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Abstract 

English Version 

This dissertation evaluates the possibilities and limitations of rock type identification in rock cutting 

with conical picks. For this, machine learning in conjunction with features derived from high frequency 

cutting force measurements is used. On the basis of linear cutting experiments, it is shown that boundary 

layers can be identified with a precision of less than 3.7 cm when using the developed programme 

routine. It is further shown that rocks weakened by cracks can be well identified and that anisotropic 

rock behaviour may be problematic to the classification success. In a case study, it is shown that the 

supervised algorithms artificial neural network and distributed random forest perform relatively well 

while unsupervised k-means clustering provides limited accuracies for complex situations. The 

3d-results are visualised in a web app. The results suggest that a possible rock classification system can 

achieve good results—that are robust to changes in the cutting parameters when using the proposed 

evaluation methods. 

 

Deutsche Fassung 

Die Dissertation evaluiert Möglichkeiten und Grenzen der Gebirgserkennung bei der schneidenden 

Gewinnung von Festgesteinen mit Rundschaftmeißeln unter Nutzung maschinellen Lernens – in 

Verbindung mit aus hochaufgelösten Schnittkraftmessungen abgeleiteten Kennwerten. Es wird auf 

linearen Schneidversuchen aufbauend gezeigt, dass Schichtgrenzen mit Genauigkeiten unter 3,7 cm 

identifiziert werden können. Ferner wird gezeigt, dass durch Risse geschwächte Gesteine gut 

identifiziert werden können und dass anisotropes Gesteinsverhalten möglicherweise problematisch auf 

den Klassifizierungserfolg wirkt. In einer Fallstudie wird gezeigt, dass die überwachten Algorithmen 

Künstliches Neurales Netz und Distributed Random Forest teils sehr gute Ergebnisse erzielen und 

unüberwachtes k-means-Clustering begrenzte Genauigkeiten für komplexe Situationen liefert. Die 

Ergebnisse werden in einer Web-App visualisiert. Aus den Ergebnissen wird abgeleitet, dass ein 

mögliches Sensorsystem mit den vorgeschlagenen Auswerteroutinen gute Ergebnisse erzielen kann, die 

gleichzeitig robust gegen Änderungen der Schneidparameter sind. 
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Technical Summary 

Although investigated since the 1970s, cutting force-based rock differentiation or classification systems 

have not yet reached market readiness for conical pick-based rock excavation. One of the reasons for 

this could be the high variability of the cutting parameters cutting depth and spacing during the 

excavation process. The variation of these parameters strongly influences the cutting forces during the 

cutting process. Moreover, sensor assemblies must exhibit considerable robustness, and high data 

acquisition rates to accurately measure the interaction between tool and rock. Additionally, standard 

practice in rock cutting research rarely incorporates statistical measures other than mean and peak values 

of the cutting forces to describe the process (owing to a lack of necessity until now). The result is limited 

published knowledge of other statistical measures that could be used for the purpose of rock 

classification. 

This work aims to estimate the capabilities of a rock classification system based on cutting forces for 

conical picks, and to define the basic requirements for a possible cutting force sensor system utilising 

such an approach. The issue is addressed by investigating cutting force component ratios (FCR) as 

possible candidate features for material differentiation with machine learning methods during cutting. 

FCRs are abstractions of the angles at which a resulting force acts on the tool. 

The FCRs are calculated on real-time data, which results in large datasets that need to be further 

summarised. A moving-window block model approach is used for this summary, which allows for a 

regional summary based on descriptive statistics. The resulting 3d-block model stores statistical 

parameters of the high-frequency FCR found in a given search radius. These parameters can then be 

used as features for machine learning algorithms to predict the rock type. 

 

Figure A: Workflow of force component ratio feature selection and assessment 
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The workflow outlined in Figure A was carried out to achieve the objectives of this work and estimate 

the performance of the abovementioned methodology. Linear rock cutting experiments were conducted 

with different cutting parameters and on different rock types.  

In total, four different experimental campaigns were conducted. The first, cutting experiments on 

concrete samples with varying hardness zones, resulted in an initial set of possible FCR-features. The 

set was chosen by a procedural selection algorithm combined with a k-means cluster analysis, a 

correlation analysis, and a distributed random forest (DRF)-based feature importance analysis. 

Furthermore, this experiment investigated the spatial precision of boundary layer detection between 

adjacent concrete zones based on k-means clustering.  

The subsequent two experiments investigated an extension of the feature analysis with respect to two 

different rock mass conditions. These experiments investigated a cracked rock state using artificially 

damaged granite and a foliated rock—gneiss. These experiments resulted in a refined set of features. 

This is followed by a case study that tested machine learning classification algorithms using the 

previously selected features. These experiments investigated samples composed of concrete and natural 

ore pieces. The aim was to use three machine learning (ML) algorithms to distinguish between ore and 

concrete. Two of the algorithms are supervised: distributed random forest (DRF) and feedforward 

artificial neural network (ANN). One is an unsupervised algorithm: the k-means clustering algorithm.  

 

 

Figure B: Scheme of machine learning based rock classification 

Figure B illustrates the machine learning workflow: From the raw cutting force data, real-time FCR 

were calculated. The moving-window algorithm extracted features from the FCR and coded them into 

a block model. The block model was then used for the machine learning which led to the evaluation of 

the classification success of the different learners. 

Based on the k-means clustering with the concrete experiments, boundaries between rock types with 

differences as low as 7.7 MPa uniaxial compressive strength (UCS) could be identified from the cutting 

data. The mean spatial precision to identify a boundary between two adjacent types of concrete ranged 

between 2.4 and 3.7 cm. Seven FCR-based features were selected from these first experiments to serve 

in the case study. 

The investigation of the cracked rock resulted in the finding that cracked rock states can be identified 

relatively clearly. Even larger single cracks could be identified and located. The results of the gneiss 

suggested that anisotropy can be a problematic error source for the classification process as it 

significantly influences the interaction between pick and rock depending on the angle between foliation 

and the movement vector of the pick. As a result of the two additional experiments, an additional feature, 

contact ratio, was formulated, and introduced as an eighth feature. It is derived from the behaviour of 

the normal force and serves as an indicator of how consistent the contact between pick and rock is. 

In the case study, the three machine learning algorithms (learners) were trained on 3d-block models that 

were populated with the previously selected features. The learners trained on eight different situations 

consisting of different rock types. These situations involved either concrete + fluorite-barite ore samples 
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(FBA), concrete + galena-sphalerite ore samples (PB), or even multiple samples. The learners from each 

training case were then applied to classify the whole dataset of which they only saw a part during 

training. The learners were also applied to the seven other situations they were not trained with. As a 

result of this methodology, the main performance parameter—accuracy—is displayed as self-accuracy 

respectively cross-accuracy in this work.  

For the two supervised learners, a high self-accuracy between 92% and 97% was recorded. The cross-

accuracy varied strongly, depending on the training situation. Generally, the FBA samples were very 

heterogeneous, which yielded lower cross-accuracies than for the relatively uniform PB samples. At the 

same time, the unsupervised k-means algorithm showed much lower self-accuracies between 32% and 

82%. Also, the cross-accuracy was lower than for the supervised algorithms. 

Additionally, the required amount of data that the supervised learners, need to provide performant results 

was investigated. It shows that acceptable results can be obtained with as little as 2-5% of the total data 

while an optimum lies between 20–40%. 

Summarizing the comparison between the three algorithms, the two supervised learners provided similar 

results—with the ANN showing slightly better generalisation behaviour, the DRF showing faster 

computation speeds and easy setup of the algorithm. The k-means showed lower accuracy but very fast 

calculation speeds and does not require labelled data.  

However, the biggest unknown is the geologic diversity encountered in an excavation situation. This 

was shown by the poor cross-accuracy among the fluorite-barite samples, which were all sampled at the 

same spot of a narrow hydrothermal vein deposit, but consisted of varying proportions of quartz, fluorite, 

barite, and altered gneiss. The problematic cross-accuracy occurred to a lesser extent on the PB samples 

because they showed a more homogenous composure.  

In summary, FCR-based features in conjunction with a contact indicator such as the contact ratio, can 

provide accurate results for classifying different rock types. However, any learner must have 

experienced the possible range of behaviour during cutting to be able to identify rock zones correctly. 

Extrapolation is possible only to a limited extent. A training process over a wider spatial range appears 

essential. For unknown situations, unsupervised k-means clustering can be a flexible tool to classify 

untrained lithologies or serve as a support for supervised methods. 

In order to provide the features researched here, a sensor system must be able to measure at least the 

cutting component and the normal component of the cutting force. A 3d-force sensor system could 

potentially achieve the highest performance. The block model-based approach used in this work 

significantly reduces the amount of data in the early data processing chain while retaining the necessary 

information level. It reduces noise and feature variance and potentially makes subsequent data 

processing computationally less expensive. As such, the combination of force component ratios, 3d-

block model feature computation, and machine learning-based rock classification has the potential to 

usher in the applicability of cutting force-based automation and rock classification systems during rock 

cutting. 
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1 Introduction 

Background 

The mining industry faces lower grades and operations in greater depth as deposits that are “easy” to 

access and process become depleted. This results in lower ore grades and more material to be processed. 

The result of this leads to higher energy demand. During the processing of mineral raw materials, 

between 50 and 90% of the total energy required in the process chain from excavation to pre-concentrate 

is consumed in the final process steps [1–3]. On the side of geopolitics, a development toward politics 

of austerity and rising supply risks for specific materials arise. The European Commission has coined 

the term “Critical Raw Material”, which defines resources that are of high economic interest and whose 

production is concentrated nationally [4]. The EU aims to diversify the supply of these critical materials 

not only through trade policy but also through domestic production [5]. The supply-and-demand 

disruptions that followed in the wake of the global pandemic and rising conflicts in multiple parts of the 

world only put an exclamation mark on the developments that had led to this point. 

Furthermore, demand for certain critical materials related to the disruptions of rising electromobility, 

the intended decarbonisation of the energy sector, and the fourth industrial revolution are on the rise. 

Supply for these future resource needs cannot be sated at the current levels of production [6, 7]. At the 

same time, growing environmental and safety standards and acceptance issues must be met under a 

rising not-in-my-backyard sentiment in societies [8]. All of this puts mining companies under ever-rising 

innovation pressure. 

A major jigsaw in mining innovation is advanced automation and process optimisation, often referred 

to as “Mining 4.0”. In adjunction to Industry 4.0, it describes whole-process-integrated automation 

systems with a high level of autonomous machines. Several large mining companies started programs 

to achieve the innovation necessary to remain competitive [9]. At the same time, advances in the field 

of mechanical excavation machines take place and new cutting machine designs emerge [10]. New tool 

materials, especially polycrystalline diamond coatings, become more competitive to regular tungsten-

cobalt-based tools [11–13]. These developments bring (semi-)autonomous mechanical excavation 

machines—that could play a major role in modern minimal-invasive mining—closer to the horizon. 

Mechanical excavation is an alternative to drilling and blasting. Drilling and blasting is associated with 

disturbance of the surrounding rock mass, blasting gases, noise and vibration, and safety issues due to 

flyrock or rockfall. Additionally, it requires cyclical operation with a diverse machine park [14]. 

Mechanical, also called cutting excavation machines, operate continuously, are highly automatable and 

produce precise and smooth profiles [15]. Although being restricted in their application by maximum 

rock hardness and abrasiveness, the aforementioned technical developments broaden the applicability 

of cutting machines prospectively. As of recent, while requiring higher investment, the overall mining 

cost can already be lower [16]. 

Cutting machines that use conical picks are widely used and appear in different machine types 

comprising roadheaders, continuous (surface) miners, shearer loaders, or special machines for shaft 

sinking. Their automation potential and the industry’s need for more integrated automation concepts 

pose significant synergy effects. This automation potential includes the strategic possibility of fully 

autonomous operation. To reap these automation potentials, novel sensor concepts are needed, since 

there will be no machine driver that directly ”feels” the machine’s behaviour.  

One of such concepts is the measure-while-cutting (MWC) concept examined in this work. It is an 

analogy to measure-while-drilling (MWD) technologies. For MWD, the machine’s working parameters 
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are constantly logged and interpreted to allow for a interpretation of the rock. Together with the spatial 

information from the drill hole trace, a spatial model of the parameters can be derived to identify changes 

in rock quality or type, and log boundaries between the different rock zones [17–20]. Similar effects 

could be achieved with the MWC technology. 

One possible effect of MWC is a possible autonomous separation of ore and waste rock, as shown in 

Figure 1 a). This would allow for a significant reduction of waste rock in the entire processing chain. 

The result would be a potential reduction in the overall processing cost and cost for environmental 

management—since less material has to be hauled, processed, and dumped per ton of run-of-mine ore. 

A second effect could be an automated warning if the rock mass conditions change unfavourably as seen 

in Figure 1 b). This would improve roof safety and increase overall operations efficiency. 

 

Figure 1: Basic working principle of MWC technology, a) identification of different ore types, b) 

identification of changing rock mass conditions 

The functionality of MWD systems has been proven in the field. MWC systems, however, are in a less 

sophisticated state of development. The actual state of the art utilises the power consumption of the 

cutter drive, the slewing or marching speed, and the position of the cutter head to optimise excavation 

rates. However, this does not allow for detailed information on the rock mass. Utilising parameters such 

as cutter head torque or power consumption results in a loss of precision. A higher precision could be 

achieved by incorporating near-tool sensors (NTS) to measure indicatives of the reaction between tool 

and rock. 

In soft rock for bucket wheel excavators, Drebenstedt et al. (2005) analysed this to optimise the 

excavation volume of the excavator depending on soil type [21]. For hard rock, a field test was published 

by Entacher et al. (2012)—however, for tunnel boring machines [22]. For application with conical picks, 

sensor concepts have been patented since the 1970s to distinguish between hard coal and the surrounding 

rock mass, with the latest patent coming from Sandvik [23]. However, these concepts are mainly in an 

experimental state that has never reached market readiness [24–26]. To date, no exact methodology of 

how acquired data are utilised further, and also no field experiences are described. 

This work focuses on filling this gap by estimating the possibilities of using near-tool sensors for MWC 

purposes. Therefore, this work attempts to contribute towards a change from the old German miners 

saying, "All is dark ahead of the pick" towards "The pick lights the way". 

Approach 

A near-tool MWC system should provide information about the changing state of the rock mass and the 

boundaries between different rock masses. This happens by measuring indicatives of the forces on the 

tools during excavation. These indicatives characterise the interaction between tool and rock.  

However, this interaction is defined not only by the rock mass but also by the cutting parameters that 

depend on the machine itself. Most cutting machines that apply conical picks use rotating drums on 
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which the picks are mounted. Due to the rotational movement of the overlay of the cutter head with a 

slewing, sumping, or advancing movement, the picks describe a crescent shape cut as they move through 

the rock. This results in a change in the cutting depth of the pick during a cut. A changing cutting depth 

correlates with changing cutting forces and, as such, alters the force indicatives [27]. Apart from the 

cutting depth, as shown in Table 1, other parameters influence the interaction between tool and rock. 

These varying parameters from the side of the machine act as disturbances for rock characterisation and 

their influence needs to be minimised.  

Table 1: Parameters influencing the interaction between rock and tool  

(s: static, v: variable during operation) 

Rock  Tool Cutting parameters 

Mechanical parameters (v) State of tool/wear (v) Cutting depth (v) 
Quality, joints, cracks (v) Tool geometry (s) Spacing (s) 
Foliation (v)  Cutting speed (v) 
Alteration state (v)  Attack angle (s)  
  Tilt angle (s) 

 

To accurately define the knowledge gaps, a literature research on the state of application and patenting 

of MWC and related technologies is performed. This literature review is complemented by a semi-

quantitative overview of the reporting standard in rock cutting research. 

Based on the identified knowledge gaps, the aforementioned force component ratios are investigated as 

a way to approach the problem of the changing cutting depth during cutting. These FCRs are calculated 

from real-time data rather than from mean values. Furthermore, the FCRs as robust indicators for the 

rock type are used as input variables (features) for the training of three different machine learning 

algorithms.  

Rather than proposing a new sensor concept, this work takes a step back and contributes towards 

defining the features that an MWC system would have to extract in order to provide a robust yet accurate 

classification of different rock masses. This leads to an explorative data analysis approach which allows 

deriving general requirements that a robust measurement system should meet. The general workflow of 

this work is shown in Figure 2. 

 

Figure 2: General workflow of this work 

First, cutting experiments are conducted on concrete samples with varying hardness zones to identify an 

initial set of features. Here, a procedural selection algorithm is designed that preselects features from a 

pool of 72 possible candidate features. Based on this, k-means clustering is used to estimate the precision 

of boundary layer detection. In addition, two variations of this initial set are tested along with two sets 

of features that use “normal” cutting forces. A final set of features is then chosen from these five feature 

sets. 

In addition, a first estimate of the precision of boundary layer detection is performed. This analysis is 

complemented by a correlation analysis and a feature importance analysis based on a distributed random 

forest classification. 
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Subsequently, an extension of the feature analysis with respect to two different rock mass conditions is 

carried out in the next two experiments. These experiments investigate a cracked rock state using 

artificially damaged granite and a foliated rock—gneiss. The result is a refined set of features that is 

further used in the machine learning case study.  

In the case study, three machine learning classification algorithms that use the previously selected 

features are tested. Five larger samples, composed of two different materials, are each cut with two 

different cutting parameter combinations. Two samples consist of lead-zinc ore in the centre and 

concrete on the outside, and three consist of fluorite-barite ore and concrete. The data from cutting these 

samples are then used to test the classification behaviour of three different machine learning algorithms: 

k-means clustering, feedforward neural network, and distributed random forest. The first is 

unsupervised, and the latter two are supervised learners. The performance of these algorithms is 

measured in terms of classification accuracy. For the supervised algorithms, the necessary training data 

are also estimated. Furthermore, additional observations are considered, such as feature importance and 

computation time.  

On the basis of the results of these experiments, the performance of a near-tool measure-while-cutting 

system using force component ratios can be approximated. Furthermore, the basic performance 

requirements can be stated for such a system. 

  



Cutting Excavation with Conical Picks Chapter 2  

5 

2 Cutting Excavation with Conical Picks 

This chapter presents the foundations of cutting with conical picks, also called point-attack picks, and 

lays the theoretical foundations for this work.  

There are multiple machines available on the market that utilise conical picks. The most important types 

are shown in Figure 3. Roadheader type machines are used in tunnelling and development, to an extent 

also in production mining. Other types are continuous miner and continuous surface miner types. They 

are used mainly in production mining, the latter also being of importance in the construction industry—

with applications in softer to medium-hard rocks such as coal, salts, trona, gypsum, limestone and even 

kimberlites [28]. The last type is the shearer loader, which finds application in the underground mining 

of seam-like deposits, primarily in coal and potash operations. A more detailed description of the 

different types of these cutting machines is presented in Annex A.  

They all follow a common basic principle, where a rotating cutting head or cutting drum carries multiple 

conical picks (marked orange in the figure). These picks carry out the actual rock excavation. Cutting 

forces occur as responses of the cutting process, and the cutting process itself is the interaction of the 

conical pick with the rock during excavation. The application of conical pick-based machines ranges to 

a maximum of 120 MPa uniaxial compressive strength (UCS) [28]. 

 

Figure 3: Different excavation machines that utilise conical picks [29, 30]1 

Figure 4 shows the general working principle for the cutting drum of a surface miner. The tool holders 

on the drum house the actual cutting tools, the conical picks. These picks cut grooves into the rock. The 

actual penetrative movement of the pick through the rock mass is achieved by an overlay of a directional 

movement of the cutterhead as it rotates.  

As such, the tools describe an advancing spiral movement through the rock mass. Each individual pick 

excavates a crescent-shaped groove during its passthrough [31]. As a result, a penetration, or normal 

force, a cutting force, and a side force are exerted on the picks. The material in the cutting 

trajectory/grooves is removed in this manner. In addition, the material between these grooves breaks 

 

1 Virtual models: by courtesy of Element Six (UK) Ltd.; 

Photo: by courtesy of Wirtgen GmbH 
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out. The tools are usually arranged in a helix, double helix, or similar pattern. This is for multiple 

reasons: 

a) It ensures that the tools are evenly distributed over the circumference of the drum. By this, 

reaction forces on the drum and the drive are more evenly distributed. 

b) Adjacent picks will penetrate the rock in successive order, as indicated by the 1.–3. in Figure 4. 

By this, the material loosened through the succeeding tool breaks out towards the already 

created groove of the preceding tool. This is called semi-relieved cutting and results in reduced 

cutting forces compared to unrelieved cutting, where the material has no free face to break out 

to (for further details see Chapter 2.1)  

c) Additionally, by breaking out towards the preceding groove, the material is already transported 

in that direction. The sequence of cuts is usually designed in such a way that the material flow 

goes towards the loading unit—this aids in the loading process of the material. 

 

Figure 4: Working principle of the cutting drum of a surface miner, after [28]2 

There are several subtypes of this working principle. Although they vary in certain aspects, the general 

working principle is always based on the overlay of rotation with directional movement. One exemption 

from this rule is the coal plough. Here a non-rotating machine body holds the tools, and the excavation 

is conducted by linear movement of the whole plough body through/over the rock. Ploughs are limited 

in their application to coal operations underground and are not the focus of this work. However, a 

transfer of the findings to non-rotating cutting elements is possible.  

As shown in Figure 5 on the next page, the interaction between tool and rock is influenced by multiple 

parameters that can be divided into influences of the rock mass and influences from the side of the 

machine and cutting tools. The rock mass is a combination of rock materials with different mechanical 

properties that is intersected by discontinuities. It can be characterised by its microscopic and 

macroscopic state. The former is defined by the rock-forming minerals’ composition and structure; the 

rock mass’ integrity defines the latter on a larger scale (e.g., the face of an excavation). The microscopic 

 

2 by courtesy of Wirtgen GmbH 
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properties can either be directly described, or the mechanical results, the rock mechanical parameters, 

can be measured. The latter usually happens on drill core segments in the laboratory.  

The macroscopic properties of the rock mass describe the occurrence and characteristics of 

discontinuities (cracks and joints) and translate them into a numerical or discrete scale. The rock 

mechanical properties mainly define the strength of the intact rock on a smaller scale. The rock mass 

properties the rock mass alter, usually weaken, this rock mechanical strength on a larger scale. In a 

mining operation, the rock mass quality is often summarised into groups such as: “intact”, “medium- 

fractured” or “fractured”. These classes can then be associated with respective safety measures.  

On the other side stand the influences of the excavation machine. The parameters of the excavation 

machine are defined by the general design of the machine, the working regimen, and the design of the 

tool and the cutter head. The shape of the cutter head, the lacing, and the geometric arrangement, together 

with the working regimen, define the shape of the cuts and the instantaneous cutting parameters during 

cutting. Of those cutting parameters, cutting depth (d) and spacing (s) which are underlined in the figure, 

significantly affect the cutting forces and are the main parameters investigated in this work. Other 

parameters are defined by the shape of the tool in conjunction with the geometric arrangement of the 

tool. While the geometric arrangement of the tool is fixed, the shape of the tool changes as it wears 

down. As such, some parameters change due to wear—marked (w) in the figure.  

Possible output parameters that describe this interaction between tool and rock are the cutting forces 

that act on the tool during excavation, alongside other parameters like specific energy consumption or 

advance rate. In the scope of this work, the focus lies on the cutting forces. The cutting forces are the 

immediate response that describes the interaction between tool and rock.  

Since this work aims to identify changes in rock types or rock mass during cutting, it is crucial to 

understand the important parameters that influence and describe this interaction. Hence, they are laid 

out in the following sub-chapters. 

 

Figure 5: Parameters influencing the interaction between tool and rock during mechanical 

excavation, (w) – cutting parameters that change due to wear; compiled after [31–40] 
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2.1 Cutting Process 

As the pick moves through the rock during excavation, it is subject to the resulting cutting resistance 

force Fres. This force can be described as the force vector 𝐹𝑟𝑒𝑠⃗⃗ ⃗⃗ ⃗⃗  ⃗. As such, it is the vector sum of its three 

(Cartesian) spatial components 𝐹𝑥⃗⃗⃗⃗ , 𝐹𝑦⃗⃗⃗⃗  and 𝐹𝑧⃗⃗  ⃗ as shown in Figure 6. In cutting force measurement 

practice, the values of the components Fx, Fy, and Fz are usually measured, since their direction is strictly 

defined by the measurement device. The value of Fres can then be calculated after Formula (1). 

|𝐹𝑟𝑒𝑠⃗⃗ ⃗⃗ ⃗⃗  ⃗| = √|𝐹𝑥⃗⃗  ⃗|
2
+ |𝐹𝑦⃗⃗  ⃗|

2
+ |𝐹𝑧⃗⃗  ⃗|

2
 (1) 

Where Fx – drag force along the cutting direction, the cutting force; Fz – the penetration, or normal 

force; Fy – side force. Hereby, Fx is collinear with the movement direction of the pick. 

The three force components are associated with the 

three Cartesian axes: 

Fx x-axis 

Fy y-axis 

Fz z-axis 

In this context three planes can be defined: 

x-y chipping plane 

x-z cutting plane 

y-z normal plane  

 

 

 

The nomenclature in cutting research is not defined uniformly and depends both on the language 

background of the authors and the application context of the work. This work uses the definitions with 

context to linear rock cutting experiments and the rock cutting test stand at TU Bergakademie Freiberg 

(TU BAF). Here, the x-axis denotes the cutting direction. Each cut is set with a cutting depth along the 

z-axis. Subsequent cuts (thin lines in the figure) are spaced with spacing along the y-axis. 

The chipping process is a highly instationary process. The process is shown in Figure 7. It takes place 

in the following manner: the pick creates a zone of crushed material (1). The crushed material from 

Zone 1 is usually released as dust. Here, the rock is mainly subject to compression-based failure. 

Rostamsowlat et al. (2018) show that for a very small cutting depth (<0.7 mm), the mean pressure to 

excavate the material in the crushed zone is similar to the UCS [42]. During this phase, the components 

of the cutting force build up and a deformation field is induced in the rock resulting in elastic 

deformation (2). The tensor and elastic deformation grow as the pick moves forward. The cutting force 

increases until a local maximum is reached at the point where a shear chip is released by the pressure of 

the bit (3). This chipping is mainly subject to shear and tensile failure. With the release of the chip (4), 

the cutting force components are almost zero and increase again until the next chip is lifted off [43].  

 

Figure 6: Definitions of forces, axes and planes 

on the pick, black arrow – cutting direction; 

after [41]  
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Figure 7: Diagram of cutting force components acting on the cutting tool during chipping process and 

chipping process with conical picks (explanations in text), after [43] 

Due to the instationarity of the cutting process, Equation (1) can be reformulated as: 

|𝐹𝑟𝑒𝑠(𝑃)⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  | = √|𝐹𝑐(𝑃)⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  |
2
+ |𝐹𝑠(𝑃)⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  |

2
+ |𝐹𝑛(𝑃)⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗|

2
 𝑤𝑖𝑡ℎ 𝑥𝑐 ∈ 𝑃 (2) 

Hereby, xc is the position of the tip of the pick along its trajectory, which is an element of the set of all 

parameters P that influence the cutting forces. This means that instantaneous cutting forces depend on 

the position of the pick with respect to its previous position, as well as the specific rock properties at 

this position. 

Cutting Force Fx 

As mentioned, the cutting force is necessary for the actual chipping process and colinear with the 

trajectory of the pick. This means that the cutting force usually has to be overcome by the cutter head 

drive of an excavation machine. Fx consists of the force necessary for the actual chipping and a friction 

part [27]: 

𝑥𝑐 = 𝐹𝑥,𝑐ℎ +  𝜇 ∗ 𝐹𝑧 (3) 

Where Fx,ch is the part of Fx defined by the actual chipping, μ is the friction coefficient, and Fz is the 

normal force. The cutting force is an essential indicator of the torque that the cutter head drive must 

provide.  

Normal Force Fz 

The normal force acts perpendicular to the trajectory of movement of the pick and the surface of the 

rock. The normal force has to be overcome/provided by the excavation machine to keep the pick in the 

cutting groove and allow the actual excavation. The cutting depth and excavation efficiency will 

decrease if the normal force cannot be provided, because the pick will not stay in its groove anymore. 
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Side Force Fy 

The side force acts perpendicular to the trajectory of the tool and lies on the surface plane (x-y plane) of 

the rock. The side force acts as a result of an asymmetric outbreak of material. The material outbreak 

occurs mainly towards the preceding cut in regular, semi-relieved cutting. 

Interrelation of Cutting Force Components 

Resulting from their trigonometric relationships, the ratios of the cutting force components can be 

formulated as shown in Figure 8 and Equations (4)–(9). Therefore, the cutting force ratios indirectly 

describe the angles at which the resulting force acts on the tip of the tool. The cotangent of two force 

components describes the angle on which Fres acts on the plane that these two vectors span. Furthermore, 

the enclosed angle between Fres and the respective force components Fx, Fy, and Fz describes not only 

the angle between those two vectors but also the proportional contribution of the respective force 

component to Fres. 

 

Figure 8: Angular relations of cutting force components 

Where the angles αij represent the angle enclosed by the two force vectors indicated in the subscript—

Fx, Fy, Fz, respectively Fres. The * denotes the respective complementary angle. 

Specific Energy 

The specific energy (Esp) is defined as how much energy is necessary to excavate one m³ of rock. In rock 

cutting, the unit kWh/m³ is usually used. It is an often-used parameter to investigate the effectiveness of 

an excavation process [44]. The specific energy consumption is influenced by, and correlates to a 

multidate of factors—both from the side of the machine and from the side of the rock. The Energy (E), 

necessary for the excavation, can generally be written as the integral of a force (F) over the way (l) from 

the starting point (l1) to the endpoint (l2). 

𝐸 = ∫ 𝐹 (𝑙 
𝑙 2

𝑙 1

) ∗ 𝑑𝑙  
(10) 

 

 
 

 

tan(𝛼𝑦𝑥) =
𝐹𝑦

𝐹𝑥
;  cot(𝛼𝑦𝑥

∗ ) =
𝐹𝑦

𝐹𝑥
 

(4) 

tan(𝛼𝑧𝑦) =
𝐹𝑧
𝐹𝑦

 ;  cot(𝛼𝑧𝑦
∗ ) =

𝐹𝑧
𝐹𝑦

;  
(5) 

tan(𝛼𝑧𝑥) =
𝐹𝑧
𝐹𝑥

 ; cot(𝛼𝑧𝑥
∗ ) =

𝐹𝑧
𝐹𝑥

 
(6) 

cos(𝛼𝑥𝑟𝑒𝑠) =
𝐹𝑥
𝐹𝑟𝑒𝑠

 
(7) 

cos(𝛼𝑦𝑟𝑒𝑠) =
𝐹𝑦

𝐹𝑟𝑒𝑠
 

(8) 

cos(𝛼𝑧𝑟𝑒𝑠) =
𝐹𝑧

𝐹𝑟𝑒𝑠
 

(9) 
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In the context of cutting experiments, Esp it is calculated as:  

𝐸𝑠𝑝 =
𝐸

𝑉𝑒𝑥𝑐
=

𝑚𝑒𝑎𝑛(𝐹𝑥)∗𝑙𝑐

3600 ∗𝑉𝑒𝑥𝑐
 [

𝑘𝑊ℎ

𝑚3 ]  (11) 

 

For full-scale measurements on excavation machines, the electrical power consumption is usually 

measured directly to calculate E. For laboratory cutting experiments, mean(Fx), the mean value of the 

cutting force, is measured, lc is the total length of the cut, and Vexc is the volume of excavated material. 

Vexc can be measured in different ways, as such comparing results from different authors must be 

performed with caution. Additional information about different measuring methods for Vexc is located in 

Annex B.1. 

Generally, it can be said that the harder and tougher the rock, and the more intact the rock mass is, the 

higher the specific energy consumption. Furthermore, the higher the chipping parameters s and d, the 

lower the specific energy consumption. This can be seen in Figure 9. There, the chipping area Ac, which 

forms as the product of d and s, is compared to the mean of Esp and the mean of Fc. For detailed 

information on chipping parameters, see Chapter 2.1.2. Furthermore, Esp correlates with the grain size 

of the cut material. Quang (2007 & 2009) reports a correlation of dust occurrence with specific energy 

consumption [45, 46].  

 

Figure 9: Relation of chipping area to specific energy and mean cutting force, 

recalculated after [47] 

2.1.2 Cutting Parameters 

The design of the excavation machine comprising machine type, cutter head type and design, 

transmission, and most importantly—pick design, arrangement, and lacing—they all define the cutting 

parameters together with the machine’s working regimen [31]. While some parameters remain static 

during the excavation process, others change over time or during a single passthrough. The cutting 

parameters define the cutting process from the side of the machine and as such the cutting force 

measurement. It is essential to understand their influence if one aims to utilise cutting force 

measurements to identify rock types.  

Angles on the Pick 

During the cut, the pick is oriented with an attack angle (αa), a slant angle (s), and a tilt angle (t). The 

tool geometry defines the wedge angle (αw), which defines the opening angle of the cutting tip. Together 

with the attack angle, the wedge angle results in the clearance angle (αc) and the rake angle (αr). The 
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geometric conditions are shown in Figure 10. The black arrow indicates the cutting direction. All angles 

are not actively changed during excavation. However, the wedge, clearance, and rake angle are subject 

to wear and change as the tool wears down. 

 

Figure 10: Angles on the pick, after [48] 

Wedge Angle w 

The wedge angle is the opening angle of the tip. Generally, a sharper wedge angle allows the bit to 

penetrate the rock more easily and reduces the specific energy requirement for excavation. However, it 

also increases the probability of a total failure of the bit due to breakage of the carbide pin. Wedge angles 

of 70 to 90° are common [31]. Zhou (2020) and Quang (2007) report that the wedge angle affects the 

generation of respirable dust. A higher wedge angle increases the specific energy consumption and the 

dust generation. [45, 49]. The wedge angle, together with the attack angle, and to a minor extent, the tilt 

and slewing angles define the clearance angle.  

Clearance Angle c 

A higher clearance angle reduces the contact area between the pick and the rock surface. Therefore, the 

clearance angle has a direct effect on the required normal force. An increase in the normal force 

increases frictional resistance and as such the specific energy. An increase in the clearance angle up to 

about 10° reduces the specific energy requirement. A larger clearance angle also increases the risk of 

tip failure, mainly because higher clearance angles are usually achieved using picks with smaller wedge 

angles. Additionally, the clearance angle decreases as the wear condition of the tool increases. Then, a 

wear flat develops, increasing friction between tool and rock. [50, 51] 

Rake Angle r 

The rake angle determines the type of load on the upper side of the pick’s tip. If the rake angle is 

positive, the tool’s tip is subjected to compressive stress, and if it is negative, it is increasingly subjected 

to tensile stress. The tool tips are generally made of tungsten carbide, while the tool’s head is made of 

quenched and tempered steel. Although tungsten carbide has high compressive strength and hardness, 

unlike steel, it is relatively brittle and has a lower tensile strength. As a result, negative rake angles can 

lead to critical tensile stresses in the carbide pin and thus to a total failure of the pick [50, 51]. 

Additionally, Quang (2007 & 2009) states the influence of a high rake angle on higher dust generation 

[45, 46]. 

αw – Wedge angle *w 
αc  – Clearance angle *w  
αr  – Rake angle *w 
αa  – Attack angle *c 
αt  – Tilt angle *c 
αs  – Slant angle *c 
 
*c – constant 
*w – affected by wear 

αt 
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Tilt and Slant Angle t / s 

The tilt and slant angle are closely connected. The tilt angle is the angle set by turning the tool holder 

around the z-axis [41]. The slant angle is the angle between the pick axis and the normal direction of 

the chipping plane. Sun and Li (2018) argue that while the tilt angle is set during machine design, the 

slant angle may be different for different picks depending on their position on a cutting drum—resulting 

in different forces on the tools [48]. 

Attack Angle a 

The attack angle and the wedge angle determine the clearance and rake angle and thus represent a 

possibility of optimising the excavation process. Depending on the wedge angle and the desired 

clearance and rake angles, the attack angle is between 40° and 60° [27, 31, 50]. Optimising the attack 

angle means optimising the rake and clearance angle indirectly. The attack angle is defined by the tool 

holder’s design, and as such, it is constant during cutting. 

Cutting Speed vc 

The effect of the cutting speed (vc) on the excavation process is rather complex and its influence on the 

cutting forces is reported ambiguously. Some sources report a slight increase in cutting forces with 

increasing cutting speed; others report no significant increase in cutting forces. Theoretical models do 

not consider the influence of the cutting speed [52–55]. Verhoef (1997) states various sources that 

showed ambiguous effects of the cutting speed on the cutting forces. He also presents a chain of 

causalities explaining a possible increase in cutting forces due to reaching a critical cutting speed, which 

causes spontaneous wear and, in return, increases the cutting forces [56]1F

3. Due to translation errors and 

nonstandard nomenclature, cutting speed sometimes can be mistaken for advance rate (e.g. [36]). 

 

Figure 11: Exemplary force-time diagrams and FFT-analysis for slow (top) and fast (bottom) cutting 

speeds; other cutting parameters are constant 

 

3Yadav (2018) [54] cites Menezes (2014) [55] who cites Verhoef (1997) [56]. Both Yadav (2018) and Menezes 

(2014) however only cite that the cutting speed has no influence on the forces, which Verhoef later in his work 

relativizes. 
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Own experiments show that an indirect relationship between cutting forces and cutting speed might 

occur. At higher cutting forces, the cutting test rig of TU BAF shows a dynamic and swinging behaviour 

around 94–110 Hz. This behaviour results in an oscillating overlay on Fx, which influences the 

distribution of Fx.  

Figure 11 shows an example of this effect. Top, a slow cut (vc = 0.01 m/s) is presented; bottom, a fast 

cut with vc = 1.5 m/s. The build-up of the cutting force and sudden release upon breaking of the chip is 

well visible at the top. During fast cutting, the forces fall partially into negative territory due to the 

oscillation, while they do not during slow cutting. Also visible is the oscillation of the forces at 107.4 

Hz during fast cutting. The maximum forces were 17 kN during slow cutting, while the maximum forces 

reached 24 kN during fast cutting. Entacher et al. (2012) support these findings with the experience-

based statement that the cutting speed and the dynamic machine behaviour influence each other and the 

cutting process [57].  

From previous experiments conducted at TU BAF, Keller (2016 & 2017) reports that the ratio of normal 

to cutting force increases for faster cutting speeds [58, 59]. Vorona’s comparative literature review from 

2012 can be summarised as follows: with increasing cutting speed, the tool temperature increases; 

furthermore, each tool/machine/rock combination has its own critical cutting speed. It usually lies at 

ca. 1.5 m/s for regular tungsten carbide (WC) conical picks. From there, the wear increases drastically. 

This is attributed to a local exceeding of a critical temperature that causes a change in the molecular 

matrix [27]. Shao et al. (2018) report that increasing the cutting speed increases the temperature at the 

tip of the pick as well as Fx and Fz. The maximum temperature measured was ca. 1100 °C for a cutting 

speed of 1.5 m/s and d =10 mm, unrelieved cut [60]. For the cutting process during drilling, Loui and 

Karanam (2005) show a relationship between cutting speed and tool temperature [61].  

Quang (2007 & 2009) reports that the cutting speed can influence dust emission [45, 46]. Since dust 

emission correlates with specific energy consumption, it can be stated that cutting speed influences the 

specific energy consumption. Complementary, Restner (2015) reports that a low cutting speed can 

positively influence the production rate in rock masses with a low integrity rating [62]. 

Although in-depth research on this topic was not conducted, it is suspected that swinging behaviour 

should not influence the mean forces. However, the peak forces and distribution measures are affected 

by this. This behaviour is always related to the exact design, shape, and material composition of the 

machine, which defines its dynamic behaviour. Since the cutting speed is usually static in the industrial 

environment, it is considered an unproblematic factor for the determination of cutting forces as long as 

no cross-comparison between different machines and sites is conducted. 

Cutting Depth d and Spacing s 

The cutting depth defines the depth, the tool indents the rock while cutting, and the spacing defines the 

distance between two neighbouring cuts, as shown in Figure 12. These parameters have a considerable 

influence on the specific energy required for extraction.  

The greater the realisable cutting depth, the lower the specific energy requirement. However, the greater 

the cutting depth, the greater the cutting forces in general [30]. Due to the stability of the cutting picks 

and the available drive power of the cutting machine, the maximum cutting depth is limited.  
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Figure 12: Relationship between specific energy, cutting spacing and cutting depth, after [31] 

Due to cracks propagating from the cutting path, the resulting cracks of two cuts overlap each other. 

Subsequently, the material between adjacent cuts breaks out. This means that if two adjacent cuts are 

placed at a distance and the cracks barely overlap, a maximum of material breaks out between the two 

cuts—shown in Marking 1) in Figure 12. It is possible to determine an optimal cutting spacing between 

adjacent cuts. If s is smaller than this optimal distance, the material in between breaks away, but more 

cuts have to be made compared to the optimal cutting distance to break out the same volume (Marking 

2). When the material between two cuts breaks out, it is called semi-relieved cutting mode. If s between 

the cutting lines is too large, ribs are formed due to the lack of crack overlap (Marking 3). This is 

connected to additional energy consumption because the conditions of confinement are less favourable 

due to the lack of a free face. This is also called (fully) blocked or unrelieved cutting mode.  

There are two additional cutting modes. The first, the relieved cutting mode, defines a situation where 

there are free faces on two sides—resulting in the low cutting forces. However, it only applies to a few 

picks on a drum and is therefore not focused on in this work. The second one, (groove)-deepening cuts, 

refers to a method where multiple unrelieved cuts follow in the same groove, deepening the groove until 

a major material outbreak occurs. This method is associated with increased wear and reduced effectivity 

[36]. It is also not considered further in this work. 

Ratio s/d 

With greater cutting depth, the cracks spread further around the cut. This means that the distance 

between the cutting lines can be greater, so that the specific energy consumption can be further reduced. 

A ratio s/d can be defined as the ratio of cutting spacing to cutting depth. It is also called rib breaking 

factor, chipping modulus, or cutting modulus. It can be seen as the ratio of distance to the free face to 

the cutting depth. As shown in Figure 12, an optimum s/d exists independently of the actual cutting 

depth. At this optimum, the specific energy consumption is minimal due to the optimum outbreak of 

material in-between the cuts. The s/d-ratio depends mainly on the brittleness of the rock and is specific 

to each rock and tool combination. With increasing brittleness, the value of the optimum s/d-ratio 

increases [31]. 
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Cutting Parameters During Regular Excavation 

The spacing between the picks is defined by the arrangement of the picks on the cutter head. The fact 

that d increases following a sine function during the revolution of the drum results in a change of the 

s/d-ratio during one revolution of the cutting drum, as depicted in Figure 13 [27, 63, 64]. According to 

Pajer et al. (1971), the dependency of the cutting depth from the rotational angle of a cutting tool can be 

approximated by: 

𝑑𝛽 ≈ 𝑑𝑚𝑎𝑥 ∗ sin𝛽 (12) 

Where dβ – instantaneous cutting depth, dmax – maximum cutting depth, β – rotational angle of the pick 

on the cutting drum [65].  

 

Figure 13: Scheme of cutting depth as a function of advance rate and rotational angle 

The fact that the optimal s/d-ratio is independent of the spacing also means that during cutting with a 

rotary cutter head, s/d cannot be maintained at an optimum.  

Both parameters, the cutting depth and s/d influence the cutting forces [27, 37, 66]. An increasing d 

correlates positively with Fx. A decreasing s/d correlates positively with Fx, but negatively with Fy [47, 

67, 68]. For the utilisation of data derived from the cutting forces with the aim of rock characterisation, 

it is crucial to reduce or even eliminate the influence of those cutting parameters that vary during 

operation of the cutting machine. For this, two general approaches are possible: 

a) comparing the forces in relation to the pick’s current position, hence the cutting parameters, or 

b) limiting the influence of the cutting depth on derived data. 

Case b) is evaluated in this work. It follows the presumption that while the absolute force levels may 

vary, the ratios between the components of the cutting forces do not vary to such an extent and are 

mainly governed by the rock type. This presumption is derived from the works of multiple authors 

starting with Roxborough (1981)—where with a higher cutting depth, a proportional increase of Fx and 

Fz is reported. Vorona (2014) and Sarwary (2016) also report that this optimal s/d is dependent on 

material type [27, 60, 64, 69]. 
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2.1.3 Influences of Rock Mechanical Properties 

The mechanical behaviour of rock is mainly governed by mineral composition, grain sizes and shapes, 

state of interlocking in-between the crystals, and the orientation of the grains and porosity [70]. For 

engineering applications, the rock mechanical properties characterise the outcome of these composition 

parameters regarding the rock mechanical properties. This chapter focuses on important rock mechanical 

properties and shows their influence on the interaction between rock and tool. 

Uniaxial Compressive Strength 

The uniaxial compressive strength (UCS) is one of the basic parameters in rock engineering. In the US, 

the ASTM D2930 standard or the recommendation of the ISRM (International Society for Rock 

Mechanics) is used. The norm EN 1926:2006 is used as a standard in the European sphere. 

After EN 1926, a cube or drill core with a height and diameter of 70±5 or 50±5 mm should be used. Its 

top and bottom surfaces must be parallel and levelled. The largest grain size must be less than 1/10 of 

the diameter of the sample. Otherwise, a higher sample number should be tested. The core is then put 

under uniaxial load from the top and bottom of the sample with a constant rate of 1±0.5 MPa/s until the 

sample fails. The UCS is then calculated after Equation (13). 

