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The following table describes the significance of various abbreviations and acronyms used  

throughout the thesis.  

Abbreviation Meaning 

ALMS Aspreva Lupus Management Study 

ALMS-I ALMS - induction 

ALMS-M ALMS - maintenance  

AZA azathioprine 

BILAG British Isles Lupus Assessment Group 
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FCS fully conditional specification (multiple imputation) 

FCS3group2 granularity’s FCS imputation model excludes its categorical 

informative variable; mixed type’s FCS imputation model includes 

its categorical informative variable 

FCSgroup FCS includes categorical informative ’group’ variable in 

imputation model 

FCSgroups granularity’s FCS imputation model includes both categorical 

informative variables; mixed type’s FCS imputation model 

includes both categorical informative variables 

Full Data reference model with complete data before content heterogeneity 

applied 

i.i.d independent and identically distributed data 

ICD International Statistical Classification of Diseases  

ICD-10 International Statistical Classification of Diseases 10th edition 

LUNAR LUpus Nephritis Assessment with Rituximab 

MAR Missing At Random 
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MNAR Missing Not At Random 

mSE mean/average model standard error 

MTX methotrexate 
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RITUX rituximab 
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UMLS Unified Medical Language System 

WBC white blood cells 

  

  

  

  

  

  

  

  

  

  

  

  

 

 

 

 

 

 

 



 

18 

 

Abstract 

Data generated by the numerous medical studies conducted worldwide have the potential 

benefit the scientific and patient communities by generating new knowledge about health, 

disease, and treatments. This promise is well recognised by research communities, but it 

remains the case that many biomedical datasets are underutilised. To realise the potential of 

such datasets, these must be integrated with other existing data, to generate large-scale, 

research-ready data resources. However, datasets are often heterogeneous in content – i.e., 

they capture different information, or capture overlapping information at different levels of 

granularity. Traditional approaches for integrating heterogeneous datasets focus on 

harmonisation: they limit the combined dataset to information that was captured in all 

original datasets, which can be extremely wasteful. For instance, new biomarkers that were 

not measured in all original datasets may be left out of the combined dataset, and categorical 

data may be reduced to two or three levels, whilst some of the original datasets captured it 

in much more detail. We have developed new, probabilistic approaches for data integration, 

reducing content heterogeneity to a missing data problem, which is subsequently resolved 

with well-established multiple imputation methods.  Subsequently we address three 

commonly occurring forms of content heterogeneity (i.e., variation in variables, varying 

granularity of categorical variables, and variation in variable types). For each form of 

content heterogeneity we first outline the theoretical solution using probabilistic approaches 

to data integration.  Then, we evaluate the suggested solution through simulation studies. 

Finally, we illustrate the solution through application to real-world datasets from studies in 

Systematic Lupus Erythematosus. We also do this for combinations of different forms of 

content heterogeneity. The research in the thesis is methodological but with clear and direct 

application benefits.  

Keywords: content heterogeneity; data integration; FCS; granularity; mixed type; multiple 

imputation; probabilistic methods; Systematic Lupus Erythematosus; systematically 

missing values 
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Chapter 1:  General Introduction 

 

Worldwide, the data revolution is unlocking many new opportunities for answering 

biomedical and public health research questions [1]–[4]. The broad adoption of electronic 

health records (EHRs) and different cohorts promises to make an unprecedented amount of 

data available for: generating new insights into population health and care; leveraging 

heterogeneity of populations and settings and understanding how clinical trials results 

generalise to the real-world. Furthermore, ubiquitous technologies promise to reveal the 

rhythms of health and disease hitherto invisible to infrequent clinical observation.  

The realisation of these opportunities requires that data from multiple resources to be 

combined and made available to cross-cutting research. Combining different datasets is 

essential to achieving better generalisability of results (creating evidence outside highly 

controlled research environments) [2], [5], [6], ensuring the validity of comparative research 

[7], [8], larger denominators (for answering specific questions, and studying small 

subgroups and rare conditions) [9], encouraging more efficient secondary usage of existing 

data [10], providing opportunities for collaborative and multicentre research [11], [12], and 

to taking advantage of heterogeneity (of populations, geographical environments, and 

healthcare services). To realise the potential of these datasets, they must be integrated with 

each other to generate large-scale and therefore, useful data resources.  

However, in most cases, the process of integration is cumbersome and requires significant 

investment of time and effort. Harmonising large amounts of data from different sources is 

a challenge such as balancing data integration with information governance. Specifically, as 

we continue to add more data and information, the risk of person identifiability increases. 

Ethical, legal and restrictions connected with sharing or pooling of individual level data is a 

continuous issue in international research projects and networks [13]–[15]. Federated 

analytics offers a way to measure and improve the performance of federated learning models 

and it might be useful for health data where the need for privacy and accuracy is heightened 

significantly. A remaining issue though is the heterogeneity of data generated as they are 

not identically distributed across the data systems which adds complexity in terms of 

modelling, analysis, and evaluation. Moreover, privacy-preserving methods for federated 

learning can be challenging to rigorously assess due to statistical heterogeneity in data [16]. 

The promise of personalised medicine cannot be delivered without addressing complex 

questions that require data from multiple sources and settings. This promise is well 

recognised by research communities, but it remains the case that many biomedical datasets 
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are underutilised. Different datasets will likely have non-uniform data content, apply 

different levels of abstraction [17], making integration of data from different sources 

difficult. This phenomenon, called content heterogeneity, is the main focus of this thesis. 

Traditional approaches for data integration resolve content heterogeneity either by relying 

on better coding of information at source, which is rarely implemented adequately, or on the 

prospective alignment of datasets which tends to be wasteful, labour-intensive and often 

impossible to achieve completely. 

An important distinction is between pre-alignment and post-alignment of variables, 

databases, and vocabularies. Our goal is to create a database designed for keeping 

biomedical data from different studies.  Pre-alignment is when the first data source uses 

certain standards and ontologies, and we use the same ones to all the following study designs. 

Therefore, all the data from different studies will be easily integrated and used together. Pre-

alignment shows how the data are going to align with existing data before the start of 

collection and capture. On the contrary, in post-alignment, at least two biomedical databases 

use different terminologies, different vocabularies, and different use of similar data. 

Therefore, they have to change their terminologies, ontologies, and vocabularies, and choose 

common standards when these data sources/databases need to be integrated. Data collections 

are post-aligned in the preferred standards and ontologies. 

1.1 Representational Heterogeneity  

Health datasets typically grow through decentralised processes in which data collecting 

organisations meet local data needs and there is no requirement to standardise their data 

representations. This results in a patchwork of diverse, heterogeneous databases, making it 

very difficult to create a single, integrated database that uniformly captures all the relevant 

information. Integration of data sources is then problematic, as there is no single 

representation to which each source can be translated – i.e. the datasets are not interoperable. 

We distinguish four different types of representational heterogeneity. Structural 

heterogeneity refers to differently structured data in different databases. It occurs when 

databases have different schemas and are not presented in a unified and global schema that 

provides transparency. For instance, structural heterogeneity is a common problem when 

harmonising normalised data in Object Attribute Value (OAV) format which is commonly 

used in EHR systems. In this context, the ‘Object’ is a patient, the ‘Attribute’ a clinical 

variable that was measured/recorded, and the ‘Value’ that actual value. Each record always 

has a timestamp (date + time). When this format is used, records are never deleted or 

overwritten, only new records are added at the bottom. We can use it to record anything i.e. 

symptoms, diagnoses, lab measurements, referrals, medication, prescriptions etc. Each 
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patient has many rows (often hundreds to thousands) because each attribute is kept per row. 

For instance, if we analyse someone’s blood in the lab and measure 20 biomarkers, this will 

lead to 20 rows being added (all for the same patient). 

Naming or syntactic heterogeneity is characterised by the use of distinct lexical terms for 

the same semantic objects. For example, in the cardiovascular domain ‘coronary artery 

disease’, ‘myocardial infarction’, ‘acute coronary syndrome’, and ‘NSTEMI’ may be used 

to capture overlapping conditions and states.  

Semantic heterogeneity occurs when the meanings of table names, field names, and data 

values across local databases are similar but not identical [18]. An example is sudden cardiac 

death (SCD) which generally means ‘death within 24h of onset of symptoms with a cardiac 

cause’ but in reality it is hard to assess this (e.g. people are often found at home after they 

have died). Therefore, different studies often have different rules to classify a death as SCD. 

Reported incidences of SCD vary due to differences in definitions and methodology between 

cohorts [19]. With severe forms of semantic heterogeneity, one cannot construct a single, 

global value set to which all original data can be mapped. And apart from these semantic 

differences that appear from data and metadata themselves, there may be more subtle 

semantic differences arising from variation in coding habits of clinicians [20].  

Finally, content heterogeneity - on which is the focus throughout the thesis - occurs when 

data represented in one data source is not represented in another. Content heterogeneity may 

occur, for instance, because a study recruited only men and therefore did not record sex in 

its database. Such implicit data, which are typically constant over a dataset, are often 

derivable from metadata, creating the possibility to resolve the content difference with other 

studies. But other forms of content heterogeneity, such as differences in measured 

biomarkers, are not easily resolvable as the underlying data are simply missing. Another 

example is the use of different variable types across datasets. Sometimes these differences 

amount only to variation in granularity, e.g. one dataset groups age by 10 years while another 

has age as integer - a mixed type variable problem. It is possible to resolve such differences 

by considering the ‘least common denominator’ (in this case, an age grouping by 10 years) 

but results in a loss of information that quickly increases as more datasets are integrated. 

It should be noted that all types of representational heterogeneity can exist independently of 

each other, although there are often connections between heterogeneity in naming, 

semantics, and content. Furthermore, all types of representational heterogeneity reduce the 

possibilities for uniform cohort selection and for confounder adjustment in a consistent way 

across different datasets, and are therefore relevant for this thesis. 
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At this point there should be a distinction between data integration, data harmonisation and 

data enrichment. We will use the term ‘data integration’ to refer to the process of storing 

different datasets in a single location (a database), without any syntactic or semantic 

changes. In this case, information can often not be captured with a single query but will have 

to be captured via multiple queries – unless the data are also harmonised. By ‘data 

harmonisation’ we will refer to the process of creating a single cohesive dataset that contains 

all the information that was captured in the different datasets. So, this means that all the 

information is expressed at the same level of granularity and has the same meaning 

throughout. In addition, all the information can be captured with a single query, and data’s 

origin is known.  By the term ‘data enrichment’ we refer to the process of appending 

collected data with relevant context obtained from additional sources. This may be achieved 

by using external data sources [21]. Data enrichment could be also accomplished by 

integrating taxonomies, ontologies, and third-party libraries as a part of the data processing 

architecture. An example is when enriched real-world data studies combine primary data 

collected directly from physicians and patients with existing (secondary) data such as EHRs. 

Throughout the thesis, the focus is on data integration. 

1.2 The traditional approach: striving for data-level harmonisation 

The health informatics literature has traditionally considered the use of universal data 

standards a core requirement to solving representational heterogeneity problems, especially 

those related to naming and semantics [22]. Broad utilisation of models and standards for 

coding such as ICD [23], HL7v3 [24] , Read [25], GALEN [26], SNOMED [27], CaBig [28] 

would essentially eliminate all forms of representational heterogeneity, thus enabling data-

level harmonisation across different data sources, regardless of where, when and by whom 

the data were recorded. In other words, this approach advocates the use of a fine-grained, 

shared representation language in which all information is expressed at the time of recording, 

and therefore the same representation language can be used to express integrated datasets at 

any time point in the future. Such integrated datasets can subsequently be analysed for 

scientific purposes, for instance to answer the questions regarding the benefit of a drug and 

the prognostic value of the new biomarker. Because the data are pre-aligned to a granular 

representation, analytical issues with respect to cohort selection and confounder adjustment 

can be addressed in the analysis of the integrated dataset with existing statistical tools such 

as imputation analysis. 

Data standards are often used successfully in clinical registries to pre-align data that are 

recorded at different sites [29], but other successful examples are rare. When datasets use 

different standards and are therefore not pre-aligned, it is sometimes possible to achieve 
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data-level harmonisation through post-alignment, for instance using the UMLS 

Metathesaurus [30]. However, such an approach is often laborious and rarely yields 

complete results [9]. In cases of severe representational heterogeneity, striving for data-level 

harmonisation often leaves no other solution than ignoring both specific data sources and 

data items (variables) from the shared representation. For instance, in case of severe content 

heterogeneity, integrated datasets often cover just a small set of data items that are present 

in most source datasets and leave out the other items. But this will obviously diminish the 

potential to accurately answer research questions as it will reduce possibilities to harmonise 

cohort selection and confounder adjustment. Therefore, we may not be able to answer our 

research question at all, because none of the available datasets cover all the relevant 

information. Provided these models/standards are properly and universally implemented 

they can enable consistent indexing, storage, retrieval and aggregation of clinical data across 

specialties and sites of care. They also facilitate structuring of the medical record, thereby 

reducing variability in the ways clinical information is encoded. 

Unfortunately, these standardisation efforts have largely failed. For example, after a decade 

of development, HL7v3 was launched in 2006 but to date the vast majority of healthcare 

messaging is still done using older versions of HL7 that are semantically weak [31]. 

SNOMED CT is widely recommended as clinical terminology but few EHR vendors have 

actually implemented it [32]. This failure represents a considerable waste of resources in the 

time and costs of defining coding standards and information models. At the same time there 

has been vast growth in data sources, which remain underutilised as a source of knowledge 

for improving healthcare. Waiting until they are fully harmonised and interoperable is 

wasting time and opportunities for discovery − especially if that wait is likely to be indefinite 

if not infinite. 

1.3 A probabilistic approach to integration for inference with biomedical 

data 

 

In this thesis we question the assumption that perfect, data-level standardisation is needed 

for inference with data that stem from different sources. We believe that more progress can 

be achieved by adopting a top-down approach to integration that starts with research 

questions rather than data collections. We argue for an alternative focus on the development 

of analytic methods that embrace the data turmoil, rely less on standardised data items, and 

have the capacity to process content heterogeneous data. We suggest probabilistic 

approaches to integration in which content equivalence is a matter of uncertainty rather than 

a dichotomy. We address three commonly occurring forms of content heterogeneity (i.e., 
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variation in variables, varying granularity of categorical variables, and variation in variable 

types), and essentially cast them as missing value problems, enabling a solution through 

well-established methods for resolving missingness (multiple imputation). 

1.4 Case study – real-world data 

Our work is about realising scale. If we bring different datasets together, we increase scale 

and therefore increase the statistical power to detect important relationships, even if the 

object of research is a rare disease. An extract of real-world (rare disease) data from a 

biomedical database was available from the start of the PhD project. This dataset formed the 

basis for the design of our methodology and has been used for subsequent analyses. 

