cases where collapsed pillars occur, meaning pillars
of the form (x0 y0 z0 : x0 y0 z0) where the top point of the pillar
coincides with the bottom point of the pillar, cells following
the ZCORN convention must be recovered. In the case of
block-centered geometry, VTK points and cells are created
manually. The tool’s workflow is illustrated in Fig. 4. The
minimum code required to run the tool is to specify the file to
process and its origin (Eclipse/Builder functions to get a VTU
file).

After creating the VTK points, the software will retrieve
the cells that follow the VTK pattern, as this pattern is different
from the one followed by the Eclipse software. Fig. 5 shows
the VTK pattern for a hexahedron object. Eclipse software
uses different indexing than VTK uses. For the software in
question, points 2 and 3 in Fig. 5 are ”swapped” in position

Fig. 4. Simple illustration of a block-centered Cartesian grid.

with each other; the same goes for points 6 and 7. When
carrying out these changes, a standard method in VTK is
adopted, simply invoking the export_data function to
export the file for later viewing in the Paraview software.
Fig. 5. Orientation of the points of a hexahedron within the
VTK, the value 12 represents the hexahedron within the VTK
(Schroeder et al., 2002).

3.2 Keyword handling
The current version of APyCE supports the following

keywords.

• SPECGRID: specifies the number of cells in each direc-
tion of a corner-point grid.

• DIMENS: ditto for block-centered grids.
• COORD: specifies the coordinates (X,Y,Z) of the pillars.
• ZCORN: indicates the depth of each cell corner over the

pillars.
• PORO: stores the porosity values per cell.
• PERMX: stores the X-direction permeability for each grid

cell.
• PERMY: ditto for the Y -direction.
• PERMZ: ditto for the Z-direction.
• INCLUDE: appends supplementary files to the main file.
• ÅCTNUM: tags grid cells as active/inactive (boolean

value).
• DX: specifies the step size over the X-direction for block-

centered grids.
• DY: ditto Y -direction.
• DZ: ditto Z-direction.
• TOPS: stores the reference value from the top for each

cell in a block-centered grid.

Tosta, L., et al. Advances in Geo-Energy Research, 2023, 8(3): 206-210 209

Block-centered?

Start

Eclipse deck

file input

Read file

Grid

type
Corner-point?

Create VTK

Points and cells

Create VTK

Points and cells

Handle

degenerate cells

Create VTK

Points and cells

Export

VTK/ VTU
End

vtk DataFile Version x.y

vtk output

ASCII

DATASET UNSTRUCTURED_GRID

POINTS n float

(...) VTK file template

RUNSPEC

GRID

EDIT

PROPS

REGIONS

SOLUTION

SUMMARY

SCHEDULE

Grid geometry and basic rock properties

1 import apyce as ap
2

3 G = ap.grid.Grid(filename=‘Data/PSY.grdecl’,grid_origin=‘eclipse’,verbose=True)

4 G.process_grid()

5 G.export_data()

GRDECL file

(keywords overview)

Basic code instructions

Fig. 5. Workflow of APyCE.

3.3 Code framework
The Python programming language is used because it

is interpreted, object oriented, high-level, and with dynamic
semantics. In addition, the choice for the Python language
for the development of the project is justified by the vast
amount of modules available to perform scientific computing,
signal processing, and graphic manipulation tasks, such as
NumPy, SciPy, and Matplotlib, in addition to having a library
for the use of VTK-The Visualization Toolkit, an open-
source toolkit for 3D computer graphics, image processing,
and visualization, created and maintained by Kitware, Inc.
Another point that strengthens the choice for the Python lan-
guage is its simplicity, which reduces software maintenance.
Through the available modules and packages, modularized
programming and code reuse is encouraged. The support for
programming in an object-oriented paradigm is another factor
that contributes to the choice of the Python language, since
each object, or class, can be compared to real-world elements
and defined based on these elements. Finally, reading and
maintaining extensive code developed in an object-oriented
paradigm becomes extremely simple when compared to other
programming paradigms (functional, imperative, declarative,
structural, etc.).

4. Usage and development
On the ApyCe repository, one can finds the example script

Getting_Started.py, which reproduces the basic code
instructions as depicted at the top of the flowchart (Fig. 5)
and generates multiple VTK files.

Lastly, the outputs can be visually improved in Paraview
from a plethora of applicable filters (Fig. 1). The tool is
capable of rendering several models of reservoirs with different
topologies, even those comprising faults or complex stratigra-
phy.

Regarding software, the following points are noteworthy:
APyCE is written in Python 3.8. The choice for this

language is justified by the vast amount of modules avail-
able to perform scientific computing, signal processing, and
graphic manipulation tasks. Another point that strengthens the
choice for Python is its simplicity, which reduces software
maintenance. Through the available modules and packages,
modularized programming and code reuse is encouraged.

