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Abstract:
Acoustic impedance inversion is a key technique for the seismic exploration of coalfield,
which can determine subsurface lithological changes and coal seam distribution. The
traditional method is highly subjective, has poor generalizability, and interpretation can
be time and labor consuming. Due to the powerful nonlinear interpretation and feature
extraction capabilities of neural networks, deep learning technology has demonstrated
potential for geophysical exploration. To predict acoustic impedance accurately and
efficiently, this study proposes the use of the initial geological model as the priori constraint
for training. The low-frequency feature extraction capability of a bidirectional gated
recurrent unit network and the high-frequency feature extraction capability of a temporal
convolutional network are used to establish a new acoustic impedance inversion method in
coal strata with a priori constraint data. The temporal convolutional network-bidirectional
gated recurrent unit method was applied to data from the Xinjing Mining Area in Shanxi
province, northern China. The results displayed good precision by accurately predicting
the distribution and thickness variation of local coal seams. Compared with the traditional
model-based method and the method using temporal convolutional network-bidirectional
gated recurrent unit network, the proposed priori constraint-based temporal convolutional
network-bidirectional gated recurrent unit network has better feature expression capability
and provides more detailed coal seam information. In conclusion, the new method can
improve the accuracy of acoustic impedance inversion, which is of great significance for
coalfield seismic exploration.

1. Introduction
Acoustic impedance (AI) inversion utilizes seismic, well

logging, and horizon data, as well as geological information,
to interpret and image subsurface lithological changes, coal
seam distribution, and structural development. It is a key
technique used in coalfield seismic exploration (Wang et
al., 2005). Traditional inversion methods rely too much on
well data, especially in complex areas, and the accuracy is
lower (Mustafa et al., 2021).

Machine learning now represents the mainstay of tools
applied to geoscience research (Li et al., 2023). Deep learning
(DL) is a new and efficient technology that has undergone

widespread development and utilization in academia and in-
dustry in recent years. The most notable difference between
DL and ordinary machine learning is that its neural network
contains more hidden processing layers (Janiesch et al., 2021).
DL uses low-level feature information to represent high-level
feature information and involves multiple processing layers or
multiple non-linear transformations and repetitive structures to
abstract high-dimensional data (Wang et al., 2020). Seismic
inversion based on DL has gradually addressed the problems
that traditional inversion methods could not solve. It can
automatically extract complex feature parameters from large
volumes of geological data, which is highly significant for
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accelerating the development of intelligent AI inversion. DL
network algorithms for AI inversion can be divided into two
main categories: convolutional neural networks (CNNs) and
recurrent neural networks (RNNs).

Geophysicists have applied many convolutional neural net-
works and related variants to AI inversion. Das et al. (2019)
used a CNN-based AI inversion method on the Volve field
dataset from offshore Norway, the inversion results mani-
fested a high correlation (82%) with the AI log. Biswas et
al. (2019) used CNN to estimate AI based on post-stack
seismic traces, this method achieved accurate AI evaluation
results and improved efficiency. Wu et al. (2020) used a fully
convolutional residual network for seismic AI inversion, which
can effectively predict the AI and show robustness against
noise and phase difference. Wu et al. (2021a) proposed a
semi-supervised learning workflow on account of a generative
adversarial network (GAN) for AI inversion. The inversion
results showed that the proposed method, due to making use
of both labeled data and unlabeled data, is more approach to
field data than conventional CNN-based inversion methods.
Chen et al. (2021a) built a deep convolutional neural net-
work to implement seismic AI inversion. The network has
achieved a high level of inversion accuracy under a relatively
fast computational speed and demonstrated effective through
a comprehensive analysis of field data. Wu et al. (2021b)
improved the 1 dimensional (1D) network by replacing it
with a 2 dimensional (2D) CNN and incorporating constraints
from the initial AI model. The 2D CNN exhibited stronger
robustness to noise, achieved better recovery of thin layers, and
produced more consistent lateral impedance models compared
to the 1D CNN with the same network structure and training
logs. Yoo et al. (2022) proposed a domain adaptation model
to AI inversion and predicted it more accurately compared
to the standard CNN model especially in regions without
well logging data. Tao et al. (2023) obtained an AI profile
by inputting seismic profile and background impedance into
a well-trained self-attention U-Net. The self-attention U-Net
proved to be robust against noise. Furthermore, it showed
superior spatial continuity compared to deconvolution with
recursive inversion and Total Variation regularization.