1.4.1 Systemic Lupus Erythematosus (SLE) 

 

Systemic Lupus Erythematosus (SLE) is a complex and poorly understood condition that 

can affect many body systems with symptoms ranging from mild to severe. Some common 

symptoms include: achy joints, obscure fever, skin rash, chest pain, fatigue, weight loss, 

sensitivity to light and swelling. It is a chronic autoimmune disease (the body’s natural 

defence against illness and infection) of unknown aetiology and with prevalence, in general 

population, of approximately 20 to 150 cases per 100,000 people [33]. Diagnosis of SLE 

can be difficult and is typically based on a combination of clinical symptoms and laboratory 

tests. High levels of two specific types of antibodies, anti-nuclear and anti-phospholipid, 

combined with a set of typical symptoms are usually indicative of lupus [33].  These 

antibodies significantly increase the risk of cardiovascular disease, which causes a reduced 

life expectancy in SLE patients. As with other more common autoimmune conditions, such 

as rheumatoid arthritis, it is thought a combination of genetic and environmental factors is 

responsible for triggering lupus in certain people. There is no cure for SLE; treatments may 

include non-steroidal anti-inflammatory drugs, corticosteroids, immunosuppressants, 

hydroxychloroquine, and methotrexate, but often none of these lead to full remission of 

symptoms and all have side effects. Two recent medicines (rituximab and belimumab) may 

be used to treat severe lupus. These biologic therapies act on immune system to decrease 

antibodies’ number in the blood. In the last decade biologic therapies have become available 

to treat SLE with promising results including full and sustained remission of symptoms in 

some patients.  

1.4.2 The MAximizing Sle ThERapeutic PotentiaL by Application of Novel and 

Stratified approaches (MASTERPLANS) 
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The MAximizing Sle ThERapeutic PotentiaL by Application of Novel and Stratified 

approaches (MASTERPLANS) programme aims to improve care for SLE patients by taking 

a precision medicine approach to identifying groups of patients that respond to particular 

biologic therapies [34]. The goal of stratified and precision medicine is to provide patients 

with the best treatments (i) by ensuring that existing therapies are targeted at those who will 

derive most benefit and by accelerating the development of new therapies, and (ii) by better 

understanding why some patients respond to specific treatments while others do not. 

The data integration work-strand in MASTERPLANS focuses on the bringing together 

various existing datasets from cohort studies and clinical trials involving either the 

conventional treatment with the immunosuppressants such as mycophenolate mofetil 

(MMF) or treatment with new biologic therapies such as Rituximab, and Belimumab. The 

aim is to identify biomarkers that either singly or in combination predict remission of 

symptoms in patients receiving these treatments; enabled by integration and harmonisation 

of relevant data from multiple sources. All the data from the studies related to the programme 

are kept in the MASTERPLANS data warehouse, implemented on the tranSMART 

platform. All data pertaining to the project have been uploaded into tranSMART to provide 

a single integrated data repository. Loaded data are restructured to fit a consistent format, to 

suit analysis requirements; this requires some degree of harmonisation between datasets and 

removal of redundancy among the data sources. 

As we mentioned before, an extract of data from the MASTERPLANS database was 

available almost from the start of the PhD project. Those data formed the basis for the design 

of our methodology and have been used for subsequent analyses. These data currently 

comprised of three cohort studies i) Aspreva Lupus Management Study (ALMS) [35], [36], 

ii) The lupus nephritis assessment with rituximab (LUNAR) study [37] and iii) The 

Exploratory Phase II/III SLE Evaluation of Rituximab (EXPLORER) [38]. As the 

MASTERPLANS projects progressed in parallel to this PhD, additional datasets became 

available. The three studies were conducted across different sites, with different coding 

frames and employing different entry and exclusion criteria. Furthermore, study protocols, 

the evaluated medication, recruitment numbers, and duration of follow-up varied across the 

studies with only partial overlap. 

The ALMS study included two phases: induction (ALMS-I) and maintenance (ALMS-M). 

ALMS is a prospective and randomised trial aimed to assess the efficacy and safety of 

MMF with patients with lupus SLE. The objective of the study was to compare long term 

MMF efficacy to azathioprine (ALMS-M) and MMF efficacy to cyclophosphamide 

(ALMS-I). In ALMS-I patients were followed for 24 weeks and in ALMS-M for 36 weeks. 
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The entry into Phase II was determined by response during Phase I. In contract LUNAR 

and EXPLORER’s objectives were to evaluate the efficacy and safety of rituximab in 

randomised, placebo-controlled trials. They were also randomised at a ratio of 2:1 to 

receive rituximab (1,000 mg) or placebo on days 1, 15, 168, and 182 in both studies. In 

LUNAR, 144 patients with SLE took part and they were previously treated with MMF and 

corticosteroids. The primary end point was at week 52. In EXPLORER 257 patients took 

part with background treatment distributed among azathioprine, mycophenolate mofetil 

and methotrexate. Patients entered with >=1 British Isles Lupus Assessment Group 

(BILAG), a standard disease severity index in lupus, ranging from A to E) A score or >=2 

BILAG B scores despite background immunosuppressant therapy, which was continued 

during the trial.  

1.4.3 Representational heterogeneity in lupus studies 

 

We have identified three main categories of representational heterogeneity discussed above 

(naming, content and semantic heterogeneity) in the lupus datasets. They are shown in Table 

1.1. 

Table 1.1. Examples of representational heterogeneity among ALMS, LUNAR, AND 

EXPLORER datasets. 

Variable’s 

description 

 

Variables’ representation in lupus datasets 

ALMS  

LUNAR 

 

EXPLORER ALMS-I ALMS-M 

Drug dose  

Drug Dose per time 

Total drug dose per 

visit 

 

Non-existence of variable 

Visit date  day/month/year 
As a number that uses 0 as a baseline for the 

first day that the study started 

Ethnicity 

Caucasian 

Asian 

Black 

Other (many 

subcategories) 

 

White 

Black or African American 

Other 

 

Smoking Status Y/N/NA never/current/ex-smoker 

Year of SLE 

diagnosis 
Year of diagnosis Non-existence of variable 
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➢ Naming (or syntactic) heterogeneity 

Naming (or syntactic) heterogeneity occurs when different lexical terms have identical 

meaning. In the lupus datasets, we have smoking status ‘Y’ in ALMS and ‘current’ in 

LUNAR/EXPLORER which amounts to the same thing. 

➢ Semantic heterogeneity  

Semantic heterogeneity occurs when variables have identical or similar names but their 

meanings are different [18]. An example is the variable ‘visit date’ which occurs across 

different lupus datasets but its meanings are different.  All the studies have different baseline 

data and in particular ALMS compared to LUNAR and EXPLORER have different relative 

visit time points for their patients (different time points relative to baseline). Therefore, when 

it comes to integrate patients’ visit days (from baseline) we need to fully understand the 

study’s design in order to apply a common starting point, following visits and end point. 

Another example is smoking status, in LUNAR and EXPLORER this variable includes the 

categories of ex-smoker and never smoker which do not directly and accurately map to ‘N’ 

as it captures in ALMS as they have different meanings. 

➢ Content heterogeneity 

Content heterogeneity occurs when data are not equally represented across all the datasets. 

For example, the year of SLE diagnosis is captured in ALMS-I and ALMS-M but not in 

LUNAR and EXPLORER. Another important difference relates to drug dose of medication 

used. As we see in Table 1.1, in ALMS there are variables to capture drug’s dose per time 

and the total per visit. However, in LUNAR and EXPLORER there is no capture of drug 

dosage as this is likely uniform within each of these studies and may have been described in 

study protocols but not in the data themselves. Another example would be of a common 

variable, Ethnicity, which occurs in all three datasets (Table 1.1), however the subcategories 

which fall under this are different in each study. Furthermore, even the common 

subcategories such as ‘Other’, are likely to have different content (will include different 

ethnicities). 

As discussed previously, all the aforementioned kinds of representational heterogeneity may 

exist with or without the existence of the others and it may be the case that several forms of 

representational heterogeneity exist alongside each other. In the lupus datasets, ‘smoking 

status’ includes all the forms of the representational heterogeneity.  
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1.5 Aim and objectives 

Our over-arching aim is to explore the potential of probabilistic methods based on multiple 

imputation to address content heterogeneity in biomedical dataset integration. Specifically, 

we aim to assess the accuracy of statistical inference based on probabilistic integration of 

heterogeneous datasets via simulation studies, focusing on (i) the problem of variation in 

variables; (ii) the problem of varying granularity of categorical variables; (iii) the problem 

of variation in variable types; and (iv) combinations thereof. Furthermore, we aim to 

illustrate the application of these methods in real-world data on SLE. 

1.6 Thesis structure 

The overall structure of the thesis takes the form of seven chapters. Chapter 1 is the general 

introduction and Chapter 2 starts with a review of existing literature on data integration, 

representational heterogeneity, content heterogeneity, existing probabilistic machine 

learning/data mining methods, types of missing data and methods to address missing data.  

We also reviewed probabilistic methodologies to evaluate potential routes for efficient data 

integration. Then, four chapters follow where we investigate three commonly occurring 

forms of content heterogeneity. In particular, in Chapter 3 we present the problem of 

variation in variables, in Chapter 4 the problem of varying granularity of categorical 

variables and in Chapter 5 the problem of variation in variable types. For each of form of 

content heterogeneity we first outline the theoretical solution using probabilistic approaches 

to data integration.  Then, we evaluate the suggested solution through simulation studies. At 

the end, we demonstrate the utility of the developed probabilistic approaches by applying 

them to real-world biomedical datasets - studies in Systematic Lupus Erythematosus. 

Chapter 6 addresses combinations of different forms of content heterogeneity and it follows 

similar format as the previous three chapters. The thesis finishes with a general discussion 

(Chapter 7) on the utility of probabilistic methods for data integration in biomedical 

research, limitations, future steps, and conclusions. 
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Chapter 2:  Literature Review 

2.1 Objectives 

In order to be successful with the general scope of this thesis a robust review of current 

achievements in the field had to be carried out. Therefore, in this chapter we review the 

scientific literature on representational heterogeneity and methods for integration of 

heterogeneous datasets, with a focus on health data. Further, we explore which probabilistic 

methods have been used for integration of heterogeneous datasets. At the end we focus on 

the issue of content heterogeneity, types of missing data and techniques to deal with data 

missingness. 

Therefore, our review has four objectives: 

1. To review the issue of representational heterogeneity in health data;   

2. To review methods for integration of heterogeneous health datasets;  

3. To explore probabilistic methods for integration of heterogeneous datasets; 

4. To identify content heterogeneity issues after data integration and explore potential 

methods to overcome them. 

The chapter continuous with the search strategy to direct literature review (2.2). Results start 

with a discussion of different types of representational heterogeneity and a clarification of 

thesis’ main aim (2.3.1). We continue with different forms of data integration (2.3.2), 

provide an overview of traditional data integration methods in biomedicine (2.3.3 and 

suggestion to alternatives i.e. probabilistic data integration methods (2.3.4). Subsequently, 

we describe in detail content heterogeneity (missing data (2.3.5), statistical methods to 

handle them (2.3.6.) and the problem of systematically missing values (2.3.7). The chapter 

ends with a discussion about literature review’ findings and limitations (2.4). 

2.2 Search strategy 

 

To conduct the literature review, we have selected appropriate sources for literature that 

would be analysed and included in the final report. These included Google Scholar, Scopus, 

and the largest open biomedical database PubMed [39]. The main sources of information 

included here are published papers, specifically, peer reviewed articles and the scientific 

articles (that either were cited by others or not). There was not a specific minimum number 

of citations for a paper in order to be included because for some parts the provided literature 
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was limited. In some basic terminology that needed to be covered, only papers with a 

minimum number or 50 citations were included. In order to provide good coverage, contrast 

and a meaningful discussion, the selected papers covered different methodologies and 

opinions on the subjects covered by this review. Searching was not limited to specific 

editorials and publishing companies in order to avoid bias. A wide range of keywords and 

key phrases and synonyms were used to conduct the searches; these included: ‘data 

integration’, ‘health data integration’, ‘data standardisation’, ‘probabilistic data integration’, 

‘data standardisation in health’, ‘representational heterogeneity’, ‘health data 

harmonisation’, ‘integrating the healthcare’, ‘data integration in health care’, ’medical data 

integration’, ‘uncertainty’, ‘uncertainty and data integration’, ‘missing data, ‘systematic 

missing variables’, ’and ‘probabilistic approach in data integration’. Additionally, searches 

focused also on manuscripts published by authors that are prominent in the field of 

heterogeneous databases, data integration, probabilistic models for data integration in 

different fields and the field of biomedical data integration [17], [40]–[46].  

Applying the criteria listed above, a snowballing approach was taken to identify a set of 

papers to be included; this process started with significant publications such as systematic 

reviews and had two phases for selecting relevant publications: backward and forward 

snowballing [47]. In backward snowballing, leading scientific papers’ reference list was 

used to identify other published papers. In forward snowballing, articles that have cited the 

leading ones are identified. With both approaches, the reference lists were reviewed and 

used to decide which publications should be included. The preferred articles were chosen 

based on the following criteria (in addition to those outlined above): year of publication, 

number of citations (played an important role only to cover basic concepts and terminology), 

relativity, contribution, clarity, impact and correlation with other work. Once the papers 

were found, the abstracts (and in some cases, other parts of the paper) were used to decide 

on their inclusion or exclusion from this review. Figure 2.1. denotes the process of the 

literature search. During the electronic database search, 110 papers were identified using 

specific keywords (see above). From their reference lists another 70 papers were also 

included in the first collection of papers. A total of 18 papers were identified in both 

collections (mainly reviews with a large number of citations. Some of the initial papers were 

duplicated and were removed leaving a total of 155 papers. Of these, 30 papers were deemed 

irrelevant from reading their abstract. An additional 63 papers were removed after being 

found not useful for our review. This final step included reading papers in more detail and 

especially parts like introduction, discussion and conclusion 
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Figure 2.1. Methodology flowchart of the literature review. 