Processing highly refined grids (hundreds or millions of
cells) may demand increased RAM and processor power. Yet
less complex grids are manageable affordably.

To work properly, APyCE requires the following Python
packages: NumPy (v. 1.19.2 or above), VTK (v. 8.2.0 or
above), PyVista (v. 0.29 or above), and Matplotlib (v. 3.4.1
or above). The most current version was tested on Ubuntu
20.04 distribution with the 5.11.0-25-generic kernel anw with

210 Tosta, L., et al. Advances in Geo-Energy Research, 2023, 8(3): 206-210

PyTest (https://docs.pytest.org/en/latest/). All the workflow for
exporting/visualizing corner-point grids are fully workable, but
block-centered grids still have partial keyword support.

5. Conclusion
In this paper, we presented a Python module tailored for

viewing 3D reservoir models with varying structural complex-
ity. When parsing the input files, the module’s routines are
able to recognize the main features of corner-point and block-
centered grids.

Beyond its open-source nature, easy manipulation and
integration with Paraview software are other strong points of
this module. One the one hand, it allows that any researcher
with minimal knowledge of programming can run the code. On
the other hand, it provides high-quality outputs readily usable
for general data analysis or publication purposes.

This module can help all professionals working at the
oil and gas upstream, mainly reservoir engineers, geologists,
and modelers who need to understand spatial distributions or
analyze field-scale properties. From this point on, efforts will
be made to extend the module’s capabilities to parse other
file formats, support additional model features, and provide
software interchangeability. Code profiling tests in highly
refined meshes are needed to verify processing efficiency and
bottlenecks.

Acknowledgements
G.P.O and M.M.T acknowledge the National Council for

Scientific and Technological Development (CNPq-Brazil) for
the financial support granted through PIBIC/UFPB Program
2020-2021 and CT-PETRO Program (No. 405654/2022-7).
B.W acknowledge the Natural Science Foundation of China
(No. 52204021), Science Foundation of China University of
Petroleum, Beijing (No. 2462022BJRC002) for the financial
support.

Conflict of interest
The authors declare no competing interest.

Code availability
APyCE can be downloaded directly from its project page

on https://github.com/mateustosta/apyce-project.

Open Access This article is distributed under the terms and conditions of
the Creative Commons Attribution (CC BY-NC-ND) license, which permits
unrestricted use, distribution, and reproduction in any medium, provided the
original work is properly cited.

References
Ayachit, U., Geveci, B., Avila, L. The Paraview Guide: A

Parallel Visualization Application. Kitware, New York,
USA, 2015.

Lie, K. A. An introduction to reservoir simulation using
MATLAB/GNU Octave: User guide for the MATLAB
Reservoir Simulation Toolbox (MRST). Cambridge, UK,
Cambridge University Press, 2019.

Masison, J., Beezley, J., Mei, Y. et al. A modular computa-
tional framework for medical digital twins. Proceedings
of the National Academy of Sciences of the United States
of America, 2021, 118(20): e2024287118.

Ponting, D. K. Corner point geometry in reservoir simula-
tion. European Association of Geoscientists & Engineers,
1989: cp-234.

Schlumberger. Eclipse Reservoir Simulation Software Refer-
ence Manual. Schlumberger, Texas, USA, 2014.

Schroeder, W., Martin, K. M., Lorensen, W. E. The Visu-
alization Toolkit An Object-Oriented Approach to 3D
Graphics. Prentice-Hall, New Jersey, USA, 1998.

Sircar, A., Nair, A., Bist, N. et al. Digital twin in hydro-
carbon industry. Petroleum Research, 2022, in press,
https://doi.org/10.1016/j.ptlrs.2022.04.001.

Sullivan, C., Kaszynski, A. Pyvista: 3d plotting and mesh anal-
ysis through a streamlined interface for the visualization
toolkit (vtk). Journal of Open Source Software, 2019,
4(37): 1450.

Sun, S., Zhang, T. A 6m digital twin for modeling and
simulation in subsurface reservoirs. Advances in Geo-
Energy Research, 2020, 4(4): 349-351.

Wang, B. Pygrdecl a python-based grdecl visualization library,
2018.

https://docs.pytest.org/en/latest/
https://github.com/mateustosta/apyce-project
https://doi.org/10.1016/j.ptlrs.2022.04.001
https://github.com/BinWang0213/PyGRDECL
https://github.com/BinWang0213/PyGRDECL

	Introduction
	Background
	Corner-point grids
	Block-centered grids

	Methodology
	File processing
	Keyword handling
	Code framework

	Usage and development
	Conclusion