𝑈𝐶𝑆 =
𝐹𝑚𝑎𝑥

𝐴
 (13) 

Where UCS – uniaxial compressive strength, 𝐹𝑚𝑎𝑥 – force at which the sample failed, A – cross-section 

area of the sample.  

The UCS can be considered a general characterising property and is used for stability calculations or 

estimations of the efficiency of an excavation process. The cutting forces Fx and Fz scale positively with 

the UCS. A regression (s. Figure 14) for this scaling has been shown by Bilgin et al. (2006) [32]. 

Naeimpour et al. (2018) correlated UCS and BTS to the results of a micro scratch test which utilises a 

micro disc with a diameter of ca. 22 mm [71]. For concrete, UCS tests are often performed on cast cubes 

of 15 cm side length. In this work, the cube UCS is called cUCS. The cUCS can be up to 20% higher 

than UCS, depending on the concrete type, preparation and sampling conditions [72]. 

 

Figure 14: Ratio of mean cutting force (left) and mean normal force (right) to cutting depth vs. 

uniaxial compressive strength for semi-relieved cutting mode [32].4 

 

4 Reprinted with minor adjustments from International Journal of Rock Mechanics and Mining Sciences, Volume 

43, Issue 1, N. Bilgin, M.A. Demircin, H. Copur, C. Balci, H. Tuncdemir, N. Akcin, Dominant rock properties 

affecting the performance of conical picks and the comparison of some experimental and theoretical results, pp. 

139–156, Copyright © 2006, with permission from Elsevier 
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Tensile Strength and Brazilian Tensile Strength  

While the tensile strength test is a direct test, the Brazilian tensile strength test is an indirect method to 

determine the tensile strength of a specimen. The direct tensile test follows Equation (14), which is the 

same principle as for UCS, but in a tensile manner.  

𝑇𝑆 =
𝐹𝑚𝑎𝑥

𝐴
 (14) 

Where TS – direct tensile strength, Fmax – peak pull force, A – cross-section area of the sample. The 

direct tensile requires relatively high efforts for sample preparation and is rather expensive.  

As an alternative, the Brazilian tensile test can be conducted as an indirect measure of the tensile strength 

of a rock sample. It follows the ASTM D3967 or ISRM norms for the anglophone area and the 

EN 12390-6 for Europe. A slice of a drilling core with a ratio of 0.5 for length to diameter is used for 

the test. The sample is then loaded using half-spheres. By that, a diametral loading scenario can be 

ensured. The compressive loading then results in a tensile loading at the centre of the core. Since the 

tensile strength is around 1/10 of the compressive strength for most rocks, cracks will occur due to 

tensile failure and will result in total failure of the sample. The Brazilian tensile strength is calculated 

using the following equation. 

𝐵𝑇𝑆 =
2𝐹𝑚𝑎𝑥

𝜋 ∗ 𝑙𝑠 ∗ 𝑑𝑠
 (15) 

Where BTS – Brazilian tensile strength, Fmax – peak force, ls – length of the sample, ds – diameter of the 

sample. 

Compared to the regular tensile test, the Brazilian tensile test is faster, simpler, and more cost-effective 

to conduct. BTS, like UCS correlates directly with the forces Fx and Fz as shown in Figure 15. 

 

Figure 15: Ratio of mean cutting force (left) and mean normal force (right) to cutting depth vs. 

Brazilian tensile strength for semi-relieved cutting mode [32]5 

 

5 Reprinted with minor adjustments from International Journal of Rock Mechanics and Mining Sciences, Volume 

43, Issue 1, N. Bilgin, M.A. Demircin, H. Copur, C. Balci, H. Tuncdemir, N. Akcin, Dominant rock properties 

affecting the performance of conical picks and the comparison of some experimental and theoretical results, pp. 

139–156, Copyright © 2006, with permission from Elsevier. 
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Point Load Strength  

The point load test (PLT) is widespread due to its simplicity. Here, a rock sample is loaded between two 

diametral cones, and the peak pressure at failure of the sample is recorded. The point load strength scales 

linearly with UCS. As a conversion formula, the following is given [73]: 

𝑈𝐶𝑆 = 𝑘𝑐 ∗ 𝐼𝑠50 (16) 

Where UCS – the uniaxial compression strength, ls50 – the point load strength for a 50 mm diameter 

sample, kc – conversion factor.  

After EN 1926:2006, a value of 22 for kc is taken. In the American area, a factor of 21 is common [73–

75]. Thuro (2010) notes that a conversion between Is50 and UCS should only be conducted if the 

conversion factor could be experimentally defined at some samples [76]. Rusnak and Mark (2000) show 

a selection of studies that defined kc experimentally. The values can deviate from 21/22 by up to 40% in 

some cases [73]. 

As Hoek (1977) pointed out, the mechanics of the point load test actually cause the rock to fail due to 

tension. Therefore, the PLT’s accuracy in predicting the UCS depends on the relationship between UCS 

and TS. For most rocks, the ratio is approximately 10. For softer rocks like mudstones and claystones 

that quickly show plastic deformation, the PLT has to be used with care. There, the ratio may be closer 

to 5. This implies that PLT results might have to be interpreted differently for the weakest rocks [73, 

75]. As the Is50 correlates with UCS and BTS, it also correlates positively with the cutting forces. Tiryaki 

and Dikmen (2006) established a linear correlation of Is50 to specific energy consumption [77]. 

Brittleness 

The brittleness of rock is in the context of mining is typically used to describe how brittle or ductile a 

material behaves under load. In the context of excavation, it is related to the excavatability of a given 

rock. However, there is no general definition of brittleness. Ai et al. (2016) [78] and Dursun et al. 

(2016) [79] review a total 16 methods to define brittleness indices and present their own approaches for 

calculation [79]. Table 2 summarises the physical parameters used in these formulas to calculate these 

different brittleness indices. Of these 18 formulas, eight implement the peak compressive strength in 

some way. Annex B.2 shows details of these formulas. 

Table 2: Summary of physical indicators used to calculate different brittleness indices, after [78–80]  

Number of formulas Physical parameters utilised in the formula 

2 Ratio of volumetric content of brittle minerals to all minerals 

8 Ratios of different components of stress (like UCS, BTS) 

1 Elastic modulus and Poisson ratio 

2 Different components of strain  

2 Ratios of energy required for different stages of the breakage process (e.g., elastic 

deformation, cracking, etc.)  

2 Penetration during pin penetration tests 

2 Amount of fine-grain obtained during the impact of a mass 

 

The definitions vary widely according to the aim and background of the calculation; e it an accurate 

rock mechanical description of failure during UCS tests or estimation of specific energy consumption of 

an excavation machine. In the context of rock cutting, the basic form of the brittleness index as presented 

by Goktan (2005), Wirtgen (2017) and Yasar (2020) is often used [28, 81, 82]. 
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𝑏1 =
𝑈𝐶𝑆

𝑇𝑆
 (17) 

With: b1 – brittleness index, UCS – uniaxial compressive strength, TS – tensile strength. 

In order to assess the effect of brittleness on the cutting process, Goktan (2005) uses the normalised 

specific energy consumption after Equation (18). This coefficient allows comparing the effectiveness of 

the cutting process normalised to both the cutting depth and compressive strength. Furthermore, this 

approach can be extended to the cutting force. 

𝐸𝑠𝑝−𝑛 =
𝐸𝑠𝑝

𝑑 ∗ 𝑈𝐶𝑆
;  𝐹𝑥−𝑛 =

𝐹𝑥
𝑑 ∗ 𝑈𝐶𝑆

  
(18) 

Where: Esp-n and Fx-n – normalised specific energy and cutting force respectively, d – cutting depth, 

UCS – uniaxial compressive strength. 

Figure 16, Panel a) shows the relationship for Esp-n to b1 for drag bits in arenaceous rocks. It can be seen 

that Esp-n decreases with increasing brittleness [82]. Panel b) shows the relation of Fx-n to b1, recalculated 

after Yasar (2020) [81]. Expectedly, similar behaviour is shown. Both relationships may be described 

by a logarithmic relation. For Esp-n this relation can explain 71% of the variation; for Fx-n, only 35% of 

the variation is explained. However, the dataset used is more extensive and incorporates different authors 

and cutting equipment2F

6. 

 

Figure 16: Relationship between: a) normalised specific energy after [82] and b) normalised cutting 

force to brittleness index, recalculated after [81] 

In total, the results of these calculations indicate that, given the same compressive strength, a more brittle 

material shows a smaller cutting resistance than a more ductile material. In this regard, Restner (2002) 

proposes a correction factor of ±25% to the cutting rate based on the brittleness index of the rock mass 

[83]. 

Schmidt Rebound Value 

The Schmidt rebound hammer is an easy-to-use and low-cost tool for estimating rock hardness. It is one 

of the few testing methodologies that act without destroying the sample. Initially, it was designated as a 

testing device to identify weakness zones and relative structural integrity of concrete-based buildings. 

 

6 For the recalculation from the data compiled by Yasar (2020) only results with similar cutting conditions were 

used: αa = 55 ° and αw = 80°. Also, two outliers with b1 > 30 where disregarded. Data are located in Annex B. 
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There are different types of Schmidt hammers such as N-, NR-, or L-type. The rebound values are called 

RN, RNR, and RL, respectively. The hammer measures the rebound hardness of the surface. Therefore, a 

spring accelerates a metal bolt onto the rock face. As the kinetic energy of the bolt acts on the material, 

a part of this energy is converted for the deformation of the rock material, another part is transformed 

into elastic deformation of both the bolt and the rock. This elastic deformation then causes the bolt to 

rebound from the rock face. The harder the rock, the more energy is kept in the cycle: kinetic energy, 

elastic deformation, kinetic energy. The Schmidt rebound value correlates with the compressive strength 

of the rock. Since elastic behaviour plays a significant role in this process, the elasticity modulus of the 

material influences the results as well. 

The test is performed after ISRM or ASTM D5873 for the English sphere. For Europe, DIN EN 12504-

2:2012-12 describes the determination of the rebound number of a surface of hardened concrete using a 

rebound hammer. According to the standard, the primary purpose is to identify the uniformity of in-situ 

concrete and to show areas or surfaces of low quality or for damaged concrete in structures. However, 

Note 2 of the norm allows the assessment of the strength of in-situ concrete to be estimated by a suitable 

correlation [31, 84]. 

Research has been undertaken to identify the relationships of Schmidt hammer values with UCS outside 

of calibrated areas. Kazemi et al. (2019) calibrated Schmidt hammer tests to UCS for recycled aggregate 

concretes [85]. Rinder and Reinhardt (2000) identified that the Schmidt hammer can be well used for 

high-performance concrete and that the results show conservative results for very hard concrete [86]. 

Aydin & Basu (2005) review a larger literature base and summarise 21 calibration curves for UCS and 

14 for Young’s modulus. They also propose a calibration curve for granite [87]. Bolla and Praonuzzi 

(2021) propose a combined calibration curve that incorporates the manufacturer's calibration curve and 

the Aydin and Basu’s calibration curve for harder rocks, as shown in Figure 17, left [88]. Several authors 

incorporate machine learning approaches to estimate UCS from other rock parameters, including the 

Schmidt hammer test [89–93]. 

 

Figure 17: Correlation for L-type Schmidt hammer (left), after [88]; comparison of efficient net 

cutting rate and Schmidt rebound value (right), after [82] 

Regarding cutting efficiency, Goktan (2005) compared the efficient net cutting rate NCReff of a 90 kW 

Herrenknecht roadheader for different sedimentary rocks during the construction of tunnels for the 

Istanbul sewerage system. He established a negative correlation of the rebound value with the net cutting 

rate, as shown in Figure 17, right side [82]. Tiryaki (2006) established a positive correlation between 

Schmidt hardness and specific energy consumption [77]. Yasar (2014) compared Schmidt tests with 

cutting resistance for a micro-cutting device that cuts with d = 5 mm. He found exponential relationships 

of Fx and Fz with the Schmidt hammer results [94]. 
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Other Parameters 

The list of measurable parameters that influence the interaction between tool and rock is extensible to a 

large degree. For brevity, additional parameters are mentioned briefly as follows: 

▪ Young’s modulus describes the elastic behaviour of the rock. It also influences the mechanical 

energy that a rock can absorb before breaking, which influences the cutting forces during 

excavation [77]. 

▪ P-wave-velocity describes the velocity of ultrasonic p-waves through a rock. It is influenced by 

the material composition, porosity, density, and crack occurrence [95].  

▪ Density, as one of the most basic and common material parameters is used in some models to 

predict the cutting process [53]. 

▪ Cone intender hardness measures the resistance of a sample against the penetration of a WC-

cone [96]. 

▪ Shore hardness is measured by the shore hardness scleroscope and is used for non-destructive 

measurement by a diamond-tipped hammer which is manually dropped vertically and freely 

from a rested height onto a horizontal, polished test surface [97]. 

Influence of Anisotropic Behaviour 

Schistosity and foliation as anisotropic rock characteristics can influence the strength parameters 

depending on the direction in which they are measured. Figure 18 shows loading scenarios perpendicular 

and parallel to the foliation of a rock sample for UCS and BTS tests. Basu et al. (2013) present a 

comprehensive study of rock failure modes for UCS, BTS, and point load tests. Hereby, depending on 

the direction, different orientation-specific failure modes occurred. A failure along schistosity was 

associated with a lower rock strength for UCS, BTS, and Is50 because an opening of the contact surfaces 

occurred more often. More isotropic granite and sandstone samples did not show such behaviour [98]. 

 

Figure 18: Loading scenarios for uniaxial compressive test and Brazilian tensile test a) parallel to 

bedding and b) perpendicular to bedding, after [31] 

Concerning the interaction between rock and excavation tool, these associations are reported as well. 

Entacher (2012 & 2018), in a comparison between BTS tests and linear cutting tests with disc cutters, 

shows that cutting forces and BTS positively correlate with the angle of load toward foliation. This is 

shown in Figure 19, Panel b) for the scaled rolling force (FR,scaled). There, the rolling force was scaled 

to the minimal value of all experiments to show the percentual increase in rolling forces with respect to 

the minimum [99, 100]. Little is directly published on the angular dependency of cutting forces for 

conical picks. However, Thuro (2002) reports that the excavation capacity falls to 60% during 

excavation with roadheaders if the bedding plane orientation is parallel to the tunnelling direction 

(Figure 19 a). The results are based on experiences during the excavation of a wastewater tunnel in 

Thuringia, Germany. Here, faults resulted in sudden changes in bedding plane orientation. However, 



Cutting Excavation with Conical Picks Chapter 2  

23 

Thuro does not mention whether the results are based on a roadheader with an axial or radial cutter head 

[43]. 

 

Figure 19: a) Dependency of excavation capacity during drifting with roadheader in anisotropic rock 

conditions, after [43]; b) average rolling forces for three rock types relative to foliation angle as 

relative values [100]7 

2.1.4 Influences of the Rock Mass 

While foliation is an anisotropic property of intact rock, joints and other discontinuities are rock mass 

parameters. In addition to the rock mechanical properties, these rock mass properties influence the 

outcome of the mechanical excavation process as well. The state of the rock mass is defined by 

macroscopic properties like layering, bedding planes, joint occurrence, joint density, state of the joints, 

as well as water flow. It can be described by parameters such as rock mass rating (RMR), rock quality 

designation (RQD), mining rock mass rating, geological strength index after Hoek (GSI), or Q-index 

[32, 101, 102]. 

Entacher et al. (2019) state that the assessment of the influence of joints on the excavation process is 

problematic as the influence is: 

1) “not monotonic, meaning that it changes at different angles” and 

2) “it is also a function of the joint spacing, and thus a strong cross correlation with [joint spacing] 

makes it very difficult to capture” [103]. 

However, empirical knowledge generally suggests that a worse rock mass increases the excavation 

speed. Thuro (2002) reports that the excavation capacity can increase to up to 300% for joint spacings 

below 0.6 cm. Generally, he reports that below a joint spacing of ca. 6.3 cm, the cutting process changes 

more into a ripping process and hence the advance rate increases significantly [43]. 

Hartlieb et al. (2018) [53] estimate the effect of a weakening rock on mechanical excavation in a 

theoretical assessment based on the cutting prediction model for roadheaders by Restner et al. (2002 & 

2015) [83, 104]. To assess the influence of the state of rock mass, Restner et al. use the ratio of the 

efficient net cutting rate to the theoretical cutting rate to describe the relative efficiency of the cutting 

machine. The cutting rate can be increased by a factor of up to 8 for rock masses in very poor conditions. 

In own works, it was shown that the state of the rock mass influences both mean values and maximum 

cutting forces [105–107]. 

 

7 Reprinted from Tunnelling and Underground Space Technology, Volume 71, M. Entacher, E. Schuller, Angular 

dependence of rock cutting forces due to foliation, pp. 215–222, Copyright © 2018, with permission from Elsevier. 
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Entacher et al. (2018) show that the occurrence of joints alters the ratio of peak to average penetration 

forces (Figure 20). While these results are obtained for artificial rocks with disc cutters in linear cutting 

experiments, the results coincide with own results [106, 107]. The ratio of peak forces to mean forces 

increases with deteriorating rock mass integrity. This is based on the following facts: 

A) the mean forces reduce due to easily breaking portions of the rock while  

B) the peak forces stay similar to those that occur during the cutting of intact rock. Because even 

in a fractured rock mass, parts of high integrity still exist. 

Figure 20 a) shows peak rolling forces to mean rolling forces during excavation. While this analysis 

compares a mean value with one only extreme value (maximum), it supports statements A) and B) 

above. A typical histogram on Panel b) of the figure also shows this effect; peak forces appear on a 

similar level when comparing homogeneous and jointed rock. At the same time, the modus of the 

distribution is shifted towards lower forces for the jointed block.  

 

 Figure 20: a) Ratio of peak rolling force and average rolling force for disc cutter experiment;  

b) histogram of rolling force of jointed and homogenous rock [57]8 

2.2 Ratios of Cutting Force Components  

After Equation (1), the three spatial components Fx, Fy, and Fz define Fres. It is also known that the 

different components of the resulting cutting force play different roles in the cutting process. As such, 

the ratio of cutting forces toward each other can be investigated. Wang et al. (2017), in a meta-study, 

show that: 

a) For a specific rock type, the cutting force components Fx and Fz follow a linear trend. This 

means that a ratio between the two can be formulated. This can be seen in Figure 21 a). The 

linear trends between these two force components are associated to the rock type. 

b) The average ratio Fz/Fx correlates with the UCS. Hereby, the correlation shows an exponential 

trend, visible in Figure 21 b) [108]. 

 

8 Reprinted from GeoCongress 2012, M. Entacher, E. Schuller, Analysis of Force Path Diagrams of Linear Cutting 

Machine – Tests regarding Geotechnical Parameters, Copyright © 2012, with permission from ASCE. 
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Figure 21: a) Linear regression for normal to cutting force for three different rock types; b) ratio of 

normal to cutting force in relation to UCS for mean and peak forces [108]9 

Similar results were described in a limited form as early as 1981 by Roxborough [64]. As Fz/Fx is 

influenced by the rock type and correlates with the UCS, it can be assumed to correlate with other rock-

mechanical properties as well. To explore this, Figure 22 (next page) shows a part of the often-cited 

dataset from Copur et al. (2003) where attack angle = 55°, wedge angle = 80°, and cutting mode is 

unrelieved [109].  

The figure shows a pairwise comparison of the mean of Fz/Fx to nine rock mechanical properties. The 

cutting depth is shown as shape of the data points. Linear regressions between the covariates are added 

and the Pearson correlation coefficient (R), the coefficient of determination (R²), and the p-value (p) are 

calculated. For the calculation of R, see Chapter . 

The correlation behaviour is generally weak to moderate (after Taylor (1990) [110]). The only exception 

is the static elasticity modulus Est, showing a moderate to high correlation coefficient. However, only 

48% of the variation is explained by this linear relationship. The density, Schmidt hammer rebound value 

(RN), and brittleness (b1) show moderate correlations. For these properties, the p-values are comparably 

low—indicating a relatively high statistical confidence in these correlations. The other parameters, 

dynamic elasticity modulus (Edyn), acoustic p-wave velocity (vp), and Cerchar abrasivity index (CAI) 

show low correlations. These low correlations are expected, given the complexity of the cutting process. 

This work aims to use FCRs to distinguish between different rock types. Since different rock types show 

different rock-mechanical properties, a correlation between the rock-mechanical properties and Fz/Fx 

would speak for its general suitability to distinguish between rock types. Although linear regression 

shows limited accuracy given the diversity of the dataset, it illustrates the broader picture that force 

component ratios could be utilised for rock differentiation. 

 

9 Reprinted from Tunnelling and Underground Space Technology, Volume 62, X. Wang, Y. Liang, Q. Wang, Z. 

Zhang, Empirical models for tool forces prediction of drag-typed picks based on principal component regression 

and ridge regression methods, pp. 75–95, Copyright © 2016, with permission from Elsevier 
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Figure 22: Correlation of Fz/Fx with different rock mechanical parameters, recalculated from [109], 

only data used where: attack angle = 55°, wedge angle = 80°, and unrelieved cutting mode 

Figure 23 a) shows the results calculated after the measurements of Demou et al. (1983) [111]. There, 

Fz/Fx is less receptive to changes in cutting depth but influenced by the pick shape and rock type. Vorona 

(2012) additionally stated that the ratio between normal and cutting force increases when picks wear 

and become blunter [27].  

  

Figure 23: a) Fz/Fx for different rock types and pick geometries, recalculated after [111]; 

b) Fz/Fx as pick wears for cutting with conical picks in potash salt [27] 
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This can be seen in Figure 23 b). He used custom conical picks made of aluminium that wore faster than 

usual and conducted linear cutting experiments with concrete mixtures. The results suggest that Fz/Fx is 

less influenced by the actual cutting parameters but mainly by the wear state of the picks. This is also 

supported by older observations from Frenyo and Lang (1993) and Frenyo and Hanneke (1997), who 

state that Fz/Fx ranges between 1 for soft and brittle materials and 3 for hard and ductile materials. They 

also correlated harder materials to a higher specific energy consumption [112, 113].  

Keller (2017 & 2020), regarding linear cutting experiments on the cutting test rig of TU BAF, reported 

that Fz/Fx is material-specific and independent of the cutting depth for unrelieved cuts (Figure 24). 

However, he noted that when the cutting speed increases, the dynamic behaviour of the cutting test rig 

influences the measurement. Subsequently, Fz/Fx changes for the harder rocks. The normal force rises 

substantially when the cutting process leads to a harmonic oscillation of the cutting machine. The cutting 

force starts to oscillate but stays at mean levels similar to those when no dynamic behaviour occurs. At 

the same time, Fz increases. This leads to a significant alteration of the force component ratios [41, 59]. 

 

Figure 24: Ratio of normal to cutting force for low (top) and high (bot.) cutting velocities [41]10 

Figure 25 shows the regression lines that Bilgin et al. (2006) established between UCS respective BTS 

and Fz/d respective Fx/d. The reporting form of Force/d allows a cutting depth-independent view on the 

cutting forces. From these regression lines, Fz/Fx is calculated. It shows that with varying UCS respective 

BTS, the ratios change between 0.66–1.35 (UCS) and 0.87–0.96 (BTS). As a result, with increasing UCS 

and BTS, the ratio Fz/Fx increases [32]. These regressions were not explicitly tailored towards insights 

of Fz/Fx but still show the same general tendencies as other stated sources and as such confirm the 

assumption that the force component ratio Fz/Fx might be a suitable parameter to distinguish different 

rock types form cutting force measurements. 

 

10Figure: Andreas Keller, CC BY 4.0, via qucosa.de 

https://creativecommons.org/licenses/by/4.0/
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Figure 25: Cutting forces and ratio Fx/Fz vs. UCS (left) and BTS (right), after [32] 

The values for Fz/Fx can range from ca. 0.7 to up to usually 1.8; in some cases, above 2. It must be 

considered that while typically Fz/Fx is presented as a ratio, physically, it represents the angle of the 

vector of Fzx between the vectors Fz and Fx. It follows the mathematical behaviour of a tangent function 

as shown in Figure 26. There, the angle αzx as a result of Equation (6) is plotted; the inlay shows the 

typical range of values. The labels show αzx for Fz/Fx = 0.7 and 1.8, respectively. This equals an angular 

range of 55° to 29.1°. Although this behaviour is considered in this work, in further analysis, the 

canonical reporting form as a force ratio is employed to allow comparability with other works.  

 

Figure 26: Plot of function αzx = arctan(Fz/Fx), plot inset shows the normal range for Fz/Fx reported by 

literature 

  

    

    

   

   

   

   

          

        

 
 
  

 
  
  

  
 
  

 
 

  
 
 
 
 

 
 

 

    
    

    

    

    

    

    

      

        

 
 
                              

 
 
                            

 
 
                              

 
 
                            

 
 
  

 
 
  

 
 
  

 

 

  

  

  

  

  

  

  

  

  

        

    

 
 
 
  
 

   

     

  

  

  

  

  

                  

Chapter Summary 

Fz/Fx … 

▪ … is influenced by the rock properties, 

▪ … is influenced by wear and the pick geometry, 

▪ … appears influenced by cutting speed on a machine specific way, 

▪ … is not, or to a minimal extend influenced by spacing and cutting depth. 

 

→ These findings might be extended to other force component ratios. 
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3 State of the Art  

This chapter gives an overview of both the state of the art in laboratory rock cutting research and the 

existing systems used for rock classification during excavation. The former is necessary to understand 

the knowledge gaps. The latter shows the gaps in application. Since pick-based near tool sensors have 

not yet reached market readiness, a comparison to neighbouring application fields is shown. 

3.1 Data Analysis in Rock Cutting Research 

This chapter investigates the general state of the art in analysis techniques in hard rock cutting 

experiments. The aim is to provide a semi-quantitative overview of which analytical foci are laid out in 

this field. In total, 58 works were included in this analysis. Figure 27 shows a summary of these works. 

The vast majority of the works analysed were published since 2010, and 60% of the works were 

published in the time between 2017 and 2021. The oldest works included in the analysis are the works 

of Roxborough (1981) and Sobek (1987) [51, 64]. Since this work focuses on conical picks, 41 of the 

58 works also focus on conical picks, 15 more focus on cutting force measurement with disc cutters, 

and five cannot be attributed to one group. These mainly include experiments on a smaller scale, such 

as cutting edges or micro-cutters. The groups do not add up to 58 because some papers can be attributed 

to two groups. Details of the classification can be found in Annex C. 

 

Figure 27: Overview of classified papers; left – publication dates, right – covered tool types 

The papers were classified whether they cover the following topics: 

States mean: Describes the standard approach to identify the results of rock cutting experiments. Mean 

cutting forces are stated in almost every paper. 

More than one FC shown: In most papers, Fx is analysed. However, many papers also analyse Fz, some 

even Fy. This allows an assessment of FCR. If more than one force component is presented, the ratios 

of the force components could be calculated manually by third parties, as was done in Chapter 2.2.  

F/t or F/l: Describes whether a Force-time- or Force-way-diagram was shown. Raw data are usually 

measured on an F-t-basis. The position of the tool can then be calculated with the speed of the tool. 

These diagrams are usually given for a broader understanding of the processes and, therefore, are often 

presented. 
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Specific energy: Describes whether cutting parameters or forces have been related to specific energy 

during the excavation process. As described in Chapter 2.1, Specific Energy, p. 10, there are several 

possibilities to calculate the specific energy that depend on the analysis’ context. This means that a direct 

comparison between different sources must be taken cautiously. Specific energy can be used to evaluate 

the effectiveness of the excavation process and it provides indicators for relative changes in the advance 

rate.  

Peak forces: Describes whether absolute peak forces or an algorithm to identify peak forces was used 

to characterise the cutting process with respect to the cutting forces. The calculation of peak forces 

differs between different authors. One method is to take one maximum value per cut, another takes three, 

and others use an algorithm to extract maximum values. Another possibility is the use of quantiles (such 

as the 0.95-quantile) as a peak force indicator. As such, comparing maximum forces between authors 

and different testing schemes requires caution. Additionally, the dynamic behaviour of the cutting 

machine can influence the results.  

FCR mentioned: Describes whether, in addition to presenting the results of more than one force 

component, force component ratios are calculated, analysed, or even just qualitatively mentioned.  

Grain size/shape analysis: Identifies whether any analysis or evaluation of the outbroken material in 

relation to the cutting parameters was conducted qualitatively or quantitatively. 

Spatial relation of force mentioned: Describes whether the cutting force results were analysed or 

mentioned in relation to the position of the tool in any way. This mainly applies to works from Entacher 

et al. (and own works which are not included in this analysis). 

Other measures of distribution: Identifies whether any descriptive statistics parameter was used to 

characterise the measured forces other than by calculating the arithmetic mean or stating peak forces. 

These descriptors, for example, can be standard deviation, variation coefficient, histograms, quantiles, 

IQR, or similar. 

Frequency analysis describes whether the raw results were classified or characterised on a frequency-

based approach. Here, only a discrete-Fourier-transformation-analysis [22] and empirical mode de-

composition [114] appear. 

Figure 28 shows the results of the analysis. The orange bars mark the methods that are of particular 

interest for this work. The results are shown in order of frequency. Usually, the main focus lies on mean 

cutting forces (48 papers). This is not surprising given its explanatory power. The vast majority of papers 

also presented more than one force component, some even three (Fx, Fz, Fy). However, only few papers 

put the presented FCs in relation to each other. Although 43 articles showed multiple FCs, only eight of 

them quantified or characterised the relationship of the components to each other. This means that the 

behaviour of FCRs is less understood than the behaviour of the FCs themselves. 
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Figure 28: Covered topics in reporting for experimental rock cutting 

Approximately 50% of the analysed papers use the specific energy Esp for classifying the cutting process. 

The practical relevance of the value can explain this—it can be recalculated into required power of a 

possible cutter head, or if cutter drive power is fixed, into advance rate [41]. Grain size and shape 

analysis is a relatively rarely researched parameter. Here, correlations to the cutting parameters and the 

specific energy are usually analysed. While the grain size analysis and specific energy consumption are 

not part of this study, knowledge of these effects is required to understand the underlying processes. 

More than half of all papers show characteristic F-t diagrams. These diagrams are often used to explain 

the cutting process itself. In addition to interpretation with mean values, analysis of the F-t behaviour 

often investigates peak forces (25 papers). In only eight studies, the authors use additional statistical 

parameters to describe the force behaviour of the cutting process. Partially, this can be explained by the 

fact that peak forces are indicatives of a spontaneous pick failure, while mean forces indicate the required 

cutter drive power/momentum. As such, from the viewpoint of application, the necessity for additional 

statistics is low. Some of these works state that the ratio of peak force to mean force is different for 

different materials and use it to characterise the cutting process—which is relevant for this work [32, 

69, 108]. 

As an additional analysis to characterise the F-t behaviour, frequency analyses was only conducted twice 

in the reviewed set of articles, and it appears to be of limited interest for current research. Finally, an 

analysis of cutting forces in the spatial context occurred only in eight papers. These papers all focus on 

disc cutters. Apart from own studies, no papers were found that analyse cutting forces in relation to 

spatial changes of the rock. In summary, a knowledge gap can be noted in rock type related cutting force 

behaviour—especially focusing on spatial analysis. 

 

Chapter Summary 

A knowledge gap appears to exist with regards to: 

▪ Spatial analysis of cutting forces, especially with conical picks. 

▪ Deeper descriptive statistical analysis of cutting forces. 

▪ Advanced use of FCR to describe the cutting process. 
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3.2 Rock Classification Systems 

The following chapter gives an overview of technologies that are described or patented to do at least 

one of the following: 

▪ identify rock type boundaries, 

▪ identify zones of altering rock mass integrity, 

▪ optimise the excavation process itself, based on cutting force data, or 

▪ enable excavation machines to follow certain geometries. 

In this work, these technologies are called measure-while-cutting-technologies (MWC), an analogy to 

measure-while-drilling-technologies (MWD). As far as possible, this analysis focuses on conical picks. 

However, the state of the art with a specific focus on conical pick-based machines is limited. Although 

sensor systems to measure forces during operation have been patented, to date, no complete concept for 

classifying rock mass during excavation with conical pick-based machines has been published. Hence, 

technological solutions that occur in neighbouring fields are presented as well to show the general state 

of application. Details of the accompanying patent analysis can be found in Annex D. 

3.2.1 MWC – Measure-While-Cutting 

The beginning of the evolution of cutting force-based automation started in coal seam mining in 

Germany and the United Kingdom around the 1970s. These developments focused on shearer-loaders. 

Here, the objective was to distinguish between coal seams and host rock. Usually, strain gauge 

assemblies were used as sensors. As such, they can be defined as the first MWC concepts.  

Given that the computational possibilities were somewhat limited, simple and robust ideas emerged. 

The solutions were based on one or two picks, and no spatial correlation of the obtained results was 

performed. Later designs tried to avoid the influence of a varying cutting depth on the results; the 

following solutions were proposed:  

A) Only peak forces were used for analysis. 

B) Use of a special subsequent pick assembly. A succeeding pick followed the actual pick; this 

second pick cut with a low cutting depth (more scratching than cutting). As such, it maintained 

a nearly constant, shallow cutting depth [25, 26, 115, 116]. 

Apart from patents in coal mining, only few other patents for conical picks are published. The latest 

patents for conical picks are connected to the mining OEMs Sandvik and Famur. The Sandvik system 

is shown in Figure 29, Panel 1). Sensors located on the side of a tool-holding sleeve can measure bending 

(tangential) load. A central sensor can measure radial load. Measured signals are transferred to a data 

transmitter in the rear part of the assembly and sent to further processing via Wi-Fi [23]. Another recent 

patent for coal mining with shearer loaders comes from China and employs a piezoelectric sensor 

assembly to measure cutting forces [117].  

The latest patent was submitted by Politechnika Ślaska in cooperation with Famur. This system (Figure 

29, Panel 2) allows for a 3d-measurement of dynamic cutting forces and additionally claims a 

transformation of the data from a coordinate system related to the picks axis into a local coordinate 

system related to the cutting trajectory. This allows the interpretation of the measured data in the 

standard form of cutting force, normal force, and side force. Chelushka (2019) presented a case study 

in the context of this patent which implies that Fz/Fx shows a characteristic spread and is subject to the 

hardness of the excavated rock [118, 119].  
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Figure 29: 1) Sandvik tool force measuring system [23]; 2) sensor concept from Politechnika Ślaska 

and Famur [118]; 3) disc load measuring system by University of Leoben (right) [22]11; 4) 

superimposition of measured disc normal forces averaged for three consecutive revolutions with 

geological documentation [120]12 

In the field of disc cutters, Entacher et al. published on this topic from 2013 onward. This research 

resulted in a force measurement system for disk cutters based on strain gauge bolts, shown in Figure 29 

2), Marking (e). One element of their research was a qualitative analysis of measured cutting forces with 

respect to the mapped face of a tunnel [120, 121]. They found that the normal forces are related to 

geological features such as fractured zones and schistosity. These influences can be seen in Figure 29 

4).  

Entacher et al. also state that “general statements that go beyond the analysis of a singular event should 

not be based on a single cut or a single revolution [of the cutter head]” as “subsequent cuts are 

dependent of each other” [121]. In this case, the statement is limited to deepening cuts. This is extended 

to adjacent cuts in [122] and [99]. As shown in Figure 30, it is observed that for neighbouring cuts, 

where there was a force peak in the preceding cut, lower forces can be expected in the subsequent cut at 

the same spot. In [99], emphasis is also put on the necessity of a statistical evaluation of multiple events. 

The authors predict the possibility of identifying different rock masses based on cutting force analysis 

 

11 Reprinted from Tunnelling and Underground Space Technology, Vol 31, M. Entacher, G. Winter, T. Bumberger, 

K. Decker, I. Godor, R. Galler, Cutter force measurement on tunnel boring machines – System design, 97–106, 

Copyright © 2012, with permission from Elsevier 
12 Copyright © 2013 Ernst & Sohn Verlag für Architektur und technische Wissenschaften GmbH & Co. KG, Berlin 
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for TBMs. In [57], it is stated that the use of cutter forces for a correlation with “geotechnical parameters 

can provide a strong aid for the geological and geotechnical interpretation of the tunnel face in 

mechanized tunnelling”—given that the influences of the cutting machine and the cutter are understood 

thoroughly.  

 

Figure 30: Visualisation of spatial analysis of cutting forces for linear cutting experiments with disc 

cutter [122]13 

For TBMs, the interpretation of cutting force data is less complex since the cutting parameters remain 

relatively constant during the cutting process. While these concepts allow precise force measurements, 

they neither explain the full potential of such systems nor the exact workflows to utilise the obtainable 

data.  

In summary, until now, no complete system has been described in terms of how the measured data are 

processed and interpreted to classify the rock, neither for conical picks nor for disc cutters. For conical 

picks, no field experiences of the patented systems are known to the author.  

3.2.2 MWD – Measuring-While-Drilling 

Although MWC systems are still in early development, MWD systems are known in the drilling 

industry. The literature assessment here focuses on MWD-concepts for use in regular blast-hole drilling 

for production or tunnelling. 

In terms of using acquired MWD-data, Gosh, Schunesson, van Eldert et al. published a series of articles 

from 1990 onwards with the aim to classify the rock mass quality and the extent of the excavation 

damage zone for blasting (Figure 31). The focus of these works was on tunnelling and production 

blasthole fan drilling. Fractured, macrocracked, faulty, or breccious rock can lead to problems when 

loading blastholes or when blasting. Van Eldert proposed to use MWD to classify the rock according to 

the RQD index and used this information for rock support design during tunnel excavation (left side in 

Figure 31) [17, 19, 123–127]. 

Furthermore, Liu et al. (2019) proposed solutions to use MWD data to recognise joints during roof 

bolting. Here, cumulative sum algorithms (CUSUM) combined with a moving-window approach were 

used to identify joints [128]. 

 

13 Reprinted by permission from Springer Nature: Rock Mechanics and Rock Engineering, Rock Failure and Crack 

Propagation Beneath Disc Cutters, Martin Entacher et al., Copyright © 2014 
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Figure 31: Penetration rate of one blast round in tunnelling (left) [18]14; classification based on a 

ranking from first principal components interpretation (right) [126]15 

Clausen et al. (2019) used support vector machine algorithms for an MWD-application to predict the 

drilled rock’s UCS, BTS, and brittleness index. It could be shown that the system can be used for 

boundary layer detection [129]. Ellefmo et al. (2020) used a mean- and variance-based changepoint 

analysis on the first principal component to detect fractured to solid marble changes in a quarry in 

Norway. The accuracy of the estimation model based on the changepoint analysis for the first principal 

component was 98%. This principal component was mainly defined by feed pressure, damping pressure, 

and rotation pressure [130]. Navarro et al. (2021) used a principal component-based analysis to 

characterise the rock mass and assess the strength properties on the one hand and the structural condition 

on the other [20].  

Parallel to these developments, the mining original equipment manufacturers (OEM) Epiroc, Sandvik, 

and Bever Control have developed their own software as a tool to assess MWD-data. These tools provide 

integrated solutions, including 3d representations of hardness or fracturing indices [20]. 

3.2.3 Automated Profiling During Cutting 

With increasing possibilities for automation and computation, MWC based technologies are flanked by 

several automation solutions based on general working parameters of the mining machine. These 

comprise hydraulic pressure, voltage, and current. These parameters indicate the total load to which the 

machine is subjected. This is flanked by possibilities of position measurement and control of the cutter 

head. With that, predefined profiles can be automatically followed. In addition, blockages and critical 

situations can be identified, and an appropriate reaction can be executed. For example, the slewing speed 

can be reduced when the cutter drive power draw exceeds critical levels [131–136]. Such systems also 

can store profiles for different rock types and then vary the slewing speed according to the toughness of 

the rock types [137]. There, however, the location of the rock types must be typed into the automation 

interface of the machine manually. 

 

14 Image: Jeroen van Eldert 
15 Reprinted from International Journal of Rock Mechanics and Mining Sciences, Juan Navarro, Håkan 

Schunnesson, Rajib Ghosh, Pablo Segarra, Daniel Johansson, José Ángel Sanchidrián, Application of drill-

monitoring for chargeability assessment in sublevel caving, 180–192, Copyright © 2019, with permission from 

Elsevier 

. 
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Additionally, for open-pit operations, such concepts can be extended to multi-machine systems that 

organise the movement and operation of multiple machines and take into consideration the respective 

advance rates and process information as patented by the former Atlas-Copco (now Epiroc)—until now 

only for drilling applications [138]. For continuous surface miners and dozers, automated GPS-based 

levelling systems are also on the market [28, 139].  

3.2.4 Wear Monitoring 

Another aspect is the use of systems that monitor the wear of mechanical excavation tools using various 

means. Wear and blunting of the tools are the main driver for impairing an excavation machine's advance 

rate since continuous check-ups and replacement of tools take considerable time. Restner (2016) 

mentioned as a general rule of thumb that a consumption of more than one pick per m³ of excavated 

material can be seen as a threshold for a feasible operation [140]. Methods include sensing general 

machine conditions such as vibration or power consumption behaviour or direct measurement of the 

state of wear of the tool, e.g., by laser scanning or inductive methods [135, 141–148]. Another method 

was patented by Lill and Freymann (1994), where a sensor-infused cover shoe is added to a pick holder. 

The sensors are thin wires that act as antennas at the same time. When the pick holder is damaged, it 

damages the cover shoe, which damages the antenna wires in return, making the pick location at which 

the damage occurs traceable [149].  

3.3 Machine learning for Rock Classification 

Although there are no direct rock classification systems from MWC, machine learning (ML) approaches 

for rock classification from other data are published. Excavation and mining project planning is usually 

based on rock mechanical tests that require significant financial resources. Especially the UCS test is 

relatively costly and time-consuming. The reliable prediction of UCS from cheaper tests results in 

overall savings in a project. Other applications include direct prediction of the excavation speed of a 

given excavation machine. Apart from the already mentioned approaches in rock classification from 

MWD-data, a broad overview of the vast field of utilising ML to estimate of rock parameters is given 

in the following. 

Teryaki (2008) compared artificial neural nets, regression trees, and multiple nonlinear regression to 

estimate their suitability to predict the rock parameters UCS and E-modulus from the covariates quartz 

content, density, porosity, shore hardness, and cone indenter index [150]. Kaunda and Asbury (2016) 

used an artificial neural network (ANN) to predict the brittleness index from the punch penetration test 

based on a database of 20,000 rock property test results. The input data were: rock type (igneous, 

metamorphic, or sedimentary), unit weight, P-wave velocity, S-wave velocity, dynamic Poisson’s ratio, 

dynamic Young’s modulus, and Lame’s constant [151]. Berzegar et al. (2020) estimated UCS of 

travertine with three different ensemble tree-based machine learning algorithms: random forest (RF), 

M5 model tree, and multivariate adaptive regression splines (MARS) [89]. Saeidi et al. (2014) used a 

fuzzy clustering-based ANN and multiple regression methods to estimate the rock mass digability index 

[152]. Aras et al. (2020) used ANN to predict the bond work index from rock mechanical properties 

[153]. Salimi et al. (2019) used classification and regression tree (CART) and genetic programming 

(GP) to predict TBM performance based on UCS and multiple rock quality ratings [154].  

Liu et al. (2021) reported a method to identify rock hardness using cutter head drive current as input. 

An AdaBoost backpropagation artificial neural network was used with features extracted by utilising 

multi-scale permutation entropy [155]. 
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Wang et al. (2020) used a multi-sensor approach, including a Dempster-Shafer multi-sensor fusion 

approach based on membership functions to predict the hardness of concrete during laboratory rock 

cutting tests. The signals used were: triaxial vibration, current, acoustic emission signal, and peak 

temperature at the contact between pick and rock measured by an infrared camera. One result of this 

study was that the parameter with the highest weight on prediction success was the maximum infrared 

temperature [156]. 

Vraetz (2018) used acoustic emission signals to classify the material flow during an in-line 

characterisation on a conveyor belt. Here, the material was falling against a hit-detection plate; as such, 

a constant data stream was received. The used features of this data stream were: number of values above 

a threshold, root-mean-square value, standard deviation, crest value, kurtosis, maximum, impulse, and 

area-under-the-curve of an impact burst. For the classification, a support-vector-machine algorithm was 

used [157].  
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4 Problem Statement and Justification of Topic 

In summary of the previous chapters, the use of machine information for maintenance prediction, 

excavation optimisation, and following profiles is relatively well researched. The use of MWD is a well-

known concept. On the other side, measure while cutting is a known idea—and first implementation 

attempts have been reported for disc cutters, to a limited extend also for conical picks.  

However, no complete solution that describes the exact nature of the acquired data, how the data are 

used and evaluated, and how they can further be used for spatial rock classification has yet been 

presented for conical picks. The problem lies in the fact that the cutting process is highly instationary. 

This is a result of: the variation of d due to the crescent shape of the cut, the variation of s depending on 

the type and operation of the machine, the machine dynamics, as well as the general variability of the 

cutting process of brittle materials. Furthermore, the data volume required is relatively high, which 

means that the hardware of early generations was not capable of processing the data as required. 

This high variability means that measurements have to be taken with a high frequency to capture the 

process adequately. Hence, treatment of the incoming data stream is of importance. On the other hand, 

the high variability necessitates complex evaluation methods. Both complex evaluation methods and big 

data streams became manageable just within the last decade through the increasing computation power 

of information technology. It is assumed by the author that the methods proposed and researched in this 

thesis are only unlocked by these recent developments.  