 

2.3 Results 

2.3.1 Representational Heterogeneity  

In this section we give a detailed overview of subcategories of representational 

heterogeneity. We have identified four categories of representational heterogeneity: 

structural heterogeneity, naming heterogeneity, content heterogeneity and semantic 

heterogeneity. In Chapter 1, we briefly discussed and presented a few examples for the four 

heterogeneity types. In this section we describe them in more detail. As mentioned in section 

1.4 in page 31 the overall goal of the thesis is overcoming content heterogeneity in the form 

of (i) variation in variables; (ii) varying granularity of categorical variables; (iii) variation in 

variable types; and (iv) combinations thereof resulting from data integration.  
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Firstly, we introduce a type of representational heterogeneity that was mentioned in the 

previous chapter i.e structural heterogeneity. It occurs when there are differences between 

different kinds of table decompositions such as horizontal and vertical, data - metadata 

representation, and structured or free text variables. Different ‘horizontal table 

decomposition’ requires different normalisation degree and leads to split the data across a 

changing number of tables [17]. Concerning normalisation degree, we mean different 

processes of data organisation in tables, to achieve elimination of redundancy, ensurance 

that data are in the correct table, and elimination of restructuring the database. Figure 2.2 

(A) shows that doctor and patient relationship might be presented in at least 2 ways. 

Different ‘vertical table decomposition’ tables could happen by splitting rows in one or more 

tables. For example, Figure 2.2 (B) shows how inpatients and outpatients’ records, of a 

hospital database, could be presented in at least two ways. With regards to data and metadata 

representation, relational models do not have to follow a specific hierarchy. Therefore, there 

is a variety of encoding data which leads to different usage of metadata. For a better 

understanding of this concept, see Figure 2.2 (C) which illustrates how blood tests results 

could be represented in at least 3 ways. Concerning free and structured records, there are 

differences in the allocation of the original data across many fields against a unique field. 

For example, the division and connection in how laboratory results and addresses are 

recorded. Some databases represent the address in a single data field: < ‘Amy Smith, 123 

Hulme Street, M18 6GB, Manchester’ > while in others are represented as separated data 

fields: < ‘Amy Smith’, ‘123 Hulme Street’, ‘M18 6GB’, ‘Manchester’>.   



 

40 

 

 

 

Figure 2.2. Different horizontal (A), vertical (B) table decompositions, and different 

encodings of a simple type hierarchy [17]. 
 

Secondly, as briefly discussed in Chapter 1, naming or syntactic heterogeneity occurs when 

same meanings are presented using different lexical terms. These differences in naming 

conventions could occur at the data level (e.g. in dataset A has ‘Body Mass Index’ and 

dataset B uses the abbreviation ‘BMI’) or at the metadata level (e.g. data are collected for 

dataset A in term ‘sex’ and in dataset B in a term called ‘gender’). These examples are 

simple, and sometimes metadata naming differences could also indicate different meaning 

which may not be so easy to understand. This specific issue is not only syntactic, but it is 

also semantic in the metadata level. Therefore, it is often unclear and makes it difficult for 

different data sources to be integrated. For example, records for a patient’s id may designate 

the social security number rather than medical record number. This example catches 

semantic differences (which will be explained later), and it is a time-consuming data 

integration process.  

Thirdly, as described in section 1.1, semantic heterogeneity occurs when variables in 

different data sources have same terminology; sometimes it is described as variation in 

granularity. This occurs when variables of the data fields are kept under identical and similar 

variables but their meanings are different [18]. A simple example for semantic heterogeneity 

would be where one database uses the term ‘cold’ to mean flu like disease and where a 

second database uses the term ‘cold’ to mean temperature. Despite the semantic differences 
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among the datasets, in terms of data and metadata, another consideration comes from the 

coding preferences of clinicians [20]. Semantic heterogeneity can be divided into one-to-

many and many-to-many relationship between similar variables. ‘One-to-many’ means that 

values of a variable of dataset A may be linked to many values of the same variable of dataset 

B but not the opposite. This means that, in ‘one-to-many’ a value of this variable of dataset 

B is linked only to one value of dataset A. For example, there are two databases that have 

the common variable ‘Blood_growth’. Database A differs the growth level as: ‘no growth’, 

‘moderate_growth’, ‘significant_growth’ while database B differs it as ‘0’, ‘1’, ‘2’, ‘3’, ‘4’, 

‘5’. Based on the example, we see that there is a semantic difference and ‘one-to-many’ 

relationship between the values of database A and database B Otherwise, in ‘many-to-many’ 

many values of a variable of dataset A may be linked to many values of the same variable 

of dataset B and vice versa. For example, database A differs the growth level as 

‘no_or_low_growth’, ‘moderate_or_significant_growth’, while database B differs it as 

‘no_growth’, ‘moderate_growth’, ‘significant_growth’.  

 

Lastly, as we discussed in Chapter 1, content heterogeneity characterises data that are not 

represented across all the data sources. Some data are recorded in one or in some databases, 

but they do not exist in others. Data might be inherent, deducible, or missing. ‘Inherent’ data 

mean that are often part of a local database and cannot be taken easily in global databases’ 

environment. ‘Deducible’ data mean that one could be derived from the other (some 

information loss possibly occurs). An example for deducible data is the representation of 

postal code vs. town name, or use of birth date vs. use of age. A general example of content 

heterogeneity is when, a given study may focus on only males or only children while a 

second study may include both males and females or all age groups. ‘Missing’ data occur 

when no values are stored for some or all variables.  The problem of missing data takes place 

when the global databases include data that are not represented in local databases. A missing 

data example occurs when medical centres’ local databases do not record any variables for 

HIV status (for confidentiality issues) but in global and integrated databases the ‘HIV’ status 

is recorded. Therefore, the integrated database has null values for some patients which means 

that either the status is negative, or unknown, or unavailable. Another typical example of 

content heterogeneity is where patient’s age is recorded as ‘<20’, ‘20-40’, ‘40-60’, ‘>60’ in 

dataset A, and recorded as an integer number in dataset B; here there is uncertainty about 

the ages of patients from dataset A when we try to express them as integer numbers (for 

integration with dataset B). Another similar example is when the age, in dataset A, is kept 

in range by 5 years and in dataset B is grouped by 10 years.  
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All the aforementioned kinds of representational heterogeneity may exist with or without 

the existence any of the others and it may be the case that several forms of representational 

heterogeneity are combined. 

2.3.2 Data Integration 

According to Sujansky [17], the process of data integration could be defined as ‘the creation 

of a single uniform query interface to data that are collected and stored in multiple, 

heterogeneous databases’. Data integration is a way of combining heterogeneous (in our 

case structured) data at the same time from multiple and different data sources [43]. To 

realise the potential of these datasets we need to build a consistent interface that gives the 

ability of querying to users. 

There are several possible approaches for heterogeneous data integration such as vertical, 

horizontal, historical, longitudinal, integration for application portability, and cross indexing 

[46].  

- Vertical data integration is the combination of data from different sources that do 

not have the same type or format, into one common database. This type of integration 

demands a methodical planning process of how to correlate and combine all the 

findings from the data sources. Each database may follow a specific hierarchy which 

needs to be maintained after the aggregation [43], [48]. 

- Horizontal data integration is the combination of data from similar data resources 

and applications with common format. Through this process, data follow a non-

hierarchical way of integration and there is no particular order or preference [48]. 

- Historical Integration is used when data from different databases and potentially in 

different formats are combined but they also need further handling in order to be 

together [46]. Patient health records that come from many systems and in dissimilar 

formats could need much more processing time and effort to give a useful summary 

of information.  

- Longitudinal Integration is the aggregation of data in a continuous manner. Health 

care data are captured all the time and there is a need to keep the records updated 

and to offer flexibility in terms of new data entries [46]. Also, our knowledge of 

treatments increases all the time, therefore it is of highest importance to find new 

ways to keep records and data constantly merged and without inaccurate information.  

- Cross Indexing Integration is used when there are new records for a specific patient 

and we would like to add them to their existing record (e.g., medical history), and 

then aggregate records from the patient’s family members. This case offers a great 
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opportunity of investigating similarities, differences and any correlations among 

generations and to understand in detail multiple exposures based on family history 

records.  

 

In this thesis, instead of focusing on the data, we focus on the research question, and try 

to use all the information that is available in the individual study datasets to address that 

question, even if those individual datasets express that information in mutually 

incompatible ways. In the process of doing so, we do create a very large ‘stacked’ dataset 

that encompasses all the information from the individual study datasets. But this stacked 

dataset, by necessity, also has a lot of ‘gaps’ that are emerge because those datasets 

express information in mutually incompatible ways. We then estimate the distribution 

of data that can plausibly fill the gaps using established methods from the field of missing 

data, i.e. multiple imputation. 

2.3.3 Traditional data integration methods in Biomedicine 

In bioinformatics and in health informatics, attempts have been made to solve the 

problem of non-uniform data; researchers have considered that the complex problem of 

localised data collections could be solved by adopting more evolutionary and advanced 

techniques [22], [41], [49]. In the past, the problem of representation heterogeneity has been 

addressed through formal knowledge representation by developing semantic standards such 

as information methods and strict terminologies/vocabularies, taxonomies, ontologies, 

thesaurus and coding systems [17], [22], [44], [45], [50], [51].  

First of all, we should understand the distinction between the different types of knowledge 

representation. An ‘ontology’ is a structural taxonomy with formalised relationships among 

concepts. Ontologies are used more to express complex and difficult relationships such as 

complex information systems (Semantic Web). According to Guarino, Oberle and Staab [52] 

ontology means ‘to formally model the structure of a system, i.e., the relevant entities and 

relations that emerge from its observation, and which are useful to our purposes’. The other 

distinction of a controlled vocabulary is a taxonomy. A ‘taxonomy’ is often presented by a 

hierarchical tree structure and the used variables are represented by nodes. ‘Taxonomy’ 

could be found as tree - vocabulary that is less complex than an ontology or a thesaurus. It 

could also be found as any kind of controlled vocabulary that is used more in web sites and 

enterprises than scientific libraries. A ‘controlled vocabulary’ is a systematised grouping of 

words and phrases with explanations and is used to recapture the meaning through searching. 

It does not have any particular structure, they are used by companies and persons. 

‘Controlled vocabulary’ is a general category that includes thesauri, and taxonomies. A 
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‘thesaurus’ has a standard structure and its variables have connection among them. Thesauri 

also have notes and further explanations. They are created for certain eras and reasons.  

The success of the Gene Ontology (GO) in standardising gene characteristics and functions 

has led to the spread of the usage of the term ontologies and especially in the biomedical 

sciences became very popular [53]. There are more than 200 biomedical ontologies and that 

number keeps increasing. Ontologies are now routinely used in biomedicine and GO is a 

classic source [54], [55]. Table 2.1, lists some of the existing universal data standards, 

vocabularies and ontologies such as ICD [23], SNOMED [27], HL7ν3, Read [56], GALEN 

[26], and caBIG [57]. The adoption of these standard vocabularies offers a (partial) solution 

to representational heterogeneity problems especially with those relating to semantics and 

naming [22].  

The Systematised Nomenclature of Medicine – Clinical Terms (SNOMED CT) is a very 

broad and multilingual clinical healthcare terminology [58]. It defines terminology that can 

be used to capture information about a patient’s medical history, diseases, treatments, and 

laboratory results [59]. It is widely used in many countries and provides a central way to 

represent medical concepts. A drawback is that SNOMED’s terminology and coding results 

are affected by the browser in which a user searches. SNOMED’s browsers tend to show 

slightly different results [60]. While SNOMET CT is widely proposed for clinical 

terminology, only a small number of EHR promoters have put it into practice [32]. 

SNOMED CT is supposed to be a reliable ontology that is easily comprehended by users. 

Although, this does not always happen, and it tends to be misunderstood. Also, SNOMED 

CT struggles with linking of significant medical concepts [61] such as myocardial infarction, 

diabetes, and hypertension. Systematic errors in SNOMED’s schemas have been detected 

and major changes are needed. These changes could make SNOMED a more reliable 

technique in data integration [62].  

Another well-known data standard, the International Statistical Classification of Diseases 

and Related Health Problems (ICD) 10th edition (ICD-10), was developed by the World 

Health Organisation [63], [64]. The main objective of ICD-10 is standardisation of 

terminology that is used for clinical diagnoses and procedures. Also, ICD-10 offers multiple 

uses in health statistics, clinical work, health management, medical billing, epidemiology, 

and health reporting [64], [65]. This medical coding application is used mostly by physicians 

[65].  
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Table 2.1. Key comparison of biomedical terminologies and ontologies. 

 

Name  Scope  Number 

of 

elements  

Applications  Sourc

e  

ICD-10 

(Internationa

l version)  

Diseases  

  

Around  

16,000 

codes  

Health 

Statistics,Epidemiology,Health,Reporting,Billin

g  

[64] 

  

GO  Cellular 

components

, molecular 

functions, 

biological 

processes  

28,912  

terms-

(Biologica

l process) 

10,900 

terms  

(Molecular  

Function)  

4,016 

terms  

(Cellular  

component  

Research)  

Research on genes, proteins  [55] 

GALEN  Anatomy, 

surgical 

deeds, 

diseases, 

health care  

Over 

10,000  

terms  

  

Electronic healthcare records, clinical user 

interfaces, decision sup- port systems, 

knowledge access systems, natural language 

processing  

[66] 

FMA  Anatomy 

content  

120,000 

terms  

Education, biomedical research  [67] 

Read  Patient 

records, 

Health Care 

systems, 

primary and 

secondary 

use of health 

data, health 

care, 

health/socia

298,102 

discrete 

concept 

codes  

Certain vocabulary   [68] 
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l care IT 

systems   

SNOMED - 

CT  

 

 

 

 

Everything 

encoded in 

the 

electronic 

health 

record  

326,734 

active 

concepts  

Information about a patient’s medical history,  

illnesses, treatments, and laboratory results  

[69] 

UMLS  Biomedical 

and health 

related 

concepts  

Over 

1 million 

concepts  

Scientific literature, guidelines, and public health 

data, natural language processing  

[70] 

  

The existing ontologies, vocabularies and data standards offer some advantages and have 

been used traditionally as a partial solution to problems with data integration. However, 

there are some universal drawbacks in the usability and the adoption of terminologies and 

ontologies. One of the main concerns is the plethora of available ontologies and standard 

terminologies; this has led to different standards being adopted by different data resources. 

The adoption of different standards, which may not easily align with each other, defeats the 

purpose, making integration of the different data systems and resources laborious and even 

impossible. For example, if one clinical study used Read to formalise relevant concepts 

while a second clinical study used SNOMED CT, data are inevitably captured differently by 

the two studies. A solution to this would be to impose the same standards on all data 

resources but would be difficult to implement.  

The Unified Medical Language System (UMLS) provides a feasible solution to the problem 

of the variety of ontologies. The UMLS was developed by the US National Library of 

Medicine and could be briefly described as an integration tool of more than 150 biomedical 

vocabularies [71]. UMLS assists the progress of the development of computer systems that 

function as if they comprehend the biomedical and health related used language. National 

Library of Medicine’s scope is to forward the UMLS databases and programs in order to 

provide to informaticians an electronic system that develops, recaptures, and integrates not 

only biomedical/health information but also research information. The UMLS is not 

designed to satisfy particular scopes, but it is a flexible tool. The UMLS includes integration 

of vocabularies such as GO, MeSH, Online Mendelian Inheritance in Man and external 
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sources such as GenBank [72]. The UMLS knowledge sources include: the Metathesaurus, 

the Semantic Network, and the SPECIALIST Lexicon. 