These studies have demonstrated that traditional CNN
methods can predict AI from seismic data at limited frequency
bands, but there is room for improvement. When traditional
CNNs train seismic and well logging data, the continuity of
geophysical data and correlations between similar points are
not considered, and the long-term information is not accurately
captured. Temporal convolutional networks (TCNs) are the
variants of CNNs. TCNs can effectively extract and represent
sequential features at different abstract levels in the input
sequence through dilated causal convolution operations and
residual blocks, so as to capture high-frequency information.
Mustafa et al. (2019) proposed a workflow that utilizes a tem-
poral convolutional network (TCN)-based network architecture
to predict AI by treating the problem as a sequence mod-
eling task. The workflow overcomes the issue of overfitting
encountered in CNN. Later, Mustafa et al. (2021) introduced
local spatial context information in a TCN and then performed
sequence modeling on seismic traces, achieving highly precise

estimation of AI. Smith et al. (2022) used a TCN to invert
seismic data with coherent noise and produced better results
than a model-based inversion. Wang and Chen (2022) pro-
posed an AI inversion method based on a data-driven TCN
model and the results show that the TCN model have better
reconstruction effects in complex strata. Marques et al. (2022)
compared different DL networks (LSTM, TCN, CNN, GAN)
for AI inversion. The TCN exhibited the best performance
and generalization in the inversion results due to its multiple
convolutional layers in every Temporal Block and a mass of
neurons.

For large volumes of geophysical data, diverse physi-
cal attributes, and sequential data, RNNs are suitable for
processing sequential data and have been widely used in
seismic inversion. A traditional RNN is prone to vanishing or
exploding gradient problems with an increase in time units
and number of steps (Yoon et al., 2020). Long short-term
memory (LSTM) networks were developed to overcome these
issues with RNNs. Zhao et al. (2023) proposed a data-driven,
high-resolution AI inversion method based on a bidirectional
LSTM, which produced accurate and reliable inversion results.
Due to the complex structure and many internal parameters
of LSTM networks, they have considerable computational
requirements. Therefore, LSTM networks were simplified and
upgraded to form a gated recurrent unit (GRU). Alfarraj and
AlRegib (2019) connected three layers of GRUs in series to
construct a sequence modeling sub-module in the inversion
model, which is used to capture low-frequency trends of AI.
Song et al. (2021) used a series of GRUs to develop a global
feature extraction layer to enrich low-frequency information
in AI inversion results.

The inversion results of most current methods based on
a single network suffer from poor accuracy, instability, and
low resolution. Moreover, well logging label data of real
mining areas are always limited and sparse, and it is difficult
to enhance the accuracy of inversion results by obtaining
more well logging labels (Adler et al., 2021). To resolve the
above issues, a reasonable initial geological model (the priori
constraint) was introduced into the network as a constraint
for training, and an AI inversion method using the priori
constraint-based temporal convolutional network-bidirectional
gated recurrent unit (TCN-BiGRU) network was developed in
this work. This method was then applied to the Xinjing Mining
Area to predict coal seam distribution.

2. Methods
TCNs can effectively extract and represent sequential fea-

tures at different abstract levels in the input sequence through
dilated causal convolution and residual connections, so they
can capture high-frequency information. Bidirectional gated
recurrent units (BiGRUs) are used to capture the long-term
sequential correlation of data, which can effectively extract
useful features from low-frequency information. By combining
the advantages of TCNs and BiGRUs, high-frequency and
low-frequency sequential information were comprehensively
utilized to improve the accuracy of AI inversion.
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Fig. 1. Convolution diagram (Wang and Chen, 2022). (a) Traditional convolution, (b) causal convolution and (c) dilated causal
convolution.

