DEVELOPING A DESIGN FRAMEWORK FOR LABORATORY VIDEOS IN MOLECULAR BIOSCIENCES

Ethan Y. Y. Kok^a, Amy H. Chan^{a,b}, and Jack T. H. Wang^a

Presenting author: Ethan Y. Y. Kok (<u>v.kok@uq.net.au</u>) ^aSchool of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane QLD 4067, Australia ^bInstitute for Molecular Bioscience, The University of Queensland, Brisbane QLD 4067, Australia

KEYWORDS: laboratory training, video-based learning, learning analytics, audience retention

BACKGROUND

Video-based learning has become increasingly integrated into higher education (Fadde & Vu, 2014). In particular, use of laboratory video expanded for students unable to attend in-person instruction during the pandemic (Delgado, Bhark, & Donahue, 2021; Slade et al., 2021). However, there remains a paucity of standardised guidelines for designing laboratory-training videos.

AIMS

This project aims to analyse student perceptions and engagement with laboratory video to inform future laboratory video design.

METHODS

Nine videos were produced to teach core microbiology laboratory skills (e.g. aseptic technique) for a microbiology course (876 students). Video analytics were collected from *YouTube Creator Studio* between 11/08/2020 to 29/11/2021, with student perceptions on helpfulness of various video design features collected through a survey (7% response rate) and follow-up interviews.

RESULTS

The percentage of students watching (audience retention) declined throughout a video, with sharp declines in initial and final 5% of video. Audience retention was significantly higher in scenes focused on technique demonstration or written explanations versus speaking instructor ("talking-head") (p<0.001), and in presence of supplementary text (p<0.001) or illustrations (p<0.001). Similarly, students rated 'demonstration' and 'writing' as more helpful than 'talking-head' (p<0.001), however a variety of design features were rated as helpful.

CONCLUSIONS

We find a variety of design features are helpful, with student perceptions of helpfulness agreeing with differences in audience retention throughout laboratory-skill videos.

REFERENCES

Delgado, T., Bhark, S. J., & Donahue, J. (2021). Pandemic Teaching: Creating and teaching cell biology labs online during COVID-19. *Biochemistry and Molecular Bioogyl Education, 49*(1), 32-37. <u>https://doi:10.1002/bmb.21482</u>

- Fadde, P. J., and Vu, P. (2014). Blended online learning: Benefits, challenges, and misconceptions. In Lowenthal, P. R., York, C. S., Richardson, J. C. (Eds.), Online Learning: Common Misconceptions, Benefits, and Challenges, Nova Science Publishing, Hauppauge, 33-48.
- Slade, C., Lawrie, G., Taptamat, N., Browne, E., Sheppard, K., & Matthews, K. E. (2021). Insights into how academics reframed their assessment during a pandemic: disciplinary variation and assessment as afterthought. Assessment and Evaluation in Higher Education, 47(4), 588-605. <u>https://doi:10.1080/02602938.2021.1933379</u>

Proceedings of the Australian Conference on Science and Mathematics Education, The University of Western Australia, 28-30 September 2022, page 41, ISSN 2653-0481