 The Metathesaurus is a multi-scope tool that recognises and connects names and same ideas 

from multiple and different vocabularies. The metathesaurus has been created by the linkage 

of a lot of thesauri, code sets, controlled terminologies for: patient treatment, health care 

information, biomedical literature, clinical and health related research, biomedical statistics 

etc.  

The UMLS’s semantic network’s goal is to support semantic classification in a wide range 

of terms in numerous eras and is made up of two subcategories. The first one is called 

‘semantic type’ and it supports a homogeneous classification of concepts and terms 

presented in the UMLS Metathesaurus. The second subcategory is called ‘semantic 

relations’ and expresses valuable relationships that can be found among semantic types.  

The SPECIALIST Lexicon is an English dictionary that has lots of biomedical and health 

related terms. It provides numerous words that are necessary for the SPECIALIST Natural 

Processing System. It is created to help users take over biomedical text differences. 

In conclusion, UMLS is designed to achieve post-alignment data harmonisation to the 

biomedical datasets that are not pre-aligned. However, this approach is not trivial and has 

yet to attain successful and trusted results [9]. 

In terms of another traditional approach, there is The Core Outcome Measures in 

Effectiveness Trials (COMET). It connects people interested in the development and 

application of agreed standardised sets of outcomes, known as ‘core outcome sets’ (COS) 

[73]. These sets represent the minimum that should be measured, captured and reported in 

all clinical trials of a specific health, and are also suitable for use in clinical audit or research 

other than randomised trials. There is also no restriction on what it needs to be captured and 

what the COS will include. People using the COMET initiative expect, that the COS that 

will be captured, will offer an integrated way to compare, combine and analyse different 

sources of data due to the common initial format. The COMET’s scope is to create and 

promote applied and methodological with which people could exchange ideas, knowledge 

and information to improve methodologies of biomedical and health sciences. 

This pre-alignment data integration may not always work. If every trial/study would collect 

these core outcome data, then integration of the associated datasets would be very easy. 

However, the reality is different: each trial/study collects their own outcome data – as well 
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as using their own choice of baseline data. but it needs to be mentioned that the COMET 

initiative becomes even more popular in our days. In this thesis, we therefore focus on a 

different approach that does not require pre-alignment and will be useful in scenarios where 

pre-alignment is not possible or has not happened. 

2.3.4 Probabilistic data integration methods in health data 

Heterogeneous biomedical data integration remains a challenge especially due to noisy 

biomedical resources, coverage diversity, and functional biases [74]. There is a growing 

effort to integrate these data using probabilistic knowledge representation.  

Huttenhower and Troyanskaya [74] used Bayesian networks to predict useful protein 

relationships under multiple and different conditions. The study took into consideration the 

structure of the network and compared different probabilistic methods. It compared the 

golden value of the conditional probabilities with those from a method called ‘expectation 

maximisation’ and another one called ‘extended logistic regression’. The behaviour of 

Bayesian data integration varied according to the parameters chosen to accomplish 

computational and biological scope. They concluded that Bayesian networks are indeed a 

steady and functional way of integrating data, but their performance should be carefully 

considered: the performance is different for each individual functional category and could 

produce a different accuracy to the general model. The proposed technique is not only for 

Bayesian networks and is a general method for biological data integration.  

Gevaert's PhD thesis [75] focused on Bayesian networks as a biomedical decision support 

model and in particular how they could be used to formulate a model that integrates 

heterogeneous and high dimensional data. His research scope was to formulate a structure 

for biomedical data integration and for this he took the following steps: a. demonstration of 

Bayesian networks for primary data i.e. clinical and genomic; b. development of algorithms 

for primary data integration; and c. extension of the framework to allow the incorporation 

of secondary data sources. This study focused on primary data integration and a Bayesian 

network integration technique was applied to integrate clinical and microarray data from 

breast cancer patients. Bayesian networks were applied in full, partial, and decision 

integration and the difference among those was in which step the integration took place. 

Partial Bayesian integration showed the best results and the final model had 3 clinical 

variables and 13 genes to predict prognosis of breast cancer patients.  

The thesis also examined the usage of Bayesian networks in secondary data integration, 

broadening the Bayesian network framework to include secondary data as priors. Secondary 



 

49 

 

data sources present high dimensionality in general and with this study Gevaert [75] used 

his methods including 4 datasets. In this case, secondary Bayesian data integration showed 

that using a text prior in every case, improved the prognosis prediction of breast cancer. 

Next, Bayesian networks were applied successfully for the prediction of malignancy in 

ovarian masses in clinical data. Lastly, a specific Bayesian class, hidden Markov modelling, 

was applied to understand the molecular mechanisms that lead to carcinogenesis in some 

particular tumours. In conclusion, Bayesian networks were used for the development of a 

framework that integrates heterogeneous and high dimensional data to support a decision-

making system. This provides an example for the successful use of probabilistic methods in 

biomedicine to model a single primary data source, to integrate primary sources and finally 

to integrate secondary data sources.  

Other examples include the use of Bayesian networks by Savage et al. [76] to infer 

transcriptional modules by integrating gene expression and transcription factor binding data. 

They concluded that their model, could extract clusters with better functional consistency 

than other existing methods.   

2.3.5 Content heterogeneity and missing data 

Missing data refer to values that are not stored or recorded for a variable in the observation 

of interest. It is quite common in different studies and in research in general, even if they are 

well controlled, the existence of missing data. It is a critical consideration as it can lead to 

biased results, decrease of statistical power (potential invalid results and conclusions, 

decrease of sampling representation, difficult study analysis [77]. All these issues that 

missing data bring might affect trials and conclusions’ accuracy. Until recently, researchers 

have focused on discussing their conclusions on the assumption of a complete dataset.  

Types of Missing Data  

There are three different categories of missingness that applies to data: missing completely 

at random (MCAR), missing at random (MAR), and missing not at random (MNAR) [78]. 

MCAR 

It means that the probability of data missingness of a variable Y is not connected with either 

the specific record that was supposed to be obtained or any other variable X in the data set. 

However, it does allow for the possibility that missingness on that variable Y is related to 

the missingness on another variable X [79], [80]. Data missing due to technical reasons or 

lost in transit are characterised as MCAR. MCAR in most cases is an assumption which may 
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not reflect reality. Having MCAR data, when applying complete case analysis, gives 

unbiased results with less power but would still lead to valid conclusions.  

MAR 

This category of missingness is more realistic than MCAR. It means that the probability of 

data missingness is connected with the set of observed records but is not connected with the 

specific value that is supposed to have been recorded. In other words, the probability of 

missing data on Y is unrelated to the value of Y after controlling for other variables in the 

analysis (X). In a formal way, P(Ymissing|Y,X) = P(Ymissing|X) [79]. It means that any 

systematic differences between the missing and observed records, can be explained by other 

observed variables. So, if we can control this dependent variable, we can control a random 

subset. Therefore, the solution to that is the usage of techniques to absorb variables 

connected to missingness.  

MNAR 

This is the most problematic category of missing data. MNAR means that data are neither 

MCAR nor MAR. It occurs when records are missing because the values are related to the 

reason of missingness. MNAR occurs when the missingness is dependent on the missing 

variable itself, or in fact dependent on any other variable that is unobserved (i.e. unmeasured 

records). In MNAR, the probability of data missingness depends on unobserved records. 

The value of the unobserved responses depends on information not available for the analysis 

(i.e. not the values observed previously on the analysis variable or the covariates being used), 

and thus, future observations cannot be predicted without bias by the model. 

Nonignorability (MNAR) means that we need to model the missing data mechanism to get 

accurate estimates of the variables of interest, and this requires advanced methods. On the 

contrary, ignorability means that we do not need to model the missing data mechanism as 

part of the estimation process. MCAR is ignorable and MAR can be made ignorable under 

the appropriate analysis. If we include the mechanism variables, then we can ignore the 

problems with MAR data, but we apply specific techniques to use the data in an efficient 

way. 

2.3.6 Statistical methods for handling missing data 

Most analytical methods cannot handle missing values. For instance, if we feed a dataset 

with missing values to a logistic regression analysis algorithm, it will result in an error. This 

is independent of the missingness mechanism: any missing value will cause such an error. 
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Different methods to handle missing values have been proposed. One of the most commonly 

used methods is complete case analysis where observations with missing data are omitted 

from the analysis [81]. This is a simple method that is easy to carry out and may give 

unbiased estimates when data is MCAR. However, if data are not MCAR, complete case 

analysis can give biased estimates. Furthermore, the reduced number of participants results 

in a loss of statistical power [82]. If the number of missing values is low, researchers often 

still choose this solution because then anticipated bias and effects on statistical power will 

be low. The other deletion method is called pairwise. It eliminates information when specific 

data are needed to test a specific hypothesis. Pairwise deletion keeps and uses all the 

information needed, therefore it has a larger number of data than complete case analysis. 

One common problem with this method is that the model’s parameters may differ due to 

different input datasets, and therefore different statistics will exist. 

An alternative approach is to use methods that fill in or impute the missing data. Instead of 

deleting the records that have missing values, imputation replaces the missing data with 

estimated/substituted values. All the missing data are replaced with a probable value that 

was calculated by other available information [77]. Mean imputation is one such method in 

which the mean of the observed values for each variable is computed and the missing values 

for that variable are imputed by this mean and the resulting completed data set is used for 

inference. Single mean imputation does not take into account the uncertainty in the 

imputations. It is a simple and unconditional method but it introduces biased estimations 

when data are not MCAR. However, it gives more accurate results than complete case 

analysis method. Also, there are other single imputation methods like median, mode, 

regression (the imputed value is predicted from a regression equation), hot-deck (replaces 

the missing data by realistic scores that preserve the variable distribution), last observation 

caried forward (imputes the missing value with the last observation of the individual) etc 

[83].  Another single imputation technique is single conditional imputation. It is a potentially 

more accurate method of single imputation, where the missing value is replaced with a value 

that is conditional on another. In case that missing data are not MCAR, the results are less 

biased than the previous methods mentioned. The issue with this technique is that the 

standard errors are underestimated when dataset is considered as a complete dataset (no 

missing values) [84]. One of the problems with all single imputation methods is that the 

filled-in observations are treated as actual observations in subsequent analysis. However, 

the filled-in values are estimates, which have standard errors.  

Multiple imputation (MI) can be used to take the uncertainty about the estimates into account 

That’s why MI is recommended as an appropriate way of handling missingness in data [85]–
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[87]. It is more advantageous than the single imputation because it uses several complete 

data sets and provides both the within-imputation and between-imputation variability. There 

are three steps of multiple imputation process. MI is the process of replacing each missing 

data point with a set of m > 1 plausible values to generate m complete data sets. These 

complete data sets are then analysed by standard statistical tools, and the results combined, 

to give parameter estimates and standard errors that take into account the uncertainty due to 

the missing data values [88]. 

According to  van Buuren and Groothuis-Oudshoorn [89] there are two general approaches 

to multiple imputation: joint modelling presented by Schafer and Olsen [90] and fully 

conditional specification developed by van Buuren [91]. Joint modelling results to a 

specified multivariate distribution for the missing data and imputation from their conditional 

distributions by Markov Chain Monte Carlo techniques. Fully conditional specification 

(FCS) is based on the loop that shapes a conditional distribution for each incomplete 

variable. It does not explicitly assume a particular multivariate distribution, but assumes that 

one exists and can be generated by it, using Gibbs sampling [92]. 

Finally, a popular choice for imputing binary variables is logistic regression which is also 

commonly used in multiple imputation, much like a propensity score. It is a parametric 

method that assumes an underlying logistic model for the imputed variable (given other 

predictors) [91], [93], [94]. In FCS, the default imputation techniques are predictive mean 

matching for a numeric variable, logistic regression for a binary variable, multinomial logit 

model for a categorical variable with more than 2 levels, and ordered logit model for an 

ordered categorical variable with more than 2 levels [95].  

It needs to be mentioned that there is no method to handle missing data that is perfect and 

that does not come with several limitations. The best approach is different for each case and 

depends on a number of critical choices, the degree of data missingness and the 

relationships/correlations between covariates and outcome data [96]. 

2.3.7 The Problem of Systematically Missing Values 

Missingness can be due to sporadically missing data (i.e., values are absent for a proportion 

of participants within a study) and systematically missing data (i.e., one or more variables 

were collected in one study but not the other) [97]. In scenarios of data integration and 

individual patient data meta-analyses, datasets are analysed post hoc. When problems like 

sporadically missing data are encountered complete case/records analysis. This is a when 

only participants for which we have no missing data on the variables of interest are included 

in subsequent statistical analysis. Participants with any missing data are excluded. An 
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alternative solution is imputation. In those cases of sporadically missing data, much research 

has been done and it is suggested as a gold standard approach to apply FCS with the MICE 

algorithm [95], [98]. It is widely considered the best approach to resolve sporadic 

missingness. 

The issue of systematically missing data is one that has, to date, not been fully addressed. 

Schafer and Yucel [99], [100], a Gibbs sampler to generate multiple imputations of 

continuous missing variables from a joint multivariate linear mixed model [99], [100] 

implemented in the PAN package [101]. Most recently, Quartagno and Carpenter [102] 

suggested that MI is flexible to allow for between-study heterogeneity when studies have 

missing covariates [97]. Their research led to the extension of the PAN package by the 

REALCOM software [103] and specifically the R package jomo [104] that allows missing 

data in any level and handles latent categorical data through latent normal variables. In their 

published paper they proposed and evaluated a joint modelling approach to multiple 

imputation of individual patient data in meta-analysis, with an across-study probability 

distribution for the study specific covariance matrices. In addition, Van Buuren [105], [106] 

suggested a MICE extension to allowance of multilevel imputation by a Bayesian approach 

with recent extension for 2-level variables’ imputation [98]. The aforementioned approaches 

are able to impute multilevel data either systematically or sporadically. Resche-Rigon and 

White [107] proposed a method that handles, at the same time, systematically and 

sporadically missing data. Based on their simulation study the proposed methods can be 

successfully combined in a multilevel MICE procedure, when cluster means are not included 

in the imputation models. Unfortunately, the multiple imputation methods and packages 

presented above are currently not able to handle systematically missing data except for jomo 

[107]. While no gold standard approach exists, and in many cases, variables that are 

systematically missing from one dataset would just be omitted from the analysis – complete 

case analysis. 