2.1 TCN
The TCN network structure is composed of several Tempo-

ral Blocks. Each Temporal Block contains a residual block and
a ReLU function, which can better capture the feature changes
in sequence data at different scales (Yang et al., 2023).

Sequential data is a data column recorded in chronological
order. Traditional convolution considered data points indepen-
dent of each other (Fig. 1(a)). The causal convolution (Fig.
1(b)) captures the causal correlation of sequential data, and
the results obtained are associated with previously observed
data. The calculation process of the causal convolution can be
written as:

p(x) = ∏
T
t=1 p(xt | x1, . . . ,xt−1) (1)

where t is any time point between 1 and T , xt is the t-th
component of input sequential data XT = {x1,x2, . . . ,xT}, and
p(x) is the output data of the current observation point.

Since the size of the causal convolutional receptive field
depends on the convolutional layers and the convolutional ker-
nel, enough causal convolutional layers are needed to capture
more data features when the sequence is extended. When more
information can be traced back, more feature extraction layers
should be stacked, and the layers of the network model deep-
ens. This makes the model more cumbersome and complex
and also increases the hyperparameters. To deal with this,
the TCN model introduces a dilated convolutional structure to
form a dilated causal convolution. Compared with the causal
convolution (Fig. 1(b)), the dilated causal convolution allows
for a sampling interval, and the sampling rate is controlled
by the expansion coefficient d. When d = 1, each data point
would be used as the input. When d = 2, data points with an
interval of 2 would be used for the input, and so on. Generally
speaking, the larger the number of network layers, the larger
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Fig. 2. Structure of the TCN model.

the d, that is, the size of the effective window increases at
an exponential rate with the number of convolutional layers.
Thus, when the number of convolutional layers remains the
same, the dilated causal convolution enlarges the receptive
field of the network, greatly reduces the network parameters
(Sun, 2020). Fig. 1(c) shows a dilated causal convolution with
a convolutional kernel size of 2 and expansion coefficients of
1, 2, 4, and 8.

As shown in Fig. 2, The Temporal Block contains a
residual block (Zhang et al., 2023) and a ReLU function. After
input data x enters the Temporal Block, feature information in
x is extracted through the first dilated causal convolution. Then
weight normalization scales the weights to keep their values
within a small range which can reduce the impact of weight
differences, improve model stability and generalization ability.
In the next part, the ReLU function is then used for activation.
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2.2 TCN-BiGRU
Later, the output of the ReLU enters the dropout regularization
which is used to alleviate the occurrence of overfitting and
improve the generalization ability of the network. This is
followed by a second dilated causal convolution, performing
the same operation as before to get the output value F(x).
Finally, the original input x is subjected to a 11 convolution
operation, and then the residual calculation is performed with
F(x) to obtain the final output value F(x)+ x.

2.3 BiGRU
GRUs are a unique version of an RNN, which can save

traversed features and learn to discard irrelevant features.
Unlike a standard RNN, GRU selectively forgets information,
so it can be trained to retain old information. Moreover, the
GRU model has fewer gates and parameters than the LSTM
model, resulting in less computation and faster processing
(Shen et al., 2021). Fig. 3 shows the internal structure of a
GRU.

A GRU has two important components, the reset gate and
update gate. The effect of the reset gate is to integrate feature
data input from the current moment with previously retained
information. The effect of the update gate is to determine how
much previously retained information to save in the current
moment. The unique characteristic of a GRU is that the gated
units constantly retain and remove information, allowing it to
retain long-term sequence information. The formulas are as
follows:

zt = σ(Wzxt +Uzht−1 +bz) (2)

rt = σ(Wrxt +Urht−1 +br) (3)

h̃t = tanh [Wxt +U(rt �ht−1)+b] (4)

ht = zt �ht−1 +(1− zt)� h̃t (5)
where zt is the output of the update gate at time point t, rt
is the output of the reset gate at time point t, xt is the t−th
component of the input sequence data x, ht−1 are the hidden
layer states at the previous time point t−1, ht are the hidden
layer states at time point t, h̃t are the candidate hidden layer