From the literature review, the following knowledge gaps (KG) are summarised: 

  

KG1 While being investigated since the 1970s, cutting force-based rock classification systems have 

not yet reached market readiness for conical pick assemblies. 

KG2 The force responses strongly correlate with the cutting depth and the spacing. Literature 

points towards an understanding that the ratio of Fz/Fx correlates less with these two 

parameters, but more with the rock type. Hence, it might be utilised to characterise the rock 

for MWC purposes. How other force component ratios (Fy and Fres) act, is almost not reported.  

KG3 Until now, the FCR Fz/Fx has been calculated from mean values of its force components, but 

only rarely from real-time cutting force data. 

KG4 Until now, common practice in rock cutting research rarely incorporated statistics other than 

mean and peak values of Fx and Fz. Further statistical analysis is relatively rarely incorporated. 

KG5 Machine learning has rarely been used with cutting force data to identify the rock type while 

cutting. 

  

Consequently, this work aims to usher in unlocking MWC rock classification systems by further 

addressing these knowledge gaps. The potential of features derived from real-time cutting force 

component data in conjunction with ML for rock classification is investigated to achieve this.  
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In detail, the following research questions (RQ) are addressed: 

  

RQ1 How suitable are features that describe the behaviour of real-time FCRs for rock 

classification—especially in combination with ML techniques? 

RQ2 Are FCR-based features alone sufficient for rock classification, or are additional features 

advisable? 

RQ3 Toughness, crack occurrence, and anisotropy are significant variables that define a rock type. 

How does a variation, respectively the presence of these parameters, affect FCR-based rock 

classification? 

RQ4 Which classification accuracy and spatial precision can be expected? 

RQ5 What basic requirements would an MWC sensor system have to meet? 

  

 

The following main tasks (MT) are executed to answer the research questions: 

  

MT1 Conduct experiments that assess the behaviour of real-time FCRs in different rock conditions 

(hardness, foliation, cracking state). 

MT2 Design a methodology to select the features derived from the FCRs that are most significant 

for rock classification.  

MT3 Design an algorithm that computes the selected features with spatial reference, from which it 

conducts a spatial rock classification using ML. 

MT4 Test the algorithm with different ML techniques and assess the overall performance. 

MT5 Give general recommendations towards sensor design. 
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5 Material and Methods 

This section presents the research infrastructure used, the description of rock specimens tested, and the 

experimental routines followed. 

5.1 Rock Cutting Equipment 

All experiments were conducted on the cutting test rig HXS-1000-50 of TU BAF, shown in Figure 32, 

next page. The machine was constructed in 2008 as a special design by ASW Naumburg. While linear 

cutting test rigs are non-standardised, most cutting rigs follow a similar design. The concept is that the 

rock specimen (d) is placed on a table (e), and the table moves (g) against the actual cutting head (b). 

Normally, this motion is provided by hydraulic cylinders. The Freiberg testing machine shows a 

distinguishing feature. Two synchronised spindle drives provide the motion of the cutting table. Due to 

this, it can provide cutting speeds of up to 1.6 m/s. The second distinguishing feature lies in the use of 

piezoelectric force sensors (c), which provide higher stiffness and precision and can measure peak forces 

more precisely. Since the design is based on a CNC router, not only can forces be measured, but also 

the coordinates of the cutter head in relation to the cutting table. Subsequently, a traceback of the location 

of the pick during cutting is possible. In addition, the machine is equipped with a laser scanner. With 

the laser scanner, it is possible to scan the surface of the rock specimen. This allows a calculation of the 

volume of the outbroken material. The outbroken volume is used to estimate the specific energy 

consumption during excavation. The possibility to synchronise the force measurement data with the pick 

coordinates is a major prerequisite for the spatial analyses in this work.  

The pick on the cutter head (b) is tiltable on the x-z-plane (attack angle) and the x-y-plane (tilt angle). 

The orientation of the machine’s intrinsic coordinate system is also shown in the figure. The piezo force 

sensor system (c) is composed of a sandwich of four pre-tensioned sensors that have been jointly levelled 

and calibrated. The pretension is set to 75 kN. All four piezo sensors measure x-, y- and z-components 

with a maximum acquisition rate of 10 kHz. They are connected via a Wheatstone bridge circuit. This 

results in an equalisation of momenta independently of the actual lever length. Since the sensor package 

is pre-tensioned, it allows the measurement of positive and negative forces. 

The general signal processing flow is shown in (j). The output signal is a charge difference. The four 

charge signals serve as input for a charge amplifier. The charge amplifier converts the signal into a 

±10 V signal. This analogue voltage signal is converted by analogue-to-digital converters (ADC) into a 

digital signal that can be further processed. The ADCs are housed in a DEWE5000 data acquisition 

(DAQ) computer (h). The computer houses seven ADCs, translating into seven simultaneous channels. 

The maximum DAQ rate of the ADCs lies at 100 kHz, which is higher than the maximum output 

frequency of the sensors (10 kHz). The seven channels comprise the x-, y-, and z-position of the cutter 

head as well as the x-, y- and z-component (Fx, Fy, Fz) of the cutting force; the last channel is used for 

the signal of the surface scanning laser.  

For data acquisition, the Dewesoft software (i) is used. It allows the synchronisation of force 

measurements with high-speed video, real-time computation of derived signals, as well as automation 

of measurement and storage conditions. During the course of the experiments, an updated force sensor 

module was installed. The new sensor module is identical in geometric design but comprises a newer 

generation of sensors. As such, the measurable force limits were upgraded, as seen in Table 3. 
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Figure 32: Linear rock cutting rig HXS-1000-50 

 

Table 3: Main specifications of old and new sensor system compared 

 Fx  

[kN] 

Fy  

[kN] 

Fz  

[kN] 

Max. 

frequency 

[kHz] 

Old system 50 30 50 10  

New system 

(since 2019) 

75 50 75 10  
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For all experiments, customised BETEK BSR112 picks were used (Figure 33). The 

picks were machined down to fit into the standard tool holder of the cutting test 

rig. A CAD drawing is shown in Annex F. The same pick was used for all 

experiments. These picks have a wedge angle of ca. 85°. During all experiments, 

the working angles remained unchanged. Moreover, the cutting speed remained 

static. These static parameters are as follows: 

▪ Attack angle: 45° 

▪ Tilt angle: 0° 

▪ Clearance angle: 2.5° 

▪ Rake angle: 2.5° 

▪ Cutting speed: 0.1 m/s 

 

5.2 Software & PC 

Several software packages were required and used for this study, as explained in the following Table 4. 

A regular desktop PC was used for all calculations: AMD Ryzen 7 CPU, Nvidea GeForce GTX 1060 

6GB, 16 GB RAM. 

Table 4: Software packages used for this work 

Software 

Name 

Short Description 

Dewesoft  DAQ software by company DEWESOFT. 

Used for data acquisition, real-time calculation of additional parameters, and data export. 

Weisang 

Flexpro 

Measurement database software with an integrated scripting language.  

Used for the organisation of the measurement data for certain campaigns CO, FBA and 

PB, for error management and quality assurance of the data, as well as calculation of 

intermediate results. 

R-Studio Programming interface software for programming language R. 

Used for the main part of this work; for general descriptive statistics, procedural 

selection algorithm, correlation analysis, machine learning, and plotting of results. The 

scripts and code used are listed in Annex O. 

Hexagon 

MinePlan 

Mine planning software suite. Consists of multiple modules covering the mine planning 

process from drillhole management to deposit modelling/geostatistics, long-term 

planning, to production optimisation and short-term planning. Embedded in a CAD 

environment. 

Used for photographic modelling of ore boundaries during case study as well as 

visualisation of classification results in block models in conjunction with R-scripts. 

Adobe 

Lightroom 

& Photoshop 

Photo organising and processing softwares.  

Used for correction and orthorectification of photos to allow for photographic modelling 

in the case study. 

Golden 

Software 

Surfer 

2d geostatistics and mapping software. 

Used for visualisation of spatial cutting force distribution and partly orthorectification 

of photos. 

Figure 33: 

Customised 

BETEK BSR112 
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5.3 Samples and Rock Cutting Parameters 

This chapter describes the samples and the experimental routines. Five experiments based on linear rock 

cutting experiments were carried out, as shown in Table 5. Three preliminary Experiments CO, GN, and 

GR; followed by the case study Experiments PB and FBA. The main goal was to identify the perspective 

capabilities of machine learning-based rock classification with data that can be acquired by cutting force 

sensors. The five experiments follow a logical structure in which the output of the first three experiments 

leads to a case study that consists of the last two experiments.  

Table 5: Summary of experiments 

Name Nr. of 

samples 

Sample type Sampling area Main Task 

CO 2 Different concrete 

layers 

Artificial Identify features for ML, and 

first prediction of ML-

capabilities 

GN 1 Foliated gneiss Dörfel, Germany Refine knowledge for foliation 

GR 3 Uncracked and 

cracked granite 

Neuhaus-Plöcking, 

Austria 

Refine knowledge for crack 

occurrence 

PB 2 Pb-Zn ore + concrete Reiche Zeche Freiberg, 

Germany / artificial  

Case study 

FBA 3 F-Ba ore + concrete Quarry Dörfel,  

Germany / artificial 

Case study 

 

The first campaign (CO) investigated the differences in the FCR responses for hybrid rocks with 

different hardness levels. This was done with concrete samples composed of up to three types of 

concrete. These concrete types comprised soft, medium, and tough concrete mixtures. The second 

experiment (GR) compared solid rock with cracked rock. Here, granite was used. Two samples were 

treated with high-power microwave radiation to induce a crack network, and one sample was left 

untreated to serve as a reference. The third experiment (GN) investigated the changes in the force 

behaviour during the cutting of foliated rock. Gneiss was used here. The sample was cut from different 

sides. As such, the cutting trajectory in relation to the foliation could be varied. 

The last two experiments, PB and FBA, belong to a case study in which the possibilities of rock 

classification with the help of machine learning are explored in a 3d environment. Here, natural 

heterogeneous ore rocks, cast into a concrete block, were used. The concrete served as “host rock”. The 

aim was to distinguish between the ore and the surrounding concrete. The PB experiment investigated 

samples comprising lead-zinc ore (Pb-Zn), and the FBA experiment comprised fluorite-barite ore 

(F-Ba).  

5.3.1 Sample Sites 

The granite for Experiment GR was acquired by the University of Leoben as part of a research 

cooperation. The granite was produced by Poschacher Natursteinwerk in Neuhaus-Plöcking, Austria.  

The other specimens were sampled in Saxony, Germany. Figure 34 shows a geological map of Saxony 

with the sampling areas. The PB samples were taken from the Reiche Zeche underground mine (1) in 

Freiberg, which belongs to TU BAF and serves as a research and teaching mine. The samples were taken 

from the vein “Wilhelm Stehender Nord”. The area was freshly blasted, and boulders were taken from 

the blasting site. The samples for the FBA and GN experiments were extracted at the quarry Dörfel (2) 

in the Erzgebirge region of Saxony. The quarry is operated by the company Max Bögel. They were taken 
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from a hydrothermal vein that crosses the quarry. The vein is mainly composed of fluorite, barite, quartz, 

and altered gneiss. The host rock is gneiss, which forms the metamorphic basement in the area. Located 

close by (ca. 15 km) is one of the two currently operating German fluorspar mines, Niederschlag (3). 

 

Figure 34: Geological map of Saxony with sampling locations (1 & 2) and the currently only 

operating fluorspar mine in Saxony (3) [158] 

At the sampling point, the vein showed an inclination of ca. 70°. The thickness of the vein lay at 

ca. 1.5 m. The orange lines in Figure 35 a) sketch the approximate outlines of the vein. The quarry 

produces different gneiss products, therefore the vein material is not used for production. Because of 

this, the rock next to the vein was excavated, and the vein itself was left untouched. The sampling process 

can be seen in Figure 35, Panels a) to d). The samples were taken with the help of an excavator and 

transported to TU BAF. Lumps of up to 1.5 m in diameter could be extracted from the vein area.  

 

Figure 35: Sampling of gneiss and fluorite-barite lumps at Dörfel quarry 

 

a) b) 

c) d) 
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5.3.2 Experiment CO – Zoned Concrete 

For this experiment, linear cutting tests were conducted on two concrete blocks. The blocks consisted 

of different zones of ready-to-use concrete mixtures (Figure 36). The blocks were cast using a plywood 

casing of ca. 75 × 60 × 40 cm (inner measures). As shown in Figure 36, the casing was lined with a 

plastic layer to allow the removal of the casing after hardening. During casting, plastic sheets of 

ca. 0.5 cm thickness were inserted. These sheets separated the concrete mixtures during pouring. 

Immediately after casting the blocks, the plastic sheets were removed. This resulted in a defined vertical 

contact zone between the different concrete types and minimised the flow of concrete into the 

neighbouring zone. The blocks were removed from the casing after seven days.  

Two blocks were cast. One block consisted of two different concrete mixtures (Block CO1); the second 

block consisted of three different zones (Block CO2). CO1 comprised medium and tough concrete; CO2 

comprised weak, medium, and tough concrete. The main focus of this study lies on block CO2, 

consisting of 3 different zones. CO1 served as a failsafe and a more robust data foundation should the 

results of CO2 be too unreliable.  

 

Figure 36: Zoning of test block during casting (left) and cutting (right) 

Table 6 shows an overview of the concrete types used and their respective characteristics. The blocks 

were tested with a Schmidt hammer prior to cutting to approximate of the rock strength right before the 

actual cutting experiments were carried out. Schmidt tests are correlated with UCS and cutting resistance 

[85, 86, 159].  

A Schmidt hammer of type NR with an impact energy of 2.207 Nm was used. Ten vertical repetition 

measurements were executed for each zone, and the arithmetic mean, and standard deviation were 

calculated. The tests were spaced at least 5 cm apart from each other. The cube uniaxial compressive 

strength was estimated with the calibration curve from the manufacturer of the hammer to allow 

comparison to the nominal rock strength from the datasheets of the concrete mixtures (Annex P on CD). 

The results are shown in Table 6. Generally, the cUCS of the cast blocks was lower than the nominal 

rock strength. Furthermore, the hardness of Zones 2 and 3 was lower in CO2 than in CO1.  
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Table 6: Materials used for the construction of the test specimen; Schmidt hammer tests were 

conducted prior to cutting tests; * – extrapolated value 

Product Name cUCS 

(nominal) 

[MPa] 

CO1 

RNR ± σ 

 

CO2 

RNR ± σ 

 

CO1 

cUCS 

[MPa ± σ] 

CO2 

cUCS 

[MPa ± σ] 

Kemmler 

Fertigbeton 

B25 (C25/30) 

Zone 1 ≥25 – 15,8 ± 3,5 – 12.0* ± 3.6 

Maxit Ton 908 

FB 

Zone 2 ≥ 45 34,9 ± 3,6 22,8 ± 3,9 34.9 ± 3.6  19.7 ± 4.5  

PCI Repaflow® 

plus 

Zone 3 ≥ 85 46.5 ± 6.0 40.3 ± 3.3 57.0 ± 10.7 45.3 ± 5.8 

 

Before cutting each layer, the surface of the blocks was levelled. The first cut of each test, which is an 

unrelieved cut, was not considered for the analysis. The subsequent were placed side by side, and as 

such were semi-relieved cuts.  

Table 7 shows the chosen cutting parameters. The cutting depth and s/d ratio were varied on three levels. 

The cutting depth was varied at 6, 8 and 12 mm. The s/d ratio was varied in three levels: 2, 3 and 4. This 

resulted in seven levels for the spacing. The design causes three tests (Nr. 3, 5 and 6) to share a mutual 

absolute spacing of 24 mm. This mimics the crescent-circular movement of a pick during a passthrough 

with fixed spacing. The cutting depth levels of 6, 8 and 12 mm represent the rotation angle of a pick on 

a cutting drum of 30°, 42°, and 90°, respectively (for details to crescent cut, see Figure 13, p. 16). 

Table 7: Cutting parameters for the experiments; *: fixed spacing cuts 

Test Nr. Depth of cut d 

[mm] 

s/d-ratio Spacing s  

[mm] 

Represents 

rotational 

angle of [°] 

Nr. of 

individual cuts 

1 6 2 12  42 

2 6 3 18  29 

3 6 4 24* 30 21 

4 8 2 16  33 

5 8 3 24* 42 21 

6 8 4 32  16 

7 12 2 24* 90 21 

8 12 3 36  14 

9 12 4 48  10 

 

A whole layer of the block’s usable surface was cut for 

each test to obtain data that allowed for a spatial 

analysis. It also equalises extreme events in single cuts, 

the benefit of this is discussed in multiple works [33, 57, 

122, 158]. While the entire surface of a layer was cut, 

safety strips were left at the edges (Figure 37). No 

measurements were made there. On the sides and the 

end of the block, they were ca. 10 cm wide. Also, the 

first 2 cm of a cut were omitted. This prevented 

measuring edge effects, where the cutting forces are 

lower because the confinement situation is different. 

The number of cuts ranged from 10 to 42 depending on 

the spacing and the width of the surface. 

 

x z 

y 

Cut area 

Figure 37: Scheme of omitting sides of the 

block surface from measurement 
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5.3.3 Experiment GN – Anisotropic Rock Gneiss 

The gneiss from the Erzgebirge region shows a clear foliation. Due to this, its rock mechanical properties 

are highly anisotropic. As such, it was suited as a specimen for investigating the influence of anisotropy 

on FCRs. The rock mechanical properties of the gneiss have been tested at the Laboratory for Rock 

Mechanics at the Institute of Soil and Rock Mechanics of TU BAF.  

 

Figure 38: Gneiss samples, a) tested along foliation and b) normal to foliation  

The UCS tests were conducted with core samples of ca. 50 × 50 mm (d × l). The BTS tests were 

conducted with samples of 50 × 25 mm. Figure 38 shows a UCS sample tested along (a), and a sample 

tested normal to the foliation (b). The different cracking behaviour is clearly visible. This results in a 

mean UCS of 175 MPa parallel to the foliation. The orthogonal UCS was only 84% of the parallel UCS. 

This result is relatively unusual. Normally, a loading along the bedding plane is reported to result in a 

lower UCS [160]. However, Hakala et al. (2007) reported a high UCS for low and high foliation angles 

(ca. 20° and 80°, respectively) and the lowest for ca. 45° foliation angle. Their experiments were 

conducted on Olkiluoto mica gneiss from Finland [161]. Cho et al. (2012) also report similar high UCS 

values for 0 and 90° foliation and the lowest for 45°–60°. However, they also received the highest 

variation for 0 and 90° foliation angles. Their experiments were carried out on Asan gneiss, Yeonchon 

schist, and Boryeong shale [162].  

The values for the BTS follow the general expectations. A loading along the foliation axis results in the 

lowest strength values (load case B3 in Table 8)—the tensile stress acts orthogonal to the bedding planes. 

The values for B3 are ca. 55% compared to the other two bedding directions. The gneiss has a density 

of 2.72 t/m³. The documentation of the rock mechanical tests can be found in Annex P (on CD). 

Table 8: Rock mechanical properties of gneiss specimen 

 UCS BTS 

Load Case U1 U2 B1 B2 B3 

Mean [MPa] 175.0 147.6 15.5 16.0 8.7 

σ [MPa] 11.9 18.8 1.79 1.04 3.3 

 E-modulus     

Mean [MPa] 35.4 26.5    

σ [MPa] 0.6 2.9    

Nr. of Samples 10 10 3 11 10 

 

  

a) b) 



Chapter 5 Material and Methods 

48 

For the cutting experiments, two cuboid samples were prepared from natural lumps. Figure 39 b) on the 

next page shows a photo of a sample before preparation. A circular rock saw was used to cut the sample 

into shape (c). Three different cases were investigated concerning foliation. They were carried out on 

different sides of the same sample and are explained in Table 9. 

Table 9: Cutting directions in relation to foliation planes 

Case Symbol Explanation 

A  Foliation along to the x-y-plane. Theoretically, this results in the heaving of layer-chips 

along the bedding plane. 

B  Foliation along y-z-plane. Higher forces expected since no heaving of chips should occur. 

C 
 

Foliation along x-z-plane. Higher forces expected since no heaving of chips should occur. 

 

Panel b) shows these three cases; the black arrow indicates the cutting direction. The cutting parameters 

that were used are shown in Table 10. The right side of the table shows the cutting pattern. One 

unrelieved cut for each test and three to four subsequent semi-relieved cuts were executed. Normally, a 

total cutting length of 2 m per test is recommended [41]. Due to the limited block size, only ca. 75 cm 

per set could be executed. The order of experiments was as follows: first, all unrelieved cuts for a layer 

were conducted. In the second step, the three semi-blocked cuts were added to the respective fully 

blocked cuts (Table 10, Cutting scheme). A safety distance of at least 5 cm was maintained between 

neighbouring sets to ensure that they did not influence each other. After the surface was fully consumed 

by the cuts, it was levelled for subsequent tests. This routine was executed for all three tested sides.  

Table 10: Cutting parameters for Experiment GN and schematic of cutting pattern  

Test 

Nr. 

Cutting 

depth d 

[mm] 

Spacing 

s 

[mm] 

s/d-

ratio 

Foliation 

case 

Cutting scheme 

1 4 UR UR A  

2 4 8 2 A 

 
Red - unrelieved cut 

Black - semi-relieved cut 

3 4 12 3 A 

4 4 16 4 A 

5 6 UR UR A 

6 6 8 1.33 A 

7 6 12 2 A 

8 6 16 2.67 A 

9 4 UR UR B 

10 4 8 2 B 

11 4 12 3 B 

12 4 16 4 B 

13 6 UR UR B 

14 6 8 1.33 B 

15 6 12 2 B 

16 6 16 2.67 B 

17 4 UR UR C 

18 4 8 2 C 

19 4 12 3 C 

20 4 16 4 C 

21 6 UR UR C 

22 6 8 1.33 C 

23 6 12 2 C 

24 6 16 2.67 C 
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Figure 39: Gneiss specimen for Experiment GN 

5.3.4 Experiment GR – Uncracked and Cracked Granite 

Previous results of this experiment have been published in five publications [38, 105–107, 163] and 

further details can be found there. The focus of these works lay in examining the effect of microwave 

radiation on the excavatability of granite. In the present study, these results are extended to address the 

following questions: 

▪ How do the FCRs change with changing cracking state of the rock? 

▪ Apart from FCRs, could additional features be feasible to identify a changing cracking state of 

the rock? 

For the experiments, three granite blocks with dimensions of 50 × 50 × 30 cm were used for the cutting 

experiments. One surface of the first and second block was treated with microwave radiation in a 

“chessboard” spot pattern for 30 s and 45 s per spot, respectively. The distance between the spots was 

90 mm. The third block was left untreated. The blocks were treated at the Sandvik research facility in 

Zeltweg, Austria, by MU Leoben as part of a cooperation between the University of Leoben and TU 

BAF. These blocks are called B30, B45, and B0, respectively. The described tests were performed with 

samples of “Neuhauser Granite”. This granite comprises 27% quartz, 53% feldspar, and 20% mica. 

Single minerals can be up to 4 mm in size. The texture is granular with some xenomorphic crystals. The 

rock shows the following parameters [106]: 

▪ UCS: 210 MPa  

▪ Cerchar abrasivity Index: 4.2 

▪ Density: 2.67 t/m³ 

Microwave irradiation was performed with a 24 kW microwave source operating at a frequency of 

2450 MHz with an open-ended waveguide directed at the rock surface (Figure 40 a). Corresponding to 

the size of the waveguide, these spots have dimensions of approximately 5 cm in diameter. Due to the 

microwave radiation, damaged and cracked zones occurred around the radiation spots. Here, the material 

showed partial minor spalling. Some spots showed small drops of molten rock in the centre of the 

radiation spots. Between the radiation spots, a network of larger cracks formed. The surface of the rock 

can be seen in Figure 40 b), and the crack network induced by the radiation (for B45) is shown in Panel 

c) of the figure. Further details on the irradiation effects can be found in [107]. 

a) b) c) 
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Figure 40: a) Microwave and waveguide [163]; b) detail of 30 s radiated block before cutting;  

c) crack marking fluid during the experiments (enhanced with Photoshop) 

The following cutting parameters were chosen: 

▪ Spacing: 8 / 12 mm 

▪ Cutting depth: 4 mm 

One half of the block was cut with s = 8 mm, 

the other with s = 12 mm. All other cutting 

parameters were constant. During the cutting of 

B45, the block failed while cutting the fifth 

layer. Because of this, only four layers could be 

analysed for B45. Figure 41 shows the failed 

block after cutting the fifth layer. In the figure, 

it can also be seen that due to the cracks, 

overbreak occurred where macrocracks were 

located (a). Also, the crack marking liquid is 

still visible (b), indicating a deeper penetration 

of the cracks into the rock mass. 

 

Figure 41: Failed block B45 after cutting of 

5th layer [163]

For the samples, the following number of layers was cut: 

▪ B0 6 

▪ B30 8 

▪ B45 4 

A new pick was used for each block to equalise the influence of the tool’s wear. Subsequent layers were 

cut directly without levelling the surface and placed exactly over the cuts of the preceding layers. 

5.3.5 Case Study PB and FBA – Lead-Zinc and Fluorite-Barite Ores 

The sample preparation process of the last two experiments is similar. Hence, they are described together 

in this chapter. These samples consist of lumps of vein material cast into a surrounding concrete block. 

As a natural and heterogeneous material, the ore underlies relatively large variations. Three samples 

comprised a fluorite-barite ore (FBA1–FBA3), and two comprised a lead-zinc ore (PB1 and PB2). The 

FBA samples were obtained in the quarry Dörfel; the PB samples were obtained from the Reiche Zeche 

research and teaching mine, as described in Chapter 5.3.1.  

Figure 42 shows all five samples. The lead-zinc ore consisted mainly of galena, sphalerite, to large 

portions of pyrite and a patch of altered gneiss. In smaller portions, chalcopyrite and arsenopyrite can 

be found in this ore [164]. Although no in-depth mineralogical analysis was performed, this is supported 

by handheld X-ray fluorescence analysis (XRFA) measurements on these samples [165]. Apart from the 

a) b) c) 
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patch of altered gneiss in PB1, the PB samples are comparably homogeneous and show no visible 

anisotropy, cracks, or cavities. 

The FBA samples mainly consist of fluorite, barite, quartz, and altered gneiss. The samples show a 

certain oriented layering and are very heterogeneous. This includes larger zones where one mineral is 

dominant (either barite, fluorite, or altered gneiss) as well as cavities and quartz bands. As such, a very 

heterogeneous FCR behaviour is expected here. In terms of classification with ML, these samples serve 

as “complicated” samples, whereas the PB samples serve as “easier” samples.  

 

 

Figure 42: All samples of Experiments FBA and PB 

PB1 

PB2 

FBA3 

FBA1 FBA2 
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Table 11 shows the rock mechanical properties of the FBA samples. The UCS along the layering is 

approximately 50% higher than the UCS perpendicular to the layering (120.1 resp. 81.1 MPa). 

Additionally, both sides show a relatively high standard deviation. The standard deviation for the tests 

along and perpendicular to the layering was 22.7 and 15.04 MPa, respectively. This underlines the 

heterogeneity of these samples.  

Table 11: Rock mechanical properties of the fluorite-barite ore 

 UCS BTS 

Load Case U1 U2 B1 B2 B3 

Mean [MPa] 120.1 81.1 5.3 4.9 5.1 

σ [MPa] 22.7 15.04 2.1 0.4 3.2 

      

 E-modulus     

Mean [MPa] 22.7 18.6    

σ [MPa] 4.2 2.7    

Nr. of Samples 10 11 4 4 3 

 

Table 12 shows the rock mechanical results for the PB samples. Two samples were analysed with UCS 

tests, and nine samples were analysed with BTS tests. The tests were conducted at the Laboratory for 

Rock Mechanics at the Institute of Soil and Rock Mechanics of TU BAF. The two UCS tests showed 

values of 87.1 resp. 56.2 MPa UCS. The BTS was 5.3 MPa. For these samples, no layering orientation 

could be found. 

Table 12: Rock mechanical properties of the lead-zinc ore *since only two UCS tests could be 

conducted, the original values are given in brackets 

Lead-Zink ore UCS [MPa] E-modulus  BTS [MPa] 

Mean 71.6* 

(87.1 / 56.2) 

ca. 75 5.3 

 

σ  - - 2.1 

Nr. Of Samples 2 2 9 

 

Sample Block Preparation 

The preparation of the samples was carried out “upside down” after the following sequence: 

1. Cutting the ore specimen with the diamond circular saw so that at least one even surface is 

created. 

2. Inserting the ore samples with the flat side facing down in the casting form. 

3. Filling the casting form with PCI Repaflow mixture. 

4. After seven days of hardening, removing of the casing and turning of the block so that the bottom 

side with the ore sample now faces up. 

5. Levelling of the sample on the cutting test rig before the first experiment. 

The same PCI Repaflow Plus concrete mixture as for Experiment CO was chosen, which shows a 

nominal compressive strength of 85 MPa after seven days (datasheet: see Annex P). The time until the 

samples were cut was approximately 30 days. The sizes of the samples can be seen in Table 13. In Figure 

43 a), the position of a sample in the cast concrete block is shown. A upside-down prepared sample, 

right after casting is shown in Panel b).  
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Figure 43: a) 3d-model of block FBA2, b) upside-down block after casting 

Experimental Routine 

Due to the required amount of data for 3d-modelling, only a limited cutting parameter variation could 

be selected. The samples for Experiment PB were cut using an approach where the cutting depth and 

the spacing were varied in three steps. For each block, only two parameter combinations were chosen. 

Since the s/d-ratio influences the results, it was also varied at two levels for this experiment. Details of 

the test plan can be seen in Table 13.  

For Experiment FBA, a slightly modified testing plan was used. Following the assumption that the 

spacing is usually not variable during excavation, a fixed spacing was chosen. The cutting depth was 

varied on two levels. Originally, 7 and 14 mm were planned. The s/d-ratio should follow the levels 2 

and 4, respectively. As such, the spacing of 28 mm was chosen. After the experiments on block FBA1, 

the testing plan had to be adjusted, since 14 mm cutting depth resulted in very large breakouts on the 

edges of the block. For the remaining two blocks, the cutting depth was lowered to 6 and 12 mm and 

the spacing was adjusted to 24 mm. This setup roughly follows the presumption of a pick position at 

30° (half of maximum cutting depth reached) and 90° (maximum cutting depth reached) revolving angle 

with regards to the crescent cut (see Chapter 2.1.2, subsection Cutting Parameters During Regular 

Excavation). 

Table 13: Block sizes and cutting parameters for experiment PB and FBA 

Material Block Sample size  

(x × y × z)  

[cm] 

Layer Cutting 

depth 

[mm] 

Spacing 

[mm] 

s/d 

PB 

1 57 × 74 × 25 
1–7 4 8 2 

8–12 6 12 3 

2 57 × 74 × 25 
1–5 6 12 3 

6–9 8 16 2 

FBA 

1 45 × 50 × 28 
1–9 7 28 4 

10–14 14 28 2 

2 45 × 50 × 28 
1–10 6 24 4 

11–20 12 24 2 

3 50 × 60 × 30 
1–8 6 24 4 

8–18 12 24 2 

5.4 Data Processing  

Figure 44 shows the data processing workflow followed, with all the respective outputs. Five 

experiments based on linear rock cutting experiments were carried out (i.e., three preliminary 

Experiments CO, GN and GR, followed by the case study PB and FBA). The main goal was to identify 

the perspective capabilities of machine learning-based rock classification with data that can be acquired 

 

Cut 
area 

Leftover 
area 

Sample 

Concrete 
block 

a) b) 
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by cutting force sensors. The five experiments follow a logical structure where the output of the first 

three experiments leads to a case study that consists of the last two experiments.  

 

Figure 44: Logical structure of experimental routine 

Generally, Experiment CO explored the behaviour and potential of ML on the example of composite 

concrete samples that comprise different toughness zones. The data received from CO were used to 

select a set of features based on FCR that can be further used. Based on this, k-means clustering was 

conducted, and the results were assessed in terms of classification accuracy and spatial precision. 

Further, the importance of all used features was examined based on a distributed random forest 

classification to identify redundancy. In addition, a correlation analysis was performed to verify the 

results. This led to a refined set of features. In order to extend the results of the first experiment to 

inhomogeneous rock states, the two Experiments GR and GN were conducted. GR explored the effects 

of crack occurrences, and GN explored the occurrence of anisotropic rock mechanical behaviour on the 

example of foliation in gneiss. This led to the addition of a new feature, the contact ratio (CR) to the set 

of features. The obtained findings were used to conduct the case study. Here, the chosen features were 

used to classify the five rock samples of type FBA and PB into ore and concrete. This allowed for a 

comparison of the accuracy and amount of data required for a reliable classification result. The specifics 

of the employed methods are explained in the following. 

5.5 Force Component Ratio Calculation 

To extend the knowledge that Fz/Fx can serve as an indicator for the rock being cut, the concept was 

extended to a) real-time data instead of mean values and b) to the other force components Fy and Fres. 

Various descriptive statistics characterise the real-time FCR data. These statistics serve as features—

input variables—for the machine learning algorithms. This approach can be seen as a method of feature 

engineering. Feature engineering is an important part of the machine learning workflow that ensures the 

performance of these algorithms [166]. 
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The ratios between the forces Fx, Fy, Fz, and Fres are calculated, resulting in 12 different ratio 

combinations including reciprocals. Table 14 shows all the possible combinations of FC to form a FCR 

as defined by Equation (19).  

𝐹𝑖

𝐹𝑗
= 𝐹𝐶𝑅 (

𝐹𝑖

𝐹𝑗
) 

(19) 

 

Here, an FCR(Fi/Fj) is defined as the ratio between two force components Fi and Fj. Fi and Fj can be Fx, 

Fy, Fz, and Fres. 

Table 14: All force component ratios taken into consideration  

Numerator i 

 

Denominator j 

Fx Fy Fz Fres 

Fx 1 Fy/Fx Fz/Fx Fres/Fx 

Fy Fx/Fy 1 Fz /Fy Fres/Fy 

Fz Fx/Fz Fy/Fz 1 Fres/Fz 

Fres Fx/Fres Fy/Fres Fz /Fres 1 

 

As stated in Chapter 2.1.4, it is known that the state of the rock integrity and the rock type influence 

mean forces, maximum forces as well their ratio. As such, it is inferred that the FCR show a similar 

behaviour. Figure 45 shows two typical force diagrams from the cutting experiments of sample CO2.  

 

Figure 45: a) & b) Typical force diagrams for different cutting parameters; c) & d) real-time data and 

moving-window average of FCR(Fres/Fx)  

 

a) b) 

c) d) 
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The three different rock zones are marked in the diagrams. Panel a) shows a cut that was carried out 

with the smallest cutting parameters for this experiment (d = 6 mm, s = 12 mm). Panel b) shows a cut 

with the highest cutting parameters (d = 12 mm, s = 48 mm). One can see the different levels of the 

forces Fx, Fy, and Fz and their typical sawtooth-like behaviour. The magnitudes of Fx and Fz are roughly 

in the same range; Fy is minor to these two forces.  

The diagram also illustrates that while the absolute magnitude of the force levels differs strongly 

between a) and b), similar behaviour can be seen with respect to the different rock zones. The cutting 

forces are lowest, and few peaks occur in Zone 1. In Zone 2, the general force levels are higher, and 

more peaks can be observed. In Zone 3, large oscillations of the forces can be seen; also, the general 

force levels are the highest. However, the differences between the two cutting parameter sets are higher 

than between the different concrete zones. As such, it would not be possible to trace the rock type based 

on the cutting forces when the cutting parameters are unknown. 

The Panels c) and d) at the bottom of the figure show the nature of the FCR on the example of 

FCR(Fres/Fx). The real-time FCR data are shown as orange dots. A moving average smoothing of the 

raw data is shown as a blue line. It can be seen that the real-time data appear clustered in a band with a 

range of 0.8 to 1.1. Also, scatters of larger values up to ca. 1.5 and lower values up to -1.5 can be seen. 

These “outlier” scatters appear more often for Zone 3. The moving average shows that the values for 

this FCR are lowest in Zone 1, medium in Zone 2 and highest in Zone 3. Also, it can be seen that the 

values of FCR(Fres/Fx) do not differ so much between the two cutting parameter sets as much as the raw 

force components do. Rather, FCR(Fres/Fx) differs more in dependence of the zone number. 

 

Filtering and Truncation of Values 

To calculate the real-time FCR, two filters were applied to improve data quality. The first one only lets 

data points where Fz > 0.5 kN pass. This serves as a filter to only take data where the pick was in contact 

with the rock. Filtering of Fz > 0.5 kN was not used to calculate the contact ratio. 

The second filter truncates all FCR values <−20 and >20. This is necessary because when the 

denominator of the FCR comes close to zero and the numerator does not, the FCR drifts to very high 

(infinite) values. This happens right after the breakout of a major chip when the pick swings freely for 

a short time or when cutting forces are generally on a low level—especially for Fx. Also, Fy tends to 

oscillate closer to 0 kN. To mitigate the influence of this, this truncation of the FCR was implemented. 

Ca. 95% of the FCR values lie in the range of up to ±10, so only rare extreme values are truncated. 

Without truncation, values over ±50,000 have been recorded. Figure 46 shows this exemplarily. A plot 

of the distribution density for Fres/Fx is shown there. In the figure, a gap for values between ca. −1 and 1 

can be seen. Its reason is not entirely clear, but it could appear due to filtering data points with Fz<0.5 kN.  

  

 

This behaviour is the cornerstone of the approach investigated in this work. 
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Figure 46: Raw distribution density curves for FCR(Fres/Fx) for Experiment GR 

5.6 Procedural Selection of Features 

For the training of machine learning algorithms, feature engineering is of crucial importance. In the 

following, the process of selecting the FCR-based features is outlined. The selected features were used 

further in the k-means analysis, where the set of features was refined and extended. This analysis was 

only conducted for Experiment CO. 

Generally, cutting force data are noisy, high density data not suitable for direct interpretation. Following 

the experimental routine with a sampling rate of 1000 Hz, approximately 4000 data points were acquired 

per cut. Each measurement consists of eight channels: timestamp, Fx, Fy, Fz, Fres, x-, y- and z-position. 

For this analysis, the data of each set were sub-grouped according to the three Zones 1, 2, and 3 of 

experiment CO. The FCRs are calculated from the real-time data. Subsequently, descriptive statistics 

for the FCR are calculated. The following descriptive statistics were chosen to describe the behaviour 

of the FCR: 

▪ �̅� – arithmetic mean 

▪ �̅�𝑔𝑒𝑜𝑚 – geometric mean 

▪ �̃� – median 

▪ Q0.95 – 0.95-quantile 

▪ IQR – interquartile range 

▪ 𝑣 – variation coefficient 

 

The geometric mean is reported to be useful for terms that are formed by a multiplication or division 

operation. It has also been a meaningful indicator for assessing differences in magnetic susceptibility 

between rock populations [167]. For the estimation of the 0.95-quantile and IQR, a type 7 estimation 

after Hyndman and Fan (1996) was employed [168]. It is the standard in the R language. Based on these 

descriptors, a procedural routine was designed to check whether an unambiguous assignment of the 

descriptors to the rock zones was possible irrespective of the cutting parameters. 

Applying these descriptive statistics to the signals of the different FCRs led to 72 combinations of the 

six descriptive statistics describing the twelve FCRs. These features are encoded as in the following 

Table 15. 
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Table 15: Naming scheme of FCR features 

  Statistical descriptor  

  �̅� �̅�𝑔𝑒𝑜𝑚 �̃� Q0.95 IQR 𝑣 

  Statistical descriptor code 

  MEA MED GM Q95 IQR VAR 

FCR FCR-

code 

Feature codes 

Fx/Fz XZ XZMEA XZMED XZGM XZQ95 XZIQR XZVAR 

Fz/Fx ZX ZXMEA ZXMED ZXGM ZXQ95 ZXIQR ZXVAR 

Fx/Fres XR XRMEA XRMED XRGM XRQ95 XRIQR XRVAR 

Fres/Fx RX RXMEA RXMED RXGM RXQ95 RXIQR RXVAR 

Fz/Fres ZR ZRMEA ZRMED ZRGM ZRQ95 ZRIQR ZRVAR 

Fres/Fz RZ RZMEA RZMED RZGM RZQ95 RZIQR RZVAR 

Fy/Fx YX YXMEA YXMED YXGM YXQ95 YXIQR YXVAR 

Fx/Fy XY XYMEA XYMED XYGM XYQ95 XYIQR XYVAR 

Fy/Fz YZ YZMEA YZMED YZGM YZQ95 YZIQR YZVAR 

Fz/Fy ZY ZYMEA ZYMED ZYGM ZYQ95 ZYIQR ZYVAR 

Fy/Fres YR YRMEA YRMED YRGM YRQ95 YRIQR YRVAR 

Fres/Fy RY RYMEA RYMED RYGM RYQ95 RYIQR RYVAR 

 

Figure 47 shows the flowchart of the applied evaluation routine. The routine was implemented in R-

Studio. The code can be accessed in Annex O. At first, the raw force data, grouped by cutting parameters, 

were imported. The force data were then grouped according to the zone. The signals for all the force 

component ratios were then computed for each zone. 

 

Figure 47: Flowchart for evaluation of material characterisation suitability of combinations of FCR 

and descriptive statistics 

For each FCR signal, the six descriptive statistics mentioned above were calculated separately for each 

rock zone. The 72 resulting features were evaluated for their suitability for material classification. A 

combination of FCR and descriptive statistics is further called FCR-feature, as they serve as features for 

machine learning. For each given FCR-feature, a two-step check was carried out. In the first step, it was 

checked whether the calculated values formed unambiguous value ranges for each set, meaning that the 

values did not overlap between these individual zones. This situation can be seen in Figure 48 a) on the 

example of FCR(Fres/Fx)–Q0.95. The Q0.95 values form a band for each zone, and there is no overlap 
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between the values of the zones. This means that any of these values can be attributed precisely to one 

concrete zone—irrespective of the cutting parameters. If this condition was met, the combination of 

FCR and the descriptive statistic was classified as “suited”. 

The other two classification possibilities are shown in Panels b) and c) of Figure 48. Panel b) shows the 

situation where no such value corridor can be identified. Here, the values for Q0.95 of FCR(Fy/Fx) range 

from 0.39 to 1.01 for Zone 1, from 0.80 to 1.39 for Zone 2 and from 0.87 to 2.99 for Zone 3. It can be 

seen that the value corridors that are formed overlap. As such, no clear distinction between rock types 

irrespective of the cutting parameters is possible, and Q0.95 of FCR(Fy/Fx) would be classified “unsuited”. 

However, as shown in Panel c), if only the three sets 3, 5 and 7 are considered, very clear value corridors 

are formed. Then the values range from 0.61 to 0.68 for Zone 1, from 1.03 to 1.08 for Zone 2 and from 

1.59 to 1.66 for Zone 3. As described earlier, the three sets 3, 5 and 7 share the same spacing and, as 

such, would represent members of a perfect crescent cut at different cutting depths. Consequently, the 

algorithm classifies Q0.95 of FCR(Fy/Fx) as “partially suited” because the experiments that share the same 

spacing form a distinct value corridor. 

 

Figure 48: Exemplary results for a) FCR(Fres/Fx); b) and c) for FCR(Fy/Fx); horizontal lines show 

value corridors for Q0.95 

  

 

a) 

b) 

c) 

Zone 1 

Zone 2 

Zone 3 

Q0.95 

Q0.05 

Q0.25 

Q0.75 

Mean 

No overlap: suited 

No overlap between sets 3, 5 and 7: partially suited  

Overlap: unsuited  
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5.7 Image-Based Referencing and Rock Boundary Modelling 

To compare the machine learning results with the real rock boundaries, the latter must be translated into 

the data environment of the block models. The workflow uses techniques derived from face mapping 

and cartography with orthophotos. An orthophoto usually is an aerial or satellite image geometrically 

corrected (orthorectified) such that the scale is uniform. It can be used to measure distances because it 

is an accurate representation of a surface, having been adjusted for topographic relief, lens distortion, 

and camera tilt [169, 170]. Here, the orthorectification process only included distortions of the lens and 

the perspective. 

A digital photograph of the surface of the block was taken for each cut layer of the block. The images 

were manually taken at an angle close to 90° to the surface. Before a photo was taken, four reference 

points were painted with an Edding pen on the four corners of the block. The coordinates of these points 

were measured with reference to the tip of the pick (Figure 49). The images were orthorectified using 

either Adobe Lightroom, Photoshop, or Golden Software Surfer. 

The pictures prepared in this way were then further processed in Hexagon MinePlan. First, empty layers 

were created on the z-coordinates of the cutting layers. The orthophotos were then draped onto these 

layers. Hereby, the four coordinate-referenced edge points were used to reference the photo. Then, 

boundaries between the two different rock types were digitised layer by layer. Finally, all digitised 

boundaries were connected to form a 3d-body. As such, the geometry of the rock boundaries could be 

translated into the intrinsic coordinate system of the rock cutting machine. Based on the resolution of 

the camera and the size of the sample, as well as optical inaccuracies, a total inaccuracy of up to 5 mm 

is suspected for the boundary digitisation. Additional information on digitisation accuracy is given in 

Annex H. 