 

2.4 Summary 

In summary, we highlighted the need for biomedical data integration of structured data. 

Bringing literature together, studies provided important insights into the importance of the 

issue of representational heterogeneity resulting from data integration. We then discussed 

traditional and probabilistic approaches to tackle heterogeneous biomedical data. The 

studies presented thus far provided evidence on unresolved issues concerning content 
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heterogeneity, types of missing data and probabilistic methods to overcome data 

missingness.  

In conclusion, the scope of this literature review was to argue that probabilistic approaches 

to resolving content heterogeneity are under-researched. Our proposal is characterised by a 

probabilistic rather than a functional view on content harmonisation; by post-alignment 

rather than pre-alignment of data sources; and by a pragmatic, top-down approach to 

answering research questions rather than a laborious, bottom-up approach to data 

harmonisation. 

Limitations  

Searching was broad in terms of used phrases and synonyms and limited to specific 

databases such as PubMed, Scopus, and Google Scholar. The majority of papers exist in 

those, and the basic reason for not choosing others is that we tried to avoid specific 

publishing companies (avoid bias). The review also was limited to papers written in the 

English language. Potential gaps in the literature may exist because the concepts were very 

broad and there was a systematic effort to be included most of the information.
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Chapter 3:  Systematically missing values 

3.1 Introduction 

In Chapter 2, we reviewed the scientific literature on concepts such as representational 

heterogeneity, data integration, and methods for integration of heterogeneous datasets, with 

a focus on health data. We further examined content heterogeneity and explored which 

probabilistic methods have been used for integration of heterogeneous datasets. We also 

discussed in detail the different types of missing data, and methods that resolve data 

missingness. We concluded with a description of the chronic autoimmune disease SLE and 

the MASTERPLANS project – data from which will be used throughout this thesis.  

In this first chapter of the results, we describe a probabilistic approach to resolving content 

heterogeneity that is caused by systematically missing values because a variable exists in 

one dataset but not in the other. First, in Section 3.2, we identify the problem at hand and 

provide an illustrative example. We next (in Section 3.3) describe a probabilistic approach 

to data harmonisation in generic terms followed by an evaluation of the approach through a 

series of simulation studies (in Section 3.4). Subsequently, in Section 3.5, we apply our 

method to real-world data provided by MASTERPLANS project, and present the results 

obtained. We conclude with a discussion in Section 3.6 on the utility of the approach and 

directions for future research. In Appendix A we can find detailed simulations’ results 

presented in tables. 

3.2 Problem identification of systematically missing values 

The issue of systematically missing data has still not been fully researched. As mentioned 

extensively in Chapter 2 (sections 2.3.5-2.3.7), there has been some research that exploring 

situations of systematic missing variables. Here, we briefly mention the main points and 

terminology around missing data. 

Missingness can be due to sporadically missing data (i.e., values are absent for a proportion 

of participants within a study) and systematically missing data (i.e., one or more variables 

were collected in one study but not the other) [97]. In scenarios of data integration and IPD 

meta-analyses, datasets are analysed post hoc. When problems like sporadically missing data 

are encountered one (traditional) approach is complete case analysis. Participants with any 

missing data are excluded. However, in cases of sporadically missing data, much research 

has been done and it is suggested as a gold standard approach to apply FCS with the MICE 

algorithm [95], [98]. MI is widely considered the best approach to resolve sporadic 

missingness. 
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As mentioned in more detail in chapter 2, in this study, we question the assumption that 

perfect, data-level standardisation is needed for inference with data that are from different 

sources. We believe that more progress can be achieved by adopting a top-down approach 

to harmonisation that starts with research questions rather than data collections. We suggest 

a probabilistic approach to data harmonisation in which content equivalence is a matter of 

uncertainty rather than a dichotomy.  

3.3 Theoretical solution 

First, we assumed that we had a number (more than one) of study datasets. These study 

datasets were assumed to be non-overlapping in terms of patients included. In order to focus 

on the problem of content heterogeneity due to systematically missing values, we also 

assumed that the datasets did not contain sporadically missing values, that each study dataset 

was described by a flat table where each row corresponds to one study participant, and that 

naming differences between study datasets had already been resolved.  

From a probabilistic perspective, imperfect alignment of different data sources is not 

problematic as long as we can derive which information each of the sources provides in 

answering our research question and properly quantify the uncertainty that is caused by the 

imperfect alignment. In our case we would like to use all the available information across 

the datasets being integrated. The general idea behind our integration method is that the 

problem of content heterogeneity, presented as a missing variable problem, can be translated 

into a missing value problem and then solved using established methods for addressing 

missing values (imputation). 
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Figure 3.1. Main tasks of our probabilistic data integration process to solve systematically 

missing values problem. The black squares denote missing data. 
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As shown in figure 3.1, we propose an approach that comprises a number of tasks to handle 

systematically missing values problem during the analysis, assuming that any naming 

differences have been resolved beforehand. We aim to create an integrated dataset that 

includes all the information from the constituent datasets, but the reality is that that 

integrated dataset would have many ‘gaps’ due to content heterogeneity. The next step is to 

‘fill’ these gaps using multiple imputation, producing k complete datasets, after which 

statistical inference can be applied to each of the k imputed datasets, producing k statistical 

models. After integration of these models, yielding the final model, we can extract the 

parameter estimates that we were looking for to answer the specific research question. 

Here, we present the aforementioned goal for handling the content heterogeneity problem in 

more detailed tasks: 

1. We select and stack datasets D1 to Dn in one large integrated dataset (Do). Selection 

is based on datasets potentially relevant for answering a research question of interest, 

based on the available metadata. More specifically, we select all participants for 

which there is a nonzero probability that they are relevant to answering the research 

question at hand. These would be all patients across selected datasets that have a 

nonzero probability of meeting the inclusion criteria for the research question. For 

some patients that probability will be 1 because we have complete information. For 

others it might be smaller than 1 because we do not have complete information on 

them with respect to the inclusion criteria.  

2. In order to answer the research question, we want to fit a statistical model in which 

one or more variable(s) present a content heterogeneity problem. We approach the 

systematically missing values problem as a missing values problem; we solve it by 

applying imputation – a method well established to solve data missingness – to the 

integrated dataset D0.  

3. We create multiple copies (imputed datasets/imputations) of the dataset D0, and the 

missing values replaced by imputed values. This means imputation process uses 

information from other variables and has a random component. Each variable with 

missing data is modelled conditional upon the other variables in the data [108]. The 

imputed values are sampled from the known observed data’s predictive distribution. 

Multiple imputation is therefore a Bayesian approach. This imputation procedure 

must fully consider all uncertainty when predicting the missing values. It does it by 

inserting suitable variability into the multiple imputed values. This variability is 

needed as we do not the truth because of data missingness [109]. Once the data have 
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been imputed in D0, each imputed dataset (Dm1 to Dmk) is ‘complete’ in the sense 

that it has no missing values.  

4. We perform the analysis (modelling) designed to answer our research question (e.g., 

a regression analysis) on each of the imputed and complete dataset Dm1 to Dmk. In 

other words, we use statistical inference to develop 1 statistical model in each 

imputed dataset (Dm1 to Dmk).   

5. In each of the imputed datasets, estimates will differ due to variation introduced in 

missing values’ imputation. So, we combine/integrate the estimates of the k 

statistical models to obtain the final result — average of the overall estimates. 

Standard errors are calculated using Rubin’s rules [94], [110]. The variance 

estimates, calculated in this step, involve both the ‘within’ variance calculated for 

each dataset individually, as well as the ‘between’ variance that reflects the 

uncertainty in the imputations (equation 3.1) — how variable the results are across 

the imputed datasets Dm1 to Dmk. 

               𝑉𝑎𝑟𝑡𝑜𝑡𝑎𝑙(𝜃) =  ∑ 𝑉𝑎𝑟𝑤𝑖𝑡ℎ𝑖𝑛(𝜃) + (1 + 
1

𝑘
)𝑉𝑎𝑟𝑏𝑒𝑡𝑤𝑒𝑒𝑛(𝜃)                   (3.1) 

(where θ, a vector of unknown parameters) 

While it is possible to write a short computer program to do the combining, many 

standard statistical software packages include procedures to combine results across 

datasets automatically. Thus, from the user’s perspective doing these two steps and 

obtaining the final estimates are often no more complicated than running a single 

regression in a single dataset. 

6. We extract relevant parameter estimates that answer the initial research question.  

 

MICE’s steps can be found in more detail in other published research [91], [98], [108], 

[111].  Missing values are replaced by imputed values based on the chosen method. All 

available FCS’s imputation techniques can be found in detail in table 1, page 16 in MICE 

published paper [98]. Each variable with missing data is modelled conditional upon other 

variables in the dataset, which we refer to later as imputation model [108].  Imputations 

are generated according to the default method, which is, for numerical data, predictive 

mean matching (pmm) and for categorical data with >2 levels, multinomial logit model 

factor (polyreg).  

Our goal ideally focuses on the construction of a single, large table that captures all the 

information that is described by the underlying datasets (tables) that we have integrated. 

Furthermore, that integrated table should not have ‘gaps’ or (systematically) missing 
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values, and the interpretation of all the values in the table should be consistent and 

ambiguous. 

3.4 Simulation studies 

In this section, we present the results of a series of simulation studies designed to evaluate 

our approach to handle the content heterogeneity problem described in the preceding 

sections. We first define synthetic data that contain enough variables to illustrate this 

particular content heterogeneity problem. Without loss of generality, we specify the bare 

minimum required to capture this problem. We take this approach for evaluation as in 

synthetic data the true associations between the predictors and the outcome are known and 

can be used reliable to quantify our integration method’s performance. 

3.4.1 Simulation study design 

We performed a series of simulation studies designed to investigate our probabilistic 

methods in a simplified and generalised setting. Common sample sizes for simulation studies 

are 500 and 1000 iterations. As shown in figure 3.2 and table 3.1, the process of each 

simulation described below is repeated 1000 times [112] as an agreement between estimate 

accuracy and computational time, to obtain different datasets under the specified parameters, 

that are then used for analysis.  

Table 3.1. Description of data used for the simulations to unerstand the distributions of the 

variables X1, X2, X3 in datasets Dn. 
 Dn 

X1, continuous ~ N(0,1) 

X2, continuous ~ N(0,2) 

X3, categorical (%)  

‘A’ p(X3=A) =0.10 

‘B’ p(X3=B) =0.20 

‘C’ p(X3=C) =0.65 

‘D’ p(X3=D) =0.05 

Note: X1, X2 are correlated by 20% in each study Dn 
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Figure 3.2. A pictorial representation of the simulation procedure for systematically missing values.
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The simulation procedure (Figure 3.2) goes as follows: 

1. We assume a synthetic dataset D1 size of N individuals each for which we originally 

have complete information on a continuous covariate X1, a continuous covariate X2, 

a categorical variable X3 (see table 3.1). The variables X1, and X2, are continuous 

and follow a normal distribution. X3 is a categorical variable with levels ‘A’, ‘B’, 

‘C’, and ‘D’. The variables X1, X2 are correlated by r =0.2, X3 is assumed to be 

independent of X1 and X2. They follow the following distributions: X1, X2 ~ 

MVN((0,0),(1,2),r), X3: p(X3=A) =0.10, p(X3=B) =0.20, p(X3=C) =0.65, p(X3=D) 

=0.05. 

2. Simulate model error (𝑒𝑖) with a normal distribution. 

3. Simulate a continuous outcome, Y, under a given data-generating model, in D1. Y is 

complete, has no missing data and has known dependency on X variables. The data 

generating model from model in equation 3.2 with β0 = 2.5079, β1 = 0.6874, β2 = -

2.0591, β3 = -0.7876, β4 = 0.6238, β5 = -0.9491.  

         𝑌𝑖 = 𝛽0 + 𝛽1 ∗  𝛸1 + 𝛽2 ∗  𝛸2 + 𝛽3 ∗  𝛪(𝛸3 = 𝐵) + 𝛽4 ∗  𝛪(𝛸3 = 𝐶) + 

+ 𝛽5 ∗  𝛪(𝛸3 = 𝐷) + 𝑒𝑖                                                                 (3.2) 

4. Repeat steps 1-3 for synthetic dataset(s) Dn.  

5. Integrate/stack X1, X2, X3, Y from D1 and Dn into one integrated dataset D0. 

6. Fit a linear regression model: Y ~ X1 + X2 +X3 to the true Full Data in D0, analyse 

them and store properties of estimator 𝜃 , standard error 𝑠�̂�(𝜃) and confidence 

interval. 

7. Apply content heterogeneity type 1. For example, for individuals in D0, set X1 (i.e., 

individuals from D1) values to missing. So, X1 is a variable with systematically 

missing values for individuals from D1. 

8. Solve content heterogeneity problem 1 by applying the traditional approach – 

complete case analysis (Complete Records). Fit a linear regression model: Y ~ X’1 

+ X2 + X3 in D0, analyse Complete Records and store properties of estimator 𝜃 , 

standard error 𝑠�̂�(𝜃) and confidence interval. 

9. Solve content heterogeneity problem 1 by applying the probabilistic approach FCS 

as presented in Figure 1. Fit a linear regression model: Y ~ X’’1 + X2 + X3 in D0, 

where X’’1 is imputed and complete. Then, analyse data and store properties of 

estimator 𝜃 , standard error 𝑠�̂�(𝜃) and confidence interval. 
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All imputation analyses carried out using the R package mice freely available on CRAN 

[98]. We used the seed function and set seed to 156524. The starting seed number is used to 

generate a sequence of random number and it ensures that we get the same result if we start 

with that same seed each time, we run the same process. The chosen values of betas used in 

simulations are selected empirically, and at random. We chose specific values as we want to 

focus on checking how the probabilistic methodologies work on solving content 

heterogeneity without the effect of a range of betas. We expect to see similar results with 

other betas. We decided randomly which variable and which dataset contained the content 

heterogeneity problem in each scenario, so we achieve generality. In the next section, we 

present the simulations’ results.  

3.4.2 Simulations’ scenarios 

Tables 3.2 and 3.3 show the different scenarios to generate data following Figure 3.2 and its 

aforementioned tasks. We explore different simulation scenarios with different number of 

individuals (N) per study, number of studies (Dn), and model errors (𝑒𝑖). The number of m 

is set to five (default). The number of iterations is set to five (default).  