states at time point t, � is Hadamard product which means
multiplication of the corresponding elements of matrixes, Wz
and Uz are the weight matrices of the update gate, Wr and Ur
are the weight matrices of the reset gate, W and U are the
weight matrices of the candidate hidden layer states, bz, br,
b are the biases of the update gate, reset gate, and candidate
hidden layer states, respectively, tanh and σ (Sigmoid) are
activation functions. As Fig. 3 shows, zt controls how many
hidden states ht−1 and the input xt flow into the hidden states
ht . The larger the value of zt , the more information flows in
ht . The zt can also control how many hidden states ht should
be updated by the candidate hidden states h̃t . The rt controls
how many hidden states ht−1 and the input xt flow into the
candidate hidden states h̃t . The larger the value of rt , the more
information flows in h̃t .

A BiGRU consists of two unidirectional GRUs with op-
posite directions (forward and backward propagation), and
its output is determined jointly by the two GRUs, therefore,
BiGRU has the ability to learn from both past and future
information. BiGRU can discover the regularity in input
sequential data through forward and backward propagation,
and can better handle abnormal situations such as noise and
missing values in input sequences.

Based on the above mechanisms, the BiGRU can control
the flow and retention of information, making the network
more capable of capturing and utilizing long-term depen-
dencies in sequential data and the BiGRU provides more
comprehensive contextual information and stronger memory
capabilities, resulting in better performance in processing
sequential data. Finally, the BiGRU model for predicting AI
with 6 BiGRU hidden layers and a fully connected layer is
constructed. Its input dimension is 1, the size of the each
hidden layer is 7, and the output dimension of the fully
connected layer is 1.

A TCN-BiGRU network model combines the advantages
of both models. By training the TCN-BiGRU network model,
geophysical data can be captured more rationally, and the
nonlinear relationship between input seismic data and output
AI can be obtained more accurately. Fig. 4 shows that the
TCN-BiGRU network model consists of three main parts:
the high-frequency feature extraction sub-module, the low-
frequency feature extraction sub-module, and the regression
sub-module.

The high-frequency feature extraction sub-module consists
of seven Temporal Blocks, and the output channels of each
Temporal Block are specified in the square bracket (Fig. 4).
Each Temporal Block contains 2 dilated causal convolutions.
The convolutional kernel size is set to 5, the stride is set to
1, the padding is 4, 8, 16, 32, 64, 128, and 256, respectively.
The expansion coefficient d is 0, 2, 4, 8, 16, 32, and 64,
respectively. The convolutional layer can operate on a small
window of input features and obtain the high-frequency part
of the AI. However, Temporal Blocks cannot preserve states
like BiGRUs can, therefore, they cannot capture low-frequency
trends.

The low-frequency feature extraction sub-module consists
of 4 BiGRUs (Fig. 4). When inputting training data into the
BiGRU, the data feature changes are recorded based on the
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sequence, and states are calculated based on future and past
predictions. The concatenation of four BiGRUs is equivalent to
an upgraded deep network, and is capable of extracting more
complex nonlinear relationships between features and labels.
Furthermore, BiGRUs commonly produce the low-frequency
part of the AI.

The regression sub-module includes a 1D CNN and a
simple fully connected layer (Fig. 4). The convolutional kernel
size of the 1D CNN is set to 3, the step size is set to 1, and
the padding is set to 1. The 1D CNN can learn local and
global correlation features in input sequences. Then, the fully
connected layer combines and models features extracted from
the 1D CNN at a higher level and reduces the dimension of
the 1D CNN output. In brief, the regression sub-module helps
improve the model’s understanding and predictive performance
of the input data.