 

Figure 49: Workflow of modelling the 3d-boundaries of ore samples for the case study 

The 3d-models created from the photos are shown in Figure 50. On the left, the FBA-samples are shown 

in red; on the right, the PB-samples are shown. The black box illustrates the region that was cut during 

the experiments; the brown area shows the leftover area that was not cut. The ore boundaries were coded 

into a regular MinePlan block model. This block model was then exported as a CSV file for further 

processing in R-Studio.  
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Figure 50: 3d-models of all specimens created from the photographic documentation, grey cubes for 

size reference 

5.8 Block Modelling and Gridding 

Block models are a core tool in mine planning. They represent a digitised simplification of the deposit 

model. In environmental sciences, similar techniques are used to create spatial models of, for example, 

toxicant distribution. In this work, a similar approach is used to model the spatial distribution of features 

for machine learning classification. Normally, the values stored in the block model are interpolated from 

sparse data (drill holes, sampling face sampling, etc.). Here, dense, continuous, but noisy information is 

available. Therefore, standard interpolation routines are not useful. Here, dense data must be simplified 

without losing the required information value. This is solved through a spatial moving search radius 

solution. Figure 51 shows a visualisation of the modelling process. Panel a) shows how the data of three 

subsequent cuts would lie in relation to the referenced images. Panel b) shows the same situation with 

the digitised rock boundaries.  

Panel c) shows a block model laid over this situation. The block model already is coded with the rock 

types concrete (grey) and fluorite ore (brown). The blocks (also called grid nodes) are spaced 10 mm, 

both for 2d- and 3d-uses. The algorithm now calculates the descriptive statistics for all blocks from all 

input data points that are within the search radius (SR) of each respective block. An SR of 100 mm is 

used if not stated otherwise. This search radius is visualised by the teal sphere in the panel. A block 

model can have ca. 50,000 individual blocks; the algorithm performs the process for each block.  

FBA1 

FBA2 

FBA3 

PB1 

PB2 

10 cm 
30 cm 

Scale: 
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Figure 51: Visualisation of block modelling procedure, explanation in text 

This means that the search radii of neighbouring grid points overlap each other. The result is a smoothed 

appearance of the gridded result, similar to a Gaussian filter used in digital image processing. The 

combination of grid spacing and search radius has been chosen as the result of three supervised theses 

related to this topic [165, 171, 172]. 

Additionally, a filter was applied to remove blocks that were too disturbed by the pick having only 

limited contact with the rock. As such, erroneous data were filtered out. For this filter, the contact ratio 

(CR) was formulated: 

𝐶𝑅 =
𝑛𝑑𝑝(𝐹𝑧 < 0.5 𝑘𝑁)

𝑛𝑑𝑝
 (20) 

Where ndp is the number of data points within the search radius; ndp(Fz < 0.5 kN) denotes the number of 

data points within the search radius where Fz is less than 0.5 kN. During the creation of the feature 

block models, a filter of CR > 0.55 was used to filter out blocks that were highly disturbed by the pick 

being in the air. The used threshold of 0.55 was chosen by qualitative assessment among the values 0.45, 

0.5, 0.55, 0.6 and 0.65. 

A simple divide-and-conquer algorithm was used to calculate the features stored in the block model. 

Without this, the algorithm would have to calculate the 3d Euclidean distance of every grid point to 

every data point. For sample FBA3, this would be ca. 50,800 grid points and ca. 2.45 million data points. 

This would result in 125 billion combinations to compute. This process can take up to 4 h. The divide-

and-conquer algorithm divides the spatial space into n subsets. Figure 52 illustrates this algorithm with 

a simple example. Given a regular grid of points with 38 × 40 points, we compute the number n of grid 

points within a search radius for each grid point. In this example, it would result in 2.3 million 

operations without divide-and-conquer. With divide-and-conquer, the area is divided into three equal 

parts along one axis. In the example, each subset now holds 1/3 of the total points. Each of the points 

now only has to be compared to the other points of the subset plus those points of the neighbouring 

a) b) 

c) d) 
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subset whose distance from the border of the subset along the dividing axis is smaller than the search 

radius. The example has a spacing of the grid points of four units and a search radius of ten units. This 

means that instead of calculating 2.3 million combinations, only 0.9 million combinations must be 

calculated. 

 

Figure 52: Principle of divide and conquer algorithm in this work, dotted circle – search radius 

Furthermore, the calculations on the three subsets can be executed in parallel, which means that the 

number of calculations defining the computation time equals the maximum number of combinations in 

the subsets (353,600). This would reduce the computation time to ca. 15% compared to the standard 

algorithm. 

In this work, the spatial space was divided into eight subsets along the x-axis, and calculations were 

carried out in eight parallel threads.  

The block model was populated with the following data: 

▪ Coordinates of the block (x-, y-, z-coordinates) 

▪ FCR-features for material classification 

▪ Contact Ratio 

▪ True rock type 

▪ Mean values of raw forces (Fx, Fy, Fz, Fres) if required 

5.9 Correlation Analysis 

Correlation analysis is a statistical method to evaluate the strength of a correlation between two 

variables. Hereby, high correlation means that two variables have a strong relationship with each other. 

A weak correlation means that the variables are hardly related [173]. Correlation analysis can be 
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conducted using either Pearson, Spearman, or Kendall algorithms. Pearson correlation analyses the 

correlation based on the assumption of a linear relationship. The Pearson correlation is used to explore 

the data correlation in Figure 22, p. 26. It is calculated with the following formula. 

 

Where: A and B are a pair of random variables; 𝜎𝐴 and 𝜎𝐵 is the standard deviation of A and B, 

respectively; cov is the covariance. 

The other two correlation coefficients represent rank correlation analysis. As such, they calculate the 

correlation for a monotonous correlation function [174]. Due to their nature, they are resistant to outliers 

and do not require a linear relationship. For the main part of this work, the Spearman correlation 

coefficient (Rs) is used. It is calculated using the following formula: 

 

Where dr is the difference between the two ranks of each observation and n is the number of 

observations. To test for statistical significance, the p-value was compared to the significance level of 

0.01. All tests were performed using the statistical core functions and the package psyche of R [175]. 

The code can be found in Annex O. 

5.10 Regression Analysis of Effect 

Linear regression is performed to estimate the influence of the parameters s and d on the force levels for 

Experiment GN.  

 

Hereby, b0,…,b2 are the regression coefficients. For the regression, an intercept with the y-axis b0 ≠ 0 

was allowed. This allows a minimum cutting resistance to occur when the cutting parameters are very 

small (<1 mm). This analysis is only possible for the special case investigated in this work where: 

a) a linear relationship is assumed, 

b) it is assumed that no interaction between s and d occurs, and 

c) s and d share the same unit. 

There, the coefficients b1 and b2 answer the question: “An increase of s or d by one mm increases f(s, d) 

by how many kN when the other parameter remains fixed?” [176]. Then, the relative contribution (crel) 

of s and d can be calculated as follows: 

 

Note that b0 is excluded for the calculation of crel because it does not influence the relative change of 

f(s, d) when one of the parameters is varied. For this analysis, only the mean forces are analysed.  

  

𝑅 =
𝑐𝑜𝑣(𝐴, 𝐵)

𝜎𝐴𝜎𝐵
 (21) 

𝑅𝑠 = 1 − 6
6∑𝑑𝑟𝑖

2

𝑛(𝑛2 − 1)
 (22) 

𝑓(𝑠, 𝑑) = 𝑏0 + 𝑏1𝑠 + 𝑏2𝑑 (23) 

𝑠: 𝑐𝑟𝑒𝑙 =
𝑏1

𝑏1 + 𝑏2
∗ 100 ; 𝑑: 𝑐𝑟𝑒𝑙 =

𝑏2

𝑏1 + 𝑏2
∗ 100 (24) 
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5.11 Machine Learning 

This chapter describes the foundations and explains the specifications of the three used machine learning 

classification algorithms:  

▪ unsupervised k-means (KM) algorithm, and the two supervised algorithms  

▪ distributed random forest (DRF), and 

▪ artificial neural network (ANN). 

The R package “H2O” was used for the machine learning part. It implements an application 

programming interface (API) to the H2O software. H2O is a machine learning framework optimised for 

big-data applications that allows fast calculation speeds through parallelisation and in-memory 

computing while retaining a certain user-friendliness through the use of an API [166]. Its calculation 

speed is the reason it was preferred over the non-parallelised package Neuralnet that was used for the 

preliminary ANN analysis in Annex K. All codes for the algorithms were implemented using R-Studio 

and can be found in Annex O. 

The first algorithm is part of the group of unsupervised clustering algorithms. It automatically assigns 

data points to a number of k clusters, where k can be defined by the user or approximated automatically. 

The assignment is performed by minimising Euclidean distances within the feature space. 

The latter two algorithms belong to the group of supervised learners. Here, they are only used as 

classifiers, although they can also be used for regression problems. The distributed random forest is an 

extension of the decision tree algorithm. Where a regular decision tree algorithm finds one hierarchical 

set of rules to divide a dataset into classes, the DRF algorithm uses multiple less complex decision trees 

that form an ensemble and together decide on the class of a particular data point by majority voting.  

Artificial neural networks, in general, are following the basic principles that biological neural networks 

also follow. A piece of information is passed as a signal between different neurons. At each neuron, the 

input signals are summed up with regard to their individual weights and integrated into an output signal 

that goes to further neurons. In this work, a feedforward ANN with backpropagation is used. There, the 

information flow is unidirectional from input to output. During training, the weights of the individual 

neurons are varied until the classification error is minimal. 

The specifics of the three algorithms are explained in the following subsections. Other important 

parameters used are as follows. 

Standardisation  

All features were standardised before serving in the algorithms. Standardisation is the process of 

converting the features into a distribution space with a mean of 0 and standard deviation of 1 after the 

following formula: 

𝑥𝑠𝑖 = 
𝑥𝑖 − �̅�

𝜎
 

(25) 

With xsi – the standardised value of measurement; xi – the individual measurement value; �̅� – the 

empirical mean of values; σ – empirical standard deviation of values. 
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Training and Validation Split 

For the training of supervised algorithms, the dataset has to be split into training and validation data to 

balance the overfitting and generalisation behaviour of an algorithm. The part of a dataset that is used 

to train the actual machine learning algorithm is called training split or training data.  

The part of the original dataset used for evaluation of the training success is called validation data or 

validation split. It is withheld during training. The trained classifier is then applied to the validation data. 

The classification performance on the validation data is usually lower than on the training data, but the 

performance on the two data subsets should be similar. If the performance is much higher on the training 

data than on the validation data, then the classifier probably overfits. The training-validation split ratio 

can be varied to optimise the generalisation behaviour. This is investigated during the case study. 

N-Fold Training  

Normally, when training a machine learning classifier. The dataset is split into training and validation 

data. The learner is trained on the training data, but its performance is evaluated on the validation data 

to avoid overfitting. If the available data are limited, n-fold training and cross-validation can be used. 

Here, that dataset is split into n parts. In this work, n = 5 was used. Each of the five parts comprises 1/5 

of the total data points. The training is then repeated five times. Each time with another of the five parts 

of the data.  

Consequently, each of the five training results is validated on the other four (n−1) parts that were not 

used for the training. This results in five trained models and validation results. The validation results are 

called cross-validation (CV) results. The algorithm then chooses the model with the lowest CV error.  

5.11.2 K-Means Algorithm 

Generally, k-means clustering calculates the Euclidian distance of each data point to each cluster and 

then assigns each point to the closest cluster. After the assignment, the centre of gravity for all points 

assigned to a cluster is calculated. These centres of gravity become the new cluster centres for which 

the Euclidian distance is calculated again. Hence, the process is an iterative process that stops when no 

further optimisation or change between subsequent iterations happens. An example where the number 

of clusters (k) equals three, and two features, can be seen in Figure 53 [177].  

 

 

Figure 53: Visualisation of k-means clustering algorithm for two iterations 

  

1. 2. 
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Before an iterative optimisation of the cluster positions can be done, the starting positions of the clusters 

must be chosen. In this work, the following approach was used. First, k is chosen and is usually equal to 

the number of expected rock types. The algorithm works as follows: 

1. Choose one data point to be the first cluster centre (m1) at random. 

2. Calculate the difference between m1 and each of the remaining n−1 observations. 

3. Choose the next cluster centre (m2) to be the data point with the maximum distance to m1. 

4. For the next cluster centre (m3), the distance to all already chosen cluster centres is calculated 

and considered. 

5. Repeat until all k centres have been chosen. 

6. The algorithm calculates the difference between each observation xi and each of the centres 

m1,...,mk, where difference is the squared Euclidean distance dE taken over P parameters. 

𝑑𝐸(𝑥𝑖,𝑚𝑘) =  ∑(𝑥𝑖𝑗 − 𝑚𝑘)
2

𝑃

𝑗=1

= ‖𝑥𝑖 − 𝑚𝑘‖
2 (26) 

7. Next, all xi are assigned to the cluster that minimises dE(xi,mk). When all observations xi are 

assigned to a cluster, the mean of the points in the cluster is calculated as follows: 

�̅�(𝑘) = {𝑥𝑖1̅̅ ̅̅ , … 𝑥𝑖𝑝̅̅ ̅̅ } (27) 

The term 𝑥𝑖1̅̅ ̅̅ , … 𝑥𝑖𝑝̅̅ ̅̅  is the mean for all observations for each of the respective parameters.  

8. Lastly, �̅�(𝑘) is set as the new cluster centre mk. The steps 6.–8. are repeated until the cluster 

assignments of the xi are stable [166, 178]. 

 

For the case study, a variation of the initial assignment of clusters was implemented. Since the true rock 

types were known, the initial cluster positions mk were set after Equation (27). Thereby 𝑥𝑖1̅̅ ̅̅ , … 𝑥𝑖𝑝̅̅ ̅̅  

corresponded to the mean of the parameters for the rock types. This resulted in a variation of the k-

means that could be defined as semi-supervised. However, the algorithm itself does not compare the 

true rock class to the cluster assignments. 

5.11.3 Artificial Neural Networks 

The authors of the Neuralnet package that was used for the preliminary assessment in Annex M define 

artificial neural networks as follows: 

“In many situations, the functional relationship between covariates/[features] (also known as input 

variables) and response variables (also known as output variables) is of great interest. […]. Artificial 

neural networks can be applied to approximate any complex functional relationship. […] 

They are in particular direct extensions of [generalised linear models] and can be applied in a similar 

manner. Observed data are used to train the neural network and the neural network learns an 

approximation of the relationship by iteratively adapting its parameters.” [179] 

Generally, an ANN, also called a multi-layer perceptron, is composed of artificial synapses. Its structure 

is similar to that of a biological neural net—but much simpler. The synapses are organised in layers that 

can be classified as in Figure 54 into: 

▪ the input layer, 

▪ the hidden layer(s), 

▪ the output layer. 
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The synapses in the input layer (I) receive the input data, the features. The neurons in the output layer 

(O) calculate the final results. The synapses between input and output are called hidden layers, as they 

are not directly assessable. The majority of the calculations happens in the hidden neurons (H). The 

input data can be seen as signals passing through the neural net. A weight is attached to each of the 

hidden and output synapses, indicating the effect of the synapse. This weight is also called the intercept 

neuron (B). At each synapse, the signals are first processed by an integration function that combines all 

input signals. The activation function transforms this combined signal and passes it on to subsequent 

synapses or forms the output. The numbers in the grey boxes in Figure 54 denote the architecture of the 

respective neural net. The first number denominates the number of input neurons. In this example, 

eleven. It equals the number of features used. The last number defines the number of output layers. In 

this case, one, because the neural network only has to make one decision: “Concrete” or “Ore”. The 

numbers in between define the hidden layers. In this work, each neuron is connected to all neurons of 

the subsequent layer.  

 

Figure 54: Visualisations of two neural networks used in this work; grey lines: negative connection 

weights, black lines: positive connection weights, line thickness: relative connection value 

 

Each neuron calculates the integration function after Equation (28). 

𝑔(𝑧) = 𝑤0𝑧0 + ∑ 𝑤𝑖𝑧𝑖

𝑘

𝑖=1
 (28) 

Here, w0 is the weight of the intercept neuron, z0 is the value of the intercept neuron, wi are the weights 

of the respective input neurons and zi are their output values. As the activation function, a rectifier 

function was used: 

𝑧(𝑔) = max(0, 𝑔) (29) 

Here, z(g) denotes the output to be given to the next synapses, and g is the input after integrating the 

input with Equation (28). Rectifier functions show advantages over classic sigmoid- and tanh-activation 

functions in terms of training speed and are the most commonly used activation function as of 2018 

[180, 181]. The ANN is fitted to the training data by varying the weights of the individual neurons and 

the static intercepts so that the error between prediction and model is minimised. To evaluate the error 

of the model during learning, an error function EF is calculated. For this, the sum of squared errors is 

calculated: 
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)
2𝐻𝑜

ℎ𝑜=1

𝐻𝑖𝑜

ℎ𝑖𝑜=1
 

(30) 

Here, hio = hio,…,Hio indexes the given input-output pairs and ho = ho,…,Ho the output nodes; o and y 

denote predicted and true values, respectively. 

The training of the neural network is an iterative process. After each iteration, the weights of the neurons 

are adjusted until EF reaches a stopping criterium. The stopping criterium used, was that EF does not 

improve anymore for at least 5 iterations.  

As a learning algorithm, the stochastic gradient descent with backpropagation was used. It calculates 

the gradient of EF with respect to the weights (dEF/dw) as shown in Figure 55. Hereby a minimum is 

attempted to be found. When the derivative is negative, the weight wi is increased for the next iteration 

(wi+1) and vice versa. As such, a local minimum of the error function can be found. The process modifies 

the weights until the stopping criterium is reached. As a prerequisite, the input data are standardised 

after Equation (26).  

 

Figure 55: Principle of backpropagation algorithm for a univariate error function after [179] 

Generally, the number of neurons and layers used depends on the complexity needed [179]. Adil et al. 

(2020) tested neuron amounts between 2 and 300 and 1, 2 and 3 hidden layer designs predicting the 

properties of different concrete mixtures. They obtained good results for two hidden layer designs. The 

best performing design was a 17-50-30-5 design (R² = 0.98), but also the 17-2-5 design provided an R² 

of 0.91 [182]. Olden (2004), in his study comparing his method of calculating the importance of 

covariates, received a 5-5-1 design as being optimal [183]. Tiryaki (2008) used a 3-3-2 network to 

predict UCS and E-Modulus from cone indenter, density, and shore hardness values [150]. For crack 

propagation in wood, Samarasinghe et al. (2007) obtained a 9-23-1 network to perform optimally [184]. 

Hecht-Nielson (1987) showed, based on Kolmogorov’s mapping neural network existence theorem, that 

a number of hidden neurons of 2n+1 in one hidden layer can implement any n-dimensional problem; 

where n is the number of input covariates [185]. Others, such as Kaunda (2016), followed this [151]. 

However, Hecht-Nielson’s approach is based on the consideration that the covariates are independent 

of each other. A fact that is rarely given in the context of rock and material parameters. Heaton 

summarises multiple rules of thumb for a first approximation of the number of neurons in neural 

networks. They should a) be in between the size of the input layer and the size of the output layer, b) be 

around 2/3 the size of the input layer plus the size of the output layer, and c) be less than twice the size 

of the input layer [186]. 

Feature Importance 

Neural networks are often seen as black boxes because the exact calculations within the neural net are 

complex to analyse. The main point of interest is the feature importance of the different input variables 

on the classification result. Multiple solutions to this problem exist: Garson’s algorithm, further 

modified by Goh, the method of partial derivatives, input perturbation, sensitivity analysis after Lek, as 

well as Gedeon’s method [183, 187]. The H2O-package uses Gedeon’s method to calculate the feature 
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importance. This method considers the weights that connect the input features to the first two hidden 

layers [188]. As such, it is computationally fast while sacrificing some accuracy. 

5.11.4 Distributed Random Forest 

Distributed random forest is an effective classification and regression method that constructs a forest of 

classification or regression trees rather than a single tree. In this work, the method was used only for 

classification. Figure 56 shows a simple example for a single classification tree. The diagram on the left 

shows an example with two numerical features, x and y. The data points belong either to Class 1 or 2. 

The colour-shaded areas show the true (unknown) classes. Based on the sampled dataset, the decision 

tree splits the data into two groups in a way that minimises the misclassification error. In the example, 

three data points are misclassified (black circles). On the right side of Figure 56, the decision tree 

heuristic that corresponds to the classification on the left is shown.  

 

Figure 56: Simple example for decision tree 

As shown in Figure 56, DRFs consist of split nodes that make the actual decision, and terminal nodes 

that define the final decision outcomes. Terminal nodes are also called leaves.  

DRF avoid overclassification by incorporating many (weak) learners; hence belong to the group of 

ensemble learners. Another aspect is that all learners can be trained in parallel, adding to computational 

speed. The DRF trains a collection of decorrelated decision trees and obtains a class vote from each tree. 

It then uses the majority from all votes to generate a final prediction. The variance of the decision is 

reduced when more trees are constructed. DRF shows similar performance to gradient boosting (another 

extension of decision trees), but are simpler to train and tune. As such, they are widely used and are 

implemented in a variety of packages and softwares [166, 177, 189].  

The distributed random forest algorithm works as follows [177]: 

1. For each tree (n=1,…,N), do the following: 

a. Draw a bootstrap sample and create the first terminal node that contains all data. 

b. On the sample repeat the following procedure for each terminal node until a stopping 

criterion is reached: 

i. Select m = √𝑃 features; with P – Number of features. 

ii. From all m, select the variable and the split-point that allows the best split.  

iii. Split the node according to ii. into two new terminal nodes. 

2. Output the ensemble of the trees. 

A more detailed description of the DRF algorithm can be found in Hastie et al. (2017), Chapter 15.2 

[177].  

  

Terminal node / 
Leaf 

Split node 
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The most important parameters of the used DRF algorithm are: 

Number of trees: Defines how many trees form the “forest”. More trees reduce variance but 

increase calculation time. In this work, 100 is used. 

Maximum tree depth: The maximum number of split node levels that a tree can have. The deeper 

the tree, the more complex it is. This can increase accuracy but also 

overfitting behaviour.  

In this work, 11 is used. 

Sample rate: Each tree is trained with a portion of the data. The default value of 0.632 

was used. 

Column sampling rate: 

 

Defines the number of features from which can be chosen for each split. 

The standard value was used: the square root of the number of features.  

Feature Importance 

The feature importance is assessed by measuring the improvement in the split-criterion at each split for 

each tree and each variable. It is accumulated independently for each variable across all the trees in the 

forest. The importance values are then standardised. The result is called standardised feature 

importance. 

  



Chapter 5 Material and Methods 

72 

5.11.5 Classification Success 

To estimate the classification success of a classifier, multiple measures can be used. The most important 

parameters are specificity, sensitivity, accuracy, and error rate. Figure 16 shows these values on a 

confusion table. This table compares the predicted class (PC) to the real class (RC) to which a data 

point belongs. The example comprises three different classes. 

Table 16: Example confusion matrix with three classes 
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As shown in Equation (31), the sensitivity for a given class is defined as how many cases truly belonging 

to a class were identified correctly: 

𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦𝑖 =
𝑇𝐶𝑖

𝑅𝐶𝑖
 (31) 

Hereby, TCi is the number of true classifications for a given class i, and RCi is the number of total 

observations belonging to that class.  

Opposing to this is the specificity, as shown in Equation (32). It is defined as the answer to the question: 

“From all classifications belonging to a class, how many do really belong to that class?” 

𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦𝑖  =
𝑇𝐶𝑖

𝑃𝐶𝑖
 (32) 

Here, TCi is the number of true predictions for a given class i and PCi is the number of total observations 

predicted as belonging to that class.  

The accuracy then is a measure that summarises the overall performance across all classes after 

Equation (33). 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
∑ 𝑇𝐶𝑖

𝑖
1

𝑁
;  𝐸𝑟𝑟𝑜𝑟 = 1 − 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 

(33) 

It is the sum of all true predictions TCi across all classes divided by the total number of cases N. Vice 

versa, the error of the classifier is the opposing element to the accuracy.  

As already mentioned in Section Training and Validation Split on p. 65, the accuracy can be related to 

the validation and the training data. It is then called training accuracy or validation accuracy, 

respectively. For n-fold training (s. Section N-Fold Training, p. 66), the cross-validation accuracy 
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(CV-accuracy) is computed. It defines the accuracy between the n training and validation sets during 

n-fold training. 

For the case study, two nonstandard versions of the accuracy are used. When a learner is trained on a 

portion of a dataset and then classifies another dataset, it is called cross-accuracy in this work.  

When the learner is trained on a fraction of a dataset and then used to classify this full dataset, including 

the training data, it is called self-accuracy in this work. 

Although this is not a standard approach, it is used here because the objective is to show the spatial 

distribution of the classification results. If the training data were not used for classification, they would 

not appear in the spatial analysis. As such, self-accuracy represents the combination of training and 

validation accuracy. The case study shows that the difference between self-accuracy and validation 

accuracy can be estimated at 0.5%, which is considered negligible for the quality of the results. As such, 

this procedure is considered valid. 

5.11.6 Boundary Layer Recognition Precision 

For 2d-cases, the precision of the estimating the boundary between two rock types is evaluated. Figure 

57 illustrates this method. For each row of y-coordinates, the maximum x-value for a zone is extracted. 

The x-coordinates of these points are then compared to the x-values of the real boundary. Then the 

absolute value of the x-deviation between the predictions and the true boundary is calculated. As a result, 

the row-wise deviation between classification and true rock type is obtained. Then the mean and 

standard deviation are calculated to quantify the precision. In the investigated cases, the maximum of 

the preceding zone is in contact with the minimum of the succeeding zone. Therefore, this approach is 

possible. 

 

Figure 57: Scheme for estimation of boundary layer detection precision 

  

Extracted 
boundary 

Zone 

Real boundary 

Difference 



Chapter 5 Material and Methods 

74 

5.12 Machine Learning Case Study 

The workflow for the machine learning case study consists of twelve steps in total. These steps comprise 

methods that are explained in detail throughout Chapter 5. The workflow presented here summarises 

these methods and puts them into perspective. Figure 58 shows the workflow.  

In the first step, photos are taken from each layer. The photos are then corrected (Nr. 2) and referenced 

to the coordinate system of the cutting machine. From these referenced photos, the lithology of the 

samples is reconstructed layer by layer. Steps 1–4 are described in detail in Chapter 5.7. Then, the rock 

types are coded into a block model (Nr. 5) which is exported into R-Studio (Chapter 5.8). 

The cutting force data (Nr. 6) obtained from the experiments are organised in a Flexpro database (Nr. 7). 

There, a preliminary data integrity check is conducted (for details see Annex G). In the 8th step, the data 

are exported to R-Studio, filtered, and processed to obtain the raw real-time FCRs (Chapter 5.4). 

In the 9th step, the raw FCRs from the 8th step are used to populate the block model from the 5th step 

with the features. The features are calculated with a spatial moving-window approach as described in 

Chapter 5.8. Also, the contact ratio is computed into the block model.  

In the 10th step, the actual training is conducted with the three different machine learning classification 

algorithms. The results are stored for further reference (Nr. 11), and the classification success is 

evaluated as explained in Chapter 5.11.5. 

 

Figure 58: Workflow machine learning analysis (case study) 
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6 Results 

This chapter shows the results of the five experiments. First, the results from the major Experiment CO 

are shown. There the influence of changing material toughness is investigated. In Experiment GN, the 

influence of directional anisotropy is investigated. In Experiment GR, the influence of cracks is shown. 

These findings lead to the final case study with the Experiments FBA and PB, where a machine learning 

case is used to differentiate between different rock types. 

6.1 CO – Zoned Concrete 

This chapter describes the results of Experiment CO. First, a qualitative assessment and descriptive 

statistics are presented to show the characteristics of the data. Based on the findings from the descriptive 

statistics, a procedural algorithm is presented to pre-classify all possible FCR-based features towards 

their prediction suitability. This is followed by a correlation analysis, which gives further insights into 

the results. From this, a k-means algorithm is used to classify the investigated rock mass with different 

sets of possible features. A precision evaluation of the different sets of features follows. To validate the 

findings from the k-means analysis, a feature importance analysis with a distributed random forest 

algorithm is conducted as a last step. 

6.1.1 Descriptive Statistics 

This section describes the basic aspects of the experiments. Figure 59 exemplarily shows a boxplot 

visualisation for sample CO2. The results for CO1 are located in Annex J.1. 

The Panels a)–d) show the results for the forces Fx to Fres. The results for sets 1–9 are shown in each 

panel. The cutting parameters behind the sets are also stated in the figure. The results for each set are 

separated by the concrete zone in which they occurred. This allows an assessment of differences in the 

forces depending on cutting parameters and the concrete type. Unlike in standard boxplots, the whiskers 

show the quantiles Q0.05 and Q0.95.  

It can be seen that with increasing zone toughness, all force components increase. Tendentially, a higher 

set number also coincides with higher forces. The exception to this is Fy for Sets 6 and 9. These sets 

show a side force slightly above 0 kN. This follows expectation because the side force generally 

decreases as the spacing increases. The mean side force is theoretically 0 kN during the fully blocked 

cuts and only oscillates in both directions 4F

16. Irrespective of the cutting parameters, the mean forces for 

Fx vary from 1.03 to 4.91 kN for Zone 1, from 2.14 to 7.77 kN for Zone 2 and from 4.71 to 13.45 kN 

for Zone 3 over all cutting parameters. The behaviour of Fz and Fres is similar. It can be seen that as the 

mean forces increase, so does the variation and Q0.95. Furthermore, the minimum values (Q0.05) increase 

to a much lesser extend. 

To summarise, the raw forces are influenced by the cutting parameters and the concrete zone. Because 

of that, a clear allocation of the forces to the concrete type—irrespective of the cutting parameters—

seems not possible. As expected, descriptive statistics of raw force signals probably cannot be used to 

differentiate between adjacent concrete zones. 

 

 

16 When the pick is symmetrical and is arranged in a tilt angle of 0° 
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Figure 59: Boxplots of cutting force results of Experiment CO2 

6.1.2 Procedural Evaluation 

As described in Chapter 5.6, the differences between the value corridors for the concrete zones as formed 

by descriptive statistics of FCR are calculated. When the value corridors overlap, either the classification 

U – “unsuited” or P – “partially suited” is assigned. P is assigned if the value corridors of Sets 3, 5, and 

7 do not overlap while the corridors for all sets overlap. S – “suited” is assigned when no overlap occurs 

at all. The numerical calculation results of the selection algorithms are located in Annex J.2. 

Table 17 shows the evaluation results for the individual Blocks CO1 and CO2. It shows the combinations 

of the FCR and the respective statistical descriptors that were evaluated. For CO1, 17 parameters were 

classified as suited, and another 16 were classified as partially suited. The rest was classified as unsuited. 

For CO2, the individual results show a slightly different picture. Here, only 11 parameter combinations 

were suited. Another 12 were partially suited, and the rest was unsuited.  

It can be seen that the general picture between CO1 and CO2 is similar. Since CO1 consists of only 

Zone 2 and 3, more parameters passed the overlap analysis algorithms. This is because a) only one zone 

difference occurred and b) the two zones differ relatively strongly in their toughness. For CO2, the 

limiting factor is the small difference in hardness between Zones 1 and 2 (7.7 MPa cUCS). As such, 

fewer features pass the assessment procedure for CO2. 
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Table 17: Results of the procedural feature selection algorithm for CO1 and CO2 separately 
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Table 18 shows the final classification results of the procedural analysis. For the assembly of this table, 

the worst result from both CO1 and CO2 were merged. As such, the results can be viewed as 

conservative. Nine criteria were suitable, and another twelve were classified as partially suitable; 51 

criteria showed overlaps and were rejected.  

 Table 18: Results of the procedural feature selection algorithm for CO1 and CO2 together  
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For FCR(Fx/Fres), the two means and the median received an S-rating. In absolute numbers, the 

differences for the median of FCR(Fx/Fres) vary between 0.07 for the transition between Zone 2 and 3 

in CO1 and 0.0004 for the transition between Zones 1 and 2 for CO2. Although the results of CO1 for 

Q0.95 and IQR of FCR(Fx/Fres) would allow for a P-rating. In CO2, there is an overlap for that potential 

feature. As such the rating “unsuited” is assigned.  
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In addition, features involving Fy only received two P-ratings. The two FCR involving Fres and Fz also 

received only two P-ratings. Moreover, all features involving the variance coefficient were unsuited. 

Due to the necessity of filtering, the reciprocals do not show the exact same results as their counterparts; 

however, similar behaviour. The use of x̅geom as a descriptor with three suitable ratings shows better 

results than the similar �̅� or �̃� that only received one S-rating each. This picture becomes clearer in the 

CO1 results, with an S-rating for six FCR for x̅geom and three respectively four for �̅� and �̃�.  

In addition, using a relatively robust indicator for maxima, in this case, Q0.95, instead of single maximum 

values, showed good results. The IQR exhibits similar behaviour as a measure of spread. Both 

descriptors were rated as “suited” twice each. The IQR was rated “partially suited” twice, Q0.95 one time. 

From the literature review, it was suspected that FCR(Fx/Fz) or FCR(Fz/Fx) would show good results; 

however, only IQR and Q0.95 were classified as suitable for this FCR. Instead, FCRs involving Fres and 

Fx received in total six S-ratings. 

6.1.3 Correlation of the Covariates 

Figure 60 shows a heatmap of the spearman correlation of:  

▪ the FCR-based features chosen in the pre-selection process,  

▪ the mean values of the raw forces Fx, Fy, Fz and Fres,  

▪ the cUCS as an indicator for the rock hardness, 

▪ and the cutting parameters. 

In addition, the zone index is considered since it is ordered by the strength of the concrete. Positive 

correlations are mapped blue; negative correlations are mapped red. The hue indicates the strength of 

the Spearman correlation. Weak correlations < 0.3 are white. The results of the individual blocks and 

numeric values for Figure 60 are located Annex J.3.  

The correlation of the FCR-based covariates is very high among each other (Marking a). It can be seen 

that the FCR-features show correlation coefficients between ±0.7 and 1 except those utilising Fy/Fx. This 

is expected. However, the correlations are not perfect. A perfect correlation would speak for redundancy 

in information value. YXQ95 and YXIQR correlate less with the other features in their group. 

Additionally, they correlate slightly with s, Ac, and the ratio s/d. This can be attributed to the dependency 

of Fy on s/d. 

Another aspect is seen in Marking d. The FCR-based features show almost no correlation with the 

cutting parameters s, d, Ac, and s/d, except for YXQ95. This is the desired behaviour using these features 

for rock classification irrespectively on the actual cutting parameters. 

In addition, Marking c shows that the FCR-based features correlate stronger with the cUCS as a 

toughness indicator than the “classic” force-based features. This is also true for the zone index. 

As seen in Marking b, the mean values of the cutting forces Fx, Fy, Fz, and Fres correlate weakly with the 

FCR-based covariates. 

Marking e shows that the means of Fx, Fz, Fres show a weak correlation with the cutting parameters d, s, 

and the resulting Ac. This has already been suggested by the raw force analysis in Chapter 6.1.1. 

Additionally, the mean cutting forces correlate weaker with the zone index and cUCS than the FCR-

based covariates do.  
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Figure 60: Correlogram for grid calculations of all Experiments CO1 and CO2 (both samples 

summarised); * – insignificant with significance level = 0.01 

6.1.4 K-Means Cluster Analysis 

The k-means cluster analysis is an unsupervised clustering algorithm. In this chapter, the algorithm is 

used to explore whether the features/covariates can be used to cluster the data according to their rock 

type. For that, the cluster assignments are compared to their real rock type. Subsequently, the accuracy 

of the cluster-based assignment is evaluated.  

Used Parameters 

Five cases are compared to evaluate the performance of the k-means classification. Each case uses a 

different set of features. Case 1 uses only the features classified as “suited” by the selection algorithm 

as described in Chapter 6.1.2. Case 2 adds YXQ95 and YXIQR. The reason is that these are the only 

features that are classified as partially suited and at the same time, consider Fy. With Case 3, a sensor 

assembly that only measures Fx and Fz and no y-component is simulated. Hence, only features derived 

from these two force components and received an S-rating are utilised.  

Case 4 investigates a feature set consisting of the moving-window-mean of the raw force components 

Fx, Fy, Fz and Fres. Case 5 uses only the mean of Fx and Fz. These last cases represent a “traditional” 

approach to cutting force measurement. The cases are summarised in Table 19. 
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Table 19: Cases investigated with k-means algorithm for Experiment CO 

Case Features used 

1 XZGM, ZXQ95, ZXIQR, XRMEA, XRMED, XRGM, RXGM, RXQ95, RXIQR 

2 as above + YXQ95, YXIQR 

3 XZGM, ZXQ95, ZXIQR 

4 XMEA, ZMEA, YMEA, RMEA 

5 XMEA, ZMEA 

 

Figure 61 shows the results for Cases 1 and 4. A complete list of all classification results can be seen in 

Annex 0. The IDs of the clusters were manually assigned to their respective zones. This is necessary 

due to the nature of the k-means clustering algorithm. The initial starting points of the clusters were set 

up randomly; the optimisation algorithm then changed the cluster positions iteratively. Because of that, 

the naming of the clusters was inconsistent and was assigned manually after the clustering process. The 

vertical lines indicate the border between the different concrete zones. Generally, Cases 1, 2, and 3 

performed very similarly—as did 4 and 5. Hence, Case 1 serves as an example for the FCR-based 

clustering and Case 4 for the raw-force-based clustering.  

The clustering results in Figure 61 are shown separately for all combinations of cutting parameters. It is 

seen that the FCR-based classification performed better. Also, the classification based on FCR shows 

relatively consistent results compared to the raw forces cases. Within Case 1, the classification shows 

less precise results for d =12 mm and s/d = 3 and 4. Generally, small misclassification patches appear 

in CO1. This can be attributed to two points: 

a) The rock hardness for the same zones varied between CO1 and CO2. 

b) The clustering was done for the whole dataset, consisting of the data of CO1 and CO2 conjoined. 

Here, parts of Zone 2 were classified as Zone 1. In CO2, wrong patches did not occur; however, higher 

deviations of the classified rock type boundaries to the actual boundaries occurred. The black rectangles 

indicate those experiments conducted with the same absolute spacing—simulating the passthrough 

during a crescent cut (see p. 16). Results in this sub-group are very consistent.  

For Case 4, the classification is skewed towards Zone 1 at small cutting parameters (Marking a). For 

d = 6 mm and s/d = 2, the whole block is classified as Material 1. For medium cutting parameters, the 

classification shows Zones 1 and 2. However, CO1 does not consist of Material 1 at all. An accurate 

classification could only be obtained with the highest cutting parameters in CO1. During the cutting of 

CO2, Material 3 is not detected for smaller cutting parameters. For the crescent cut scenario, the results 

are also far less consistent than the results of Case 1.  
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Figure 61: Mapping of k-means based classification for Cases 1 and 4, black rectangles indicate cuts 

with d = 24 mm 

Figure 62 shows the summary of the performance of the k-means clustering. Detailed results for each 

case are located in Annex 0.  

On the left side, the overall accuracy is shown as calculated after Equation (19). The global accuracy 

(anthracite) shows the accuracy for all experiments merged together. Here, the highest accuracy is 

achieved by Case 1 with 89%. Case 2, where YXQ95 and YXIQR were added as predictors, achieved 

slightly less accuracy with 88.2%. Case 3 achieved 86.7%—the worst performance of the FCR-based 

clustering cases. This coincides with the empirical evaluation, which indicated that FCR involving Fres 

might yield better results. Cases 4 and 5 show the clustering based on the raw force features. Here, the 

performance lies much lower with 41.7% respective 43.0%.  
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The grey bars summarise the individual sets’ median, minimum, and maximum performance. Similar to 

the global results, Cases 1 to 3 perform similarly well, whereas the raw-force-based classifications show 

low accuracies. 

The figures marked with a yellow asterisk show the experiments with fixed spacing. For this situation, 

the overall accuracy of Cases 1–3 lies in a tight range of 90–93%. The lowest performance occurs at 

d = 12 mm and s/d = 4. The worst performance in Cases 1–3 occurs at Case 2 for the same cutting 

parameters.  

 

Figure 62: Accuracy values for k-means clustering (left), detailed accuracy for Cases 1 and 4 (right) 

Cases 4 and 5 show peak accuracies comparable to those of Cases 1–3. They are even higher with 96.0%. 

However, an accuracy above 85% only occurs at the highest cutting depth. At the two lower levels for 

the cutting depth, accuracy shows its highest value at 41%. Also, the accuracy values for the crescent-

cut-subset does not show consistent results with ranges from 28–87%. 

Precision of Boundary Detection 

From the gridded results, the precision of the boundary detection was calculated. Figure 63 shows the 

estimation results. The mean values of the precision ranges between 24.5 and 37 mm. Generally, the 

precision is smaller for the transition of Zones 2–3. Hereby, Case 1 shows the smallest (best) precision 

estimates. The precision values for the transition of Zones 1–2 are slightly worse. This is plausible with 

regard to the small difference in rock hardness between Zones 1–2. However, the standard deviation for 

Cases 2 and 3 in Zone 2–3 is higher than the other values. 

Comparing Cases 1–3 with each other, it appears that Case 1 generally shows the best results; Cases 2 

and 3 show slightly worse precision values. Especially for the transition of Zones 2–3, this becomes 

apparent. 
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Figure 63: Boundary detection precision for Cases 1–3, values in the form: mean ± standard deviation 

Further Considerations to Internals of K-Means 

To understand the clustering process, the two features, ZXIQR and XZGM; as well as ZMEA and 

XMEA, are plotted against each other in Figure 64.  

 

Figure 64: a) & b) Density of ZXIQR to XZGM; c) & d) density of ZMEA to XMEA for sample CO2; 

colour shows the real zone in the top row, and predicted zone in the bottom row 

In the plots, the relative density of the grid data points is drawn with a kernel estimator. The red dots 

show the position of the clusters on the planes formed by the features. In Panels a) and c), the colours 

indicate the true rock zone. In Panels b) and d), the colours indicate the cluster assignments from 

k-means. Reality and prediction and are very close for the FCR-based features on the left side. However, 

reality and prediction deviate strongly for the clustering with raw force-based features on the right side.  

This is because k-means works with minimising Euclidean distances. As such, the clusters tend to drift 

towards the shape of a (multidimensional) spherical object. The real zone assignments for the FCR-

based features already support this behaviour. There is minor overlap between the data for the three 
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zones as seen in Panel a). The data for the raw force features overlap each other strongly, as seen in 

Panel c). The algorithm can not deal well with this overlap but has to split the data into three clusters. 

This results in a cluster assignment that is different from the real rock zones. Here, small forces are 

generally attributed to the weakest zone, and high forces are generally attributed to the highest zone. 

However, low forces occur in the weakest rock, but also result from low cutting parameters. This 

explains, why k-means over-assigns the weakest zone for low cutting parameters—even if the weakest 

zone is not even present. 

Feature Importance with Distributed Random Forest 

During clustering, the pre-selected feature Case 1, showed the best performance. However, evaluating 

the feature importance is not directly possible for k-means. Therefore, a DRF classification is used to 

train on the dataset and the feature importance is evaluated on the trained DRF. The maximum tree 

depth was set to 5 to prevent overfitting. All data were used to train the DRFs, so no training-validation 

split was applied. Further details on DRF can be found in Chapter 5.11.4.  

First, the overall accuracy for the five learners was calculated. 

The results can be seen in Table 20. Generally, the accuracy is 

higher for DRF than for k-means. This can be attributed to the 

fact that DRF is a supervised algorithm that minimises 

classification error. Similar to k-means clustering, FCR-based 

cases show better results. The accuracy is almost equally high 

for Cases 1–3, with slightly lower results in Case 3. The 

accuracy for Cases 4 and 5 is substantially better than with the 

unsupervised k-means. Detailed classification results and zone 

mapping can be found in Annex J.5. 

Figure 65 shows the results of the feature importance analysis. For the base Case 1, RXIQR received the 

highest weighting, followed by XRGM and its reciprocal, RXGM. Expectedly, the two features show a 

strong correlation coefficient of ˗0.993 in the correlation analysis. As described in Chapter 5.5, the 

correlation is not perfect due to data processing. However, redundancy can be assumed for these two 

covariates. It stands out that XRMEA received a very low importance rating. This speaks for the 

assumption that the geometric mean is a better measure of centrality for force component ratios. The 

features derived from Fx and Fz received medium values.  

For Case 2, the situation is very similar to Case 1. Additionally, the features that involve Fy receive the 

lowest ratings, as expected from the procedural selection algorithm. 

The importance values are relatively equal for Case 3, which only used three features. Therefore, it can 

be assumed that there is little redundancy in these covariates. Comparing this with the results of the 

correlation analysis shows that the correlation of XZGM and XZQ95 with ZXIQR lies at ˗0.844 and 

˗0.838, respectively. This is comparatively low for correlations between FCR-features, meaning that the 

redundancy for this pair is comparatively low. 

For Cases 4 and 5 that only used the raw forces, ZMEA is the most important predictor. It stands out that 

for Case 4, XMEA received the smallest importance. 

Table 20: Accuracy for DRF 

classification of Campaign CO 

Case Accuracy 

1 94.4% 

2 94.6% 

3 93.8% 

4 85.1% 

5 83.3% 
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Figure 65: Scaled importance of the features for DRF classification for Cases 1–5 of Experiment CO 

Summary 

Unsupervised k-means clustering with FCR-based features provides consistent and relatively good 

classification results. The accuracy lies at slightly below 90%. The precision with respect to the material 

boundaries lies on average below 3.7 cm in cutting direction for the three cases. 