Table 3.2. Scenarios 1 - 5 used to generate data from Figure 3.2. 
 Scenario 

1 

Scenario 

2 

Scenario 3 Scenario 4 Scenario 5 

Number of individuals 

per study (N) 

200 1000 200 1000 D1: 200, 

D2:150, 

D3:50, 

D4:75, 

D5:100 

Model error 𝒆𝒊: 

(same for each study) 

N~(0,0.2) 

N~(0,2) 

N~(0,20) 

N~(0,0.2) 

N~(0,2) 

N~(0,20) 

N~(0,0.2) 

N~(0,2) 

N~(0,20) 

N~(0,0.2) 

N~(0,2) 

N~(0,20) 

N~(0,0.2) 

N~(0,2) 

N~(0,20) 

Number of studies (D) 2 2 5 5 5 

Imputations (m) 5 5 5 5 5 

Missingness applied to:  X1 from 

D1 

X1 from 

D1 

X1 from 

D4,D5  

X1 from D2, 

D5 

X1 from D4, 

D5 
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Table 3.3. Scenarios 6 - 10 used to generate data from Figure 3.2. 

 

 Scenario 

6 

Scenario 7 Scenario 8 Scenario 9 Scenario 

10 

Number of individuals 

per study (N) 

D1:800, 

D2:150, 

D3:50, 

D4:75, 

D5:350, 

D6:200, 

D7:150, 

D8:500, 

D9:750, 

D10:100 

100 200 500 1000 

Model error 𝒆𝒊: 

(same for each study) 

N~(0,0.2) 

N~(0,2) 

N~(0,20) 

𝑒1: 

N~(0,1.2), 

𝑒2: 

N~(0,1.3) 

𝑒1: 

N~(0,1.2), 

𝑒2: 

N~(0,1.3) 

𝑒1: 

N~(0,1.2), 

𝑒2: 

N~(0,1.3) 

𝑒1: 

N~(0,1.2), 

𝑒2: 

N~(0,1.3) 

Number of studies (D) 10 2 2 2 2 

Imputations (m) 5 5 5 5 5 

Missingness applied to:  X1 from 

D3, D6, 

D9, D10 

X1 from D1 X1 from D1 X1 from D1 X1 from D1 

 

3.4.3 Performance measures 

 

The performance measures describe a numerical quantity used to assess the performance of 

a method [112]. To examine the simulations’ results we choose as performance measures 

the following: 

Properties of estimator of 𝜽 

- Bias 

Bias is frequently of central interest and quantifies whether a method targets 

estimand θ on average. We check whether our estimate coefficients are biased or not. 

In the simulation setting, bias is how far from the average estimate 𝜃 exceeds 

estimand 𝜃 (equation 3.3). There is no bias when the average is similar or close to 
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the real value. If it is not, then the method produces biased results. The absence of 

bias is one property of an estimator; while it is often of central interest, we may 

sometimes accept small biases because of other good properties.  

Bias = 𝐸[𝜃] −  𝜃    (3.3) 

In this setting that we had 1,000 simulations, mean bias was estimated as shown in 

equation 3.4. 

Bias𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑒 =
1

1000
∑ |𝜃𝑖 − 𝜃|1000

𝑖=1                               (3.4)  

 

- Empirical standard error (EmpSE)/Precision 

 

The empirical SE is a measure of the precision or efficiency of the estimator of 𝜃. 

We want to obtain precise estimates such as low variance. The EmpSE should be as 

small as possible for good results. The EmpSE estimates the long-run standard 

deviation of 𝜃𝑖 over the number of simulations repetitions. EmpSE is defined in 

equation 3.5 and in this setting was calculated as in equation 3.6. 

      EmpSE =  √𝑉𝑎𝑟(𝜃)                        (3.5) 

 

EmpSE𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑒 =  √
1

1000−1
∑ (𝜃𝑖 − �̅�)21000

𝑖=1        (3.6) 

 

Properties of Standard Error (SE) (𝒔�̂�(�̂�)) 

 

- Mean/Average model Standard Error (mSE) 

 

The average model SE should be unbiased for the variance of the estimator [112].  We 

want the mSE to be almost equal to the true SE, EmpSE. The mSE is defined in the 

equation 3.7 and in this setting was calculated as in equation 3.8. 

               mSE =  √𝐸[𝑉𝑎𝑟(𝜃)]                     (3.7) 

 

mSE𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑒 =  √
1

1000
∑ 𝑉𝑎�̂�(𝜃𝑖)1000

𝑖=1                                                 (3.8) 

 

Properties of Confidence Interval (�̂�𝒍𝒐𝒘, �̂�𝒖𝒑𝒑 ) 

- Coverage 
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Coverage of confidence intervals is a key property for the long-run frequentist behaviour 

of an estimator. It is defined as the probability that a confidence interval contains θ [112]. 

If we estimate a regression model for each coefficient, we get a point estimate and we 

get a standard deviation for variance. So, that is a measure of uncertainty. We check 

whether the 95% confidence interval of our regression coefficients is accurate, and we 

compare it with true model and complete case analysis’ coverage level. Coverage is 

defined in the equation 3.9 and in this setting was calculated as in equation 3.10. 

 

                                Coverage =  Pr (𝜃𝑙𝑜𝑤 ≤ 𝜃 ≤ 𝜃𝑢𝑝𝑝)                                            (3.9) 

 

Coverage𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑒 =  
1

1000
∑ 1(𝜃𝑙𝑜𝑤,𝑖 ≤ 𝜃 ≤ 𝜃𝑢𝑝𝑝,𝑖)             1000

𝑖=1 (3.10) 

 

For each iteration within a given simulation scenario, all performance measures were 

calculated between the estimates coefficients of each (probabilistic/traditional) integration 

model and the generating coefficients. Then, all performance measures were averaged across 

iterations for all the coefficients. Across all the simulation scenarios in all chapters, we 

present the results of the analyses with different methods in terms of mean estimates, mean 

standard error (mSE) estimated from the models, standard deviation of the simulation 

estimates (EmpSE) and coverage level (Cov). A valid method should yield unbiased results, 

similar model, and empirical standard errors and coverage levels close to 95%. In this 

chapter, estimand 𝜃 was the estimate 𝜃𝑖 of X1 coefficient in each model fit. 

3.4.4 Results 

 

In this section, we present the results of a series of simulation studies. It is often good to 

include a familiar ‘benchmark’ method to check the simulation result. In our case – the 

systematically missing values problem – we also include complete case analysis as a check. 

The aim is to compare the complete case analysis with imputation in the concept of 

systematically missing values and evaluate our probabilistic data integration approach.  

We are aware that the amount of information of simulations could be huge. Therefore, in 

order to provide the reader with a gentler introduction to the main findings of the simulation 

studies, we decided to include graphical representations of the main results in figures for all 
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scenarios separately and together per category, so we make necessary comparisons. All 

complete simulation results can be found in Appendix A. 

Simulations with studies of same sizes (Scenarios 1 - 4) 

Scenario 1 

Here, we simulated data from two studies, each with 200 patients. For each simulated 

dataset, we completely removed X1 from D1. We present the simulation results in figure 3.3 

with 𝑒𝑖: (N ~ (0, 0.2)), (N ~ (0, 2)), (N ~ (0, 20)) respectively.  Analysis of datasets imputed 

gave very good results both in terms of bias (figure 3.7), precision (figures 3.9 and 3.10) and 

confidence interval coverage (figure 3.8). We see clear gain in precision compared with the 

Complete Records analysis. When imputing with very large model error ei: N ~ (0, 20), mSE 

and EmpSE’s difference was slightly larger in FCS than in Full Data (figures 3.9 and 13.0 

respectively). However, they were still equal in FCS. 
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Figure 3.3. Main results from scenario 1’s simulation study: Comparison of Bias, Coverage 

level, mSE and EmpSE for X1 after 1000 simulations with Full Data (red), handling 

systematically missing values with Complete Records (black) and FCS (blue) for three 

model errors. 

FCS: Multiple imputation by fully conditional specification; D: number of studies, mSE: 

mean model standard error; EmpSE: mean empirical standard error. 
 

Scenario 2 

In this scenario, we simulated data from two studies, each with 1000 patients. For each 

simulated dataset, we completely removed X1 from D1. We present the simulation results 

in figure 3.4 with 𝑒𝑖: (N ~ (0, 0.2)), (N ~ (0, 2)), (N ~ (0, 20)) respectively. FCS model was 

still compatible with Full Data and the findings were very good. Bias, mSE, EmpSE were 

slighlty lower here than in scenario 1 but still very good. Bias was higher and coverage 

was slighlty lower when 𝑒𝑖: N ~ (0, 20) in this scenario than in scenario 1. 
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Figure 3.4. Main results from scenario 2’s simulation study: Comparison of Bias, Coverage 

level, mSE and EmpSE for X1 after 1000 simulations with Full Data (red), handling 

systematically missing values with Complete Records (black) and FCS (blue) for three 

model errors. 

FCS: Multiple imputation by fully conditional specification; D: number of studies, mSE: 

mean model standard error; EmpSE: mean empirical standard error. 
 

Scenario 3 

In this scenario, we simulated data from five studies, each with 200 patients. For each 

simulated dataset, we completely removed X1 from two studies (D4 and D5) in D0. We 

present the simulation results in figure 3.5.  FCS provided very good results. This scenario 

had better coverage in the three errors than scenario 1 and lower bias, mSE and EmpSE than 

in scenario 1.  
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Figure 3.5. Main results from scenario 3’s simulation study: Comparison of Bias, Coverage 

level, mSE and EmpSE for X1 after 1000 simulations with Full Data (red), handling 

systematically missing values with Complete Records (black) and FCS (blue) for three 

model errors. 

FCS: Multiple imputation by fully conditional specification; D: number of studies, mSE: 

mean model standard error; EmpSE: mean empirical standard error. 
 

Scenario 4 

Here, we simulated data from five studies, each with 1000 patients. For each simulated 

dataset, we completely removed X1 from two studies (D2 and D5) in D0. We present the 

simulation results in figure 3.6.  FCS had almost identical results in bias, precision and 

coverage with Full Data and the best scenario comparing with scenarios 1, 2, 3. 
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Figure 3.6. Main results from scenario 4’s simulation study: Comparison of Bias, Coverage 

level, mSE and EmpSE for X1 after 1000 simulations with Full Data (red), handling 

systematically missing values with Complete Records (black) and FCS (blue) for three 

model errors. 

FCS: Multiple imputation by fully conditional specification; D: number of studies, mSE: 

mean model standard error; EmpSE: mean empirical standard error. 
 

In figures 3.7 to 3.10 we compare Bias, Coverage, mSE and EmpSE for X1 for scenario 

1(D2_N200), scenario 3 (D5_N200), scenario 2 (D2_N1000) and scenario 4 (D5_N1000) 

for the three model errors. 
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Figure 3.7. Bias for X1 for ‘2 datasets, N=200 per dataset’ (D2_N200), ‘5 datasets, N=200 

per dataset’ (D5_N200), ‘2 datasets, N=1000 per dataset’ (D2_N1000), and (D5_N1000) ‘5 

datasets, N=1000 per dataset’ for three model errors. 

FCS: Multiple imputation by fully conditional specification; D: number of studies, N: 

individuals per study. 
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Figure 3.8. Coverage for X1 for ‘2 datasets, N=200 per dataset’ (D2_N200), ‘5 datasets, 

N=200 per dataset’ (D5_N200), ‘2 datasets, N=1000 per dataset’ (D2_N1000), and 

(D5_N1000) ‘5 datasets, N=1000 per dataset’ for three model errors. 

FCS: Multiple imputation by fully conditional specification; D: number of studies, N: 

individuals per study. 
 

 

Figure 3.9. mSE for X1 for ‘2 datasets, N=200 per dataset’ (D2_N200), ‘5 datasets, N=200 

per dataset’ (D5_N200), ‘2 datasets, N=1000 per dataset’ (D2_N1000), and (D5_N1000) ‘5 

datasets, N=1000 per dataset’ for three model errors. 
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FCS: Multiple imputation by fully conditional specification; D: number of studies, N: 

individuals per study; mSE: mean model standard error. 
 

 

Figure 3.10. EmpSE for X1 for ‘2 datasets, N=200 per dataset’ (D2_N200), ‘5 datasets, 

N=200 per dataset’ (D5_N200), ‘2 datasets, N=1000 per dataset’ (D2_N1000), and 

(D5_N1000) ‘5 datasets, N=1000 per dataset’ for three model errors. 

FCS: Multiple imputation by fully conditional specification; D: number of studies, N: 

individuals per study; EmpSE: mean empirical standard error. 
 

Simulations with studies of different sizes (Scenarios 5 - 6) 

Scenario 5 

We simulated data from five studies, each with different number of individuals (D1:200, 

D2:150, D3:50, D4:75, D5:100). We completely removed X1 from two studies (D4 and D5). 

The results are presented in figure 3.11. 
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Figure 3.11. Main results from scenario 5’s simulation study: Comparison of Bias, 

Coverage level, mSE and EmpSE for X1 after 1000 simulations with Full Data (red), 

handling systematically missing values with Complete Records (black) and FCS (blue) for 

three model errors. 

FCS: Multiple imputation by fully conditional specification; D: number of studies, mSE: 

mean model standard error; EmpSE: mean empirical standard error. 
 

Scenario 6 

We simulated data from ten studies, each with different number of individuals (D1:800, 

D2:150, D3:50, D4:75, D5:350, D6:200, D7:150, D8:500, D9:750, D10:100). We completely 

removed X1 randomly from four studies (D3, D6, D9, and D10) with small, medium, and large 

size. Simulation’s results are shown in figure 3.12. 
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Figure 3.12. Main results from Scenario 6’s simulation study: Comparison of Bias, 

Coverage level, mSE and EmpSE for X1 after 1000 simulations with Full Data (red), 

Complete Records (black) - handling systematically missing values with complete case 

analysis and FCS (blue) - handling systematically missing values with FCS for three model 

errors. 

FCS: Multiple imputation by fully conditional specification; D: number of studies, mSE: 

mean model standard error; EmpSE: mean empirical standard error. 

 

In figures 3.13 to 3.16 we compare Bias, Coverage, mSE and EmpSE for X1 for scenario 5 

(D10_diffsize) and scenario 6 (D10_diffsize) for the three model errors. For scenarios 5 and 

6, data simulated from correctly specified data generation model, we see no bias, correct 

coverage and minimal loss of information compared with the Complete Records analysis. 
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Figure 3.13. Bias for X1 for ‘5 datasets, N=different per dataset’ (D5_diffsize), ‘10 datasets, 

N=different per dataset’ (D10_diffsize) for three model errors. 

FCS: Multiple imputation by fully conditional specification; D: number of studies. 
 

 

Figure 3.14. Coverage for X1  for ‘5 datasets, N= different per dataset’ (D5_diffsize), ‘10 

datasets, N= different per dataset’ (D10_diffsize) for three model errors.  