2.4 Inversion principle
Both seismic and well logging data can be regarded as

sequential data. Using post-stack seismic data as the input,
predicted AI as the output, and actual well logging AI as the
labels, AI inversion can be considered as sequence modeling
between seismic data and well logging AI labels. Supposing
that X = {x1,x2, . . . ,xn} is a set of post-stack seismic data used
as features, in which xi is the post-stack seismic record of the
i-th trace, and Y = {y1,y2, . . . ,yn} are the corresponding AI
labels. The formulas are as follows:

θ
l+1 = θ

l−η ·Vθ L(θ l) (6)

θ̂ = argθ minL(yi, fθ (xi)) (7)
where θ are a set of weights and biases, l is the current number
of epochs, η is the learning rate, Vθ L(θ l) is the loss function
gradient, yi is the value of the i-th label data which refers to
real AI, fθ (xi) is the value of the i-th predicted AI, L(yi, fθ (xi))

is the loss value between predicted AI fθ (xi) and the real AI
yi, and θ̂ is the final parameter set of the inversion model
when the loss value cannot be reduced any further. First, the
subset (the i-th trace of seismic data) of X is preprocessed
and input into the neural network model, and the predicted AI
fθ (xi) is obtained by forward propagation. The loss function
between the predicted AI fθ (xi) and real AI yi is calculated to
determine the gradient Vθ L(θ l). And the iterative updating of
model hyperparameter θ is then achieved by backpropagation.
Finally, the above process is repeated until the loss function
cannot be reduced any further. argθ min is used to obtain
the optimal parameter set θ̂ when L(yi, fθ (xi)) reaches its
minimum value.

3. Inversion experiment
The publicly available data used in this study were obtained

from the Marmousi seismic model created by the French
Institute of Petroleum, which has been widely used to research
the validity and rationality of advanced geophysical methods,
including seismic inversion, modeling, and imaging (Martin et
al., 2006). The model’s data includes 199 geological layers,
and its geologic body includes eroded rivers, structural over-
turns, reservoir sweet spots, and sedimentary development,
with various lithological compositions. The main part of the
central structurally complex area is an anticline structure and
overturning surface. The Marmousi model data covers an area
17 km long and 3.5 km deep. A single trace contains 701
recorded points, and the whole model contains 2,721 seismic
traces and corresponding AI.

3.1 Data processing
3.1.1 Data removal

To facilitate processing and visualization using Python, the
Marmousi model was converted from SEG-Y format to NPY
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Fig. 5. Marmousi model data. (a) Seismic profile (Marmousi model) and (b) AI profile (Marmousi model).

format. The array shape of the seismic profile and AI profile
in NPY format were (2,721, 701), i.e., the profile contains
2,721 traces of seismic data or AI, each trace of data having
701 recorded points. Fig. 5 shows that the first 101 points
(corresponding to a depth of less than 500 m) recorded in each
trace of the seismic and AI profile of the Marmousi model are
null values, which are not useful for network training. After
cutting them out, the array shape was (2,721, 600).

3.1.2 Dividing the dataset

Fig. 5 shows that the left and right ends have relatively
simple structures, with a plane of unconformity at the bottom,
and a complex middle, with anticlines, normal faults, and
unconformity structures. To adequately test the predictive
efficacy of the model, the middle traces from 499 to 2,399
were extracted for training. To simulate the actual mining
areas, the extraction of the seismic data and the AI follows
the principle of sparse and uniform. So the seismic data and
the AI were extracted at equal intervals of 20 traces as the
training set. The rest of the 1,880 traces were used in the
validation set. The entire data (2,721×600) was used as a test
set.

3.1.3 Data normalization

The different sampling points, data volumes, and value
ranges of the input seismic data and AI make the identification
and processing of model data difficult and lead to reduced
efficiency in computational and convergence. Z-score normal-
ization was used to standardize the original data (Abdi and
Williams, 2010). The formula is as follows:

X̂ =
X−Xm

S1
(8)

Ŷ =
Y −Ym

S2
(9)

where X̂ is the normalized seismic data of the training set,
Xm is the mean value of the X , Ŷ is the normalized AI of the
training set, Ym is the mean value of the Y , S1 is the standard
deviation of the X , S2 is the standard deviation of the Y . The
processed datasets conform to the standard normal distribution,
that is, the mean value of each dataset is 0, and the standard
deviation of each dataset is 1.