Within the group of FCR-based features, all three variants performed well. Case 1, which takes all 

S-rated covariates into account, performs best. Case 3, only taking XZGM, ZXQ95 and ZXIQR into 

account, follows second. Case 2, which takes into account two covariates derived from Fy, shows a 

slightly lower performance. This is in line with the results from the correlation analysis, which showed 

a correlation of these features with the spacing. A correlation with the spacing is undesirable. 

In contrast, the using of mean values of raw cutting force components is highly disturbed by varying 

cutting parameters. Hence, it is only accurate for a small range of cutting parameters. This suggests that 

features utilising mean values of raw cutting forces should be avoided for MWC applications. 

FCR-based k-means clustering does not require already classified data. Therefore, it could be used to 

identify changes in rock toughness, when no training dataset is available, or to verify results of other 

classification methods. 

6.2 GN – Foliated Gneiss 

The following chapter investigates the possible effects of foliation on an FCR-based rock classification. 

This can usher in understanding how foliation influences a near-tool MWC rock characterisation system. 

First, an understanding of the responses of the raw force component is established with respect to the 

different layering situations. It turns out that the influence of spacing and cutting depth is altered to some 

extent depending on the foliation orientation. This effect is further investigated. Subsequently, the 

behaviour of the most FCR-features is analysed. Annex K contains additional details on the results 

presented in this chapter. 

FX & Fres FX & Fz Mean of raw forces FX & Fy 
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6.2.1 Cutting Forces 

Figure 66 shows an overview of the raw force responses of the experiments. Here, all experiments are 

shown together. A detailed analysis follows below. The forces for Side A are the lowest, followed by B 

and C. This is true for all four force components. The effect of foliation on all cutting force components 

is relatively high. The mean for Fx ranges from 3.5 kN for Side A to 9.8 kN for Side C, an increase of 

2.8. The Q0.95(Fx) ranges from 9.7 kN for Side A to 20.1 kN for Side C. This equals a factor of 2.1. For 

Fz, mean values are in the range 6.8–19.6 kN, for Q0.95 they are in the range of 11.9–29.3 kN. 

Accordingly, the Fy and Fres values follow this pattern of increasing forces between Sides A to C. Also, 

it can be seen that all force distributions are not symmetrical but slightly skewed to the right. This means 

that very high maximum values can occur. Detailed boxplots where results are split by cutting 

parameters can be accessed in Annex K, Figure K-1. 

 

Figure 66: Raw force response ranges for Experiment GN 

Figure 67 shows more detailed results of the experiments concerning Fx in relation to s and d. It shows 

the mean, Q0.95, and the ratio of Q0.95 to mean(Fx). Semi-relieved and unrelieved conditions are shown. 

The mean forces for Side A are in the range 2.26–6.65 kN, for Side B they are in the range 4.22–

11.94 kN, and for Side C, they range from 7.22 to 11.94 kN. The Q0.95(Fx) exhibits similar behaviour; 

however, at a higher level. Here, the total range of values is 6.81–20.37 kN. The Q0.95(Fx) for Side A is 

similar as the mean(Fx) of Side C.  

The ratio of Q0.95 to mean shows a diametric picture to the previous graphs. The highest peaks compared 

to the mean are recorded for Side A, ranging from 2.10 to 3.13. Medium ratios are recorded for Side B, 

ranging from 2.00 to 2.31. The lowest ratio appears for Side C, ranging from 1.72 to 1.94. Generally, 

this points towards different outbreak patterns of the chips. When the ratio is small, smaller chips break 

out, and the breakage process is repeated more often. When the ratio is higher, larger chips break out, 

creating comparably high peak forces. This hypothesis is supported by the works of Mohammadi et al. 

(2020) [190] and Keller (2020) [41]. 

It stands out that the influence of the cutting parameters d and s on Fx is different for the three foliation 

orientations. While an increase in d coincides with an increase in Fx, this is only partially the case with s. 

General knowledge from the literature indicates that increasing the spacing increases Fx—although the 

effect of s is smaller than the effect of d. This cannot be confirmed for all foliation directions. Only for 

Side B, an increase of s increases the mean and Q0.95 of Fx. An increase of s does not increase Fx for 
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Sides A and C. For the cutting depth 6 mm, both the mean and Q0.95 even decrease between a spacing 

of 12 to 16 mm.  

 

Figure 67: Mean values, Q0.95 and ratio of Q0.95/mean for Fx for Experiment GN 

Figure 68 shows the force for Fz in the same fashion as above. Very similar behaviour to the figure 

shown above can be observed. However, for Side C, mean(Fz) decreases with increasing spacing for 

d = 6 mm. Also differing from the behaviour of Fx, the ratio Q0.95(Fz)/mean (Fz) increases to up to 2.6 

for Side A, d = 6 mm, and s = 16 mm. At the same time, Q0.95(Fz)/mean(Fz) does not show such an 

increase for d = 4 mm.  

 

Figure 68: Mean values, Q0.95 and ratio of Q0.95/mean for Fz for Experiment GN 

Figure 69 shows the results for Fy. Generally, a higher cutting depth is in line with a higher side force. 

Also, for most situations, the Fy decreases with increasing s. An exception to this is Side B, d = 6 mm. 

Here, an increase in Fy can be monitored, both for the mean and for Q0.95.  

Decreasing Fy with increasing s finds its culmination for the unrelieved cuts. There, the symmetrical 

confinement of the pick—in theory—results in side forces of 0 kN. Curiously, a slight deviation from 

this can be observed. The values of mean(Fy) for the unrelieved cuts are lowest for Side A (˗0.14 and 

0.12 kN), slightly higher for Side B (0.34 and ˗0.31 kN), and highest for Side C (0.87 resp. 1.03 kN). 

The Q0.95 for Side C, unrelieved cut, shows relatively high values (5.18 and 7.27 kN). To confirm the 

reliability of these results, the standard error was calculated for these experiments. It ranges from 0.0035 

to 0.0123 for Side A, d = 4 mm, and Side C, d = 6 mm, respectively. This is almost two magnitudes 

smaller than the values. As such, it is suspected that these observations are not random, and the 
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orientation of the foliation seems to have an effect on the side force. Imperfections in the foliation 

orientation towards the cutting direction might contribute to these results.  

 

Figure 69: Mean values, Q0.95 and ratio of Q0.95/mean for Fy for Experiment GN 

For most combinations of cutting parameters, an increase in the spacing correlates with an increase in 

the ratio Q0.95(Fy)/mean(Fy). Here, the values for the unrelieved cuts reach very high values both on the 

positive and on the negative axis. They range from ˗9.43 to 14.65 for the unrelieved cuts. At the same 

time, the values for the semi-relieved cuts range from 1.43 to 3.11. This is not surprising since the 

mean(Fy) values are close to 0 but still peak values occur creating very high Q0.95/mean ratios. 

6.2.2 Regression Analysis of Effect 

To estimate the effect of the influence of the parameters s and d on the force levels, linear regression is 

used to estimate their relative contribution (for method, see Chapter 5.10). Only mean forces are 

considered for this analysis. 

Regression for mean(Fx) 

Table 21 shows the linear regression results for mean(Fx). Generally, the linear model results in a 

relatively good fit for all three sides (R² between 0.83 and 0.96). The relative contribution (crel) of s is 

generally lower than that of d. The relative contribution of s to mean(Fx) follows the decreasing order 

B>A>C. Hereby, the value for B lies at 22%, while the values for A and C lie at 3% and 0.4%, 

respectively. Also, for Sides A and C, the p-value for s is high (0.73 and 0.93, respectively), indicating 

no significant effect of s on mean(Fx). In comparison, the p-value for s on Side B lies at 0.009. This 

indicates that the effect of s is significant. This corresponds to crel of d for Sides A (97%) and C (99.7%); 

and 78.4% for Side B. Also, the p-values here suggest significance (p<0.05). 

Table 21: Regression statistics for mean(Fx), with predictors in brackets for reference 
 

Coefficient R2 t-statistic p-value crel 

Side b0 b1 (s)  b2 (d)  R2 b0 b1 (s)  b2 (d)  b0 b1 (s)  b2 (d)  s  d  

A -0.194 -0.022 0.710 0.827 -0.164 -0.383 3.770 0.880 0.727 0.033 3.02% 96.98% 

B -0.985 0.226 0.819 0.966 -1.309 6.165 6.837 0.282 0.009 0.006 21.64% 78.36% 

C 0.855 0.006 1.602 0.964 0.758 0.102 8.921 0.504 0.926 0.003 0.35% 99.65% 

This means that for Side A and C, the spacing has no significant influence on the mean(Fx) within the 

tested parameter space. 
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Regression for mean(Fz) 

For the regression of Fz, similar effects as for Fx can be observed. The R2 statistic ranges from 0.76 to 

0.93. Generally, crel of s is lower than crel of d. For Sides A and C, the values are ~6%. For Side B it lies 

at 28%. The p-value indicates a nonsignificant contribution of s to mean(Fz) with values of 0.57 for Side 

A and 0.28 for Side C. For Side B, the contribution is significant (p<0.05). This compares to a relative 

contribution of 94% of the cutting depth for Sides A and C, and 72% for Side B. 

Table 22: Regression statistics for mean(Fz), with predictors in brackets for reference 
 

Coefficient R2 t-statistic p-value crel 

Side b0 b1 (s)  b2 (d)  R2 b0 b1 (s)  b2 (d)  b0 b1 (s)  b2 (d)  s  d  

A -0.051 -0.072 1.117 0.758 -0.022 -0.632 3.002 0.984 0.572 0.058 6.06% 93.94% 

B 0.078 0.366 0.927 0.925 0.050 4.822 3.737 0.963 0.017 0.033 28.32% 71.68% 

C 4.574 -0.138 2.223 0.935 2.109 -1.306 6.442 0.126 0.283 0.008 5.85% 94.15% 

Regression for mean(Fy) 

Table 23 shows the regression statistics for mean(Fy). The R2 statistic is higher than for mean(Fx) and 

mean(Fz), ranging from 0.94 to 0.98. The relative contribution of s to mean(Fy) is generally lower than 

crel of d. The contribution follows the order C>A>B, ranging from 4–19%; with a significant contribution 

for Side C (p<0.05). However, the p-value for cref of s for Side A is significant with p<0.1. For d, the 

relative contribution lies between 81% and 95%. All contributions there are significant with p<0.01. 

Table 23: Regression statistics for mean(Fy), with predictors in brackets for reference 
 

Coefficient R2 t-statistic p-value crel 

Side b0 b1 (s)  b2 (d)  R2 b0 b1 (s)  b2 (d)  b0 b1 (s)  b2 (d)  s  d  

A -0.291 -0.079 0.559 0.944 -0.535 -2.980 6.461 0.630 0.059 0.008 12.37% 87.63% 

B -2.241 -0.050 1.159 0.974 -3.234 -1.479 10.515 0.048 0.236 0.002 4.13% 95.87% 

C 1.777 -0.469 2.045 0.976 1.223 -6.633 8.847 0.309 0.007 0.003 18.67% 81.33% 

 

Comparison and Summary of the Regression Results 

In summary, it can be observed that: 

▪ For Sides A and C, s has no effect on the means of Fx and Fz. An effect was only measurable 

for Side B. The effect of s on Fx and Fz for Side B is considerably lower than the effect of d. 

▪ In contrast, the effect of s on Fy behaves differently. For Sides A and B, a measurable influence 

of s on Fy is recognised. For Side B, the effect is insignificant.  

This behaviour deviates from the cutting theory, especially for Fx and Fz. Hence further investigations 

are presented in the following chapter. 

 

  



Chapter 6 Results 

90 

6.2.3 Details Irregular Behaviour 

In the two previous chapters, the results partially contradict the classical understanding of the cutting 

force behaviour concerning the cutting parameters d and s. It was shown that, for Sides A and C, both 

Fx and Fz are not significantly affected by the spacing. This chapter explores the reasons behind this 

behaviour by taking an in-depth view of the raw data and the distribution characteristics of the cutting 

forces. 

Figure 70 shows the force-time diagrams of Fz for three subsequent cuts of the experiment with 

d = 6 mm, s = 16 mm, Side A. Here the foliation is coplanar to the x-y-plane and the rock surface. It can 

be seen that large “valleys” appear in the F-t diagrams. These can be attributed to very large chips 

breaking off, resulting in a free movement of the pick through the cavity where the chip was located.  

 

Figure 70: Force-time diagrams for Side A, Fz; red marks Fz below 0.5 kN, blue line shows trend line 

To quantify this effect further, the proportion of data points below the threshold of 0 kN for Fx and 0.5 

kN for Fz, named PPx0 resp. PPz05, as well as the variation coefficient (v) of Fz, are computed. The results 

are shown in Figure 71. It shows that for Side A higher proportions of data points occur below these 

thresholds. Also, v(Fz) shows this behaviour. 

 

Figure 71: Proportion of data points below threshold PPx0 and PPz0.5, and variation coefficient of Fz 

for Experiment GN 

Additionally, it is visible that for the cutting depth of 6 mm, with increasing spacing, PPx0 and especially 

PPz0.5 rise significantly. Remarkable is the increase from 3.3 to 17.6% for PPz0.5 from d = 12 mm to 

d = 16 mm, respectively. The figure also indicates that similarly strong effects cannot be discovered for 

Side C—although Side C shows a similar behaviour of lower forces for the highest spacing. 
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Figure 72 shows a violin plot for the distributions of Fz. A violin plot is similar to a distribution density 

diagram—but vertical. The x-axis depicts the spacing, and the y-axis depicts the force level of Fz.The 

thickness of the elements (= ”violins”) depicts the relative distribution density. The horizontal lines 

within the violins show Q0.25, median and Q0.75. Additionally, the dot shows the mean value. The cutting 

depth is coded as saturation of the colour. 

 

Figure 72: Violin plot for distribution of Fz for Experiment GN 

The two Markings a and b show points of interest. Marking (a) shows the distribution of experiment 

d = 6 mm, s = 16 mm, Side A. While peak values for Fz go up to 26 kN, the mode of the distribution lies 

at 2 kN. This is the lowest reading for the mode throughout the whole diagram. This large proportion of 

low forces leads to a low mean, median, and Q0.25. This can be attributed to the aforementioned effect 

of overbreak. When overbreak occurs, the pick loses contact with the rock. This causes small Fz values 

to occur. As such, it confirms the theory of overbreak affecting the mean forces while peak forces are 

within the normal expected range. Marking (b) shows the situation for Side C, d = 6 mm, s = 16 mm. 

Here, a lower mode also appears. However, the mode appears close to Q0.25 and at a significantly higher 

force level (14 kN). The distributions for all three spacings show a similar shape for Side C, d = 6 mm. 

Resulting from these observations, it is assumed that a minor overbreak might occur, which does not 

leave large traces in the overall distribution.  

Figure 73 shows detailed F-t diagrams for Fz for Sides B and C. It shows that there are no force valleys 

with very low forces; the force valleys reach lows between 5 and 15 kN. This supports the observation 

that no major overbreak occurs where the pick looses contact with the rock.  

 

Figure 73: Exemplary force-time diagrams for Fz, sides B and C; blue line shows trend line 

Q0.75 

Q0.25 

 Median 

Mean 
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6.2.4 Interpretation of Anisotropic Behaviour 

To put the previous observations into perspective, Figure 74 shows laser scans of the cut surfaces for 

d = 6 mm, s = 16 mm. For Side A, overbreak in a floe-like shape can be observed. For Side B, a relatively 

normal surface shape after cutting remains. Partial ribs occur, which is consistent with observations on 

homogeneous rocks and the general knowledge of the cutting process (s. Figure 12, p. 15). For Side C, 

the situation is less clear. It appears as a mixture of the observations on Sides A and B. While some 

small parts with partial ribs occur, parts with overbreak occur as well. This overbreak is relatively small 

and oriented along the foliation. It shows sizes of maximally 2 × 0.5 cm. In comparison, the large, flat 

overbreak on Side A shows diameters of ~4 cm. 

 

Figure 74: Surface scans for Sides A, B, and C for d = 6 mm and s = 16 mm 

In conclusion of these observations, for Side A, the foliation direction supports the crack propagation 

between cuts to such an extent that large spacings create very large outbreaks—with the result that the 

mean forces are actually lower for the highest spacing. For Side C, where the foliation plane is in x-z-

direction, a similar effect was observed—however, less significant. For Side A, these results show the 

effects of a preferred crack propagation along the foliation planes, allowing for wider spacing between 

picks than in a more homogeneous rock—if the foliation direction can be exploited. While a similar 

effect could be observed for Side C, the forces are generally on the highest level of all three sides. An 

excavation in this direction to the foliation should be avoided if possible. 

6.2.5 Force Component Ratios 

Figure 75 shows the features that were selected from the previous Experiment CO. The features 

extracted from Fres and Fx show similar trends. The features RXGM, RXIQR, and RXQ95 decrease with 

increasing spacing. For RXGM, the values range from 1.93 to 2.45, for RXIQR from 0.66 to 1.23 and for 

RXQ95 from 4.38 to 9.18.  

The features extracted from Fz and Fx show a stronger dependency on the foliation direction than those 

extracted from Fx and Fres. Especially, the feature ZXMEA shows the strongest dependency on the 

foliation direction. Hereby, the ZXMEA for Side A forms a value corridor from 0.96 to 1.62. The 

distinction between Sides B and C is less clear. The value corridor ranges from 1.63 to 1.97 for Side B 

and from 1.73 to 2.11 for Side C.  
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Figure 75: Response values for the features selected for material classification 

6.2.6 Summary and Interpretations of Results 

From the viewpoint of rock characterisation, directional anisotropy could potentially complicate the 

FCR-based rock classification process, as it alters the general behaviour of the force component ratios. 

However, this effect could be used to monitor the foliation direction with regard to the excavation 

direction. It showed that features incorporating FCR(Fx/Fz) could provide more reliable results for such 

a monitoring.  

In terms of excavation efficiency, the low effect of the spacing on Fx and Fz for foliation Sides A and C 

could be utilised to improve the efficiency of the process by choosing a higher spacing. 

Due to restrictions of maximum forces and the very high dynamic behaviour induced on the test stand 

during cutting of Sides B and C, the maximum d was limited to 6 mm, the lower value for d was set to 

4 mm. As was shown in Experiment CO, a very low cutting depth changes the behaviour of the force 
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components. As such, limited statements can be made about the suitability of the features. Further 

considerations on this can be found in the discussion in Chapter 7.1.2.  

6.3 CR – Cracked Granite 

In this chapter, the results of Experiment GR are presented concerning the force components and their 

ratios. This analysis extends the already published results that can be found in [38, 105–107, 163]. There, 

the effect of microwave radiation on cutting forces was presented. A spatial analysis is conducted 

regarding the cracking state of the samples. The behaviour of the features is shown, and the additional 

feature contact ratio is introduced as a result of the Experiments GN and GR. 

During this experiment, the cutting depth could not be varied; only the spacing was varied in two steps. 

Because of this, the influence of changing cutting depth on the behaviour of features cannot be assessed. 

However, general assumptions can be made by combining the results with the learnings from 

Experiment CO. 

Figure 76 shows photos of Samples B30 and B45. The samples were treated with a crack marking spray. 

While cracks can be seen in both samples, for B45 it shows clearly that due to the cracks, overbreak 

occurs. This overbreak effect cannot be seen in B30, and this observation affects all the following results. 

 

Figure 76: Photos of B30 and B45 during cutting experiments, with crack marking spray applied; 

magenta saturation enhanced with Adobe Photoshop 

6.3.1 Force Component Results 

The statistical summary of the results for the force components is shown in Figure 77. Table K-1with 

the respective values can be found in Annex K.  

Generally, Fz is the highest component, with a mean ranging from 7.0 kN for s = 8 mm and 45 s radiation 

time to 17.1 kN for s = 12 mm and 30 s radiation time; mean(Fx) ranges from 4.2 to 7.0 kN for the 

respective parameter combinations. This means that the average ratio of Fx/Fz ranges from 1.7 for B45 

to 2.4 for B30. The mean of Fy shows considerably lower values with 2.1–3.5 kN. The resulting force 

shows mean values ranging from 9 to 19.5 kN. The values for Q0.95 show a similar behaviour. They 

range from 10.6 to 15.3 for Fx, from 14.3 to 27.6 kN for Fz, and from 5.1 to 7.9 kN for Fy. This also 

means that the ratio Q0.95(Fz)/Q0.95(Fx) is lower for than for the mean forces (1.3–1.8). At the same time, 

Q0.95 for Fres ranges from 17.7 to 31.1 kN. 

8 
mm 

12 
mm 

Cutting 
direction 

B30 B45 
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Figure 77: Cutting force components for different radiation time and spacing, layers 2–4 of 

Experiment GR  

To summarise, most force component statistics are the highest for 30 s radiation time and the lowest for 

45 s radiation time. In B45, Fz showed the largest decline. The reduction in the mean of Fz is 49%. At 

the same time, Fy shows a reduction of 42% and Fx a reduction of 34%. This can be related to the areas 

where overbreak occurred, resulting in no force in z-direction while the tool was in the area of the 

cavities. 

Figure 78 presents the proportion of data points 

below 0 kN for Fx (PPx0) and the proportion of 

data points below 0.5 kN for Fz (PPz0.5). It shows 

that, for both force components, the values show 

little difference between 0 and 30 s radiation 

time. For PPx0 they lie between 3.3% and 5.9%, 

for PPz0.5 they range from 0.1% to 0.8%.  

For B45 that showed visible overbreak during 

cutting, the results for PPx0 between 9% and 

7,4%. This represents a relative increase of 52% 

to 62%, respectively, compared to B0. For PPz0.5, 

the values increase to 8.4% and 3.6%. Compared 

to B0, this represents an 18- and 14-fold 

increase, respectively. 

 

Figure 78: Proportion of data points below 0 kN 

for Fx and below 0.5 kN for Fz for Experiment 

GR 

Figure 79 shows the behaviour of the features that were selected in Experiment CO. Additionally, 

YXQ95, YXIQR, and CR are shown. The features are calculated from the real-time data. For the three 

radiation times, all features indicate little or no change from 0 to 30 s for both spacings. However, a 

sharp change occurs from 30 to 45 s. Here, XZGM, XRMEA, XRME, XRGM, and CR show an increase 

and the features RXGM, ZXQ95, ZXIQR, RXQ95, and RXIQR all decrease. All these features show a 

higher difference between uncracked and cracked rock states, while the values for the different spacings 

do not differ to that extent. YXIQR and YXQ95 show another behaviour. Here, the difference in the 

values is majorly defined by the spacing. For YXQ95, s = 12 mm, the values range in a band of 2 to 2.2, 

whereas the values for s = 8 mm range from 2.3 to 2.6. A similar picture is presented for YXQ95. There, 

the values for s = 12 mm are in a narrow corridor between 0.53 and 0,54 while the values for s = 8 mm 

form a wider corridor from 0.49 to 0.58.  
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Figure 79: Behaviour of features for Experiment GR 
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6.3.2 Spatial Analysis 

The previous chapter showed significant differences in both raw forces and in extractable features 

between B45 and the other two samples. To evaluate the effects of these discoveries, the results are 

analysed in spatial relation to the occurrence of cavities. This analysis is done exemplarily on the data 

of the 4th layer of blocks B45 and B30. Figure 80 shows the laser scans of this layer for the two blocks. 

The overbreak for B45 is clearly visible.  

 

Figure 80: Overbreak in B45 and B30, Layer 4 

Figure 81 shows the force Fz in relation to the cavities. A sample of 1% of the raw data points is plotted. 

The black isolines show the cavities that were extracted from the laser scan. For this, the 10% of all grid 

points with the lowest z-values were selected. It can be seen that very low forces are recorded over the 

cavities and in their vicinity. It can also be seen that forces of over 30 kN occur in areas without cavities.  

 

Figure 81: Fz in relation to overbreak; black isolines: overbreak 

Resulting from this, the contact ratio (CR) was calculated in a grid model (grid node spacing = 1 mm) 

with different search radii (SR) after the method described in Chapter 5.8. Figure 82 shows the results 

of this calculation. Search radii from 10 to 150 mm are plotted for B45. The cavities are again shown 

as black isolines. The same layer is plotted for B30 with an SR of 50 mm as a control example. The 

B45 B30 
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variation of the SR shows that smaller radii emphasise smaller structures, while larger SR present a 

blurrier, more general picture. The SR of 10 mm shows the beginning effects of a recurring tooth-shaped 

structure on the edges of the cavities that resembles a Moiré effect. For the control sample B30, a 

uniform mapping result can be seen. In addition, CR values are very low, with a local maximum of 

approximately 0.001. This means that the pick was in contact with the rock all the time while cutting 

B30. The local values for B45, SR = 50 mm, reach 0.55 for the main cavities. For SR higher than 50 mm, 

a superposition effect can be observed. Grid points between two cavities receive large CR values, 

although no cavity is located on this spot. This is related to the fact that these grid points receive many 

low Fz values from multiple adjacent cracks—which causes CR to rise. 

 

Figure 82: Contact ratio (CR) for different search radii (SR) for B45; B30 as reference 
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Both size and density of the cracks influence the result, as well as the cutting parameters. If the distance 

between individual cuts is higher than the SR, Moiré effects can be expected. Resulting from this, a 

search radius of 25 or 50 mm appears as a reasonable trade-off between accuracy and robustness for 

the identifying cavities with CR.  

6.3.3 Error Analysis 

Between B0 and B30, little difference in force responses was measured compared to B45. B30 shows 

no measurable weakening effect due to the microwave radiation. B30 even shows slightly increased 

cutting force responses compared to B0.  

Reasons for this could be:  

a) Block B30 was generally tougher than the other two blocks. 

b) The induced cracks in B30 are present, but the grains are still interlocked – resulting in no 

measurable weakening of the rock. 

c) Due to thermal processes, an internal stress-relieving effect occurs. Some researchers made 

similar findings when investigating the effects of microwave radiation on rock integrity [191, 

192]. Also, already present microcracks could be closed due to the heating [107]. 

One, two, or all three reasons could play a role. To investigate possible Causes a) and b), the backside 

of B30 was cut in the same fashion as B0. No cracks were visible on the backside of B30, and no cracks 

from the frontside could be observed throughout this additional experiment. The results are shown in 

Figure 83. The values for the figure are located in Annex L 

The mean force responses for Fx, Fy, and Fz with the respective standard deviation are shown. It is 

obvious that the values for the unirradiated side of B30 and B0 are similar. For Fz, d = 16 mm, they are 

14.3 and 15.2 kN, respectively. The values for all forces of the radiated side of B30 are higher than those 

of and B0 and the unirradiated side of B30. For example, the mean of Fz, s = 16 mm for the radiated 

side of B30 is 14% higher than for the unirradiated side.  

 

Figure 83: Mean values of forces Fx, Fy, and Fz with standard deviation (error bars), including 

repetition of untreated block 

Since the forces of the radiated side are higher than the forces of the unirradiated side. Causes a) and b) 

appear to be unlikely reasons for the higher forces. This speaks for the hypothesis that the radiation of 

B30 seems to have an effect that increases the cutting resistance of that rock, although cracks are at least 
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visually present in the rock. The damaging effect was not sufficient to override the strengthening effect 

of the microwave radiation in this sample. 

6.3.4 Summary 

In summary, the occurrence of cracks influences the force components and the FCR on the scale of the 

whole experiment. However, to show a weakening effect on the cutting resistance, it appears that the 

cracks must have a minimum opening to override strengthening effects of the microwave radiation. 

When the weakening effect of the crack network is high enough, overbreak occurs. This overbreak 

results in cavities where the pick does not have contact with the rock. This substantially alters the 

measurable forces and the extractable features. 

The sensitivity of PPz0.5 is much higher than that of PPx0. As such, PPz0.5 is chosen to serve as an indicator 

for cavities. As a feature, it is called contact ratio (CR). For further use, the search radius is important 

as it influences the noise and accuracy of CR. For the case study in Chapter 6.4, a search radius of 

50 mm will be used for the computation of CR. 

6.4 Case Study  

In this case study, the machine learning algorithms as described in Chapter 5.11 are utilised to estimate 

their suitability for rock classification from cutting force data. Prior to conducting this study, a 

preliminary assessment on the applicability of the workflow proposed in this work was conducted on a 

limited dataset (Annex M). For this final case study, a set of features is derived from the results of 

Experiment CO (Chapter 6.1) and extended by the feature CR after Experiments GR and GN (Chapters 

6.2 and 6.3, respectively). The final set of features was chosen based on a limited, iterative, 

hyperparameter variation as explained in Annex N.1. 

The final feature set was: XZGM, ZXQ95, ZXIQR, XRMED, RXGM, RXQ95, RXIQR, and CR. The cutoff 

for CR was set to 0.55. Blocks from the block model that received a CR of more than 0.55 were 

considered “air”. These blocks were exempted from the machine learning process. 

The workflow for this case study is outlined in Chapter 5.12. The code for the calculations can be 

accessed in Annex O (on CD). The calculated 3d-models can be explored online under: 

 

Figure 84: QR-code to access detailed visualisation of results of the case study 

Eight different training cases were used for this study (Table 24). Five training cases consisted of only 

one sample (FBA1 to FBA3, PB1, and PB2). In the other three training cases, multiple samples were 

used for training. Case All uses all samples for training, representing a large and diverse dataset with 

three rock types (concrete, F-Ba ore, and Pb-Zn ore). The Case Only_FBA represents all three FBA 

samples together. Accordingly, Only_Pb represents the two PB samples together. As such, these two 

training cases represent smaller and more homogeneous subcases of Case All. Each machine learning 

algorithm was trained with the eight training cases and its general performance during training was 

evaluated.  

Link to Results of Case Study 

https://brunanza.shinyapps.io/RockModelVieweR/ 

 

https://brunanza.shinyapps.io/RockModelVieweR/
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Furthermore, all trained learners were applied to all other cases to predict rock zones. As such, they are 

cross-compared to each other (e.g., a classifier trained with FBA1 is used to predict not only itself, but 

also the Cases FBA2, FBA3, All, etc.). This results in a matrix of 64 predictions per ML-algorithm. 

Since the classifiers are also used to classify the training case they are trained with, n-fold training and 

cross-validation (see Chapter 5.11) are used to prevent overfitting. 

Table 24: Training cases for case study 

Training case Samples used 

All FBA1, FBA2, FBA3, PB1, PB2 

FBA1 FBA1 

FBA2 FBA2 

FBA3 FBA3 

Only_FBA FBA1, FBA2, FBA3 

PB1 PB1 

PB2 PB2 

Only_PB PB1, PB2 

 

Before the actual machine learning, the features were coded into the block models. The computation 

times are shown in Table 25. The FCR-features and feature CR were computed separately because they 

utilise different search radii. 

Table 25: Times for moving-window feature computation 

Sample Time for all FCR-

features [min] 

Time for CR 

[min] 

Total time 

[min] 

FBA1 4.0 1.7 5.7 

FBA2 13.3 6.1 19.4 

FBA3 15.1 8.3 23.4 

PB1 7.3 2.0 9.3 

PB2 3.5 1.1 4.6 

 

Also, a variation of the training data was performed for the two supervised algorithms (DRF and ANN). 

Hereby, the training-test split was varied from 2% to 99% training data. By that, additional information 

on the required amount of training data was achieved. 

6.4.1 Feature Distribution in Block Models 

The distributions of selected features are investigated to understand how the machine learning classifiers 

operate and to draw conclusions between the machine learning side and the practical engineering side. 

The feature calculation is based on a moving-window algorithm, as explained in Chapter 5.8. The plots 

show the distribution of features for the different material types within a sample. The results are 

presented as violin plots. The distribution density is shown as thickness of the violins; the mean dot 

inside the violins. The distribution of the three features that incorporate the ratio Fres/Fx, namely RXGM, 

RXIQR and RXQ95, are shown in Figure 85.  

A bimodal distribution can be observed for some combinations of samples and features. This is clearly 

visible for PB1, features RXIQR and RXQ95, to some extent for PB2 (RXGM, RXIQR, RXQ95), and 

FBA1 (RXIQR, RXQ95). 

For RXGM and RXIQR, the mean values increase from FBA1 to FBA3. For RXQ95, this increase from 

FBA2 to FBA3 is not very pronounced. The values between rock types are relatively similar for PB1 

and PB2. Especially, the distribution of RXIQR for PB1 is remarkably similar between concrete and ore. 

Furthermore, it can be seen that some distributions show comparatively wide distributions (FBA3, 

RXQ95), while others appear in a narrower window (FBA1, RXGM). Lastly, some distributions show a 
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pronounced one-sided tail behaviour, for example, RXGM for PB1 (concrete) or RXIQR for FBA3 (both 

materials). 

 

Figure 85: Distribution density of features RXGM, RXIQR and RXQ95 for the five experiments of the 

case study as violin plot; • – mean value 

Figure 86 shows the violin plots for the feature contact ratio. The results deviate strongly from the 

previous plots. The samples PB1 and PB2 show very low values, indicating little overbreak for both 

concrete and ore—the material was solid. This is different for the FBA samples. Here, higher values are 

typically observed for the F-Ba ore, except for FBA2. This indicates that the ore samples in FBA1 and 

FBA3 are of relatively low integrity. It stands out that the concrete shows comparably high values for 

CR—although it should show a solid composition. This can be explained by a spillover effect. Since the 

features are calculated with a moving window algorithm, blocks that belong to the concrete, partially 

receive values that are located in the adjacent F-Ba areas. Additionally, most distributions show a long 

tail towards high CR values. 

 

Figure 86: Distribution of contact ratio for the five samples of the case study as violin plot; 

• – mean value 
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Figure 87 a) exemplarily shows the spatial distribution of RXGM for all samples of this case study. The 

range of RXGM is approximately 1.8–2.8. In four of the five concrete samples, the values of the concrete 

range between 1.9 and 2.3. Only for FBA3 do the values reach up to 2.8.  

Due to the moving-average feature calculation, soft transitions in the feature levels between the rock 

zones can be observed.  

In addition, it can be seen that the RXGM distribution is more homogeneous for the PB samples, with 

the exception that the right part of the PB1 sample appears to behave differently from the other parts 

and shows values more similar to the concrete. In fact, this leads to classification problems. This can be 

seen in the online results of the case study (QR-Code, Figure 84) or in Panel b) of Figure 87. It can be 

seen that the DRF that was trained on sample PB2 could not identify this part of the Pb-Zn ore—because 

its features were too similar to the concrete. 

In addition, a cavity is located in the ore part of FBA3. This cavity is identified as a cavity because the 

values for CR are above 0.55. Also, it can be seen that parts of the sides of the edges of the blocks are 

filtered out. These sides also triggered the CR filtering.  

In summary, the differences between the material types are visible both in the grouped violin plots and 

in the spatial distribution of the values. However, especially the FBA-samples present very inconsistent 

feature distributions, both for the F-Ba and the concrete zones. This leads to performance problems, 

which will be discussed in detail in the following chapters. 
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Figure 87: a) Distribution of feature RXGM for all samples of case study, the dashed line indicates the 

approximate location of the samples’ ore part; b) wrong prediction of ore for DRF trained on PB2 

and applied on PB1 
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6.4.2 Distributed Random Forest 

The basic data for the DRF training process are shown in Table 26. The mean training time was 5.2 to 

99.8 s per model. The training statistics refer to a full training cycle of the n-fold training. The training 

time depends largely on the size and the number of classes present in the dataset. Case All had the 

longest training time, whereas the training time of Case Only_FBA was one-third of the latter—although 

Only_FBA has 86% of the number of cells of Case All. Case All had to consider all three rock classes 

during training, whereas the other cases only had to take into account two cases. The cross-validation 

results are consistent for all cases. The mean cross-validation accuracy was 91–96%. The standard 

deviation was sufficiently low to suggest consistent training (maximum 0.7%). For Only_FBA, the mean 

number of leaves was 709.7, which is higher than for the more complex Case All. Additionally, the 

number of leaves for FBA1 and FBA2 is comparably high. This indicates that these samples are 

relatively complex.  

Table 26: Calculation times and general properties for the DRF model 

Name Training time [s] CV-accuracy Mean nr. 

of leaves 

Nr. of 

cells 

Mean 

cells / s mean  ± σ mean  ± σ 

FBA1 25.3 ± 0.7 0.946 0.004 328.6  21,927  866.6 

FBA2 26.1 ± 1.0 0.924 0.004 446.5  44,860  1718.8 

FBA3 26.5 ± 1.0 0.961 0.002 455.0  50,720  1914.0 

PB1 5.6 ± 0.5 0.957 0.003 139.3  10,080  1800.0 

PB2 5.2 ± 0.4 0.962 0.007 114.2  8,970  1725.0 

All 99.8 ± 3.5 0.915 0.001 546.0  136,557  1368.3 

Only_FBA 33.9 ± 1.2 0.922 0.002 709.7  117,507  3466.2 

Only_PB 23.8 ± 0.7 0.954 0.003 241.9  19,050  800.4 

General Properties of DRF 

Features: XZGM, ZXQ95, ZXIQR, XRMED, RXGM, RXQ95, RXIQR, CR 

Max tree depth: 11 Training/validation: 0.2/0.8 

Column sample rate: 3/8 

Row sample rate: 0.632 

Number of trees: 100 

Balancing of classes: on 

nfolds: 5  

 

In this work, the key parameter to define classification success is accuracy. Figure 88 shows the 

accuracy heatmap for the DRF model. The columns indicate the cases with which the model was trained; 

the rows indicate the cases the learner was applied to. The diagonal shows the self accuracy when the 

learner predicts the full dataset from which it received its training data. Related to the markings in the 

figure, it can be seen that:  

a) The DRF that has been trained with all the data shows an overall accuracy of 0.91–0.95. 

Furthermore, if the algorithm learned on a training sample of all rock samples, it can classify 

the remaining data with comparably high accuracy. It means that the DRF is capable of 

capturing the variation of all rock type behaviours relatively well. 

b) The cross-accuracy between the samples FBA1 and FBA2 lies at 0.62 and 0.73, respectively. 

This is substantially lower than the accuracy of the DRF trained with all samples. However, 

parts of the block are identified correctly. The DRF trained with sample FBA3 shows an 

accuracy below 50% for samples FBA1 and FBA2. This means that the algorithm classifies 

systematically wrong in this situation. In cases where one sample from the FBA group was used 

to classify Cases Only_FBA or other individual FBA samples, the performance was not 

sufficient due to a partial systematic false classification. This is related to the systematically 

wrong classification between FBA3 and the other two FBA samples. 
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c) Expectedly, the classification of the DRFs trained with the PB samples is systematically wrong 

in the group of FBA samples. The same is true for FBA to PB. This is expected as the FBA 

samples do not “know” the Class of Pb-Zn ore and vice versa. The only material that both 

samples share is the concrete matrix. Accuracies above 30% show that major parts of the 

concrete were identified correctly. 

d) In the group of the PB training cases, the cross-accuracy is much higher than in the group of 

the FBA training cases. The DRF trained with PB1 shows a accuracy of 0.83 for PB2, whereas 

the DRF trained with PB2 shows an accuracy of 0.62 for PB1. 

The results confirm that the learning algorithm does not recognise rock types it has not been trained on. 

This goes in line with the findings from a), that if a model has been trained with a sample of all 

specimens, it is well capable of classifying the rest of the data—because they are sufficiently similar. 

The cross-accuracy between the FBA samples is comparably low. The cross-accuracy between the PB 

samples is partially higher. This illustrates that the variation of the rock properties between different 

samples of the same group can be relatively high—to the extent that it is no longer possible for the 

learner to perform accurately on other samples of the same group. 

 

Figure 88: Accuracy heatmap for distributed random forest classification 

Feature Importance 

Figure 89 shows the standardised feature importance for the eight different training cases. Most training 

situations show one dominant parameter and a maximum of four parameters that receive an importance 

rating of more than 0.65. Balanced feature importance ratings speak for the necessity of all features for 

classification. The dominant parameter is XZGM, which has the highest importance rating in four of the 

eight training cases. It is followed by CR, XRMED, and RXGM. Compared to the results from Figure 

65, p. 85, where the scaled importance of the DRF for Experiment CO was shown, the feature 

importance is slightly different here. For Experiment CO, RXIQR, RXGM and ZXQ95 received a rating 
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above 0.70. Here, RXIQR received higher ratings for Cases All, FBA2, and Only_FBA. RXGM received 

a high rating for FBA2, FBA3, and Only_FBA. ZXQ95 did not receive higher ratings at all.  

However, few features receive a rating below 0.2. These features contribute relatively little to the final 

result. If feature reduction is the aim, these would be removed first. It is noteworthy that the features are 

more balanced for training situations that incorporate a diverse set of samples. This is especially true for 

Case Only_FBA, which incorporates all FBA samples.  

Additionally, it is noteworthy that the contact ratio received the highest rating for two training situations 

(All and FBA1). At the same time, the contact ratio received low to medium ratings for the other training 

situations.  

 

Figure 89: Feature importance heatmap for distributed random forest classification 

6.4.3 Artificial Neural Network 

The basic data for the ANN training process are shown in Table 27. Three hidden layers with 25 neurons 

each were chosen as architecture. The same set of features as for the DRF model was used. Further 

details on the architecture can be found in Chapter 5.11 and Annex N.1. 

It can be seen that the training of the ANN takes significantly more time than the training of the DRF. 

During the training of the largest dataset, Case All, the training time of the ANN was higher than that 

of the DRF by a factor of 4.6. The trainings of FBA2 and Only_FBA stand out, since they show the 

longest training times—although the datasets are not the largest. The longer training time means that it 

is more “complicated” for the ANN to adjust to the data. Furthermore, the CV-accuracy is slightly lower 

for the ANN than for the DRF. The standard deviation of the CV-accuracy is also slightly higher. This 

indicates less consistent results. 
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 Table 27: Calculation times and general properties for the ANN model  

Name Training time [s] CV-accuracy Epochs 

mean 

Nr. of 

cells 

Mean 

cells / s mean  ± σ mean ± σ 

FBA1 76.1 ± 50.9 0.952 ± 0.006 54 21927 288.0 

FBA2 365.7 ± 92.4 0.915 ± 0.022 322 44860 122.7 

FBA3 94.4 ± 53.1 0.952 ± 0.006 39 50720 537.3 

PB1 72.5 ± 40.9 0.955 ± 0.003 200 10080 139.0 

PB2 25.1 ± 21.9 0.950 ± 0.012 63 8970 356.9 

All 466.5 ± 110.9 0.900 ± 0.004 77 136557 292.7 

Only_FBA 455.1 ± 106.2 0.916 ± 0.006 152 117507 258.2 

Only_PB 243.5 ± 98.9 0.923 ± 0.029 242 19050 78.2 

General Properties of ANN 

Features: XZGM, ZXQ95, ZXIQR, XRMED, RXGM, RXQ95, RXIQR, CR 

Activation function: rectifier nfolds: 5 

Architecture: 8-25-25-25-(2/3) Training/validation: 0.2/0.8 

Balancing of classes: on  

 

Figure 90 shows the accuracy heatmap for the ANN model. It follows the same procedure as in the 

previous Chapter 6.4.2. The columns indicate the cases the model has been trained with; the rows 

indicate the case on which the model has been tested. The diagonal shows the self-accuracy, and the 

other cells show the cross-accuracy. The results are generally similar to the results from the DRF 

training.  

 

Figure 90: Accuracy heatmap for ANN classification 
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a) The network trained with all the data shows an accuracy of 0.91–0.95 for the individual data 

scenarios. 

b) Between the samples FBA1 and FBA2, the cross-accuracy lies at 0.62, respectively 0.69. The 

ANN trained with sample FBA3 shows an accuracy below 50% for samples FBA1 and FBA2. 

This means that the algorithm classifies systematically wrong in this situation. If the ANN was 

trained only with one sample from the group of FBA-samples, it is not well able to classify the 

FBA samples. This is similar to the DRF behaviour. 

c) The classification of the ANN trained with the PB samples is systematically wrong in the group 

of FBA samples and vice versa. Again, this is expected. 

d) The classification results of the ANN trained with the PB samples show good cross-accuracy 

results. Here, the accuracy is slightly better than for the DRF. Especially for the training Case 

PB2 applied to PB1. There, 71% accuracy compares to 62% for the DRF. 

 

These results are similar to the DRF results, whereas the ANN shows partially better performance for 

the cross-accuracy between cases. This suggests a better generalization behaviour. 

Feature importance 

Figure 91 shows the heatmap for the standardised feature importance for the ANN. Feature XZGM is 

among the most important features. It receives a high rating (>0.8) six times, followed by RXGM (five 

times). Also, ZXIQR generally shows higher ratings above 0.7 (seven times). The features XRMED, 

RXIQR receive medium ratings, RXQ95, ZXQ95, and the contact ratio receive lower ratings for most 

training cases. It stands out that CR receives high ratings for FBA3, PB1, and Only_PB. That CR receives 

high ratings for PB1 and Only_PB is surprising, because little difference in CR is observed between ore 

and concrete for this sample. However, a zone of altered gneiss is found in PB1 which causes high CR 

values. 

 

Figure 91: Feature importance heatmap for ANN classification 
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Summary 

The ANN performed similarly to the DRF in terms of accuracy. The ANN provided a slightly higher 

cross-accuracy than the DRF. However, the training times for the ANN were longer than for the DRF. 

Additionally, the ANN shows a more balanced weighing of the features. 

6.4.4 K-Means 

For the k-means clustering, the same set of features was chosen as for the two supervised classifications. 