FCS: Multiple imputation by fully conditional specification; D: number of studies. 
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Figure 3.15. mSE for X1  for ‘5 datasets, N= different per dataset’ (D5_diffsize), ‘10 

datasets, N= different per dataset’ (D10_diffsize) for the three model errors.  

FCS: Multiple imputation by fully conditional specification; D: number of studies, mSE: 

mean model standard error. 
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Figure 3.16. EmpSE for X1  for ‘5 datasets, N= different per dataset’ (D5_diffsize), ‘10 

datasets, N= different per dataset’ (D10_diffsize) for the three model errors.  

FCS: Multiple imputation by fully conditional specification; D: number of studies, EmpSE: 

mean empirical standard error. 
 

Simulations with same size studies, different model error per study (7 - 10) 

Scenarios 7 – 10 

Here, we again simulated data from 2 studies, each study with 100, 200, 500, 1000 

individuals for each scenario respectively. We completely removed X1 from a dataset (D1). 

Results are shown in figure 3.17. 
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Figure 3.17. Main results from Scenario 7-10’s simulation study: Comparison of Bias, 

Coverage level, mSE and EmpSE for X1 after 1000 simulations with Full Data (red), 

Complete Records (black) - handling systematically missing values with complete case 

analysis and FCS (blue) - handling systematically missing values with FCS for three model 

errors. 

FCS: Multiple imputation by fully conditional specification; D: number of studies, mSE: 

mean model standard error; EmpSE: mean empirical standard error. 

 

3.4.5 Summary of findings from simulation studies 

 

Drawing together the results from the simulation studies, we conclude the following: 

Studies of same sizes: in our analyses we observed that when more studies are integrated, 

the smaller the bias in estimate. We also see that the larger the number of individuals per 
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study the smaller the bias. The fewer studies with systematically missing values were being 

integrated, the smaller the data missingness, therefore the estimates were more precise, and 

the coverage was better. The larger the model error per study, the larger the difference 

between FCS and Full Data in mSE and EmpSE. Another observation here is that EmpSE 

and mSE became smaller when individuals and number of studies were increased. We see 

the lowest EmpSE and mSE in Scenario 4 for all the three model errors.  

Studies of different sizes 

Similarly, here, the smaller the number of studies with systematically missing values, the 

smaller the data missingness, therefore more precise the estimates and better the coverage. 

Precision and good coverage is affected by the number of individuals with systematically 

missing data. The larger the study size the more accurate and closer to reality the estimates. 

The larger the model error per study, the larger the difference between FCS and Full Data 

in mSE and EmpSE. 

Studies with same model errors 

The data generation mechanisms are similar to the imputation models and there is no 

important bias introduced in any scenarios. Therefore, the closer the data generation 

mechanism is to the imputation model, the greater the gain in information through multiple 

imputation, with excellent results when they were the same. 

Studies with different model errors 

The results indicate that even when the FCS was producing slightly biased results (Scenarios 

9-10) the results were much better and close to reality than complete case analysis. We see 

that when imputing with 500 and 1000 individuals per study, additional variability resulting 

in smaller standard errors and mild under‐coverage.   

Size of the model error 

As expected, the smaller the model error per study the smaller the EmpSE and mSE. We 

also see that as the model error increased, the difference between EmpSE and mSE slightly 

increased. When the model error is 𝑒𝑖: N ~ (0, 20), we understand that outcome y was 

affected a lot by the model error. Therefore, model’s coefficients estimate may have not 

affected the final results and may have not let us see how data missingness affected final 

analyses. With the same logic, when 𝑒𝑖: N ~ (0, 0.2), estimates played a very important role 

to the final outcome. 

Overall 
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First, although realistic, our simulated scenarios cannot be exhaustive, and results may vary 

in alternative scenarios with different hypothesised associations between exposure, 

covariate and outcome and different distributions. Second, a sample of 1,000 per study might 

seem too large especially in scenario 4 (where we have 5000 individuals in total) if compared 

against trial data, but it was a necessity if we were to investigate very low and high model 

errors. The computational time led us to select our largest datasets to include 5,000 and 3,125 

individuals. Unfortunately, this is not necessarily representative of a contemporary EHRs 

dataset which can hold hundreds of thousand or even millions of records. However, our 

method is based on FCS method have been thoroughly and routinely evaluated in the past 

in different datasets sizes. Therefore, we argue that we may provide an incomplete 

evaluation of the suggested method to solve systematically missing values problem in larger 

datasets. 

We argue, as the simulations suggest that probabilistic approach is an accurate way to 

integrate structured healthcare data. When the data integration will be complex, a higher 

number of imputations may be needed. In general, the closer the data generation mechanism 

to the imputation model, the greater the gain in information through multiple imputation, 

with excellent results when they are the same. The probabilistic approaches gave valid 

results across a range of scenarios and in all cases outperformed the complete case analysis 

results and gave results close to real true data. It did not introduce practically important bias 

in any of the scenarios considered. Therefore, in applications the worst that may happen 

when taking this approach, is that inferences may be slightly conservative. 

3.5 Application – MASTERPLANS exemplar 

3.5.1 Data characteristics and systematically missing values problem description  

 

Using three datasets in SLE, we describe and illustrate our approach to handling missing 

data problems in data integration.  

To demonstrate the utility of the developed approach (figure 3.1) we applied this to real-

world health datasets in SLE. For the datasets D1, D2, D3, we have datasets that contain data 

from ALMS, LUNAR, and EXPLORER respectively. We applied our method to the three 

SLE datasets, by considering the research question ‘Finding the set of variables that best 

predict drug response’. To answer the research question, we included only ALMS-M 

(maintenance) information from the ALMS study data since we required patients to have a 

12-month follow-up visit (with disease severity evaluated) which was not available in the 
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ALMS-I set (which followed patients for only 6 months). We rescaled the first visit as zero 

days and calculated days for each following visit relative to that. For this research question 

we used datasets that included patients from all the three studies together, with multiple 

visits per subject. For the response measure only, in order to have only one visit per patient, 

we kept the visit that had the least absolute difference from 365 days (12 month). The used 

dataset (table 3.4) consists of the 545 patients and 12 variables i.e., gender, age, ethnicity, 

height, weight, drug response (BILAGScore total), creatine, body mass index (BMI), current 

treatment, white blood cells (WBC), platelets, lymphocytes, and smoking status  

Table 3.4. MASTERPLANS’ data characteristics after integrating lupus studies ALMS, 

LUNAR, EXPLORER: systematically missing values. 

 

Data 

characteristics 

Integrated 

dataset N = 530 

(%) 

ALMS 

N = 204 

(38.50)  

LUNAR  

N = 127 

(37.50) 

EXPLORER N = 

199 (24.00) 

Age, years     

Mean ± SD 34.88 ± 11.71 31.64 ± 10.87 30.69 ± 9.27 40.88 ± 11.51 

Mix – Max 12.00 – 71.00 12.00 – 64.00 17.00 – 56.00 18.00 – 71.00 

Median (IQR) 34.00 (25.00 – 

43.00) 

32.00 (24.00 

– 39.00) 

30.00 (23.00 – 

36.50) 

41.00 (32.50 – 

50.00) 

BILAG score 

(total) (%) 

    

Mean ± SD 7.06 ± 6.26 4.76 ± 4.75 6.17 ± 6.35 10.00 ± 6.44 

Min – Max 0.00 – 53.00 0.00 – 23.00 0.00 – 53.00 0.00 – 36.00 

Median (IQR) 6.00 (2.00 – 

10.00) 

5.00 (1.00 – 

6.00) 

5.00 (2.00 – 

8.00) 

9.00 (5.00 – 13.00) 

BMI, kg/m2     

Mean ± SD 26.31 ± 6.48 24.04 ± 4.70 26.44 ± 5.55 28.56 ± 7.72 

Min – Max 13.85 – 56.75 13.85  – 40.12 16.69 – 42.65 16.55 – 56.75 
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Median (IQR) 24.82 (21.64 – 

29.55) 

23.23 (20.34  

– 26.86) 

25.06 (22.45 – 

29.55) 

26.81 (23.07 –

32.84) 

Creatinine, mg     

Mean ± SD 0.84 ± 0.31 0.85 ± 4.70 0.91 ± 0.42 0.80 ± 0.20 

Min – Max 0.30 – 2.80 0.37 – 2.10 0.30 – 2.80 0.40 – 1.70 

Median (IQR) 0.80 (0.67 – 0.96) 0.80 (0.68 – 

0.95) 

0.78 (0.65 – 

1.03) 

0.80 (0.70 – 0.90) 

Ethnicity (%)     

Black or African 

American 

100 (18.85) 22 (10.80) 33 (26.00) 45 (22.60) 

Caucasian 251 (47.35) 90 (44.10) 41 (32.30) 120 (60.30) 

Other 179 (33.80) 92 (45.10) 53 (41.70) 34 (17.10) 

Gender (%)     

Female 466 (87.90) 175 (85.80) 112 (88.20) 179 (89.90) 

Male 64 (12.10) 29 (14.20) 15 (11.80) 20 (10.10) 

Height, cm     

Mean ± SD 163.09 ± 9.08 161.49 ± 9.38 163.24 ± 8.85 164.65 ± 8.67 

Min – Max 132.00 – 198.10   132.00 – 

191.00 

143.50 – 

195.60 

141.00 – 198.10 

Median (IQR) 162.50 (157.00 – 

168.90)  

160.00 

(156.00 – 

166.00) 

162.50 

(157.50 – 

168.00) 

163.80 (159.20 – 

170.20) 

Lymphocytes, 

(K/cmm) 

    

Mean ± SD 1.16 ± 0.59  1.23 ± 0.62 1.11 ± 0.57 

Min – Max 0.15 – 3.52  0.18 – 3.52 0.15 – 3.30 

Median (IQR) 1.01 (0.15 – 1.48)  1.14 (0.79 – 

1.52) 

0.98 (0.66 – 1.44) 



 

85 

 

Missing data 215 204 4 7 

Platelets, (K/cmm)     

Mean ± SD 292.30 ± 92.21  315.46 ± 

90.60 

276.90 ± 90.03 

Min – Max 48.00 – 703.00  151.00 – 

703.00 

48.00 – 679.00 

Median (IQR) 283.50 (233.20 – 

240.50) 

 298.50 

(255.00 – 

350.80) 

262.50 (219.00 – 

327.00) 

Missing data 224 204 5 15 

Smoking status 

(%) 

    

Current 51 (9.60)  10 (7.87) 41 (20.6) 

Never 209 (39.40)  101 (79.50) 108 (54.3) 

Previous 66 (12.50)  16 (12.63) 50 (25.1) 

Missing data 204 (38.50) 204 (100.00)   

Treatment (%)     

Placebo + AZA OR 

AZA 

124 (23.40) 98 (48.00)  26 (13.10) 

Placebo + MMF OR 

MMF 

189 (35.70) 106 (52.00) 59 (46.50) 24 (12.10) 

Placebo + MTX OR 

MTX 

19 (3.58)   19 (9.50) 

RITUX + AZA 42 (7.92)   42 (21.10) 

RITUX + MMF 123 (23.20)  68 (53.50) 55 (27.60) 

RITUX + MTX 33 (6.20)   33 (16.60) 

WBC, (K/cmm)     

Mean ± SD 6.32 ± 6.87  6.60 ± 2.76 6.15 ± 2.93 
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Min – Max 0.96 – 17.72  0.96 – 16.60 1.57 – 17.72 

Median (IQR) 5.72 (4.17 – 7.79)  6.06 (4.75 – 

8.19) 

5.61 (3.98 – 7.69) 

Missing data 214 204 4 6 

Weight, kg     

Mean ± SD 70.33 ± 19.61 63.05 ± 15.17 70.58 ± 16.38 77.63 ± 22.65 

Min – Max 34.20 – 156.63 34.20 – 

114.30 

41.77 – 

120.31 

42.00 – 156.63 

Median (IQR) 65.62 (55.74 – 

80.81) 

61.10 (51.80 

– 71.33) 

67.50 (57.66 – 

81.27) 

74.20 (60.20 – 

90.71) 

 

Content heterogeneity occurs because white blood cells  (WBC), platelets, lymphocytes, and 

smoking status were not recorded in ALMS. We removed records for 7 patients with missing 

value for height and 9 with missing creatinine (figure 3.18) leading to 530 patients to keep 

things clear for the illustration of the data integration problem (figure 3.19). In figure 3.20. 

we can see systematically missing values' visualisation across the three integrated lupus 

dataset. 

 

Figure 3.18. Visualisation of missing data in the integrated lupus data before we remove 15 

patients’ records to keep things feasible and make it easier to illustrate the problem (total 

patients: 545). 
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Figure 3.19. Visualisation of missing data in the integrated lupus data (total patients: 530). 

 

 

Figure 3.20. Systematically missing values' visualisation across the integrated lupus dataset 

(ALMS, LUNAR, EXPLORER). Yellow colour shows the systematically missing values. 
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3.5.2  Results 

 

Data analysis of real-world lupus data helped us find which variables best predicted the 

outcome - BILAG response. We performed both traditional and probabilistic data integration 

in lupus datasets to make things comparable. We included enough variables that would help 

us compare the different methods. 

3.5.2.1 Traditional Data Integration – complete case analysis 

Taking the ‘traditional’ approach to data integration, the complete case analysis, we applied 

a prediction model of the disease measure BILAG, using the predictor variables gender, 

ethnicity, BMI, treatment, and creatinine (equation 3.10). Table 3.5 shows the coefficients 

for the linear regression model that estimate the drug response based on equation 3.10. 

𝐵𝐼𝐿𝐴𝐺 𝑆𝑐𝑜𝑟𝑒 ~ 𝐺𝑒𝑛𝑑𝑒𝑟 +  𝐸𝑡ℎ𝑛𝑖𝑐𝑖𝑡𝑦 +  𝐵𝑀𝐼 +  𝑇𝑟𝑒𝑎𝑡𝑚𝑒𝑛𝑡 +  𝐶𝑟𝑒𝑎𝑡𝑖𝑛𝑖𝑛𝑒  (3.10) 

 

Table 3.5. Coefficients (estimate, standard error, t statistic and p-value) for linear regression 

model from equation 3.10 after applying complete case analysis in SLE data. 

 estimate standard error t statistic p-value 

(Intercept) 4.5579 1.5228 2.9930 0.0029 ** 

Ethnicity     

Caucasian 1.2472 0.7345 1.6980 0.0901  

Other -1.1860 0.7817 -1.5170 0.1299 

Gender     

Male -1.9100 0.8353 -2.2870 0.0226 * 

BMI 0.0302 0.0427 0.7080 0.4791 

Treatment     

Placebo + MMF OR MMF 0.4858 0.7062 0.6880 0.4919 

Placebo + MTX OR MTX 3.6544 1.5218 2.4010 0.0167 * 

RITUX + AZA 2.5395 1.1127 2.2820 0.0229 * 

RITUX + MMF 1.8638 0.7838 2.3780 0.0178 * 

RITUX + MTX 2.5681 1.2055 2.1300 0.0336 * 

Creatinine 0.7724 0.8900 0.8680 0.3859 

Significance codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 
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3.5.2.2 Probabilistic Data Integration – multiple imputation 

 

Here, we took the alternative approach to data integration, the probabilistic approach, and 

we applied a prediction model of the disease measure BILAG, using the predictor variables 

gender, ethnicity, smoking status, BMI, treatment, creatinine, lymphocytes, and platelets 

(equation 3.11).  