3.2 Model training and validation
Mean squared error (MSE) is widely used in regression

problems as a loss function. It describes the difference between
predicted AI fθ (xi) and the real AI yi and is expressed as
follows:

L(yi, fθ (xi)) =
1
n

n

∑
i=1

(yi− fθ (xi))
2 (10)

where n is the number of seismic traces in the training set.
Adam (Adaptive moment estimation) algorithm is an adap-

tive estimation algorithm based on low-order moments that can
replace the conventional stochastic gradient descent method. It
can calculate the adaptive learning rate of different parameters
according to the first and second moment estimation of the
gradient. It has high computational efficiency and low memory
requirements (Jais et al., 2019). So Adam algorithm was used
as the neural network optimization algorithm.

Network parameters were optimized by minimizing the
loss function through multiple epochs. The TCN model was
trained for 1,000 epochs and had a learning rate of 0.001 and
batch size of 15. The BiGRU model was trained for 100 epochs
and had a learning rate of 0.001 and batch size of 45. The



Shi, S., et al. Advances in Geo-Energy Research, 2023, 9(1): 13-24 19

Table 1. Training evaluation of the TCN, BiGRU, and combined models.

Model Epochs Learning rate Min trainloss Min valloss

TCN 1,000 0.005 0.173 0.175

BiGRU 100 0.001 0.093 0.068

TCN-BiGRU 220 0.005 0.032 0.025

Fig. 6. Single-trace prediction results of the TCN, BiGRU, and combined models. (a) TCN, (b) BiGRU and (c) TCN-BiGRU.

TCN-BiGRU model was trained for 220 epochs and had a
learning rate of 0.005 and a batch size of 10. Table. 1 lists the
minimum loss of the various models.

The Marmousi seismic data in the test set was inputted into
the above three saved models to obtain the predicted AI curves.
Fig. 6 demonstrates the predicted AI of the three models at
the 166th, 1,666th, and 2,666th traces as well as the real values
at corresponding positions (yellow lines are predicted results,
and blue lines are real results). The correlation coefficients
of the TCN, BiGRU, and TCN-BiGRU models were 0.820,
0.829, and 0.957, respectively. Fig. 6(a) shows the single-
trace prediction results of the TCN model, which reflect the
overall trend, but there is sharp curve jitter. And the proportion
of high-frequency components in the curves is high. Fig.
6(b) shows the single-trace prediction results of the BiGRU
model, which reflect the lithological changes of the thick
layers, but the curves are flat and do not reflect the high-
frequency information of the thin layers. Fig. 6(c) shows that
the single-trace prediction results of the TCN-BiGRU model
are markedly better than the other two models. The predicted
results have a high degree of matching with the real data in
the key strata, and the thin layers are accurately depicted.

The seismic data was imported into the three models to
obtain the predicted AI profiles and absolute error profiles.
Fig. 7(a) shows that the TCN model can identify the structural

developments and strata trends, but there are issues of vertical
discontinuity. Fig. 7(b) shows that the errors are mainly
concentrated in areas with developed structures. Fig. 7(c)
shows that the BiGRU model clearly identifies changes in
lithological interfaces and strata structures, produces excessive
homogeneity of stratums, and is unable to identify thin layers.
Fig. 7(d) shows that the errors mainly focus on the thin layers.
Fig. 7(e) shows that the TCN-BiGRU model clearly identifies
changes in lithological interfaces and strata structures, and thin
layers can be distinguished. Fig. 7(f) shows that the difference
between the predicted AI and the real AI is very small. In a
word, the TCN-BiGRU model has greater accuracy than the
single network models.

3.3 Evaluation of inversion results
To select the most suitable model for inversion, it was

necessary to conduct a more precise numerical evaluation
of the above inversion networks. Two metrics that are often
used to analyze the accuracy of a regression model are the
coefficient of determination (R2) and the root MSE (RMSE),
which are expressed as follows:

R2 = 1− ∑
N
i=1(yi− fθ (xi))

2

∑
N
i=1(yi− ȳ)2

(11)
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Fig. 7. AI profiles predicted by the TCN, BiGRU, and combined models. (a) Predicted profile (TCN model), (b) error profile
(TCN model), (c) predicted profile (BiGRU model), (d) error profile (BiGRU model), (e) predicted profile (TCN-BiGRU model)
and (f) error profile (TCN-BiGRU model).