Table 28 shows the general properties of the algorithm used. It can be seen that the calculation times, in 

general, are very short. The biggest training Case, All, required a mean of 2.27 s for clustering. This 

compares to 99.8 and 466.5 s for DRF and ANN, respectively. The number of iterations shows how 

often the algorithms had to be repeated to find the optimal solution. Here, the largest training Case All 

stands out with 53 to 57 iterations. The other cases show a maximum of 20 iterations. This suggests that 

the number of clusters has a smaller effect than the size of the data set. 

Table 28: Calculation times and general properties for the k-means clustering 

Case Training time [s] Iterations 

min-max 

Nr. of cells Mean cells / s 

mean  ± σ 

FBA1 0.72 ± 0.06 10-13 21,927 30,454 

FBA2 0.30 ± 0.01 12-13 44,860 149,533 

FBA3 0.35 ± 0.01 14-20 50,720 144,914 

PB1 0.11 ± 0.01 11-13 10,080 91,636 

PB2 0.07 ± 0.01 10-19 8,970 128,143 

All 2.27 ± 0.13 53-57 13,6557 60,157 

Only_FBA 0.42 ± 0.01 10-11 11,7507 279,779 

Only_PB 0.21 ± 0.01 12-16 19,050 90,714 

General Properties of k-means 

Features: XZGM, ZXQ95, ZXIQR, XRMED, RXGM, RXQ95, RXIQR, CR 

k-clusters: 2/3/4 nfolds: 5 

Balancing of classes: on Training/validation: 0.2/0.8 

 

Figure 92 shows the accuracy heatmap for the k-means clustering. It follows the same procedure as for 

the two supervised algorithms. The columns indicate the cases the algorithm has been trained with; the 

rows indicate the case on which the model was tested. The diagonal shows the accuracy when the learner 

is applied to the full dataset and not just the training data. Generally, the performance deviates strongly 

from the other two algorithms. With respect to the markings in the figure, it can be seen that: 

a) Training Case All yielded highly varying results for each Case it classified. The accuracy is in 

the range of 0.02 to 0.64 for the classification of FBA3 and FBA1, respectively. This result 

differs significantly from the results of the two supervised algorithms (Chapters 6.4.2 and 6.4.3). 

There, the accuracy was consistently above 0.8. However, in this case, only the predictions of 

FBA1 and PB2 show results equal to and above 0.6. The predictions for Only_PB, PB1, and 

FBA2 are around 0.5. The predictions for Only_FBA, FBA3, and All are below 0.35, which 

suggests systematic misclassification. 

b) For the cross-comparison in the group of FBA-training cases, a lower accuracy than for the 

supervised results is also observed. The self-accuracy is 0.61–0.82 for Cases Only_FBA and 

FBA2, respectively. With one exception, cross-accuracy ranges between 0.33 and 0.61. 
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c) Between the PB and FBA samples, accuracies around 0.5 or below 0.4 occur. Both of which do 

not represent a successful classification. This again is expected and shows that unknown rock 

types cannot be predicted. 

d) In the group of the PB training cases, the accuracy is much better than in the group of the 

FBA training cases. The self-accuracy ranges from 0.72 to 0.81 for Cases Only_PB and PB1, 

respectively. The cross-accuracy is lowest at PB2 predicting PB1 (0.5) whereas for PB1 

predicting PB2, it is 0.76.  

 

 

Figure 92: Accuracy heatmap for k-means classification 

While these results show a lower accuracy than the supervised algorithms, acceptable results are shown 

for the self-accuracy. Especially since the algorithm is not supervised, the classification can be 

considered successful. Additionally, the limited accuracy of Case All implies that the number of clusters 

probably was not high enough for the variance that this dataset brings. As such, a high number of false 

predictions occurred. 

  



Chapter 6 Results 

112 

6.4.5 Training Data Required 

To gain further insight into the required amount of training data, the training of the learners was repeated 

varying the training-validation splits (2, 5, 10, 20, 40, 80, and 99% training data). For this analysis, 

n-fold training was not used. The training and evaluation process was repeated 15 times using 

resampling with replacement. The mean and standard error of the training and validation accuracy 

were calculated for the different training splits. The results are displayed in Figure 93 on the next page. 

The y-axis represents the accuracy, and the x-axis represents the percentages of training data. 

At first sight, all results are relatively similar. The training and validation accuracy start converging at 

approximately 20–40% of training data. However, the training and validation accuracy of ANN 

converge generally at lower training splits than those of DRF. 

Expectedly, for most situations, the best accuracy for the validation data is reached at 99% training data. 

The point of ideal convergence between training and validation accuracy is 80% for almost all Cases. 

The standard error for the validation accuracy is lower for the DRF than for the ANN. Both show their 

maximum at 2% training data for sample PB1. For DRF, it is 0.006, and for ANN, it is 0.019. It stands 

out that the ANN also shows higher standard errors for the training accuracy. This means that the DRF 

training results are slightly more consistent. 

Expectedly, the compound classification Cases All, Only_FBA and Only_PB show worse validation 

accuracy than the cases that only incorporate one sample. For Case All, the validation accuracy reaches 

a maximum at 0.9 for ANN and 0.92 for DRF. For Only_PB, a maximum of 0.96, and for Only_FBA, 

a maximum of 0.93 for both algorithms is recorded. Compared to this, the maximum for the individual 

samples was as high as 0.95 to 0.98. 

In terms of approaching the maximum validation accuracy, the results are similar across all cases. The 

lowest validation accuracies appear at 2% training data, then rise steeply until 10–20% training data. 

The further increase from 20 to 40% is lower. Between 40% to 80% only a limited accuracy increase 

can be seen. The ANN even shows reducing accuracy for this step for Case Only_FBA. This means that 

10–40% of the training data appear sufficient for the scenarios investigated. It should be noted that even 

training-validation splits of 2% show acceptable validation accuracy. 

In summary, the ANN generally shows a better validation accuracy for low training splits. However, 

both algorithms show similar performance for medium training splits. 
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7 Discussion 

This chapter puts the findings of the experiments into perspective with the literature review and the 

research goals of this work. First, the experiments conducted are critically reviewed and their outcomes 

are interpreted. From these considerations, a comparison of the three machine learning algorithms used 

in this study is presented. The chapter concludes with general considerations towards a near-tool MWC 

system.  

7.1 Critical Discussion of Experimental Results 

This chapter critically assesses the practical side of the cutting experiments, conditions of the 

experimental design, execution, and the experiments’ results. 

7.1.1 Experiment CO 

Experiment CO showed very clear results. The features selected with the procedural algorithm 

performed well with the untrained k-means algorithm. It is obvious that the FCR-features show only 

minor correlation with the cutting parameters, whereas the regular cutting force components Fx, Fy, Fz, 

and Fres correlate stronger with the cutting parameters. This is also well visible for the spatial k-means 

analysis that shows precisions below 3.7 cm for the identification of a boundary layer between two 

concrete types. In contrast, k-means analysis using regular force components provided an insufficient 

accuracy for boundary layer detection.  

Critically viewed, these experiments can be seen as a “best-case scenario” for the task of rock 

classification with a near-tool measure-while-cutting concept. The zone borders were clear and straight, 

and the rock zones were homogeneous. Even mixing the data from the two concrete samples posed no 

problem for the algorithm. In a real-world application, comparable rock conditions are unlikely. 

An uncertainty during this experiment is that the definitions of the borders between neighbouring rock 

zones were considered perfectly straight. Although plastic sheets separated the concrete zones during 

casting, minor secondary deformations might have occurred after their removal. However, these 

secondary deformations appear to have played an insignificant role in the results. This is supported by 

the fact that k-means is unsupervised and still showed a good precision to the boundaries.  

Another possible weakness of the experiment is the repeating consistency during casting of the two 

concrete blocks. The comparison between CO1 and CO2 shows that there was a certain variation in the 

toughness of the concrete. However, this variation does not seem to impair the quality of the results 

significantly. 

The dataset is relatively extensive and could be used for further research. To extend the results of this 

experiment, a 3d-modelling based on the spatial data, similar to the case study, could be conducted. In 

addition, different training-classification scenarios could be investigated. For example, it could be 

examined whether training an algorithm with one combination of cutting parameters would yield 

acceptable classification results for other combinations of cutting parameters. This would give answers 

to whether a classification algorithm would have to be trained with the entire range of cutting parameters 

or whether limited training can be extended to other cutting parameters. In addition, different machine 

learning techniques could be tested. 
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7.1.2 Experiment GN 

For this experiment, only two relatively small samples were available. As such, the parameter space that 

could be evaluated was relatively limited. Another aspect was the high cutting resistance of the gneiss 

for certain foliation orientations. During the cutting of Sides B and C, high forces and a strong dynamic 

oscillation of the rock cutting rig occurred. As a result, the cutting depth could only be varied in two 

relatively shallow levels, 4 and 6 mm. Experiment CO suggests that a very low cutting depth changes 

the behaviour of the force components.  

In addition, only the three main foliation directions were investigated. These three foliation directions 

are coplanar to the x-y-, x-z- and y-z-planes. However, from the literature, it is known that a foliation 

direction between these directions yields results that lie between these terminal orientations [100, 103, 

193]. 

The effects of certain boundary layer angles and foliation directions are already well researched, mainly 

on application scale [43, 99, 100, 103, 193, 194]. Experiment GN showed that similar effects could also 

be expected on the scale of the single tool. Insights into the cutting process during the cutting of 

anisotropic rocks could be obtained. The main results were that foliation could potentially alter certain 

features to a significant extent. This may lead to additional complexities during machine learning. 

However, putting these results in relation to the case study, a supervised machine learner could be able 

to learn the highly varying behaviour of one rock class and still identify it correctly—given that the 

training data already provide enough information about the variability of the pick-rock-interaction. To 

give a clearer answer to this question, additional experiments are required. Mainly, the range of the 

cutting parameters spacing and cutting depth should be extended; but also the range of foliation angles 

in relation to the cutting trajectory. Eventually, fully scaled experiments with rotary tools are advised to 

deeper understand the influence of foliation towards rock classification. 

Because a cutting direction parallel to the foliation allows the outbreak of large chips, situations in which 

the pick has only limited contact with the rock face occur more often than for the other two sides. There, 

the number of data points below a threshold; in this case, 0.5 kN for Fz is significantly higher. This 

discovery led to the decision to add another feature, the contact ratio, to the set of features—which 

proved important during the case study. 

An unexpected additional finding was revealed by the regression-based analysis of the effect of spacing 

and cutting depth on the force components Fx, Fy, and Fz. It shows that the spacing has no significant 

effect on Fx and Fz for the layering conditions A and C. Within the boundaries of the cutting parameter 

variation, the limit of this effect could not be found. However, it could be shown that there is a clear 

difference between unrelieved and semi-relieved cuts. As such, there must be a limit to this effect. This 

discovery should be investigated with an extended parameter range, as it poses significant optimisation 

potential for the excavation efficiency of a cutting machine. The work regimen or even the cutter drum 

design, especially with regard to the pick lacing, could be optimised. The picks could be spaced further 

apart. This could, in turn, reduce the specific energy consumption of the cutter head and, as such, increase 

the advance rate of the excavation machine, given the same cutter head power [41].  

In a real-world application of a force sensor system, an exact identification of the foliation direction 

would only be of economic interest with regard to finding and exploiting it. In the case researched here, 

this would be Side A. However, the optimum foliation direction can only be utilised to a limited extent 

due to the rotary nature of most cutter heads. Nevertheless, these preliminary results indicate that the 

preferred foliation direction could be identified during an upscaled MCW-sensor implementation. 
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7.1.3 Experiment GR 

During this experiment, it was shown that the cutting forces react mainly to cavities and less to the pure 

existence of cracks. This is coherent with the previously published results this analysis builds upon. It 

showed that it is necessary to distinguish between detecting cavities and cracks. Only cavities or 

sufficiently opened cracks would be detectable with a near-tool MWC-system.  

With this analysis, it could be shown that the use of the contact ratio for the detection of cavities 

performs well. Single cavities could be traced spatially. However, it also was shown that most features 

except those incorporating Fy show good distinctions between damaged and undamaged rock.  

Only a minor variation of the cutting parameters was performed. This is because the main aim of this 

experiment was related to the previously published articles: to understand the level and depth of damage 

induced by high-power microwave radiation. On the other hand, these results are viewed in the context 

to Experiment CO where a sufficiently large parameter variation was done.  

To extend this analysis further, a 3d-modelling of cavities based on cutting force data could be 

conducted. There, the question could be answered how cavities extend between different cuts as this 

was not the focus of this work. Additionally, a CR-based analysis method could be used to investigate 

further how deep into the rock a measurable effect of a crack network extends. 

7.1.4 Case Study 

The purpose of the case study was not only to estimate the capabilities of machine learning-based rock 

classification in 3d, but also to estimate and visualise the limits of such a classification. The three 

different rock types served different “roles”. Generally, the concrete served as a specimen for a relatively 

homogeneous, isotropic rock without structural defects. The lead-zinc ore served as a representative of 

a medium homogeneous rock without major structural defects. The fluorite-barite ore served as a worst-

case scenario in terms of homogeneity and structural integrity. The ore comprised layers and clusters of 

fluorite and barite—both are relatively soft minerals. Quartz bands formed very hard fractions. Larger 

parts of strongly weathered gneiss occurred as well. These parts appeared very soft and could be 

damaged with a knife. FBA3 additionally contained a larger cavity, which further added to structural 

heterogeneity. Figure 94 shows a detail of this. Additionally, the ore showed a layered structure, which 

could additionally have added to classification complexity. 

 

Figure 94: Detail of sample FBA3 
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Furthermore, the concrete of the FBA samples showed an unexplainably varying behaviour. The FCR-

answers of the concrete in the samples FBA1, -2 and -3 varied considerably to the extent that it 

complicated the classification task substantially. This part of the experiment was not expected and the 

reason for this is not entirely clear. One possibility might be errors in the preparation process of the 

concrete, as it was mixed by hand. Another possible reason could be a varying time from casting the 

blocks to execution of the experiments. At first sight, seems improbable. The blocks were cut after a 

drying time of 30 days—and cut within a timeframe of two weeks. According to the datasheet, the 

concrete reaches 95% of its final strength after 30 days. However, the blocks had different sizes. This 

might have affected the hardening rate of the blocks. Block FBA3, which was the hardest—as indicated 

by the highest FCR(Fz/Fx)— was cut last in this two-week period. 

The FBA-samples were expected to show the boundaries of the machine learning possibilities, and these 

expectations were clearly met. The cross-comparisons in between the group of FBA-samples yielded 

partially unsatisfying results. Remarkable, however, is that the supervised learners were able to provide 

acceptable results for the compound Cases All, Only_FBA, and Only_PB. It shows that machine learners 

could provide acceptable results even for complex multiclass problems.  

The current method of feature extraction does not incorporate time as an input dimension. This has 

advantages and disadvantages. The advantage is that this method is robust because additional error 

sources that come with measuring time are eliminated. Also, variations in cutting speed play no role 

with the current method. 

The disadvantage is that analysis methods that use the time domain in some way are not usable. For 

example, frequency analyses cannot be incorporated directly. Such methods would include discrete or 

fast Fourier-transformations [22], or empirical mode decomposition [114]. 

Apart from these considerations, the case study experiments were designed to simulate a real-world 

application with the linear rock cutting rig as closely as possible. A further extension of these 

experiments could only be achieved by upscaling the experimental environment to rotary cutter heads.  

7.1.5 Additional Outcomes 

An aspect is quality control of measurement data. During regular, state-of-the-art cutting experiments, 

only a limited number of repeating cuts are conducted, e.g., five repetitions per parameter combination—

like in Experiment GN. In most of the experiments conducted for this work, a far greater number of 

single cuts was performed. For Experiments PB1 and PB2, 463 and 264 cuts were executed, 

respectively. For the largest experiment, FBA3, 512 cuts were performed on 16 layers.  

In total, approximately 2000 cuts were executed and measured for the case study only. These amounts 

require a fast and efficient quality control programme. Until now, individual cuts would be manually 

inspected from the measurement files, manually exported, and results would be computed in Excel. Such 

a method is time-consuming for such a large number of cuts. To manage this, an updated workflow was 

introduced. The updated programme was implemented in Flexpro and R-Studio. In the new programme, 

all cuts were exported first. Summary statistics were computed and outlier cuts were directly eliminated. 

For more detailed quality control, a Shiny app allowed quickly browsing through the cuts; for each cut, 

the user can decide whether the cut is rejected or—if necessary, the cut can be truncated. The latter 

might be necessary when defects in the triggers that start the experiments occur. This was particularly 

the case during Experiment PB. The code to the app can be found in Annex O. Additional information 

on the updated quality control during cutting experiments is located in Annex G. 
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7.2 Comparison of Machine Learning Algorithms 

This chapter summarises the observations regarding the machine learners and concludes with final 

recommendations for their potential use in further development of near-tool MWC-systems. 

7.2.1 K-Means 

While k-means performed very well during Experiment CO, the limits were shown during the case 

study. The performance for complex situations was very limited. Especially the cross-performance was 

dissatisfactory. Because k-means optimises based on Euclidean distances, the features are all weighed 

equal by definition. Also, the cluster shapes in the multidimensional space drift towards a spherical 

object (within the range of available data points) and can not be modified as with supervised methods. 

Especially, when multiple subtypes of rock are summarised in one rock class, the performance drops 

significantly. However, a workaround to this is possible, as illustrated in Figure 95. 

 

Figure 95: a) Model of rock types for sample PB1; b) photo draped on 3d-scan of surface shows 

overbreak in the worn zone; c) k-means classification results; d) prediction of FBA2 for k-means 

trained with PB1 

Sample PB1 consisted of concrete and lead-zinc ore. However, the lead-zinc ore showed an anomaly: a 

piece of worn, altered gneiss. As seen in Panel a), the anomaly (wR) had the shape of a floe on the corner 

of one ore lump. Panel b) shows a photo of the situation draped on a 3d-scan of the block during cutting. 

The worn zone showed significant overbreak—leading to very low forces. Such a cutting behaviour is 

very different from the rest of the Pb-Zn parts but formally, the piece belongs to these Pb-Zn parts.  

The workaround consists in defining more clusters than formal rock classes. This results in sub-classes. 

Two or more sub-classes then can be summarised to form their respective parent class. Panel c) shows 

the result of the clustering with k = 3. The cluster identification coincides with the Pb-Zn ore, the worn 
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rock, and the concrete, respectively. For the main analysis in the case study, the cluster identifying the 

worn zone was added to the Pb-Zn zone to achieve comparability to the other results. 

Panel d) shows further considerations to this. The prediction result of the k-means clustering trained 

with Sample PB1 (with k = 3) was applied to Sample FBA2. The cluster that associates to the worn zone 

of PB1 now identifies the fluorite-barite ore, and the concrete is identified as Pb-Zn ore. This means that 

the F-Ba ore acts similarly to the worn zone, and the Pb-Zn ore of PB1 acts similarly to the concrete of 

FBA2. This information would be lost by only using k = 2. This illustrates how k-means can be used for 

an exploratory analysis to find zones in the rock that act similarly. That way, with a higher number of 

clusters, finer differences in rock types can be made visible. This can accompany a supervised algorithm. 

Another modification of k-means was used for the accuracy analysis of the case study. Manual 

assignment of the clusters to the rock types after classification was not possible due to the high number 

of different cases. Therefore, the starting clusters were not randomly chosen, but the centre of gravity 

of each zone in the feature space was used as starting cluster positions. This defined which cluster 

corresponds to which rock zone before clustering. In the broader sense, this method enables a “semi-

supervised” mode for k-means. Here, the user can provide the clustering algorithm with limited 

information about known rock zones, and then let the algorithm find the boundaries of the rock zones 

on its own. Such a function is similar to a colour picker/pipette function in many graphics softwares. 

In summary, k-means clustering can be a valuable explorative or auxiliary tool to identify subtypes in 

known rock zones or when only limited labelled training data are present. For direct classification, the 

performance is minor to the two supervised algorithms. 

7.2.2 Artificial Neural Networks and Distributed Random Forest 

Both supervised algorithms performed very similarly in terms of accuracy and generalisation 

performance. Thus, their differences are more on the side of deployment complexity and computation 

time. The ANN showed considerably longer computation times than the DRF.  

In addition, ANNs have a relatively large number of parameters for the user to consider (91 for ANN 

and 50 for DRF in the H2O package [187, 189]). This makes the process of reaching the final training 

for ANN comparatively time-consuming and subject to many unknowns. Furthermore, understanding 

the exact internal functionality is a complex task for ANN. 

Hastie et al. (2017) state that “[ANN] are especially effective in problems with a high signal-to-noise 

ratio and settings where prediction without interpretation is the goal“ [177]. The signal-to-noise ratio 

can be considered partially problematic due to the varying cutting process. However, the noise from the 

cutting process itself is reduced by the employed data pre-processing methods. As such, the signal-to-

noise ratio is considered a medium problem for this application. Another aspect is repeating accuracy, 

which varies stronger for ANN than for DRF. 

DRFs, on the other hand, are comparatively simple to set up. The most important parameter is the tree 

depth, which has a big influence on the over- or under-fitting behaviour of the algorithm. Other 

parameters such as column and row sampling rates, or the number of trees, have less influence on the 

output. Also, the computation of the feature importance is well understood. Furthermore, the DRF 

showed little variation in the accuracy for repeated training, making it slightly more reliable. 

Furthermore, ANN provided a slightly better cross-accuracy between cases and better validation 

accuracy with little training data, indicating that it shows a slightly better generalisation behaviour. 
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7.2.3 Summary 

Table 29 summarises the performance properties of the algorithms in this study. A direct comparison 

between the three types of machine learning algorithms showed that while all the algorithms could 

distinguish between the different rock zones, 

▪ k-means shows the lowest accuracy but fast calculation times and does not require training,  

▪ ANN and DRF showed similar accuracy; however, the ANN showed longer training times, 

▪ ANN needs slightly less training data and shows a slightly better generalisation behaviour. 

▪ Both supervised algorithms yielded good results with relatively little training data. However, 

the training data must capture the expected geologic variability. 

Table 29: Summary of machine learning algorithm performance during this study 

 Artificial neural 

network 

Distributed random 

forest 

K-means 

Computation time - + + 

Accuracy + + - 

Amount of training data + 0 / 

Generalisation behaviour + (+) - 

Training complexity - 0 + 

Understanding of 

internals 

0 + + 

Use case Prediction of rock 

classes  

Prediction of rock 

classes  

Auxiliary use / when 

supervised training is not 

possible  

 

In summary, both ANN and DRF could be used for application when training data is available. K-means 

should be used as a supporting tool or when no labelling of data is possible.   
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7.3 Considerations Towards Sensor System 

In terms of the technology readiness classification as defined by the European Commission (s. Table 

30), a classification of near-tool measure-while-cutting systems in relation to this work can be assessed. 

Depending on how the boundaries of the classification are defined, the outcomes differ. Regarding rock 

cutting, the basic principles of FCRs have been known since 1981, and the basic technology concepts 

of cutting force measurement have been formulated since the 1970s. Sensors have also been tested in an 

industrial environment (fully scaled cutting machine), but have not been in regular operation yet. The 

behaviour of real-time-calculated FCR and the spatial interpretation of FCR have not yet been 

documented. As such, the pure sensor side of this technology would range at TRL 5–6 while the data 

interpretation and evaluation side can be lifted to TRL 3–4 with this work. 

In the present study, the analysis of FCR is performed posteriorly to the actual cutting. As a next 

improvement, an online or inline system would have to be demonstrated that combines an MWC-sensor 

concept with the rock classification methods that are presented in this study. Depending on the scale, 

this could be done on the scale of TRL 5 (single tool linear cutting system) or TRL 6 (on a rotating, fully 

scaled cutter head). 

Table 30: Technology readiness levels, originally defined by NASA and refined by the European 

Commission [195] 

TRL Description 

1 Basic principles observed  

2 Technology concept formulated  

3 Experimental proof of concept 
This work 

4 Technology validated in lab 

5 Technology validated in relevant environment (industrially relevant environment in the case of key 

enabling technologies) 

6 Technology demonstrated in relevant environment (industrially relevant environment in the case of 

key enabling technologies) 

7 System prototype demonstration in an operational environment 

8 System complete and qualified 

9 Actual system is proven in operational environment (competitive manufacturing in the case of key 

enabling technologies; or in space) 

 

7.3.1 Force Vectors and Data Acquisition Rate 

In this work, one of the research questions is to define the basic requirements that a near-tool sensor 

system must meet for a precise operation in order to usher in the development of this technology. It was 

shown that the use of FCR could significantly improve the classification result over the use of “standard” 

force components. In fact, the use of FCR unlocks a robust classification that performs well under a 

variation of the cutting parameters. As such, it can be summarised: 

 

1. FCR utilising features derived from Fx, Fy, and Fz yield best results. 

2. FCR utilising features derived from only Fx and Fz still yield good results. 

3. The use of “classic” force components did not yield suitable results. 
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This means that the sensor assembly should be able to at least measure the force acting in cutting 

direction (Fx) and the normal force. Since most excavation machines utilise rotating drums, the force 

acting in cutting direction would then be called tangential cutting force. This is defined as a minimum 

requirement.  

Although FCR incorporating Fy directly decreased the classification success, FCR incorporating Fres 

yielded the best results. For the computation of Fres, the measurement of Fy is required. As such, the 

additional measurement of the side force is defined as the optimum requirement.  

Generalised, the key element of this near-tool MWC concept is the use of two to three orthogonal forces 

that are measured at a high frequency. During the experiments, the data acquisition rate was 1000 Hz at 

a cutting speed of 0.1 m/s. This results in a DAQ rate of 10,000 data points per meter cutting length. 

Industrial cutter heads operate at cutting speeds around 1.5–3.5 m/s [196–198]. If the same DAQ rate 

per meter is desired, this will translate into 15,000–35,000 Hz per channel per pick equipped with 

sensors. Table 31 summarises these requirements.  

Table 31: General requirements for an FCR-based MWC sensor system 

 Minimum 

Requirements 

Optimal Requirements 

Measured force 

directions 

Fx and Fz Fx, Fy and Fs 

 DAQ rate Depending on cutting speed: ca. 15,000–35,000 Hz 

per channel per pick 

 

However, also lower DAQ rates could capture the rock characteristics sufficiently well. Additional 

investigations would be required to identify a minimum DAQ rate that should be met. These additional 

investigations could also be done with the datasets from this study. 

7.3.2 Sensor Types 

The forces could be measured by several sensor types as shown in Figure 96. The use of piezo sensors, 

b) and c) would be one possibility. They could be installed as bolts in special drill holes or attached to a 

surface—similar to regular resistive strain gauges. However, their use is restricted by the natural 

frequency of the sensor. Depending on the exact design of the sensor, the frequency can range from 2 

to 200 kHz [199]. For resistive strain gauges, a) and d), higher frequencies are possible without 

degradation of the signal [200]. However, the main restriction of the maximum measurement frequency 

lies in the design of the entire assembly: tool–holder–sensor [199, 201]. 

One alternative to piezoelectric and resistive gauges are fibre-Bragg gauges, shown in Figure 96 e). 

These tools are offered primarily for purposes of geotechnical and construction deformation 

measurement. However, they are also available on the market as versions similar to strain gauges. The 

advantages of these sensors in the mining context are their resistance to electromagnetic influences since 

they work optically (except for the DAQ device). However, the required fibre optic cables can inhibit a 

use on moving parts [202]. 

Given the fact that an application of a near-tool MWC system takes place in the rock cutting and mining 

context, the environmental conditions that apply there must be considered: very high peak forces, very 

high accelerations and vibrations, dust, and/or water. The dust might contain aggressive or abrasive 

minerals (salts, pyrite, quartz). Natural occurring water might be highly mineralised and acidic. The tip 

of the pick can reach very high temperatures of up to 1100 °C [60]. Although this is the temperature of 

the tip, still high temperatures above 100° C should be expected around the tool in some cases. Lastly, 
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ferromagnetic ores can occur and electric cutter head drives of up to 400 kW power (for roadheaders) 

[203] might incur strong electromagnetic fields—adding electronic disturbances. 

 

Figure 96: Different deformation sensors: a) resistive strain gauge, b) piezo-bolt, c) piezo strain 

gauge, d) resistive strain gauge for use in bolts or drill holes, e) fibre-Bragg-strain gauge [204–208]17 

7.3.3 Computation Speed 

The calculations carried out in this work are in the form of a posterior or offline analysis. However, this 

analysis could be performed automatically in batches from the measured data as an online analysis. 

Vraetz (2018) classifies an online analysis as “an automated […] analysis that can be conducted in 

under 10 min, and the information can be fed back into the process” [157]. With the data structure and 

volumes processed in this work, this would be possible.  

The greater goal is an inline analysis. Here, the information is analysed and fed back into the process in 

under 1 min. The slewing speed of a cutter head can reach up to 20 m/min. The precision of boundary 

layer detection under optimal laboratory conditions was below 3.7 cm. Assuming a desired precision of 

5 cm, this would mean that the distance of 5 cm is traversed in up to 0.15 s. As such, the reaction speed 

of the system should ideally meet this threshold. This is only a rough estimate to illustrate the magnitude 

of the required reaction speed. An exact calculation requires additional parameters. The swivel speed of 

the boom is subject to the rock properties, cutter head type, rotation speed of the cutter head, general 

machine parameters, and working regimen. During 0.15 s, one pick could have travelled a theoretical 

cutting length between 0.22 and 0.53 m based on the cutting speeds stated above. This is equivalent to 

one to two single cuts on the cutting test stand of TU BAF.  

Generally, the computation and classification method presented in this work is the first published 

method that allows for spatial feature computation and subsequent classification with reasonable 

computation times. Irrespective of being an online or inline analysis, the computational speed can be a 

potential bottleneck. Figure 97 summarises the computation workflow with the range of calculation 

 

17 Images: a) Haehne Elektronische Messgeräte GmbH, b) Kistler Holding AG, c), d) & e) HBM Messtechnik 

GmbH 
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times for the individual cases from the case study. It can be seen that the largest portion of the total 

calculation time is consumed by the moving-average feature calculation, followed by the training time 

for a neural network.  

The search radius is a major parameter that influences the computation speed. However, reducing the 

search radius preserves more noise, negatively influencing the classification results. A method of 

improving computation speed while preserving noise reduction could be a stepwise calculation of the 

features with increasing search radii. For example: first calculate the feature block model with SR = 25, 

then summarise the block model with SR = 50, followed by a final summary with SR = 100. This would 

greatly reduce the computation requirements for the first step. The refinement of the block models is 

neglectable in comparison to the first computation (raw data for FBA3 contain 2.5 million data points, 

the block model contains 51,000 data points). Such an approach is similar to Gaussian filtering in image 

processing. However, it should be investigated whether this changes the accuracy of the results. Such 

an approach should be combined with the spatial divide-and-conquer approach, which already reduced 

computation times substantially. 

The training times for the distributed random forest and k-means clustering are neglectable, as well as 

the time for the computation of the actual prediction of the rock types. Only the training of the ANN 

took longer than 2 min. However, training of whole datasets does not have to be done consistently—

only during (re-)calibration of such a system. 

 

Figure 97: Summary of classification workflow with approximate computation times from case study; 

symbols indicate (f.l.t.r): neural network, distributed random forest, k-means  

Algorithm optimisation was not the focus of this work. However, a limited computation time 

optimisation was implemented for the moving-average feature calculation. This was done by 

implementing a parallel divide-and-conquer algorithm, which results in a substantial increase in 

computation speed. Without divide-and-conquer, computation times of up to 6 h were recorded; after 

the improvement, they could be reduced to under 30 min. Further improvements to computation speed 

can possibly be achieved by using lower-level programming languages, such as C++, which is known 

for its speed. Here, a further improvement of speed by one magnitude could be expected [209, 210].   
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8 Summary and Outlook 

The overarching goal of this work is to evaluate the possibility of using machine learning for the 

classification of rock types based on cutting force measurements with conical picks. This was mainly 

achieved by utilising features extracted from real-time force component ratios with the help of a moving-

window algorithm. Such a methodology can potentially be used in a near-tool-sensor (NTS) arrangement 

to serve in measure-while-cutting (MWC) technologies.  

With these technologies, it is possible to integrate an excavation machine into a Mining 4.0 environment. 

The machine would be able to work highly automated or even autonomously; furthermore, it would be 

possible to integrate the obtained data into the deposit model. Data from the deposit model can help 

navigate the excavation machine, and the data won by the excavation machine can be fed back into the 

deposit model to update and concretise it.  

Although this technology has been under research since the 1970s, it did not yet leave the prototype 

stage while a similar technology, the measure-while-drilling technology (MWD), reached market 

readiness. For MWC, however, the development is less sophisticated. Full-scale cutting force sensor 

assemblies with analysis methods are published almost only for disk cutters. Sensor concepts and 

prototypes are published for conical picks, but without a complete analysis system. This could be 

attributed to the fact that the cutting parameters cutting depth and spacing constantly vary during the 

use of these machines. 

Therefore, an overview of the parameters that influence the rock cutting process was conducted. This 

overview concludes that the normal to cutting force ratio holds a usable information value about the 

rock type being cut—and is possibly robust against changing cutting parameters. Following, an 

overview of the state of the art of cutting force measurement, research and its reporting conventions 

showed that there is a knowledge gap in detailed statistical analysis of the cutting forces in general, but 

especially of the behaviour of force component ratios. This information indicates that cutting force-

based rock classification for conical picks is not yet fully understood. At the same time, machine learning 

for the identification of rock types and production optimisation is a field under broad research. 

These literature findings led to the development of a new approach for rock characterisation based on 

cutting force component ratios. This was achieved by designing a procedural algorithm to preselect 

possible features from a group of 72 force component-based feature candidates. The algorithm was 

applied to the results of a rock cutting experiment with nine different cutting parameter levels and three 

different concrete hardness zones. The algorithm selected a set of nine suitable parameters. Based on 

these parameters, k-means clustering was used to identify the three different rock zones. There, the 

features from the preselection were tested against four other sets of features. Two of these were a 

variation of the immediate feature selection and two represented features based on “classic” cutting force 

measurements. The boundaries between rock types with differences as low as 7.7 MPa UCS could be 

identified from the extracted features with the unsupervised k-means clustering. The mean spatial 

precision to identify a boundary between two adjacent types of concrete ranged from 2.4 to 3.7 cm. A 

correlation analysis and a feature importance analysis were performed based on a distributed random 

forest algorithm to further determine the significance of the features. It showed that some features may 

be dropped to avoid redundancy. 

Two more experiments were conducted to supplement these first results: a cutting experiment on an 

anisotropic rock, gneiss; and a cutting experiment that compares uncracked with cracked rock. For the 

latter, a granite was used where two out of three samples were treated with high-power microwave 
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radiation to induce a crack network. The gneiss experiments showed that anisotropic rock might be 

problematic for any machine learning classification algorithm. The results further revealed that the 

spacing between neighbouring cuts has no significant effect on the cutting forces in layering orientations 

along the x-y- and x-z-planes with respect to the cutting trajectory. This experiment also showed that 

certain layering orientations might be well identified by an additional feature that describes how often 

the pick loses contact with the rock. This occurs when very large chips break out and overbreak occurs. 

This feature is called contact ratio and was added to the set of features used in the subsequent 

experiments. 

The second auxiliary experiment, cracked granite, showed that a crack network must show a certain 

opening state so that the cracks can act as an additional free face—resulting in overbreak. This overbreak 

can be precisely described with the contact ratio defined before.  

All these findings were incorporated into a final case study. Five samples, composed of two different 

materials, were each cut with two different cutting parameter combinations. Two samples consisted of 

lead-zinc ore in the centre and concrete on the outside; three consisted of fluorite-barite ore and concrete. 

The concrete for all five samples was the same.  

The data from these samples were used to test the classification behaviour of three different machine 

learning algorithms: k-means clustering, feedforward artificial neural network, and distributed random 

forest. The first is an unsupervised algorithm, and the latter two are supervised.  

The three machine learning algorithms were trained with eight different training cases, and their 

performance was evaluated. Five training cases consisted of the five individual samples; the remaining 

three were composite cases combining data from multiple samples. It showed that generally, if learners 

were presented data from samples that they were trained with, they could classify the rest of the sample 

with high accuracy. However, a prediction of samples on which no training was performed, achieved 

limited success. Here, only the Pb-Zn samples yielded acceptable cross-accuracy. The F-Ba samples 

proved to be too diverse in their material properties. However, if a learner was presented with training 

data from multiple samples, the accuracy increased substantially. 

Additionally, it was investigated, how much data the supervised algorithms require for reliable results. 

It showed that 20–40% of the total data amount is sufficient, acceptable results can be obtained even 

with as little as 2–5% of the total data. 

Expectedly, the key lesson is that any learner must be presented with the geologic variability that a rock 

class might exhibit before it can identify it. An analogy are human kids as highly sophisticated learners. 

If a child has so far only seen cats, it will also identify the picture of a dog as a cat, because it has never 

learned the difference between a cat and a dog.  

Generally, the distributed random forest and the neural network showed similar performances with the 

practical implication that the ANN requires slightly less training data and shows a slightly better 

generalisation behaviour, but needs longer training times; also hyperparameter tuning is more complex. 

The unsupervised k-means algorithm did not show the same accuracy as the two supervised algorithms. 

It performed worst when the rock types present were very diverse. The problem is that k-means creates 

clusters that resemble a spherical shape in the multidimensional feature space. It cannot capture more 

complex shapes. However, the computation times are very short. This suggests that k-means may be 

used for exploratory analysis of features when the true rock classes are not entirely known or to identify 

sub-classes of rock types. 
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The essential results are that features derived from force component ratios in conjunction with the 

additional feature contact ratio characterise the cutting process sufficiently well—and prove a good tool 

for material characterisation on conical picks. Regarding ushering in the unlocking of a cutting force 

measurement-based MWC technology, it is crucial to measure at least the Fx and Fz components of the 

cutting force; optimal results can only be expected when Fy is additionally measured. All three force 

components are required to compute the necessary force component ratios that, in turn, are required to 

extract the features that provide maximum accuracy. Apart from measuring these forces, a rock 

classification system must also be able to analyse the incoming data stream of up to three channels. 

Based on the experiences in this work, a sampling rate as high as 15,000–36,000 Hz per channel is 

suggested. From the raw data stream, a spatial block model containing the features must be computed 

sufficiently fast. Designing such a system was not part of this work, but it could be shown that there is 

room for optimising and substantially speeding up the algorithms for feature generation. Once the 

feature model is constructed, the actual training and prediction are computationally less problematic.  

In summary, the perspective for the potential capabilities of a near-tool MWC system could be outlined 

and positive prospects of identifying even relatively small rock toughness differences (7.7 Mpa UCS) 

as well as changing rock mass states were shown. 

Outlook 

The focus of the methods derived in this work lies in a potentially robust system—as robustness is one 

of the key desirables in the mining and construction industry. However, as the development of MWC 

systems is far from over, many potential extensions and additions to foster such systems remain to be 

developed. 

Regarding the analyses conducted, the major future foci of work should investigate the influence of the 

wear of a pick, as well as the influence of a varying cutting speed towards the classification behaviour 

of FCR-based rock classification. These two parameters of the cutting process could not be investigated 

in the scope of this work, but knowledge of their influence is the next crucial element in the advancement 

of FCR-based rock classification. Another aspect is increasing the knowledge of classification 

capabilities in anisotropic or cracked rocks. Here, only foundations could be created, and more in-depth 

research is required. While the approach to compute the features with a moving-window algorithm was 

chosen with the goal in mind to create a method as robust as possible, more research into the refinement 

of the method appears promising. This starts with an extension of descriptive statistics like kurtosis or 

skewness and can be extended to the use of histogram bins, as well as directional statistics. Furthermore, 

investigating frequency analysis methods, or peak extraction algorithms—the list of methods to 

characterise data is sheer endless and finding the perfect solution is an extensive process. 

The ultimate step to continue research in the field of MWC is an upscaling of the method, as it provides 

a more realistic picture of its capabilities. Such an upscaling would have to go in line with a working 

sensor assembly, and in the wake of this—provide a demonstrator. Questions like “How many sensor-

equipped tools does one need for a performant rock classification?”, “How do machine dynamics 

influence the measurement? Can it even be a feature?”, and “What is the lifetime of the sensors?” can 

only be answered there. Such a demonstrator could be equipped with additional sensors, allowing multi-

sensor-fusion concepts, where machine vibrations, cutter drive current, hydraulic pressure, and more 

could be utilised—further ushering in a “feeling” excavation machine of the future.  

So that the old miners saying: “All is dark in front of the pick” one day becomes  

“The pick lights the way”.  
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Annex A Fields of Application of Conical Tools 

Conical picks are widely used tools for rock excavation throughout the industry. The main machine 

types that use them are: continuous surface miner, continuous miner, roadheader, and shearer loader. 

This chapter provides additional information on the machines introduced in Chapter 2.  

A.1 Continuous Surface Miner 

The Continuous Surface Miner (CSM) is used not only in open-pit mining but also in construction 

excavation—or as a so-called cold planer in road milling and construction. 

Surface miners can be divided into three groups according to the position of their cutting drum: front, 

central, and rear cutting drum. Front and back cutting drums offer advantages in cutting corners and 

border areas; they are also more mobile. Central cutting drums allow for a more efficient use of the 

machine’s weight to ensure a sufficient penetration of the drum into the rock face [27].  

Furthermore, they can be divided into top-down and bottom-up cutting, depending on the rotational 

direction of the drum in relation to the movement direction of the machine. Top-down cutting offers a 

more homogeneous particle size distribution of the material [211]. Bottom-up cutting, however, is 

reported to be more energy efficient because it allows for an unrelieved outbreak of bigger slabs as the 

pick moves towards the surface [28]. 

The biggest supplier for surface miners is Wirtgen (part of John Deere Group), offering surface miners 

with central bottom-up rotating drums. Wirtgen reports 514 Surface Miners worldwide in operation 

(2014) and ca. 3 bill. € Revenue in 2019 [212, 213]. Another supplier is Vermeer (ca. 1 bill. € revenue), 

which offers top-down rotating drums that are attached to the backside of the machine. Additionally, 

there are smaller suppliers such as Tesmec, which offer back-side drums that also cut bottom-up [214], 

and Puzzalona from India offering a system comparable to Wirtgen [215].  

Other suppliers described in the literature, such as Tenova TAKRAF, Thyssen Mining Solutions, and 

L&T, Huron or FLSmith’s Rahco do not offer their machines publicly as of 2020 [27, 216–218], 

although these machines are still in operation or at least were shipped in the last 10 years [219–221]. 

A.2 Continuous Miner 

The underground counterpart of the continuous surface miner is the continuous miner. Here, the cutting 

drum is attached to a boom that moves the cutting drum from top to bottom so that the entire working 

face can be worked. The main producers are Joy (part of Komatsu), Sandvik, and Eickhoff. 

The boom is supported by hydraulic cylinders connected to the chassis and is non-telescopic. Because 

the boom has only one degree of freedom, rectangle-shaped profiles are created as shown in Figure A-1 

a) and b). Continuous miners are counted to the group of partial face machines. This means they work 

one area of the face at a time. During excavation, the rotating drum is vertically moved over the face by 

the boom. Figure A-1, c) shows the working cycle: 

1. The continuous miner advances with a raised boom so that the rotating drum starts penetrating 

the rock until the drum is sunk in the rock at roughly its radius. 

2. The boom is lowered while cutting. When the drum reaches floor level, a small gusset is still 

left on the floor. The machine drives backward to remove the gusset and level the floor. 

3. Depending on the type of machine and geologic conditions, the cycle is repeated by either 

raising the boom and restarting from step one; or continued by an insertion cut of the drum at 

floor level. 
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4. If the machine continues from the bottom, the drum now cuts upwards by raising the boom. 

There, the drum’s penetration depth is lower because the cutting performance of the drum is 

reduced. In this case, also a small gusset has to be removed at the roof [68]. 

 

 

Figure A-1: a) & b) profile excavated by continuous miner, c) working scheme continuous miner 

[68]18 

Continuous miners are mainly applied in softer rock like coal, salt, potash, trona, gypsum, and 

phosphate. This is based on the fact that with a wide drum, many picks are cutting at the same time. This 

requires a higher total penetration force to keep the drum and the picks at the designated cutting depth 

[222]. 

A.3 Roadheaders 

The cutter head of the roadheaders is, similar to the continuous miner, attached to a boom (s. Figure 

A-2). However, the boom can move with two degrees of freedom, and the cutter head does not have the 

width of the entire face but only a portion of it. This results in the ability to excavate varying profiles. 

Due to their smaller cutter head, fewer picks attack the face simultaneously, resulting in a higher cutting 

power concentration than most other mechanical excavators. The working principle is similar to that of 

the continuous miner. The machine starts the cutting sequence by advancing so that the cutter head sinks 

into the rock until the desired cutting depth is reached. The cutting boom then moves in a zig-zag 

movement over the entire face profile until the whole slice is won. Some machines also come with a 

telescopic boom which further increases their versatility. 

 

Figure A-2: a) Roadheader with axial cutting head [223], b) transverse cutter19 

 

18 Photos: Author, with kind permission of K+S Agriculture and Minerals GmbH 
19 Photos: a) License CC BY-SA 3.0, via Wikimedia commons; b) Author, with kind permission of K+S 

Agriculture and Minerals GmbH 

 

https://creativecommons.org/licenses/by-sa/3.0/deed.en
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The initial task of the roadheader was the preparation of drifts and roads in hard coal. However, they 

soon found applications in other tasks and environments. Today they are used for scaling, rehabilitating 

underground structures, in tunnelling, as a vertical version in shaft sinking, and even in production 

mining. They are preferably used in softer to medium-hard rocks. 