RMSE =

√
1
N

N

∑
i=1

(yi− fθ (xi))2 (12)

where ȳ is the mean value of the entire predicted AI, N is the
number of the entire seismic traces. R2 is a metric used to
evaluate the goodness of fit of regression models. When R2 is
closer to 1, the prediction accuracy is higher. RMSE describes

Table 2. Quantitative evaluation of the TCN, BiGRU, and
combined models.

Model Training time Epochs RMSE R2

TCN 10 min 38 s 1,000 876.46 0.87

BiGRU 5 min 36 s 100 877.60 0.87

TCN-BiGRU 20 min 30 s 220 477.58 0.96

the error between the real and predicted values (Chen et
al., 2021b; Zhang et al., 2022), which represents the stability
of the network model.

R2 and RMSE of the TCN, BiGRU, and TCN-BiGRU
models were calculated by using the test set. Table. 2 lists
the R2 and RMSE of the various models. The RMSE and R2

of the TCN-BiGRU model introduced in the study were 477.58
and 0.96, respectively. Compared with the single network
models, the TCN-BiGRU model had notably higher prediction
accuracy and greater stability. And there was only a small
increase in training time required.

4. Mining area application

4.1 Actual data inversion based on TCN-BiGRU
model

This study used the Xinjing Mining Area in the city of
Yangquan in northern China’s Shanxi Province as the subject
area. Coal seams No. 3, 8, and 15 in the study area were
developed, and one dataset was prepared for model training
and testing. The connected well seismic dataset (Fig. 8)
comprises well logging data from eight wells on a measuring
line: 3-178, 3-170, 3-169, 3-168, 3-167, 3-155, 3-148, and
3-137.

First, the data was preprocessed.
(1) Seismic data and well logging data were normalized

according to Eqs. (8) and (9).
(2) Well logging data and seismic data were calibrated so

that the well logging data sequence in the depth domain and
the seismic data sequence in the time domain were linked
according to the corresponding target layers.

(3) To use more data while ensuring the same length, 700
sample points from each well logging AI were ultimately
selected as the labels. And the near-well seismic traces were
selected as the features. The array shape of the labels or
features was (8, 1, 700). Then dividing 70% of the labels and
features into the training set and 30% into the validation set.

The training set and validation set were input into the
TCN-BiGRU model and the parameters were optimized by
minimizing the loss function through multiple epochs. The
Adam algorithm was used as the neural network optimization
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Fig. 8. Xinjing Mining Area connected well seismic dataset.

algorithm and MSE as the loss function. The number of
training epoch was 500, the learning rate was 0.005, the
batch size was 10, and the final training time was 66 s. The
training set and validation set converged to 0.032 and 0.025,
respectively.

The actual seismic data was then input into the trained
TCN-BiGRU model to obtain the predicted AI inversion result
(Fig. 9).

As Fig. 9 shows, the main coal seams, lithological forms,
and lithological interfaces can be observed in the profile, but
they are inconsistent with well logging verification. The TCN-
BiGRU model failed to obtain satisfactory inversion result
when applied to actual data, but the training dataset showed
a good fit, with the training loss converging to 0.03. This
does not mean that the TCN-BiGRU model developed in this
study does not work. Our analysis indicates that the result was
caused by the following: (1) Using data from only eight wells
for training made it difficult for the TCN-BiGRU model to
learn the complex relationship between the entire seismic data
and AI; (2) the lack of horizontal constraints in the training
data led to poor continuity of the coal seams; (3) the frequency
band of the actual seismic data was generally lower than that
of the well logging AI, causing low accuracy.

4.2 Actual data inversion using the priori
constraint-based TCN-BiGRU model

Data-driven intelligent approaches exhibit remarkable flex-
ibility, computational efficiency, and accuracy when dealing
with complex multi-scale problems (Xie et al., 2023). Inspired
by the data-driven methods with the priori constraint (Yuan
et al., 2019; Chen et al., 2021a), the inversion result was
improved by inputting the initial geological model (the priori
constraint) into the network model.