There are two types of cutter heads that are applied by road headers. These are axial and transverse 

cutter heads as shown in Figure A-2 a) and b), respectively. They differ in the rotation direction relative 

to the boom axis. Axial cutter heads can create a more uniform profile due to their geometry. However, 

the material flies sidewards, which can cause loading problems. Furthermore, the reaction forces act 

sidewards to the advancement direction. This can cause slippage of the entire machine body under 

certain (muddy, wet) floor conditions. Their range of application goes up to 60–80 MPa UCS. Transverse 

heads show a better loading performance of the cut material because it flies in the direction of the loading 

table. In addition, the reaction forces are centrally transferred towards the machine body. These 

machines can be applied in harder rocks up to 120 MPa UCS [31, 68]. 

Roadheaders combine flexibility, mobility, a highly selective mining capacity, and relatively low 

investment cost compared to other machines with the ability to cut harder rock. Copur (1998) mentions 

that an application can be feasible with rocks as hard as 160 MPa if the jointing is favourable at a low 

RQD. A feasible cutting range of up to 120 MPa UCS for lower abrasivity indices is also stated [222].  

A.4 Shearer Loaders 

Shearer loaders originate from coal mining in the 1950s when the Anderton Shearer Loader 

revolutionised coal mining underground. By 1972, 75% of the underground coal produced was 

excavated mechanically [224].  

The machine is shown in Figure A-3. Shearer Loaders can only be used in longwall mining, where they 

work together with a set of shield support (1) to keep the face open and safe; and an armoured face 

conveyor (2) to transport the excavated material off the face to the main conveying drives. The 

excavation direction (3) is perpendicular to the mining direction (4).  

 

Figure A-3: Longwall shearer and armoured face conveyor operating at the Twentymile mine [225]20 

The shearer excavates the full face height in one passthrough, but only one slice at a time. One slice has 

the thickness of the cutting drum. Longwall mining is usually applied in softer tabular deposits like coal 

and potash. It can achieve very high production rates and a high recovery rate. However, because it is 

 

20Photo: Peabody Energy, Inc., CC BY-SA 4.0 , via Wikimedia Commons 

https://creativecommons.org/licenses/by-sa/4.0
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usually applied without backfill, it induces considerable levels of ground subsidence. This can cause 

damage to surface structures and alter the groundwater situation up to the point that the after-mining 

surface would lie below the original groundwater level. This can create high eternal post-mining costs. 

Production rates can reach 900 t/h [226]. The production record per machine as of 2018 was 9 Mt for 

the entire year [227]. Since the excavation drums are located on arms, the total cutting height can be 

adjusted to the available seam height.  

Shearer loaders have been the target of long-lasting automation approaches. The whole excavation 

process has been automated, and concepts for sensing boundaries between the seam and the host rock 

have also been presented over the years. Some of the approaches are discussed further in Chapter 3.2.1. 
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Annex B Supplements Cutting and Rock Parameters 

B.1 Specific Energy – Measurement of Outbroken Volume 

In Chapter 2.1, Subsection Specific Energy, the calculation of the specific energy Esp is described. One 

element for the calculation of Esp is the measurement of the outbroken volume. In experimental setups, 

there are three possibilities for this: 

a) The weighing of outbroken material if the density has been measured before. 

b) Measuring the outbroken volume by filling the outbreaks with modelling clay and then 

measuring the volume of the clay by a water displacement measure. 

c) Measuring of the outbroken cavity with a laser scanner. 

The last variant is the most convenient and exact. Since there are multiple methods to measure the 

volume, results from different experimental setups and routines must be compared with caution. If the 

exact volume of the outbroken material cannot be measured, the specific energy consumption can be 

derived from the cutting parameters. 

 

Figure B-1: Simplified cutting volume [47] 

As shown in Figure B-1, the spacing (s), the cutting depth (d), and the length of the cut (lc) are used as 

well as the number of cuts. If the number of cuts is sufficiently large, the difference between the 

calculated and the real outbroken volume becomes smaller. In a previous study conducted by the author, 

the difference between measured and estimated Esp ca. 7% (6.97 kWh/m³ measured vs. 6.5 kWh/m³; 

after Annex V of [47]). 

  

lc 

d 

s 
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B.2 Brittleness 

Table 2, p. 19 summarizes an array of methods to calculate the brittleness of a rock. Supplementary 

information is listed here. Note: The variables used here are not stated in the list of variables of the main 

part of this work, since they are only used here. 

Table B-1: Different methods of calculating brittleness 

Number Formula Description Source 

1 

 

VQuartz – volume Quartz 

VCarbonate – volume Carbonate 

VClay – volume Clay 

[78] 

2 

 

a – weight coefficient of each mineral 

i – type of brittle mineral 

j – all minerals 

M – mineral content (volume fraction) 

[78] 

3 
 

  

σc – uniaxial compressive strength 

σt – tensile strength 

[78] 

4 
 

  

 [78] 

5 
 

  

 [78] 

6 
 

 

 
  

σci – Initiation stress of rock material [78] 

7 
 

 
  

 [78] 

8 
 

 
  

 [78] 

9 
 

  

E – elastic modulus  

ν – Poisson’s ratio based on seismic data 

Emax, Emin – maximum and minimum 

values of the Elastic modulus 

[78] 

10  

  

εel – elastic strain the pre-peak stage of 

stress–strain curves 

εtot – total strain of pre-peak stage 

[78] 

11 
 

  

σp, σr – peak strength and residual 

strength of the whole stress–strain curve 

[78] 

12 
 

  

εp, εr – peak strain and residual strain of 

the whole stress–strain curve 

[78] 

13 
 

  

dWf – fracture energy  

dWue – unloading elastic energy 

dWd – dissipation energy of pre peak 

stage  

 

[78] 

14 

 

  

dWx – extra energy required (type I 

behavior) or the excess energy released 

(type II behavior) 

dWe – total elastic energy accumulated 

in the rock specimen when reaching the 

peak strength  

dWt – energy which unconsumed or 

converts into other forms 

[78] 

15 𝑏15 = 𝑞𝜎𝑐 
“q is the percentage of fines formed in 

the Protodyakonov impact test” 

[79] 
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Continuation Table B-1 

Number Formula Description Source 

16 

𝑏16 = 𝑆20 

 

S20 is the percentage of fines 

(<11.2 mm) formed in an impact 

test for TBM performance 

prediction in the NTNU (1998) 

model 

[79] 

17 

𝑏17 =
𝐹𝑚𝑎𝑥

𝑝
 

During a pin penetration test: 

Fmax – maximum force applied on 

a rock sample (kN) 

p – corresponding penetration at 

maximum force 

[79] 

18 

𝑏18 =
𝑝𝑖𝑛𝑐

𝑝𝑑𝑒𝑐
 

Pinc and Pdec refer to the force 

increment and decrement, 

respectively, in the test 

 

[79] 

19 𝑏19 = 0.002 𝜎𝑐 − 0.490 𝜎𝑏𝑡 − 4.939 𝑙𝑠50 + 91.179 [79] 

  



Annex B  Supplements Cutting and Rock Parameters 

152 

 

T
a

b
le

 B
-2

: 
D

a
ta

 c
o

m
p
il

ed
 f

ro
m

 Y
a
sa

r 
(2

0
2
0
) 

w
it

h
 a

d
d
it

io
n
a
l 

n
o
rm

a
li

ze
d
 f

o
rc

e 
a
n

d
 b

ri
tt

le
n

es
s 

ca
lc

u
la

ti
o

n
s,

 a
ft

er
 [

8
1
] 

R
o

ck
 s

a
m

p
le

 
d

  

[m
m

] 

α
w

 

[°
] 

α
a

 

[°
] 

U
C

S
 

[M
P

a
] 

T
S

 

[M
P

a
] 

F
x
  

[N
] 

F
x
’ 

 

[N
] 

F
x
’/

F
x
 

[1
] 

b
1

 

[1
] 

F
x
-n

 

[N
/(

m
m

*
M

P
a

)]
 

T
y

p
e
 

L
im

es
to

n
e 

3
 

8
0
 

5
5
 

1
2

1
.0

 
7

.8
 

3
8

7
4
 

1
1

6
1
1
 

3
.0

0
 

1
5

.5
1
 

1
0

.6
7
 

se
d

im
en

ta
ry

 

C
la

y
st

o
n

e 
3

 
8

0
 

5
5
 

5
8

.0
 

5
.6

 
1

1
6

7
 

3
7

4
6
 

3
.2

1
 

1
0

.3
6
 

6
.7

1
 

se
d

im
en

ta
ry

 

S
an

d
st

o
n

e 
1
 

3
 

8
0
 

5
5
 

1
1

4
.0

 
6

.6
 

3
8

3
4
 

8
9

5
3
 

2
.3

4
 

1
7

.2
7
 

1
1

.2
1
 

se
d

im
en

ta
ry

 

S
an

d
st

o
n

e 
2
 

3
 

8
0
 

5
5
 

1
7

4
.0

 
1

1
.6

 
4

0
2

1
 

9
0

2
2
 

2
.2

4
 

1
5

.0
0
 

7
.7

0
 

se
d

im
en

ta
ry

 

S
il

ts
to

n
e
 

3
 

8
0
 

5
5
 

5
8

.0
 

5
.3

 
3

0
6

9
 

7
3

3
5
 

2
.3

9
 

1
0

.9
4
 

1
7

.6
4
 

se
d

im
en

ta
ry

 

C
la

y
st

o
n

e 
5

 
8

0
 

5
5
 

5
8

.0
 

5
.6

 
2

9
5

2
 

8
7

9
7
 

2
.9

8
 

1
0

.3
6
 

1
0

.1
8
 

se
d

im
en

ta
ry

 

C
la

y
st

o
n

e 
7

 
8

0
 

5
5
 

5
8

.0
 

5
.6

 
3

1
6

8
 

1
0

7
7
8
 

3
.4

0
 

1
0

.3
6
 

7
.8

0
 

se
d

im
en

ta
ry

 

C
la

y
st

o
n

e 
9

 
8

0
 

5
5
 

5
8

.0
 

5
.6

 
5

2
4

7
 

1
6

5
9
3
 

3
.1

6
 

1
0

.3
6
 

1
0

.0
5
 

se
d

im
en

ta
ry

 

T
ro

n
a 

5
 

8
0
 

5
5
 

3
0

.0
 

2
.2

 
1

3
6

3
 

3
8

0
5
 

2
.7

9
 

1
3

.6
4
 

9
.0

9
 

se
d

im
en

ta
ry

 

A
n

h
y

d
ri

te
 

5
 

8
0
 

5
5
 

8
2

.0
 

5
.5

 
3

3
1

5
 

1
2

2
7
8
 

3
.7

0
 

1
4

.9
1
 

8
.0

9
 

se
d

im
en

ta
ry

 

S
el

es
ti

te
 

5
 

8
0
 

5
5
 

2
9

.0
 

4
.0

 
1

4
7

1
 

4
6

4
8
 

3
.1

6
 

7
.2

5
 

1
0

.1
4
 

se
d

im
en

ta
ry

 

Ji
p

s 
5

 
8

0
 

5
5
 

3
3

.0
 

3
.0

 
3

9
3

2
 

8
5

5
1
 

2
.1

7
 

1
1

.0
0
 

2
3

.8
3
 

se
d

im
en

ta
ry

 

S
an

d
st

o
n

e-
1
 

5
 

8
0
 

5
5
 

1
1

4
.0

 
6

.6
 

7
4

3
3
 

1
9

3
0
9
 

2
.6

0
 

1
7

.2
7
 

1
3

.0
4
 

se
d

im
en

ta
ry

 

S
an

d
st

o
n

e-
2
 

5
 

8
0
 

5
5
 

1
7

4
.0

 
1

1
.6

 
8

0
4

1
 

2
2

8
0
0
 

2
.8

4
 

1
5

.0
0
 

9
.2

4
 

se
d

im
en

ta
ry

 

S
an

d
st

o
n

e-
3
 

5
 

8
0
 

5
5
 

8
7

.0
 

8
.3

 
3

7
1

7
 

8
9

1
4
 

2
.4

0
 

1
0

.4
8
 

8
.5

4
 

se
d

im
en

ta
ry

 

S
il

ts
to

n
e
 

5
 

8
0
 

5
5
 

5
8

.0
 

5
.3

 
7

2
6

7
 

2
2

5
9
5
 

3
.1

1
 

1
0

.9
4
 

2
5

.0
6
 

se
d

im
en

ta
ry

 

L
im

es
to

n
e 

5
 

8
0
 

5
5
 

1
2

1
.0

 
7

.8
 

7
3

1
6
 

2
1

0
9
4
 

2
.8

8
 

1
5

.5
1
 

1
2

.0
9
 

se
d

im
en

ta
ry

 

S
er

p
an

ti
n

it
e 

9
 

8
0
 

5
5
 

3
8

.0
 

5
.7

 
6

9
6

3
 

1
9

7
6
0
 

2
.8

4
 

6
.6

7
 

2
0

.3
6
 

se
d

im
en

ta
ry

 

T
ro

n
a 

9
 

8
0
 

5
5
 

3
0

.0
 

2
.2

 
4

1
1

9
 

1
2

0
2
3
 

2
.9

2
 

1
3

.6
4
 

1
5

.2
6
 

se
d

im
en

ta
ry

 

A
n

h
y

d
ri

te
 

9
 

8
0
 

5
5
 

8
2

.0
 

5
.5

 
5

0
9

0
 

1
5

9
8
5
 

3
.1

4
 

1
4

.9
1
 

6
.9

0
 

se
d

im
en

ta
ry

 

S
el

es
ti

te
 

9
 

8
0
 

5
5
 

2
9

.0
 

4
.0

 
3

3
6

4
 

8
8

9
5
 

2
.6

4
 

7
.2

5
 

1
2

.8
9
 

se
d

im
en

ta
ry

 

Ji
p

s 
9

 
8

0
 

5
5
 

3
3

.0
 

3
.0

 
3

3
1

5
 

6
4

0
4
 

1
.9

3
 

1
1

.0
0
 

1
1

.1
6
 

se
d

im
en

ta
ry

 

S
an

d
st

o
n

e-
1
 

9
 

8
0
 

5
5
 

1
1

4
.0

 
6

.6
 

9
7

2
8
 

2
8

9
4
9
 

2
.9

8
 

1
7

.2
7
 

9
.4

8
 

se
d

im
en

ta
ry

 

S
an

d
st

o
n

e-
2
 

9
 

8
0
 

5
5
 

1
7

4
.0

 
1

1
.6

 
1

6
5

3
4
 

4
7

1
7
0
 

2
.8

5
 

1
5

.0
0
 

1
0

.5
6
 

se
d

im
en

ta
ry

 

S
an

d
st

o
n

e-
3
 

9
 

8
0
 

5
5
 

8
7

.0
 

8
.3

 
6

4
2

3
 

1
5

6
1
2
 

2
.4

3
 

1
0

.4
8
 

8
.2

0
 

se
d

im
en

ta
ry

 

S
il

ts
to

n
e
 

9
 

8
0
 

5
5
 

5
8

.0
 

5
.3

 
8

2
6

7
 

3
1

3
8
1
 

3
.8

0
 

1
0

.9
4
 

1
5

.8
4
 

se
d

im
en

ta
ry

 

L
im

es
to

n
e 

9
 

8
0
 

5
5
 

1
2

1
.0

 
7

.8
 

1
1

9
3
5
 

3
2

2
1
5
 

2
.7

0
 

1
5

.5
1
 

1
0

.9
6
 

se
d

im
en

ta
ry

 

 



Supplements Cutting and Rock Parameters Annex B 

153 

  

C
o
n
ti

n
u
a
ti

o
n
 T

a
b
le

 B
-2

 

R
o

ck
 s

a
m

p
le

 
d

  

[m
m

] 

α
w

 

[°
] 

α
a

 

[°
] 

U
C

S
 

[M
P

a
] 

T
S

 

[M
P

a
] 

F
x
  

[N
] 

F
x
’ 

 

[N
] 

F
x
’/

F
x

 

[1
] 

b
1
 

[1
] 

F
x
-n

 

[N
/(

m
m

*
M

P
a

)]
 

T
y

p
e
 

S
an

d
st

o
n

e 
1
 

3
 

8
0
 

5
5
 

1
7

.9
 

1
.6

 
5

5
1
 

8
8

6
 

1
.6

1
 

1
0

.9
2
 

1
0

.2
5
 

se
d

im
en

ta
ry

 

S
an

d
st

o
n

e 
1

 
6

 
8

0
 

5
5
 

1
7

.9
 

1
.6

 
1

2
5

6
 

2
0

0
9
 

1
.6

0
 

1
0

.9
2
 

1
1

.6
9
 

se
d

im
en

ta
ry

 

S
an

d
st

o
n

e 
1

 
9

 
8

0
 

5
5
 

1
7

.9
 

1
.6

 
2

0
3

4
 

3
3

9
7
 

1
.6

7
 

1
0

.9
2
 

1
2

.6
2
 

se
d

im
en

ta
ry

 

S
an

d
st

o
n

e 
1

 
1

2
 

8
0
 

5
5
 

1
7

.9
 

1
.6

 
2

7
4

0
 

4
7

7
4
 

1
.7

4
 

1
0

.9
2
 

1
2

.7
5
 

se
d

im
en

ta
ry

 

S
an

d
st

o
n

e 
1

 
1

5
 

8
0
 

5
5
 

1
7

.9
 

1
.6

 
3

4
2

1
 

6
7

6
7
 

1
.9

8
 

1
0

.9
2
 

1
2

.7
3
 

se
d

im
en

ta
ry

 

S
an

d
st

o
n

e 
1

 
1

8
 

8
0
 

5
5
 

1
7

.9
 

1
.6

 
4

3
2

9
 

8
6

0
2
 

1
.9

9
 

1
0

.9
2
 

1
3

.4
3
 

se
d

im
en

ta
ry

 

S
an

d
st

o
n

e 
2

 
3

 
8

0
 

5
5
 

7
9

.2
 

5
.0

 
1

4
1

0
 

2
7

0
8
 

1
.9

2
 

1
5

.9
4
 

5
.9

3
 

se
d

im
en

ta
ry

 

S
an

d
st

o
n

e 
2

 
6

 
8

0
 

5
5
 

7
9

.2
 

5
.0

 
2

6
6

1
 

5
6

6
0
 

2
.1

3
 

1
5

.9
4
 

5
.6

0
 

se
d

im
en

ta
ry

 

S
an

d
st

o
n

e 
2
 

9
 

8
0
 

5
5
 

7
9

.2
 

5
.0

 
4

1
0

8
 

8
8

6
2
 

2
.1

6
 

1
5

.9
4
 

5
.7

6
 

se
d

im
en

ta
ry

 

S
an

d
st

o
n

e 
2

 
1

2
 

8
0
 

5
5
 

7
9

.2
 

5
.0

 
6

6
0

1
 

1
3

5
4
5

 
2

.0
5
 

1
5

.9
4
 

6
.9

5
 

se
d

im
en

ta
ry

 

S
an

d
st

o
n

e 
2

 
1

5
 

8
0
 

5
5
 

7
9

.2
 

5
.0

 
8

2
5

2
 

1
7

9
8
6

 
2

.1
8
 

1
5

.9
4
 

6
.9

5
 

se
d

im
en

ta
ry

 

S
an

d
st

o
n

e 
3

 
3

 
8

0
 

5
5
 

5
3

.0
 

3
.7

 
9

2
8
 

1
5

2
0
 

1
.6

4
 

1
4

.4
4
 

5
.8

4
 

se
d

im
en

ta
ry

 

S
an

d
st

o
n

e 
3

 
6

 
8

0
 

5
5
 

5
3

.0
 

3
.7

 
1

6
1

3
 

3
2

6
0
 

2
.0

2
 

1
4

.4
4
 

5
.0

7
 

se
d

im
en

ta
ry

 

S
an

d
st

o
n

e 
3

 
9

 
8

0
 

5
5
 

5
3

.0
 

3
.7

 
2

9
9

1
 

5
4

6
4
 

1
.8

3
 

1
4

.4
4
 

6
.2

7
 

se
d

im
en

ta
ry

 

S
an

d
st

o
n

e 
3

 
1

2
 

8
0
 

5
5
 

5
3

.0
 

3
.7

 
4

6
0

1
 

8
8

1
5
 

1
.9

2
 

1
4

.4
4
 

7
.2

4
 

se
d

im
en

ta
ry

 

S
an

d
st

o
n

e 
3

 
1

5
 

8
0
 

5
5
 

5
3

.0
 

3
.7

 
6

2
2

4
 

1
1

6
5
6

 
1

.8
7
 

1
4

.4
4
 

7
.8

3
 

se
d

im
en

ta
ry

 

S
an

d
st

o
n

e 
4

 
3

 
8

0
 

5
5
 

5
9

.8
 

3
.9

 
9

3
2
 

1
8

3
6
 

1
.9

7
 

1
5

.2
2
 

5
.2

0
 

se
d

im
en

ta
ry

 

S
an

d
st

o
n

e 
4

 
6

 
8

0
 

5
5
 

5
9

.8
 

3
.9

 
2

3
6

9
 

4
6

7
0
 

1
.9

7
 

1
5

.2
2
 

6
.6

0
 

se
d

im
en

ta
ry

 

S
an

d
st

o
n

e 
4

 
9

 
8

0
 

5
5
 

5
9

.8
 

3
.9

 
3

7
0

9
 

8
8

4
9
 

2
.3

9
 

1
5

.2
2
 

6
.8

9
 

se
d

im
en

ta
ry

 

S
an

d
st

o
n

e 
4

 
1

2
 

8
0
 

5
5
 

5
9

.8
 

3
.9

 
5

7
1

3
 

1
2

9
4
4

 
2

.2
7
 

1
5

.2
2
 

7
.9

6
 

se
d

im
en

ta
ry

 

S
an

d
st

o
n

e 
4

 
1

5
 

8
0
 

5
5
 

5
9

.8
 

3
.9

 
8

1
7

8
 

1
8

1
8
0

 
2

.2
2
 

1
5

.2
2
 

9
.1

2
 

se
d

im
en

ta
ry

 

S
an

d
st

o
n

e 
5

 
3

 
8

0
 

5
5
 

8
6

.0
 

3
.7

 
1

3
4

8
 

2
6

7
6
 

1
.9

9
 

2
3

.3
0
 

5
.2

3
 

se
d

im
en

ta
ry

 

S
an

d
st

o
n

e 
5

 
6

 
8

0
 

5
5
 

8
6

.0
 

3
.7

 
2

2
2

3
 

4
8

9
5
 

2
.2

0
 

2
3

.3
0
 

4
.3

1
 

se
d

im
en

ta
ry

 

S
an

d
st

o
n

e 
5

 
9

 
8

0
 

5
5
 

8
6

.0
 

3
.7

 
3

2
7

5
 

8
4

0
1
 

2
.5

7
 

2
3

.3
0
 

4
.2

3
 

se
d

im
en

ta
ry

 

S
an

d
st

o
n

e 
5

 
1

2
 

8
0
 

5
5
 

8
6

.0
 

3
.7

 
5

5
7

7
 

1
3

8
4
9

 
2

.4
8
 

2
3

.3
0
 

5
.4

1
 

se
d

im
en

ta
ry

 

H
ig

h
-g

ra
d

e 

ch
ro

m
it

e 

5
 

8
0
 

5
5
 

3
2

.0
 

3
.7

 
2

7
3

6
 

7
0

2
2
 

2
.5

7
 

8
.6

5
 

1
7

.1
0
 

ig
n

eo
u

s 

 



Annex B  Supplements Cutting and Rock Parameters 

154 

 

C
o
n
ti

n
u
a
ti

o
n
 T

a
b
le

 B
-2

 

R
o

ck
 s

a
m

p
le

 
d

  

[m
m

] 

α
w

 

[°
] 

α
a

 

[°
] 

U
C

S
 

[M
P

a
] 

T
S

 

[M
P

a
] 

F
x
  

[N
] 

F
x
’ 

 

[N
] 

F
x
’/

F
x
 

[1
] 

b
1
 

[1
] 

F
x
-n

 

[N
/(

m
m

*
M

P
a

)]
 

T
y

p
e
 

M
ed

iu
m

-g
ra

d
e 

ch
ro

m
it

e 

5
 

8
0
 

5
5
 

4
7

.0
 

4
.5

 
3

6
6

8
 

1
0

0
1
3
 

2
.7

3
 

1
0

.4
4
 

1
5

.6
1

 
ig

n
eo

u
s 

L
o

w
-g

ra
d

e 

ch
ro

m
it

e 

5
 

8
0
 

5
5
 

4
6

.0
 

3
.7

 
3

1
2

8
 

8
5

4
2
 

2
.7

3
 

1
2

.4
3
 

1
3

.6
0

 
ig

n
eo

u
s 

H
ar

sb
u

rg
it

e 
5

 
8

0
 

5
5
 

5
8

.0
 

5
.5

 
5

2
0

7
 

1
4

6
8
1
 

2
.8

2
 

1
0

.5
5
 

1
7

.9
6

 
ig

n
eo

u
s 

S
er

p
an

ti
n

it
e 

5
 

8
0
 

5
5
 

3
8

.0
 

5
.7

 
2

8
9

3
 

7
6

9
8
 

2
.6

6
 

6
.6

7
 

1
5

.2
3
 

ig
n

eo
u

s 

T
u

ff
 1

 
5

 
8

0
 

5
5
 

1
0

.0
 

0
.9

 
7

2
6
 

2
0

1
0
 

2
.7

7
 

1
1

.1
1
 

1
4

.5
2

 
ig

n
eo

u
s 

T
u

ff
 2

 
5

 
8

0
 

5
5
 

1
1

.0
 

1
.2

 
1

9
2

2
 

6
9

4
3
 

3
.6

1
 

9
.1

7
 

3
4

.9
5

 
ig

n
eo

u
s 

T
u

ff
 3

 
5

 
8

0
 

5
5
 

2
7

.0
 

2
.6

 
1

2
2

6
 

3
6

9
7
 

3
.0

2
 

1
0

.3
8
 

9
.0

8
 

ig
n

eo
u

s 

T
u

ff
 4

 
5

 
8

0
 

5
5
 

1
4

.0
 

1
.5

 
9

1
2
 

2
7

7
5
 

3
.0

4
 

9
.3

3
 

1
3

.0
3

 
ig

n
eo

u
s 

T
u

ff
 5

 
5

 
8

0
 

5
5
 

1
9

.0
 

2
.3

 
1

3
4

4
 

3
3

7
3
 

2
.5

1
 

8
.2

6
 

1
4

.1
5

 
ig

n
eo

u
s 

H
ig

h
-g

ra
d

e 

ch
ro

m
it

e 

9
 

8
0
 

5
5
 

3
2

.0
 

3
.7

 
5

1
9

8
 

1
4

5
4
3
 

2
.8

0
 

8
.6

5
 

1
8

.0
5

 
ig

n
eo

u
s 

M
ed

iu
m

-g
ra

d
e 

ch
ro

m
it

e 

9
 

8
0
 

5
5
 

4
7

.0
 

4
.5

 
9

1
3

0
 

2
5

9
7
7
 

2
.8

5
 

1
0

.4
4
 

2
1

.5
8

 
ig

n
eo

u
s 

L
o

w
-g

ra
d

e 

ch
ro

m
it

e 

9
 

8
0
 

5
5
 

4
6

.0
 

3
.7

 
6

5
0

2
 

1
5

9
2
5
 

2
.4

5
 

1
2

.4
3
 

1
5

.7
1

 
ig

n
eo

u
s 

H
ar

sb
u

rg
it

e 
9

 
8

0
 

5
5
 

5
8

.0
 

5
.5

 
9

0
4

2
 

2
6

3
9
0
 

2
.9

2
 

1
0

.5
5
 

1
7

.3
2

 
ig

n
eo

u
s 

T
u

ff
 1

 
9

 
8

0
 

5
5
 

1
0

.0
 

0
.9

 
1

5
7

9
 

3
9

4
2
 

2
.5

0
 

1
1

.1
1
 

1
7

.5
4

 
ig

n
eo

u
s 

T
u

ff
 2

 
9

 
8

0
 

5
5
 

1
1

.0
 

1
.2

 
3

7
9

5
 

1
1

6
1
1
 

3
.0

6
 

9
.1

7
 

3
8

.3
3

 
ig

n
eo

u
s 

T
u

ff
 3

 
9

 
8

0
 

5
5
 

2
7

.0
 

2
.6

 
2

6
8

7
 

7
0

8
0
 

2
.6

4
 

1
0

.3
8
 

1
1

.0
6

 
ig

n
eo

u
s 

T
u

ff
 4

 
9

 
8

0
 

5
5
 

1
4

.0
 

1
.5

 
2

4
3

2
 

7
1

5
9
 

2
.9

4
 

9
.3

3
 

1
9

.3
0

 
ig

n
eo

u
s 

T
u

ff
 5

 
9

 
8

0
 

5
5
 

1
9

.0
 

2
.3

 
2

9
3

2
 

7
2

0
8
 

2
.4

6
 

8
.2

6
 

1
7

.1
5

 
ig

n
eo

u
s 

C
o

p
p

er
 

o
re

 

(y
el

lo
w

) 

5
 

8
0
 

5
5
 

3
3

.0
 

3
.4

 
1

6
6

7
 

4
3

1
5
 

2
.5

9
 

9
.7

1
 

1
0

.1
0

 
u

n
k

n
o

w
n
 

C
o

p
p

er
 

o
re

 

(b
la

ck
) 

5
 

8
0
 

5
5
 

4
1

.0
 

5
.7

 
2

6
4

8
 

7
1

8
8
 

2
.7

1
 

7
.1

9
 

1
2

.9
2

 
u

n
k

n
o

w
n
 

C
o

p
p

er
 

o
re

 

(y
el

lo
w

) 

9
 

8
0
 

5
5
 

3
3

.0
 

3
.4

 
4

9
9

2
 

1
4

7
7
9
 

2
.9

6
 

9
.7

1
 

1
6

.8
1

 
u

n
k

n
o

w
n
 

C
o

p
p

er
 

o
re

 

(b
la

ck
) 

9
 

8
0
 

5
5
 

4
1

.0
 

5
.7

 
8

9
0

4
 

2
5

3
2
1
 

2
.8

4
 

7
.1

9
 

2
4

.1
3

 
u

n
k

n
o

w
n
 

 



Details Topic-Analysis Rock Cutting Publications Annex C 

155 

Annex C Details Topic-Analysis Rock Cutting Publications 

Table C-1: Details for all classified articles 
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[22] 2012 y y n y n n n n d y n  

[121] 2013 y n y y n n n y d y n  

[57] 2012 y n y y y n n n d y n F/way 

[99] 2012 y n y y n n y y d n n 
Grain Size & Shape 

Analysis 

[122] 2015 y n y y n n n y d y n  

[100] 2018 y n y n n n n n d y n Foliation 

[229] 2016 y n n n n n n y d n n 
presentation for [99] & 

[57] 

[71] 2018 y n y n n n n n d/o y n 
Regression analysis f. 

Minidisc cutter 

[230] 2018 y n n n n n n n o n n Stress on Scaler arm 

[64] 1981 y n y n n y y n p y y 
Mainly in-Situ tests w. 

CM 

[60] 2018 y n y n n y n n p y n 
Focus on Temperature 

at Tool 

[231] 2018 y n y y n n n n p n n 
Fmax determination 

unclear 

[43] 2002 n n n n y y n n p n n 

No direct Force 

measurement, but 

performance data 

[31] 2014 y n n y n y y n p/d y n Teaching book 

[232] 2017 n n n n y n n n p y y 
Probabilistic Risk 
Failure Assessment 

[27] 2012 y n y n n y y n p y y 
Also dust, cutting 

behaviour of worn picks 

[233] 2018 n n y y n y n n p y y  

[234] 2016 y n y n n n n n p y n  

[103] 2019 y n n n y n n n d y n 
Calculates derivatives 
of F vs. t 
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Mentions peak to mean 

ratio 
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Continuation Table C-1 
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[242] 2010 n n y n y n n n p n n  

[243] 2018 y n y y n n n n p y n  

[244] 2020 n n y y n y n n p n n  

[245] 2017 y n y y n y n n p n n 
Mentions peak to mean 
ratio 

[246] 2004 n n n n n y n n p n n  

[247] 2016 y n n n n y n n p y n  

[248] 2018 n n y n n y y n p y n  

[190] 2020 n n y n n n y n p n n  

[249] 2021 n n y y n n n n p y y 
Considers cone angle of 
picks, considers Fx/Fz 

[250] 2006 y n y n n y n y d y y For discs 

[41] 2020 y n y y y y n n p y y  

[59] 2017 y n y n n y n n p y y  

[42] 2018 n n y n n y n n o y n  

[114] 2017 y y y y y n n y p y n  

[251] 2018 y n y n n y n n p y n  

[252] 2020 n n y y n y n n p y n  

[253] 2021 y n y y n y y n d y y  

[34] 2018 n n y n n y y n p n n  

[254] 2018 - - y y - y y - p - - Only abstract available 

[255] 2010 n n y n n y n n o n n For rock chain saw 

[256] 2017 n n y y n y n n p y y  

[257] 2018 n n y y n y n n p y n  

[258] 2013 n n y n n n n n p y n  

Legend: y – topic mentioned; n – topic not mentioned; p – pick; d – disc; o – other 
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Annex D Details Patent Analysis 

This chapter presents the results of a patent analysis that was conducted by the author in the timeframe 

October 2019 to March 2020. The review focuses mainly on patents with respect to rock cutting force 

measurement. However, the search was extended to cover patents that could be relevant to the topic but 

were not strictly issued in the context of rock cutting force measurement. In addition, inventions that 

were not directly patented are added. The following Table D-1 shows the patents along a brief summary 

of the respective patent. 

Table D-1: Patents and articles describing tool related sensor technologies 

Nr. Details Summary 

1 1980/1983 

DE2831933 A1/C2 

Bergwerksverband 

GmbH, Essen 

Detection of boundary layers between coal and host rock with a “two pick 

method”. The two picks are arranged in a way that one pick is at the most 

outward position and the other one is at an inner position with respect to 

the drums’ centre. By such, the layer is “detected” if the outer pick 

receives higher peak forces than the inner pick. It was issued with respect 

to following a coal seam 

Limitations: 

▪ The exact method of acquisition of the Force values is not 

specified, just “strain gauges” as a means. 

▪ The tools only measure a one force peak per cutting event. 

▪ The decision whether a pick is in coal or host rock is made upon 

a fixed trigger value. 

▪ The values are taken on the basis of a fixed time window, with a 

fixed reset time, this requires a constant revolution speed and 

cutting direction. [115, 116] 

2 1983 

DE2919499C2 

Bergwerksverband 

GmbH, Essen 

One sensor pick that cuts fully blocked is used as a measuring pick. Only 

peak forces are measured. If peak forces are above a threshold, a control 

mechanism adjusts the drum height. Properties: 

▪ Only peak forces 

▪ No spatial relation, 

▪ Robust and simple system [25] 

3 1974 

DE2349827 

Coal Industry (Patents) 

Ltd., London 

System to measure peak forces during excavation and sending the 

information on a cordless basis to a receiving and steering unit. Claims are 

related to the transmission of the signal using a radio signal. 

Limitations: 

▪ The peak values are related to the zones they are supposed to 

appear in. For each zone a bandwidth of allowable peak forces is 

defined. 

▪ Only the component in cutting direction is measured (Fx) 

▪ Only usable with radial type picks 

▪ Exact method of utilising the data and steering the machine is not 

defined [259] 

 

4 1995 

DE4415824C1 

Daimler-Benz 

Aerospace AG München 

Suggests a sensor array that detects deformations and damage on the tool 

holder that are caused by worn picks and allows identification of the 

respective holder for replacement of the tool. Does not measure forces at 

all and not in relation to the position of the machine within the rock mass 

[149]. 
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Continuation Table D-1 

Nr. Details Summary 

5 1980 

GB2036127A 

Coal Industry (Patents) 

Ltd., London 

Pick assembly for a rotary head machine with focus on coal / shearer 

loaders where two subsequently cutting picks are used. Nr. 1 cuts 

normally without a sensor, Nr. 2 is set up so that it cuts a bit deeper than 

Nr. 1, and follows Nr. 1 in the same groove. As such the cutting depth 

changes only minimally during cutting. The signal changes upon material 

change. Properties: 

▪ Fx is measured. 

▪ Limited impact of cutting parameters to measurement. 

Limitations: 

▪ Complicated design. 

▪ No respect to real cutting parameters. 

▪ Susceptible to flattening of the tip. 

▪ Not for round shank chisels, only for radial picks. [26] 

 

6 2011 

WO 2011116405 A2 

Sandvik Mining and 

Construction GmbH 

Claims on a measuring arrangement for conical picks where the 

measurement devices located in a slit between an intermediate holder-

shell, the tool holder, and also behind the shank. 

▪ Measurement with strain gauges on the outside of the shell for 

axial and bending forces. 

▪ Additionally, measurement of axial forces possible with pressure 

sensor in the shell behind the chisels shank. 

▪ Saving of data with SD-Card; sender in the back of the holder-

shell-assembly and an intermediate “repeater” for transmission of 

data to main processing unit. 

▪ Most advanced concept so far. 

Limitations: 

▪ Sender requires space. 

▪ No relation of the data to the position of the pick. 

▪ No mentioning of the exact use of the data. [23] 

 

7 2015 

DE 11 2007 000 152 B4 

Sandvik Mining and 

Construction GmbH 

 

System for controlling the slewing speed of a partial face machine in 

relation to general machine parameters, like position of the cutter head, 

tools, slewing speed, hydraulic pressures, power consumption of the drive. 

No spatial analysis of cutter forces. [134] 

8 1988 

DE3631087A1 

Gebr. Eickhoff 

Maschinenfabrik u. 

Eisengießerei mbH 

Proposes a possibility for a diagnosis system based on available machine 

data. The data are analysed by a computer and occurring errors are either 

mitigated or the machine drive parameters are reduced. Additionally, the 

errors are displayed until they are solved. No dedicated measures of how 

data are obtained or computations are made are given. [260] 

9 1998 

EP0807203B1 

Advanced Technology 

for Rock Excavation Inc. 

Ontario 

Steering System for following a pre-programmed profile. 

▪ No boundary layer detection. 

▪ No (spatial) force analysis. [133] 

10 2015 

WO2015014655A2 

Montanuniversität 

Leoben 

System for continuous photography of the working face for analysis 

purposes. However, no coupling with cutting force sensors is claimed. 

[261] 
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Continuation Table D-1 

Nr. 

Details Summary 

11 2014 

EP2796851B1 

Montanuniversität 

Leoben 

The patent proposes a scaled down cutting experiment machine and a 

basic workflow to predict the advance rate of a corresponding TBM. 

However, no exact specifics upon how the cutting forces are measured is 

presented and no exact model for the correlation of the cutting forces to 

the full-scale forces is given. [262] 

12 2015 

DE102014105014A1 

Montanuniversität 

Leoben 

A cutting force measuring System for TBMs is proposed that can measure 

3 components of the cutting forces, however for disk cutters. It is an 

evolution of DE202012103593U1. 

▪ No spatial force analysis is claimed 

▪ Only for disk cutters [22, 121, 144, 145] 

However, a spatial use of the forces is discussed in associated nonpatent 

sources [121, 229]. 

13 2019 

EP 3 495 608 A1 

Joy Global Underground 

Mining LLC 

An assembly to measure cutting efficiency and to check whether a tool of 

a cutting machine is worn. Uses stress wave energy (SWE), ultrasonic, 

rotation speed of drum, temperature, acceleration, or vibration on gear or 

cutting drum. 

• Mentions sensing net cutting forces on the pick.  

• Should be measured via SWE or via various measures like 

hydraulic pressure the holds the cutter drum. The internal model 

translates this into cutting loads. 

• Comparison of SWE to cutting efficiency on basis of an 

empirical database or normal conditions. 

• Output is cutting efficiency and determining if cutter is worn 

based on the efficiency data. [143] 

14 2013 

Joy Global & Jokonya 

WO 2013/020056A1 

Shows a method of operating an oscillating disc cutter mining machine 

automatically to find the face with a program. It utilises indirect force 

measurements over, e.g. hydraulic pressure of voltage/current indicators. 

[135] 

15 2007 

Hochtief AG 

DE102005016346B3 

Wear sensing system that utilises a small magnetic layer in the disc to 

detect wear for disc cutters. [142] 

16 2000 

Thomson Marconi Sonar 

Ltd., GB 

DE69517166T2 

A system that emits acoustic signals and also receives the reflected signals 

to identify changing rock properties. [263] 

17 2007 

Kistler Holding AG 

(CH) 

WO2007/025404A1 

Assembly for measuring cutting forces on a per-tool-basis. No exact 

(spatial) use of the forces is mentioned. [141] 

18 1996 

Wirth Co KG 

WO 001996019639 A1 

Automation for profiling using position recognition systems and utilising 

other parameters such as RPM, forces on the arms, and position of the 

machine itself. [132] 

19 2016 

Trimble Ltd.. US 

WO002016032685A1 

Laser based orientation system for excavator and shovel. Relevant for 

referencing of boom. [136] 

20 2018 

Caterpillar Ltd. US 

WO002018112337A1 

Control mechanism for CAT rock-straight roadheader, to follow an arch. 

Also, the general working principle of the machine is disclosed, but not 

the use of forces for automation. [131] 
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Continuation Table D-1 

Nr. Details Summary 

21 2017 

Atlas Copco Rock Drill 

AB 

WO002017058089A1 

Describes the Atlas Copco drill fleet management system to fulfil 

automated drilling of whole drill fields for multiple machines. [138] 

22 2010 

Wirtgen GmbH 

DE102008045470A1 

Discloses a system to measure the state of wear of conical picks by 

comparing the distance of the wearing part to the distance of a fix point 

using a laser scanner and as such identifying worn tools. [146] 

23 2003 

Wirtgen GmbH 

DE10203732A1 

 

Disclosed is a technology to combine vibration sensors with position 

sensors to identify worn or broken tools by comparing unnormal vibration 

behaviour to the respective rotational position of the cutting drum on 

surface miners. [147] 

24 2016 

Schlumberger 

US000009234422B2 

The invention shows an in-pick sensor assembly with a connection unit. 

The sensors sit in bores inside of the pick. Several sensors are mentioned, 

including strain gauges, but also thermoelements, accelerometers, and 

magnetometers. No exact way of utilising force data is described, and the 

focus lies on wear detection. [148] 

25 2018 

Liaoning Technical 

University 

CN000107575226A 

The invention shows a concept for a piezo sensor-box that can be fitted 

inside a tool holder. It is used for a coal hardness classification. [117] 

26 2018 

Politechnika Ślaska & 

Famur Poland 

PL228215B1; 

PL415965A1 

Patent for conical pick. Allows 3d /XYZ measurement of dynamic forces. 

Also explains coordinate transformation to convert forces from XYZ into 

local, pick related coordinate system. [118] 

Nonpatent concepts 

27 Drebenstedt 2005 Strain gauges were used to evaluate the force distribution on a bucket 

wheel during operation and identify optimisation potential. No spatial use 

of the forces and no boundary layer detection conducted. [21] 

28 Vraetz 2017 Describes a method for classifying a material flow based on the signals 

that are created when the flow hits a sensor plate [264]. 

It has been tested in mining environments with different classes of 

overburden in open pit Hambach and a limestone quarry to identify 

flintstone bearing material. In the industrial environment, the quality of 

the classification depends to an extend on securing an continuous 

measuring environment and defining not too much sub-classes [157]. 

29 Entacher 2015 Spatial use analysis of cutting forces is conducted for visualisation 

purposes during disc cutter measurements. [122] 

31 Niedringhaus 2018 Describes the use of strain gauges on the boom of a scaler for correlation 

of the forces to different working cycles. However, no rock type 

correlation is aimed for so far. [230] 
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Annex E Details Rock Cutting Unit HSX-1000-50 

Table E-1: Specifications of the rock cutting test rig HXS 1000-50 

Technical data linear cutting test rig HXS-1000-50 

Date of construction 2008 / refurbishment 2019 

Nominal power 60 kW 

Maximum speed 

X-axis (cutting direction) 

Y-axis (side) 

Z-axis (vertical) 

Acceleration 

 

1,67 m/s 

24,7 mm/s 

11,9 mm/s 

10 m/s² 

Maximum Forces 

X-axis (cutting direction) 

Y-axis (side) 

Z-axis (vertical) 

Max. DAQ frequency  

 

50 kN / 75 kN 

30 kN / 50 kN 

50 kN / 75 kN 

10 kHz 

Maximum sample size 

X-axis (cutting direction) 

Y-axis (side) 

Z-axis (vertical 

 

600 mm 

1200 mm 

500 mm 

Maximum sample weight 1300 kg 

Nominal accuracy laser scanner ≤ 70 µm 

Pressurised air availability 5 bar 

High-speed camera Max. 10000 frames/s 
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Annex F Details Used Pick 

 

 

Figure F-1: Details of custom pick BETEK BSR112 
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Annex G Error Analysis Cutting Experiments 

Due to the large amount of data required for this work, the general workflow for analysing cutting 

experiments was adopted, partially automated, and improved on an iterative basis. The following chapter 

deals with error sources that can occur during large-scale linear rock cutting tests, and how these sources 

can be mitigated during testing or corrected afterwards.  