The initial geological model (Fig. 10(a)) was constructed
from seismic data, horizon, and well logging data. The actual
near-well seismic traces and the near-well logging AI of
the initial geological model were used as the features and
then input into the TCN-BiGRU model. The array shape of
the features was (8, 2, 700). After optimizing the network

parameters by minimizing the loss function through multiple
epochs, The Adam algorithm was used as the neural network
optimization algorithm and MSE as the loss function. The
number of training rounds was 500, the learning rate was
0.005, the batch size was 10, and the final training time was 58
s. The training set and validation set converged to 0.096 and
0.323, respectively. The actual seismic data was then input into
the TCN-BiGRU model to obtain the predicted AI inversion
result (Fig. 10(c)).

To further test the efficacy of the priori constraint-based
TCN-BiGRU, traditional model-based AI inversion was per-
formed on the mining area using seismic data, well logging,
and horizon data. The rick wavelet with a main frequency
of 50 Hz was used, and horizons 3, 8, and 15 were used as
constraints. The hard constraint was set to 40% which means
that the difference between the inversion result and the initial
geological model does not exceed 40%. Kriging interpolation
technology was used to construct the initial model with a
low pass filter (300-350 Hz). The traditional model-based AI
inversion result is shown in Fig. 10(b).

As Fig. 10(c) shows, the initial geological model provided
high-frequency feature information and low-frequency trend
constraints for the priori constraint-based TCN-BiGRU model,
therefore, the accuracy of the inversion result is quite high.
The near-well logging information of the initial geological
model enables the inversion to better depict thin coal seams,
and the horizon information improves coal seam identification.
Coal seams No. 3, 8, and 15 were accurately identified, and
they achieved a good fit with the well logging verification.
Compared with the traditional model-based AI inversion result
(Fig. 10(b)), the main coal seam fluctuations are consistent,
with thickness variation observable in both. However, more
information on other layers can be observable based on the
inversion result of the priori constraint-based TCN-BiGRU
model. For example, a layer of stable sandstone under coal
seam No. 3 is observable. The AI inversion result of the
priori constraint-based TCN-BiGRU model clearly shows the
distribution, thickness variation, and formation fluctuation of
the coal seams.
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Fig. 9. AI prediction result of the TCN-BiGRU model.

Fig. 10. Initial geological model and inversion results. (a) Initial geological model, (b) model-based AI inversion result and
(c) AI inversion result of the priori constraint-based TCN-BiGRU model.
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5. Conclusions
This study used DL technology for AI inversion, tested and

verified the Marmousi seismic model data and actual seismic
data, utilized non-linear interpretation and feature extraction
capability of deep neural networks, and improved the features
to obtain highly accurate AI inversion results. The following
conclusions were drawn from our research:

1) Our DL inversion network model combined the low-
frequency feature extraction capability of the BiGRU net-
work and the high-frequency feature extraction capability
of the TCN network, enabling it to successfully learn the
mapping relationship between the seismic data and AI.

2) The Marmousi seismic model was used as the experimen-
tal data and applied to the TCN-BiGRU inversion network
model. The obtained AI inversion results clearly identify
changes in lithological interfaces, strata structures, and
thin layers, which are more accurate than that obtained
using the single neural network model.

3) Actual data from the Xinjing Mining Area in Shanxi
Province was used as experimental data, and the near-
well logging AI of the initial geological model were used
as the priori constraint, which was input into the TCN-
BiGRU inversion network model to constrain the training
process. This initial geological model provided informa-
tion on thin layers and horizon information, improved the
accuracy and horizontal continuity of inversion, provided
more precise depictions of thin coal seams, and accurately
identified coal seams No. 3, 8, and 15. These findings
were consistent with well logging verification.

Although the priori constraint-based TCN-BiGRU model
has achieved good results, the number of labels still restricts
the application of this method in different mining areas. The
future direction of the research is to explore how to expand
the label dataset and further improve the network structure to
obtain more accurate AI inversion results in different mining
areas.
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