The updated workflow allows an analysis of larger datasets. It is conducted within Flexpro or with the 

help of a Shiny app that was written in R for this purpose. The outlines are explained in the following. 

Analysis in Flexpro 

In order to allow for the error analysis, the following queries are prepared: 

▪ For each force (Fx, Fy, Fz, Fres), as well as for the y-position and z-position, return the mean 

value of the respective channel for each single cut. 

▪ Return the file path within the database of each single cut. 

 

This allows for different presentations of the summarised results of individual experiments. The main 

goal is to rule out obviously wrong cuts. Flexpro offers interactive diagram operations. Therefore, 

interactive worksheets can be created to identify certain kinds of errors. They can be inserted into any 

Flexpro Database storing cutting force experiments.  

Here, the mean values of each cut for Fx, Fy, Fz, and Fres are plotted continuously. It allows an 

identification of failed experiments or other anomalies that need to be investigated in detail. Figure G-1 

shows an example. The circle (1) indicates that the first experiments show negative values. The reason 

was an error in the calibration after the refurbishment of the sensors of the cutting machine. The spikes 

(2) are also abnormal. They show cutting data from the sides of a block. The sides of the block broke 

off easily, as such the forces are exceptionally low. The resulting data show rather high side forces while 

the other force components where minimal. The dashed line (3) shows a transition in the amplitudes of 

the diagram. This is because in this evaluation, two different cutting parameters are shown. The higher 

cutting depth behind marking (3) results in higher forces. The faulty cuts can then be quickly deleted 

from the database. 

 

Figure G-1: Interactive worksheet within Flexpro showing Fx, Fy, Fz, Fres, for each single experiment 

A second method to quickly analyse larger amounts of experiments is shown in Figure G-2. A faulty 

trigger setup can lead to a start of the measurement while the pick is still in mid-air. When this happens, 

 

2 

1 

3 3 
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the total measurement time will be longer than in a normal measurement. The Figure shows such an 

example. Marking (1) shows unnormal high and low peaks. The high peaks are cuts where the 

measurement started too early. This can be corrected either in Flexpro or the files could be re-exported 

from Dewesoft with only the real cutting time being exported.  

 

Figure G-2: Display of measurement time for all cuts of a cutting experiment 

Additional to post processing with Flexpro, R-Studio was used. Two widgets were used that can be seen 

in Figure G-3. The first widget simply presents the results of all cuts of a certain experiment as a boxplot 

and by such allows a quick identification of outliers. These can be seen marked with circles in the figure. 

This functionality is similar to the Flexpro based analyses. Mouseover tooltips then can show the number 

of the cut for access of the raw data.  

On the bottom of the figure, the Shiny app is shown that allows detailed access to the results of the single 

cuts. The functionalities of the app are: to quickly browse through cutting data, truncate them, and 

exempt single cuts from further calculations. With this app, detailed investigations of cutting data could 

be done in a short time. The main reason is that the time to switch between cuts and to export the cuts 

is reduced significantly compared to when the single cuts are investigated manually with the Dewesoft 

software. 
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Figure G-3: Boxplot widget allows quick identification of erroneous measurements (top); Shiny app 

for truncation of cuts, it shows a faulty cut (bottom) 
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Annex H Details Photographic Modelling 

Figure H-1 shows the screenshot of the referencing function of MinePlan. Four Edding-pen-points with 

known coordinates that were drawn on the sample are marked on the digital photo. The known 

coordinates of the points are then typed in. As a result, the photo now is spatially referenced to the 

coordinate system of the rock cutting machine.  

 

Figure H-1: Digitisation of reference points in MinePlan 

Figure H-2 shows a detailed view of the digitisation process of the rock boundaries. The digitisation 

points were spaced roughly according to the spacing, so that in each cutting groove there is a digitisation 

point. Sometimes the exact boundary is not clearly visible. As such a certain inaccuracy must be 

accepted. It suspected in the range below 1 cm. 

 

Figure H-2: Detail of digitisation of lithology outlines 
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Table H-1 shows the estimation of the maximum technical accuracy using a Pentax K-3 digital camera. 

The length of one pixel was measured on a referenced pictured, ca. 7.5 pixels make up for one mm, 

subsequently one pixel covers a length of ca. 0.1 mm.  

Table H-1: estimation of photographic accuracy 

  Sensor 

resolution 

Used 

resolution 

Block 

length 

Pixel per 

mm 

mm per 

pixel 

y-axis 6015 4500 600 7.5 0.13 

x-axis 4015 3800 500 7.6 0.13 
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Annex I  Laser Offset  

For Experiment PB, a comparison of the picks location with the laser scans of the cut surfaces was 

necessary to ensure data integrity. Since the position of the picks tip is different from the measurement 

location of the laser scanner, the data from the laser scanner have to be recalculated to match the data 

from the cutting experiments. This is done using the offset defined in the following table. 

Table I-1: Offset between tip of the pick and laser 

 y-axis x-axis z-axis 

Pick coordinates 257.6 342.2 415.1 

Laser coordinates 260.8 509.4 239,1 

Offset 3.2 167.2 176.0 
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Annex J Supplements Experiment CO 

J.1 Raw force results 

The following Table J-1 shows the results of the mean values of the Forces Fx, Fy, Fz and Fres for all 

experiments. The ranges of values from samples CO1 and CO2 are presented in Figure J-2 and Figure 

J-1.  

Table J-1: Arithmetic mean of cutting forces Fx, Fy, Fz and Fres grouped by zones for CO1 and CO2, all 

values in kN 

  Set 

Block 1 

1 

s=6 mm; 

d=12 mm; 

s/d=2 

2 

s=6 mm; 

d=24 mm; 

s/d=3 

3 

s=6 mm; 

d=36 mm; 

s/d=4 

4 

s=8 mm; 

d=12 mm; 

s/d=2 

5 

s=8 mm; 

d=12 mm; 

s/d=3 

6 

s=8 mm; 

d=12 mm; 

s/d=4 

7 

s=12 mm; 

d=12 mm; 

s/d=2 

8 

s=12 mm; 

d=12 mm; 

s/d=3 

9 

s=12 mm; 

d=12 mm; 

s/d=4 

Zone 2 Fx 1.62 2.53 2.74 3.07 4.04 4.18 4.97 6.17 6.60 

Zone 3 Fx 3.81 5.06 5.51 5.71 7.09 7.38 8.90 10.99 12.25 

Zone 2 Fy 0.66 0.66 0.64 1.29 1.24 0.58 2.09 1.60 1.00 

Zone 3 Fy 2.02 1.53 1.46 3.10 2.65 1.13 5.05 4.28 1.94 

Zone 2 Fz 1.67 2.89 2.91 3.30 4.37 4.50 5.02 6.50 6.85 

Zone 3 Fz 5.32 7.70 7.76 7.97 9.87 10.39 11.79 15.33 17.05 

Zone 2 Fres 2.56 4.05 4.22 4.89 6.33 6.43 7.62 9.39 9.86 

Zone 3 Fres 7.41 9.79 10.08 10.72 12.90 13.28 16.07 19.91 21.63 

Block 2          

Zone 1 Fx 1.03 1.50 2.19 1.62 2.30 2.22 3.51 3.98 4.91 

Zone 2 Fx 2.14 3.23 4.62 3.72 4.40 4.45 7.21 7.31 7.77 

Zone 3 Fx 4.71 6.05 8.51 6.91 9.02 8.42 13.03 13.74 13.45 

Zone 1 Fy 0.48 0.56 0.56 0.66 0.73 0.28 1.19 1.02 0.17 

Zone 2 Fy 1.00 1.27 1.34 1.56 1.64 0.63 2.62 2.52 0.97 

Zone 3 Fy 2.63 3.16 3.39 3.73 4.54 1.50 7.31 6.58 0.50 

Zone 1 Fz 1.00 1.51 2.32 1.55 2.25 2.07 3.61 3.63 4.45 

Zone 2 Fz 2.29 3.61 5.58 4.11 4.92 4.91 8.51 7.96 8.67 

Zone 3 Fz 7.41 9.77 14.54 10.75 13.84 12.88 21.69 19.98 19.94 

Zone 1 Fres 1.62 2.27 3.32 2.49 3.38 3.14 5.26 5.56 6.73 

Zone 2 Fres 3.41 5.18 7.59 6.00 7.00 6.89 11.70 11.36 12.02 

Zone 3 Fres 9.63 12.35 17.61 13.79 17.58 15.97 26.85 25.68 24.79 
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Figure J-1: Boxplots of cutting force components for Experiment CO1 
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Figure J-2: Boxplots of cutting force components for Experiment CO2 
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J.2 Data Raw Results Procedural Selection Algorithm (CD) 

The calculated data upon which the procedural selection algorithm chose the suitability of features are 

located on CD. Exemplary results for Fx/Fres are located in Table J-2 on the next page. 
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J.3 Correlation Analysis 

The individual results of the correlation analysis for the gridded results of the experiments CO1 and 

CO2 are shown. It can be seen that the results are very homogenous. As such, it is considered justified 

to summarise the individual correlation results in the main part of the work.  

 

Figure J-3: Correlation analysis for features of experiment CO1; * marks statistically nonsignificant 

results at significance level = 0.01 

 

Figure J-4: Correlation analysis for features of experiment CO2; * marks statistically nonsignificant 

results at significance level = 0.01 
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J.4 Graphs for k-means analysis 

In the following, the details of the k-means cluster analysis for all five cases are presented. These sheets 

show case number, used covariates and the accuracy table according to the cutting parameters. 

Case 1 

 

Covariates: XZGM, ZXQ95, ZXIQR, XRMEA, XRMED, XRGM, RXGM, RXQ95, RXIQR 

 

Plots 
 

 
Accuracy 

 

d [mm]      100.0% 

6 8 12     80.0% 

91.2% 93.6% 90.5% 2 s/d
 

 60.0% 

93.0% 91.7% 83.0% 3  40.0% 

93.0% 90.2% 69.2% 4  20.0% 

Mean 88.4% Median 91%    0.0% 

Min 69.2% Q0.25 90%     

Max 93.6% Q0.75 93%     

    IQR 3%     
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Case 2 

 

Covariates: XZGM, ZXQ95, ZXIQR, XRMEA, XRMED, XRGM, RXGM, RXQ95, RXIQR, 

YXQ95, YXIQR 

 

Plots 
 

 
Accuracy 

 

d [mm]      100.0% 

6 8 12     80.0% 

85.5% 92.7% 87.6% 2 s/d
 

 60.0% 

90.6% 92.1% 76.2% 3  40.0% 

91.5% 93.0% 73.1% 4  20.0% 

Mean 86.9% Median 91%    0.0% 

Min 73.1% Q0.25 85%     

Max 93.0% Q0.75 92%     

    IQR 7%     
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Case 3 

 

Covariates: XZGM, ZXQ95, ZXIQR 

 

Plots 
 

 
Accuracy 

 

d [mm]      100.0% 

6 8 12     80.0% 

85.5% 92.7% 87.6% 2 s/d
 

 60.0% 

90.6% 92.1% 76.2% 3  40.0% 

91.5% 93.0% 73.1% 4  20.0% 

Mean 86.9% Median 91%    0.0% 

Min 73.1% Q0.25 85%     

Max 93.0% Q0.75 92%     

    IQR 7%     
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Case 4 

 

Covariates: XMEA, ZMEA, YMEA, RMEA 

 

Plots 

 

 
Accuracy 

 

d [mm]      100.0% 

6 8 12     80.0% 

18.9% 26.6% 87.0% 2 s/d
 

 60.0% 

22.7% 41.2% 91.6% 3  40.0% 

28.5% 30.5% 96.0% 4  20.0% 

Mean 49.2% Median 30%    0.0% 

Min 18.9% Q0.25 27%     

Max 96.0% Q0.75 87%     

    IQR 60%     
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Case 5 

 

Covariates: XMEA, ZMEA 

 

Plots 
 

 
Accuracy 

 

d [mm]      100.0% 

6 8 12     80.0% 

18.9% 22.4% 67.2% 2 s
/d

 

 60.0% 

21.1% 36.2% 93.0% 3  40.0% 

26.3% 36.2% 89.4% 4  20.0% 

Mean 45.6% Median 36%    0.0% 

Min 18.9% Q0.25 22%     

Max 93.0% Q0.75 67%     

    IQR 45%     
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J.5 Distributed Random Forest classification results 

In the following, the details of the DRF analysis are shown that was used for the feature importance 

calculation. The sheets show case number, used covariates, the plots of the classification and a confusion 

table of the results. 

Case 1 

 

Covariates: XZGM, ZXQ95, ZXIQR, XRMEA, XRMED, XRGM, RXGM, RXQ95, RXIQR 

 

Plots 

 
 

Confusion Matrix for all parameter combinations 

 
  Real Class   

  1 2 3 Error Accuracy 

P
re

d
ic

ti
o

n
 

1 8189 73 0 0.9% 99.1% 

2 836 19114 1164 9.5% 90.5% 

3 0 400 14018 2.8% 97.2% 

 Totals 9025 19587 15182 5.6% 94.4% 
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Case 2 

 

Covariates: XZGM, ZXQ95, ZXIQR, XRMEA, XRMED, XRGM, RXGM, RXQ95, RXIQR, 

YXQ95, YXIQR 

 

Plots 
 

 

 
 

Confusion Matrix for all parameter combinations 

 

  Real Class   

  1 2 3 Error Accuracy 

P
re

d
ic

ti
o

n
 

1 8192 70 0 0.8% 99.2% 

2 831 19203 1080 9.1% 90.9% 

3 0 387 14031 2.7% 97.3% 

 Totals 9023 19660 15111 5.4% 94.6% 
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Case 3 

 

Covariates: XZGM, ZXQ95, ZXIQR 

 

Plots 

 

 
 

Confusion Matrix for all parameter combinations 

 

  Real Class   

  1 2 3 Error Accuracy 

P
re

d
ic

ti
o

n
 

1 8139 123 0 1.5% 98.5% 

2 925 19121 1068 9.4% 90.6% 

3 0 581 13837 4.0% 96.0% 

 Totals 9064 19825 14905 6.2% 93.8% 
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Case 4 

 

Covariates: XMEA, ZMEA, YMEA, RMEA 

 

Plots 
 

 
Confusion Matrix for all parameter combinations 

 

  Real Class   

  1 2 3 Error Accuracy 

P
re

d
ic

ti
o

n
 

1 7118 1144 0 13.8% 86.2% 

2 2767 16445 1902 22.1% 77.9% 

3 0 725 13693 5.0% 95.0% 

 Totals 9885 18314 15595 14.9% 85.1% 
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Case 5 

 

Covariates: XMEA, ZMEA 

 

Plots 

 

 
 

Confusion Matrix for all parameter combinations 

 

  Real Class   

  1 2 3 Error Accuracy 

P
re

d
ic

ti
o

n
 

1 6523 1738 1 21.0% 79.0% 

2 2547 16258 2309 23.0% 77.0% 

3 0 730 13688 5.1% 94.9% 

 Totals 9070 18726 15998 16.7% 83.3% 
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J.6 Feature importance DRF classification 

Table J-4: Feature importance for DRF classification for Experiment CO 

case variable relative 

importance 

scaled 

importance 

percentage 

1 RXIQR 297383.3 1 22.7% 

1 XRGM 209342.4 0.703948 16.0% 

1 RXGM 185092.9 0.622405 14.1% 

1 ZXQ95 163978.3 0.551404 12.5% 

1 XZGM 121071.3 0.407122 9.2% 

1 RXQ95 119262.1 0.401039 9.1% 

1 XRMED 106013.3 0.356487 8.1% 

1 ZXIQR 70945.37 0.238565 5.4% 

1 XRMEA 35916.55 0.120775 2.7% 

2 RXGM 213753.1 1 16.4% 

2 RXIQR 205804.4 0.962814 15.8% 

2 XRGM 194282 0.908908 14.9% 

2 ZXQ95 187434.1 0.876872 14.4% 

2 RXQ95 135456.3 0.633705 10.4% 

2 XZGM 134075.9 0.627246 10.3% 

2 ZXIQR 91598.09 0.428523 7.0% 

2 XRMED 73836.3 0.345428 5.7% 

2 XRMEA 44108.86 0.206354 3.4% 

2 YXIQR 18172.97 0.085018 1.4% 

2 YXQ95 4629.026 0.021656 0.4% 

3 ZXIQR 450017.7 1 36.3% 

3 XZGM 430272.8 0.956124 34.7% 

3 ZXQ95 358976.2 0.797694 29.0% 

4 ZMEA 397752.5 1 48.7% 

4 RMEA 209919.8 0.527765 25.7% 

4 YMEA 130409.4 0.327866 16.0% 

4 XMEA 79450.92 0.19975 9.7% 

5 ZMEA 467677.2 1 62.6% 

5 XMEA 279689.8 0.59804 37.4% 
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Annex K Supplements Experiment GN 

 

Figure K-1: Raw force responses for all Experiment GN; spacing and depth in mm,  

UR – unrelieved cut  
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Table K-3: Values for PPx0 for Experiment GN 

Side s  

[mm] 

d  

[mm] 

mean(PPx0) 

[%] 

SE(PPx0) 

A 4 8 14.93 0.85 

A 4 12 18.14 0.65 

A 4 16 17.37 0.89 

A 6 8 6.90 1.03 

A 6 12 9.81 0.77 

A 6 16 11.70 2.26 

B 4 8 8.00 0.54 

B 4 12 4.84 0.26 

B 4 16 4.93 0.47 

B 6 8 2.88 0.46 

B 6 12 3.74 0.84 

B 6 16 3.36 0.57 

C 4 8 2.83 0.35 

C 4 12 2.42 0.65 

C 4 16 2.31 0.11 

C 6 8 0.50 0.10 

C 6 12 0.58 0.22 

C 6 16 0.93 0.27 

 

Table K-4: Values for PPz05 for Experiment GN  

Side s [mm] d [mm] mean(PPz1) 

[%] 

SE(PPz1) 

A 4 8 11.15 2.73 

A 4 12 15.25 1.80 

A 4 16 8.70 2.90 

A 6 8 4.27 1.49 

A 6 12 3.94 1.06 

A 6 16 17.53 3.26 

B 4 8 2.32 0.53 

B 4 12 1.46 0.39 

B 4 16 1.12 0.33 

B 6 8 2.45 0.88 

B 6 12 6.17 1.97 

B 6 16 2.67 0.60 

C 4 8 1.14 0.38 

C 4 12 1.93 1.08 

C 4 16 0.64 0.21 

C 6 8 0.92 0.24 

C 6 12 0.38 0.14 

C 6 16 0.51 0.13 
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Annex L Supplements Experiment GR 

Table L-1: Results of Experiment GR; values for Fx, Fy, Fz, and Fres in kN 

Para-

meter 

Radiation 

time 

Spacing 

[mm] 
Q0.05 Q0.25 Median Mean 

Geom. 

mean 
Q0.75 Q0.95 IQR 

Fx 0 s 8 -0.235 2.995 5.959 6.202 5.071 9.308 13.017 6.313 

Fx 0 s 12 0.150 3.697 6.694 7.026 5.780 10.195 14.350 6.498 

Fx 30 s 8 0.089 3.365 6.373 6.629 5.427 9.830 13.643 6.466 

Fx 30 s 12 0.584 4.193 7.332 7.658 6.338 10.998 15.307 6.805 

Fx 45 s 8 -0.682 1.394 3.786 4.251 3.276 6.788 10.685 5.394 

Fx 45 s 12 -0.481 2.197 4.883 5.298 4.247 8.131 12.254 5.935 

Fy 0 s 8 0.276 1.875 3.179 3.314 2.758 4.615 6.810 2.740 

Fy 0 s 12 -0.285 1.434 2.896 3.074 2.551 4.537 7.074 3.103 

Fy 30 s 8 0.597 2.289 3.638 3.780 3.218 5.142 7.441 2.852 

Fy 30 s 12 -0.105 1.748 3.307 3.538 2.924 5.104 7.948 3.356 

Fy 45 s 8 -0.036 0.800 1.887 2.091 1.502 3.105 5.194 2.305 

Fy 45 s 12 -0.343 0.771 1.918 2.191 1.681 3.314 5.774 2.543 

Fz 0 s 8 5.462 9.722 12.574 12.780 11.684 15.627 20.857 5.905 

Fz 0 s 12 7.604 12.008 14.995 15.247 14.224 18.231 23.860 6.224 

Fz 30 s 8 6.559 11.086 14.128 14.367 13.362 17.458 23.198 6.372 

Fz 30 s 12 8.213 13.007 16.564 17.055 15.897 20.595 27.627 7.588 

Fz 45 s 8 0.050 4.037 7.096 7.044 5.415 9.844 14.304 5.807 

Fz 45 s 12 1.011 5.974 9.130 9.218 7.578 12.227 17.545 6.253 

Fr 0 s 8 7.015 11.551 14.767 15.101 13.879 18.344 24.351 6.794 

Fr 0 s 12 9.252 13.838 17.150 17.591 16.474 20.902 27.461 7.064 

Fr 30 s 8 8.325 13.071 16.436 16.814 15.662 20.218 26.628 7.147 

Fr 30 s 12 10.238 15.077 18.937 19.581 18.444 23.407 31.157 8.330 

Fr 45 s 8 0.852 5.313 8.846 9.017 6.907 12.320 17.781 7.006 

Fr 45 s 12 2.323 7.467 11.156 11.394 9.498 14.899 21.200 7.432 

XZ 0 s 8 -0.031 0.256 0.488 0.511 0.427 0.709 1.116 0.453 

XZ 0 s 12 0.013 0.265 0.461 0.482 0.403 0.652 0.989 0.386 

XZ 30 s 8 0.008 0.251 0.465 0.489 0.403 0.674 1.042 0.423 

XZ 30 s 12 0.040 0.266 0.454 0.481 0.396 0.633 0.980 0.367 

XZ 45 s 8 -0.411 0.286 0.632 0.609 0.593 0.946 1.898 0.660 

XZ 45 s 12 -0.115 0.302 0.592 0.592 0.537 0.865 1.475 0.563 

ZX 0 s 8 -4.079 1.297 1.829 2.021 2.076 3.179 5.000 1.882 

ZX 0 s 12 0.478 1.451 2.014 2.227 2.218 3.314 5.000 1.863 

ZX 30 s 8 0.313 1.393 1.980 2.232 2.188 3.420 5.000 2.027 

ZX 30 s 12 0.687 1.516 2.088 2.349 2.263 3.423 5.000 1.907 

ZX 45 s 8 -3.117 0.872 1.313 1.472 1.511 2.303 5.000 1.431 

ZX 45 s 12 -2.421 1.018 1.477 1.672 1.691 2.533 5.000 1.515 

XR 0 s 8 -0.024 0.241 0.425 0.393 0.355 0.562 0.727 0.321 

XR 0 s 12 0.015 0.251 0.408 0.386 0.345 0.535 0.690 0.284 

XR 30 s 8 0.008 0.235 0.407 0.381 0.339 0.542 0.699 0.307 

XR 30 s 12 0.040 0.251 0.403 0.385 0.340 0.524 0.685 0.273 

XR 45 s 8 -0.190 0.280 0.524 0.444 0.442 0.674 0.892 0.394 

XR 45 s 12 -0.092 0.282 0.496 0.434 0.419 0.641 0.815 0.359 
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Continuation Table L-1 

Para-

meter 

Radiation 

time 

Spacing 

[mm] 
Q0.05 Q0.25 Median Mean 

Geom. 

mean 
Q0.75 Q0.95 IQR 

RX 0 s 8 -4.286 1.686 2.155 2.304 2.488 3.452 5.000 1.766 

RX 0 s 12 1.142 1.799 2.305 2.484 2.580 3.553 5.000 1.754 

RX 30 s 8 1.092 1.768 2.297 2.504 2.591 3.693 5.000 1.924 

RX 30 s 12 1.247 1.855 2.375 2.607 2.626 3.663 5.000 1.807 

RX 45 s 8 -3.511 1.365 1.708 1.800 2.063 2.625 5.000 1.259 

RX 45 s 12 -2.767 1.460 1.835 1.974 2.176 2.827 5.000 1.367 

YX 0 s 8 -0.449 0.285 0.482 0.610 0.543 0.839 2.531 0.554 

YX 0 s 12 -0.243 0.193 0.410 0.520 0.436 0.729 2.067 0.536 

YX 30 s 8 -0.075 0.329 0.530 0.686 0.590 0.905 2.632 0.576 

YX 30 s 12 -0.131 0.221 0.432 0.566 0.455 0.764 2.126 0.543 

YX 45 s 8 -0.659 0.216 0.402 0.504 0.460 0.712 2.296 0.497 

YX 45 s 12 -0.534 0.142 0.350 0.458 0.399 0.667 2.161 0.525 

 

Table L-2: Results of Experiment GR with spacing summarised; values for Fx, Fy, Fz, and Fres in kN 

Para-

meter 

Radiation 

time 

Spacing 

[mm] 

Q0.05 Q0.25 Median Mean geom. 

Mean 

Q0.75 Q0.95 

Fx 0 s -0.079 3.271 6.257 6.536 5.350 9.652 13.614 6.380 

Fx 30 s 0.249 3.684 6.756 7.045 5.781 10.294 14.382 6.611 

Fx 45 s -0.607 1.690 4.221 4.679 3.647 7.344 11.416 5.654 

Fy 0 s 0.022 1.704 3.074 3.217 2.674 4.586 6.914 2.882 

Fy 30 s 0.262 2.081 3.520 3.682 3.098 5.128 7.640 3.046 

Fy 45 s -0.149 0.788 1.900 2.132 1.571 3.184 5.436 2.397 

Fz 0 s 6.081 10.526 13.539 13.780 12.655 16.788 22.325 6.262 

Fz 30 s 7.143 11.750 15.029 15.454 14.338 18.756 25.397 7.007 

Fz 45 s 0.207 4.767 7.866 7.932 6.225 10.872 15.923 6.105 

Fres 0 s 7.674 12.371 15.734 16.111 14.878 19.455 25.818 7.083 

Fres 30 s 8.994 13.781 17.374 17.933 16.732 21.534 28.808 7.753 

Fres 45 s 1.315 6.088 9.761 9.989 7.867 13.406 19.455 7.318 

XZ 0 s -0.013 0.260 0.476 0.499 0.417 0.685 1.067 0.425 

XZ 30 s 0.021 0.258 0.460 0.486 0.400 0.657 1.019 0.399 

XZ 45 s -0.246 0.293 0.614 0.602 0.569 0.912 1.692 0.619 

ZX 0 s -2.699 1.357 1.907 2.105 2.133 3.238 5.000 1.881 

ZX 30 s 0.517 1.442 2.027 2.279 2.219 3.421 5.000 1.979 

ZX 45 s -2.879 0.930 1.381 1.554 1.583 2.402 5.000 1.472 

XR 0 s -0.008 0.245 0.417 0.390 0.351 0.551 0.713 0.306 

XR 30 s 0.021 0.242 0.405 0.383 0.339 0.534 0.694 0.292 

XR 45 s -0.146 0.281 0.512 0.440 0.432 0.661 0.859 0.379 

RX 0 s -2.935 1.730 2.218 2.377 2.525 3.496 5.000 1.765 

RX 30 s 1.169 1.803 2.330 2.546 2.605 3.679 5.000 1.876 

RX 45 s -3.239 1.402 1.761 1.871 2.109 2.711 5.000 1.308 

YX 0 s -0.329 0.248 0.454 0.574 0.497 0.794 2.347 0.547 

YX 30 s -0.111 0.285 0.492 0.638 0.532 0.849 2.434 0.564 

YX 45 s -0.603 0.185 0.383 0.485 0.435 0.694 2.242 0.510 
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Table L-3: Results Experiment GR with repetition measurement 

Spacing  

 

[mm] 

Radiation time  

 

[s] 

Variable Mean 

 

[kN] 

Standard 

deviation 

[kN] 

12 0 Fx 7.03 4.53 

12 0 Fy 3.07 2.27 

12 0 Fz 15.25 5.04 

12 0 - rep. Fx 6.76 4.33 

12 0 - rep. Fy 3.09 2.21 

12 0 - rep. Fz 14.89 4.99 

12 30 Fx 7.66 4.64 

12 30 Fy 3.54 2.50 

12 30 Fz 17.06 5.98 

12 45 Fx 5.30 4.04 

12 45 Fy 2.19 1.93 

12 45 Fz 9.22 4.93 

8 0 Fx 6.20 4.22 

8 0 Fy 3.31 2.00 

8 0 Fz 12.78 4.70 

8 0 - rep. Fx 6.12 4.08 

8 0 - rep. Fy 3.67 1.99 

8 0 - rep. Fz 12.83 4.21 

8 30 Fx 6.63 4.30 

8 30 Fy 3.78 2.11 

8 30 Fz 14.37 5.20 

8 45 Fx 4.25 3.64 

8 45 Fy 2.09 1.69 

8 45 Fz 7.04 4.38 
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Table L-4: Values for proportions of datapoints below 0.5 kN for Fz, and below 0 kN for Fx for 

Experiment GR 

Spacing Radiation 

time 

PP0.5(Fz) PP0(Fx) 

s = 8 mm 0 s 0.63% 5.97% 

s = 8 mm 30 s 0.82% 4.63% 

s = 8 mm 45 s 8.42% 9.05% 

s = 12 mm 0 s 0.30% 4.37% 

s = 12 mm 30 s 0.11% 3.30% 

s = 12 mm 45 s 3.61% 7.42% 

 

 

Figure L-1: Results Experiment GR; a – Results of cutting forces for layer 2–4, b & c – results for 

FCR for layer 2–4; y-axis pseudo-logarithmically scaled 
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Annex M Preliminary Artificial Neural Network Training  

This preparatory study was performed to analyse the potential implementation of a neural net-based 

classification of rock masses with force component ratios (FCR). This experiment is based on the 

learnings from Experiment CO (Chapter 5.3.2). There, different features were identified that could be 

used to differentiate between rock types. Here, five different feedforward architectures were tested. The 

training was conducted on the FBA2 dataset. In this preliminary study, the R package Neuralnet was 

used. This chapter describes the training of these neural networks for the classification between ore and 

concrete and shows its results. The general learning is that a feedforward neural network might be used 

for classification purposes. However, the calculation times are relatively long. Hence, for the final case 

study of this work, the H2O package was used, which shows significantly faster computation speeds.  

The following coding is used for the FCR features. The features are statistical parameters describing the 

distribution of an FCR. For example, XZGM is the geometric mean (�̅�𝑔𝑒𝑜𝑚) for Fx/Fz. Table M-1 shows 

all used encodings.  

Table M-1: Coding of FCR and statistical descriptors for preliminary case study 

Nr. FCR-

Code 

Statistical 

descriptor 

code 

FCR Statistical 

parameter 

1 XZ GM Fx/Fz �̅�𝑔𝑒𝑜𝑚 

2 ZX Q95 Fz/Fx Q0.95 

3 ZX IQR Fz/Fx IQR 

4 XR MEA Fx/Fres �̅� 

5 XR MED Fx/Fres �̃� 

6 XR GM Fx/Fres �̅�𝑔𝑒𝑜𝑚 

7 RX GM Fres/Fx �̅�𝑔𝑒𝑜𝑚 

8 RX Q95 Fres/Fx Q0.95 

9 RX IQR Fres/Fx IQR 

10 YX Q95 Fy/Fx Q0.95 

11 YX IQR Fy/Fx IQR 

 

Figure M-1 shows the boxplot of the raw force components as well as the used FCR for FBA2. On 

Panel a) the raw cutting forces components irrespectively of the cutting depth are shown. All cutting 

forces are generally higher in the vein material. Panel d) shows the raw force results split by the different 

levels of cutting depth. It shows that a classification based on the raw force components is subjected to 

noise from the cutting depth. An approach based on the raw cutting force components would likely 

produce a high error rate.  

The Panels b) and c) of the figure show the FCR. Differences between the FCR can be seen for the two 

rock types. As such, a classification algorithm should be able to classify the different rock types based 

on the chosen features. As described in Chapter 5.11, the used features were standardised. 
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Figure M-1: Boxplots for distribution of Fx, Fy, Fz, Fres and FCR ZX, RX, XR, XZ and YX from raw 

measurement data for FBA2 

In the experiment, several designs of neural nets were tested. The number of input and output neurons 

was kept constant. As convergence threshold of the partial derivative of the error function, 0.05 was 

chosen. The number of neurons was varied. Generally, the number of used neurons and layers is 

dependent on the complexity of the problem [179]. Core to the neural net classification is the R package 

Neuralnet which implements a variety of neural net functions [266] as well as the package 

NeuralNetTools to analyse the neural networks [267].  

Different from the main part of this work, the activation function used for this preliminary study was 

the logistic function in the form of: 

𝑧(𝑔) =
1

1 + 𝑒−𝑔
 (34) 

 

Here, z(g) denotes the output to be given to the next synapse(s) and g is the input after integration of the 

input with Equation (28). As a learning algorithm, the rapid backpropagation algorithm with weight 

backtracking (rprop+) as proposed by Riedmiller (1993) was chosen. It provides a relatively faster 

learning process than traditional backpropagation algorithms [268]. The robust backpropagation 

algorithm stores the last state of the neural net. Weight backtracking allows undoing the last iteration 

and adding a smaller value to the weight in the next step. Without the usage of weight backtracking, the 

algorithm can jump over the minimum several times. Further explanations can be found in [179, 268]. 

In total, five networks (NN1 to NN5) have been trained and their results were evaluated. Table M-2 

shows the networks. The first network uses an architecture of 11-5-2-1, meaning that 2 hidden layers 

were used—the first containing 5 neurons and the second containing 2 neurons. The other four neural 

networks consisted of a single layer. The number of neurons were 3, 5, 7 and 9 neurons, respectively. 
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During pre-tests, ANNs using 11 hidden neurons did not converge within 2.5 million iterations. This 

value was taken as a threshold to limit processing time. 

Both NN1 and NN5 needed the highest number of iterations to complete the training. In the case of 

NN1, this might be related to the additional hidden layer. In the case of NN5, it might be related to the 

fact that 3 neurons are not enough to properly represent the problem. A high number of iterations usually 

goes along with a longer training time. However, the more nodes a neural net has, the longer the time 

per iteration step as shown in the last column. NN2–NN3 in this regard are considered to be more optimal 

in terms of training time. The sum of squared errors after Equation (30) for all NNs is in a similar range, 

with NN1 and NN3 performing the best here. 

Table M-2: Results of the neural net calculations 

Name network 

design 

training time 

[min] 

SSE-Error Nr. of 

iterations (in 

thousand) 

Iterations per 

minute 

(thousand / 

minute) 

NN1 11-5-2-1 94.8  67.4 1,419 15.0 

NN2 11-9-1 12.7 71.3 239 18.8 

NN3 11-7-1 34.0 64.6 821 24.2 

NN4 11-5-1 16.7 75.8 526 31.5 

NN5 11-3-1 54.3 78.3 2,440 44.9 

 

Figure M-2, left side, shows the layout of the best performing network, NN3. The thickness of the 

connection line indicates the relative weight of the neuron connection. Black lines indicate positive 

weights and grey lines negative weights, the line thickness indicates the weight of the connection. No 

single input-hidden connection is outstanding on its own. The only weight outstanding is H2-O1 being 

a large negative weight.  

 

Figure M-2: Neural net layout for the best performing network in FBA2 (left); Olden feature 

importance (right) 

For the computation of the feature importance, Olden’s method of connection weights was used. This 

method is similar to Garson’s algorithm. It was measured to be the most accurate algorithm in a 

comparative study that examined the accuracy of nine different methods to estimate the importance of 

covariates for neural networks. This study compared the algorithms with a simulated dataset in which 

the true weights to the output were known [183]. The calculation follows the equation; 

𝐼𝐼𝑖  =  ∑ 𝑤𝑖ℎ ∗ 𝑤ℎ𝑜

𝑛

ℎ=1

 (35) 
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The formula shows the calculation of the feature importance for the case of one hidden layer. The 

importance of the input feature IIi is calculated using the weights wih connecting each of the input 

neurons Ii to each of the hidden neurons Hh multiplied by the weights for the connections between the 

respective hidden neurons the output neuron Oo. As such. the formula calculates importance as the 

summed product of the raw input-hidden and hidden-output connection weights between each input and 

output node.  

An advantage is that the relative contribution of each connection weight is maintained in both magnitude 

and sign [267, 269]. This separates this algorithm from Garson’s algorithm, which uses absolute values 

and as such loses accuracy. Further information can be found in [269]. It must be mentioned that, since 

the importance ratings are basically sums of products, they are subject to the number of neurons in a 

network. As such, they can not be used when comparing the weights across different models [267]. 

To allow a quantitative evaluation of the influence of covariates across multiple neural networks, an 

extension of Oldens feature importance is used. The output should be a relative value and at the same 

time the positive or negative mathematical sign shall be retained. To allow this, the following extension 

of the output of the Olden formula is used: 

𝑅𝐼𝑖 =
𝐼𝐼𝑖

∑ |𝐼𝐼𝑖|
𝑛
𝑖=1

 
(36) 

 

Where RIi is the relative importance of a covariate within the given neural net algorithm. IIi is the 

importance after Olden of a given covariate. 

Figure M-3 left side, shows the RI results. It can be seen that NN1, NN3 and NN5 exhibit some 

similarities in weighing the features. For these, XZGM has the highest weight. Generally, ZXQ95, 

RXQ95 and to some extent YXQ95 and YXIQR have smaller weights. ZXIQR, XRMEA, and XRMED 

have medium weights. Curious is the fact that NN2 and NN4 show a somewhat inverted pattern to the 

other three neural networks. For these two neural networks, XZGM has a negative weight while ZXIQR 

and XRMED are mainly positive. 

Since NN1, NN3, and NN5 on the one hand, and NN2 and NN4 on the other hand, show somewhat 

similar behaviour with their peers, a similar behaviour in the classification of these networks could be 

expected. Figure M-3, right side, shows which proportion the of data has been classified similarly by 

two compared ANNs. As such, it shows how similar the networks classify regardless of their accuracy 

towards the real rock type. Generally, all networks classify very similar, which is related by their overall 

good performance. Also, it shows that NN1 and NN3 classify very similar. Also NN2 and NN4 show 

high similarities. NN5 classifies similar to NN2 and NN4. 

Summarising, certain similarities in low weights for ZXQ95 and RXQ95 speak for a small influence of 

these features while XZGM seems to play a dominant role together with ZXIQR, XRMEA, XRMED and 

RXIQR. However, the different weighing patterns imply that several weighing possibilities exist.  
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Figure M-3: Heatmap for relative Olden scores for the features (left); similarity of classification for 

neural networks (right) 

Figure M-4 visualises the classification results of NN1 for Block FBA2. Visible are: blocks classified 

as ore, the boundaries of the ore part, false positives and false negatives. Panel a) shows all blocks that 

have been classified as ore. The grey blocks are those that were falsely identified as ore, but are actually 

concrete (false positives). Panel b) only shows the false positives. Most false positives occur at the 

bottom of the sample. Panel c) of the figure only shows the false negatives. These are the blocks that 

where calculated to be concrete, although they where ore. They occur mainly at the boundary between 

the two rock types. 

False positives and false negatives both occur at the boundary between the two rock types. Due to 

imprecisions in the digitisation of the rock type boundaries, it is expected that most errors occur there. 

The main body of the ore and concrete is classified correctly. 

 

Figure M-4: Visualisation of classification results of NN1 for Sample FBA2  

Table M-3 shows the general key performance values of the five neural networks tested. From the visual 

impression in Figure M-4, good results are already expected. Generally, there was very little difference 
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between the performance of the different networks. The sensitivity for all neural networks lies above 

0.95, the specivity lies above 0.93. That means that at least 95% of all ore blocks are identified as ore, 

and at least 93% of all blocks that were identified as ore actually are ore. The overall misclassification 

error is. More importantly, the errors are almost completely located at the contact zone between the two 

rock types.  

Table M-3: Summary for key performance values for neural networks for FBA-2 

  NN1 NN2 NN3 NN4 NN5  

Sensitivity 0.962 0.963 0.962 0.959 0.957 

Specifity 0.944 0.946 0.950 0.938 0.942 

Misclassification error 0.044 0.042 0.042 0.047 0.047 
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Annex N Supplements Case Study (CD) 

N.1 Pre-Analysis Feature-Set 

In order to identify the final set of features as well as suitable hyperparameters for the DRF and ANN, 

a limited hyperparameter search was conducted on the data of the case study. 

The parameters were varied as shown in Table N-1. The cutoff for the CR was varied in three steps. This 

parameter sets a filtering criterion. If the CR, that is assigned to a certain block of the block model, is 

higher than the CR cutoff, the respective block is counted as “air” and not included in the machine 

learning process. For the DRF, the maximum tree depth had to be defined. It was varied in three levels. 

A higher tree depth increases training accuracy but increases overfitting behaviour. The features were 

also varied at three levels. However, with a special procedure. First, a starting set consisting of nine 

features was chosen (XZGM, ZXQ95, ZXIQR, XRMED, RXGM, XRGM, RXQ95, RXIQR, CR). This 

represented the first level. The level with eight features was repeated nine times. In each repetition, one 

parameter from the features of the previous level was left out. This results in nine sublevels. The same 

procedure was repeated for the level with seven features (resulting in eight sublevels). The process was 

iterative; first, the CR cutoff was defined, then the tree depth, and den the optimal feature sets.  

Table N-1: Hyperparameter variation for DRF; * – winner 

Hyperparameter Levels 

CR cutoff 0.4 / 0.55* / 0.7 

Maximum tree depth 5 / 8 / 11* 

Feature sets: 9 / 8* (9 sublevels) / 7 (8 sublevels) 

 

For the ANN, the hyperparameter variation was based on the results of the DRF hyperparameter 

variation. The main aspect was the variation of the architecture of the hidden neurons on 7 levels, as 

shown in Table N-2. For the variation of the features, two levels were chosen: one set with nine and one 

set with eight features. The set with eight features was the winner from the DRF feature selection, and 

the set with nine features was the original feature set. 

Table N-2: Hyperparameter variation for ANN; * – winner 

Hyperparameter Levels 

Architecture (hidden neurons) 5 / 7 / 9 / 11 / 5–2 / 25–25 / 25–25–25*  

Feature Sets: 9 / 8* 

 

The results were then assessed by comparing the accuracy heatmaps. A trade-off between validation 

accuracy and cross-sample accuracy was desired. The two winners of the hyperparameter variation are 

shown in Figure N-1. The full set of all plots created can be found on the accompanying CD. 

For DRF, the final feature set was: XZGM, ZXQ95, ZXIQR, XRMED, RXGM, RXQ95, RXIQR, CR. The 

cutoff for CR was set to 0.55. The tree depth was set to 11. For the ANN, the same set of features was 

chosen. The final architecture was 25 neurons in 3 hidden layers each. 
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Figure N-1: Exemplary accuracy table for the definition of final feature set, left – winner DRF, right – 

winner ANN 

N.2 Supplement Variation of Required Training Data 

Due to the size, the table is located on the CD. 
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Annex O R-Codes (CD) 

All used code can be found on the CD accompanying this thesis. 

Table O-1: R scripts and apps used in this work 

Folder Script name Chapter 

Reference 

Details  

CO/Input data  6.1 Contains raw input data for CO 

CO/ CO1_Feature_ 

selection.R 

6.1.2 Feature selection algorithm for Experiment 

CO1 

CO/ CO2_Feature_ 

selection.R 

6.1.2 Feature selection algorithm for Experiment 

CO2 

CO/ CO_kmeans 6.1.4 k-means analysis for CO 

CO/ CO_DRF_Varimp 6.1.4 DRF classification for feature analysis for 

CO 

GN/Input  6.2 Contains raw input data for GN 

GN/ Gneiss.R 6.2 FCR evaluation of Experiment GN. 

GR/Input   Contains Raw input data for GR 

GR/ Analysis GR.rmd 6.3 Force and FCR evaluation of GR; spatial 

CR analysis. 

Case Study/Input  6.4 Contains pre-processed raw cutting force 

data 

Case Study/ CS_RockAIMD.rmd 6.4 Markdown file for case study; incorporates 

main parts of the analysis. 

Case Study/ CS_sidescript_ANN.R 6.4 Supplement for the case study; variation of 

hyperparameters to identify a suitable set 

for case study. 

Case Study/ CS_sidescript_DRF.R 6.4 Supplement for the case study;  

variation of hyperparameters to identify 

suitable set for case study 

RockAI_RockAI_View

er/ 

ui.R / server.R 6.4 App that visualises the results of the case 

study, also accessible under: 

https://brunanza.shinyapps.io/RockModel

VieweR/  

App_CutAnalyst/ app.R 7.1.5 / 

Annex G 

App to efficiently assess large amounts of 

raw cutting data and correct/reject the data. 

Folder contains sample dataset. 

 

  

https://brunanza.shinyapps.io/RockModelVieweR/
https://brunanza.shinyapps.io/RockModelVieweR/
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Annex P Supplements Rock Mechanical Tests (CD) 

The supplementary data are located on the accompanying CD. The structure of the data is explained in 

the following table. The results are in German. 

Table P-1: Data structure of supplementary rock property data 

Folder 

Name 

Experiment Comments 

CO CO Consists datasheets for the used concrete mixtures for Zone 1, 2, and 3. 

GR GR Consists of datasheet for the used granite. 

GN_FBA 

 

GN Gneiss and fluorite were analysed together. Folder consists of individual results 

of each performed UCS and BTS test as well as a photographic documentation of 

the samples 
FBA 

PB PB Folder consists of individual results of each performed UCS and BTS test as well 

as a photographic documentation of the samples. 
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