𝐵𝐼𝐿𝐴𝐺 𝑆𝑐𝑜𝑟𝑒 ~ 𝐺𝑒𝑛𝑑𝑒𝑟 +  𝐸𝑡ℎ𝑛𝑖𝑐𝑖𝑡𝑦 +  𝑆𝑚𝑜𝑘𝑖𝑛𝑔 𝑆𝑡𝑎𝑡𝑢𝑠 +  𝐵𝑀𝐼 +  𝑇𝑟𝑒𝑎𝑡𝑚𝑒𝑛𝑡 +

 𝐶𝑟𝑒𝑎𝑡𝑖𝑛𝑖𝑛𝑒 +  𝐿𝑦𝑚𝑝ℎ𝑜𝑐𝑦𝑡𝑒𝑠 +  𝑃𝑙𝑎𝑡𝑒𝑙𝑒𝑡𝑠      (3.11) 

 

Figure 3.21 shows the density distributions of WBC, lymphocytes, and platelets. Results 

show that density of the imputed datasets (showed in magenta colour) matched the density 

of the observed data (showed in blue colour). The density distributions appeared to be very 

similar to the observed data for the three variables. We argue that extreme values affected 

the shape of the plots. However, the central tendencies of the density plots of imputed data 

appeared relatively similar to the observed ones. Figure 3.22 presents a barplot for the 

categorical variable ‘Smoking Status’. We see that the observed data in the top figure match 

completely the imputed data with FCS that are in the bottom figure. 

 

Figure 3.21. Density plots for the variables: ‘WBC’, ‘Lymphocytes’, ‘Platelets’,  in content 

heterogeneity problem 1. Blue line shows the observed data and the magenta lines the 

imputed data from each of the imputations in FCS. 
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Figure 3.22. Barplot for the variable: ‘Smoking Status’, in content heterogeneity problem 

1. Top figure shows the observed values and bottom figure shows the imputed data for each 

imputation in FCS. 

In Table 3.6 we show the coefficients (estimate, standard error, t statistic and p-values) for 

linear regression model obtained from equation 3.11 after applying FCS in SLE data to solve 

the systematically missing values problem. Based on the results presented in tables 3.5 and 

3.6, we see agreement between FCS and complete case analysis in inclusion of gender and 

treatment in prediction models. FCS’s results showed a positive effect on outcome response 

when platelets increased and lymphocytes decreased. In both methods we see that BMI and 

creatinine showed no significance. 

Table 3.6. Coefficients (estimate, standard error, t statistic and p-values) for linear 

regression model from equation 3.11 after applying FCS in SLE data. 

 estimate standard error t statistic p-value 

(Intercept) 5.4191 1.9003 2.8517 0.0047 ** 

Ethnicity     
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Caucasian 1.0537 0.7428 1.4185 0.1567 

Other -0.8130 0.8046 -1.0104 0.3128 

Gender     

Male -1.9558 0.8653 -2.2602 0.0243 * 

Smoking Status     

Never -0.8280 0.8644 -0.9579 0.3390 

Previous -1.0076 1.0362 -0.9724 0.3321 

BMI 0.0484 0.0433 1.1180 0.2641 

Treatment     

Placebo + MMF OR MMF 0.0795 0.7667 0.1037 0.9174 

Placebo + MTX OR MTX 3.8444 1.5216 2.5266 0.0118 * 

RITUX + AZA 1.9177 1.1503 1.6672 0.0963 

RITUX + MMF 1.1892 0.8445 1.4082 0.1601 

RITUX + MTX 2.5187 1.2096 2.0824 0.0378 * 

Creatinine 0.4962 0.9051 0.5482 0.5838 

Lymphocytes -2.1851 0.5653 -3.8654 0.0002 *** 

Platelets 0.0089 0.0037 2.3775 0.0191 ** 

  Significance codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 

3.6 Discussion 

The problems of heterogeneous data integration produce a large gap between the potential 

of Big Data and its realisation in biomedical and public health research. In this chapter, we 

introduced the first problem of content heterogeneity; this is the existence of variables in at 

least one dataset but not in other datasets. Traditionally, statisticians, data scientists and 

informaticians have sought to solve this problem by applying complete case analysis.  

The goal of this research was to argue that a data integration problem - systematically 

missing values problem - could be regarded as a missing data problem, and therefore can be 

solved with established probabilistic methods such as multiple imputation. We described 

our suggested probabilistic solution employing FCS and reported the results of a 

comprehensive series of simulation studies with different model errors, number of studies, 

individuals per study and study size to investigate the validity of the imputation method 

when we want to ask research questions that include systematically missing values in the 

data model. We further applied our probabilistic data integration approach to real-world 

lupus data to identify variables that best predict the outcome - BILAG response.  
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The simulation studies and the application of our approach in real-world data showed that 

systematically missing values is not a problem if we apply established imputation methods 

like FCS in order to use as much as data as possible and to answer different research 

questions. The closer the data generation mechanism is to the imputation model, the greater 

the gain in information through multiple imputation, with excellent results when they are 

the same [97]. 

In a stacked dataset, it is common to assume that observations in a single, individual dataset 

are more similar than observations from different individual datasets. In statistical terms, we 

should not assume that the observations within a single dataset are entirely independent 

(i.i.d.) but that they are, to some degree, correlated. Multilevel models allow us to do exactly 

that. As far as we are aware, multilevel imputation is not commonly used but it would be the 

better options for sporadically missing data. However, when for example we have two 

datasets and data are systematically missing in one of these, then we cannot use multilevel 

imputation because there is then not sufficient information to estimate higher-level 

coefficients. So, in theory this would be better, but because of the nature of the problem that 

we are trying to solve (systematically, not sporadically, missing data), we cannot use it. 

What this means is that we have to assume that all the observations are i.i.d. This is a strong 

assumption, we have to acknowledge that we make that assumption, and it is a challenging 

one.  But without making the assumption, there would be no inference.  

Therefore, for future work an important key challenge that we need to address patients from 

a single centre/study are more likely to be similar to each other than to patients from different 

centres/studies. This phenomenon is known in the statistical literature as 'clustering’ and is 

apparent from many multi-centre studies and meta-analyses. This is likely due to variation 

across centres/studies that arises from residual, unmeasured confounding. The common 

approach to account for clustering is using multi-level regression analysis [113] in which 

random effects are used to model centre-level and study-level variation. 

Ideally, shared data models would be implemented at source, enabling uniform data 

collection at different sites and studies. But in reality, data standardisation is always 

imperfect, and our approach embraces this imperfection rather than trying to extinguish it. 

Future work includes expanding of the general applicability of the method by creating a 

statistical package and applying the methods to real-world biomedical and health datasets 

such as asthma data. To our own knowledge there is very limited research on multilevel 

multiple imputation [103], [114]–[120] and very few recent papers that focus on the issue of 

systematically missing values [97], [105], [114], [121]–[123]. They agree that simulated 
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data under a correct specified data generation model, they have no bias, high and correct 

coverage and minor information loss compared with the complete case analysis. 

Our results suggest our approach can be used to impute completely systematically missing 

values in some studies and agree with other recent research work [97], [114].  We 

recommend our approach implemented, for multiple imputation of healthcare structured data 

integration like that illustrated in Section 3.5 with the MASTERPLANS data. We suggest 

that the researchers and users in general should take advantage of the data that they have and 

choose to investigate probabilistic methods to solve systematically missing values problems. 

We explored different scenarios and the results indicated very good results and precise 

estimates. 

Thus, we are very motivated to suggest FCS as a very promising solution to solve content 

heterogeneity problem resulting from data integration in healthcare. Multiple imputation has 

been explored by many researchers and have been gaining popularity for handling missing 

data due to its flexibility and practicality. In the case of imputing systematically missing 

values, we have described and evaluated a probabilistic approach. This alternative solution 

extends and overcomes current approaches such as complete case analysis. This probabilistic 

approach allows answering of research questions when one or more variables were not 

collected in one/some studies. Our simulation evaluation of this approach and its application 

to real data show promising results, and we hope it will be a useful addition to biomedical 

research and health data science. 
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Chapter 4:  Varying granularity of categorical variables 

4.1 Introduction 

In Chapter 3, we focused on the first type of content heterogeneity that may exist in 

integrated datasets, this being systematically missing variables. In this chapter we address a 

second type of content heterogeneity; one that arises from differences in a variable’s 

granularity. First, this specific problem is identified and defined (Section 4.2). The second 

part of this chapter outlines the theoretical solution using probabilistic approaches to data 

harmonisation in generic terms (Section 4.3). Afterwards, we evaluate the suggested 

methods for addressing the granularity problem through simulation studies (Section 4.4). 

Then, we apply our methods in the MASTERPLANS data, and discuss the obtained results 

(Section 4.5). Finally, the utility of the probabilistic data integration approaches to solve 

granularity issues is discussed and suggestions are made for future research (Section 4.6).   

4.2 Problem identification of varying granularity of categorical variables 

Data integration would be easier if the same data standards were applied in the data sources. 

A pre-alignment solution like this is suggested by Clinical Data Interchange Standards 

Consortium [124] about data collection, capture, reusability, and interoperability of data. 

Ideally, shared data models would be implemented at source, enabling uniform data 

collection at different sites and studies. In an ideal world, information would be a pro-

alignment harmonisation where emerging studies would use integrated studies’ 

questionnaires and standard operating processes procedures [125], [126]. But in reality, it is 

also significant to make use of the existing vast available information and increase the utility 

of ‘post-alignment’ harmonised data [127], [128]. One of the most significant problems 

when it comes to structured data integration and harmonisation is granularity. 

There are many different definitions of granularity (in the context of data). We will focus on 

a specific kind. Granularity, is the level of detail at which data are stored in a data source. 

When variables representing the same information, across the different data sources are 

represented in multiple different levels/categories, then we have inconsistent granularity. 

For example, in ethnicity, some datasets include more categories and subsets than others, or 

age is captured as categories (i.e. 0-20, 21-40, 41-60,>60) in one study but slightly different 

categories (0-20, 21-40, 41-60,61-80, >80) in another; Therefore, we must deal with content 

heterogeneity due to differences in granularity.  

The recent years there have been some efforts in health and biomedical sciences to solve 

this integration challenge when sharing clinical information across settings [129]. Research 
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revealed that only 17% was compatible among the data sources and those data differences 

in granularity and missing data cause a higher risk in medical errors, increased costs in 

integration and not useful usage of clinical time [130]. 

Traditional approaches for resolving granularity map all source datasets to a common data 

model that includes only high-level items, and thus omit all items that vary between datasets. 

For example, in the case described above, integration would be achieved by only including 

the lowest levels that are common in the harmonised dataset (i.e. 0-20, 21-40, 41-60,>60). 

Aligning variables to a common data model based on similarity takes too much valuable 

time and requires a manual approach which needs human knowledge, experience and critical 

thinking [129]. Therefore, this type of data harmonisation is not a standardised process and 

could lead to a potential analyst bias due to the need of human interpretation and absence of 

documentation and extensive data dictionaries. Le Sueur et al. [129] had this inconsistent 

granularity levels while integrating SLE data from different cohort studies. A limitation of 

their approach is the inevitable loss of information either due to differences in granularity or 

data capture.  

Additionally, based on the example on ethnicity’s granularity, researchers have focused on 

the importance of demographic data to capture population heterogeneity to identify health 

needs of diverse groups, to detect and address inequities in healthcare provision and 

outcomes. However, little is known about current methods of ethnic classification 

internationally and, in countries where ethnicity data are collected, about what level of 

granularity is employed in their ethnicity categorisation [131]. A recent study [132] revealed 

that research teams working on informatics, data science, public health projects should work 

on approaches to organise, store and analyse complex data like ethnicity granular data. They 

insisted on the urgent need to use information about diverse racial and ethnic population 

groups while increasing availability of meaningful and usable data [132].  

A clarification at this point is that our research does not focus on solving inconsistencies on 

varying ethnicities, but it uses it as an example to build the methodology and illustrate 

methods’ applications with a clear impact in biomedical research. 

4.3 Theoretical solution 

Assumptions 

As in section 3.3 we have the same assumptions. In the beginning, we assume that we have 

more than one study datasets. These study datasets are assumed to be non-overlapping in 

terms of individuals included. Therefore, there is no need for record linkage. We hypothesise 

that the observations within a single dataset are i.i.d. We have systematic missingness 
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because data are missing in specific categories only. What this means is that we have to 

assume that all the observations are i.i.d. We also assume that they do not contain missing 

values to focus on the granularity problem to keep things feasible. Each study dataset is a 

flat table, and naming heterogeneity has already been resolved.  

A probabilistic approach to harmonisation inference across data studies 

Similarly to Chapter 3, we would like to use all the available information across the datasets 

being integrated. Our integration method integration method, converts the problem of 

content heterogeneity – varying granularity problem – to a systematically missing value 

problem (in specific categories). Therefore, gold standard methods i.e multiple imputation 

that solve data missingness could be used to explore and evaluate this concept. 

 

 

Figure 4.1. Main tasks of our probabilistic data integration process to solve granularity 

problem. 

 

As shown in figure 4.1, we propose an approach that comprises some tasks to solve the 

granularity problem. After deciding on the research question, we integrate data from D1, D2 

and Dn (figure 4.1 – yellow, orange, purple datasets shown respectively in the first step) that 

will help us answer the research question, in D0. We choose which variables from D0 will be 

included in the model. Let’s say that we want to fit a model where the outcome Y is predicted 
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based on biomarkers X1, X2 and X3. The content heterogeneity problem that results after data 

integration is that one categorical variable – for instance X3 – (that needs to be included in 

the model) has varying levels across the studies and therefore a granularity problem exists 

(figure 4.1 – grey and red box in integrated dataset D0). In this case, a traditional solution 

would be to keep the lowest level that is common.  

However, we insist on taking advantage of all the available information. In D0, we add a 

‘group’ categorical informative variable that groups individuals based on X3’s levels (figure 

4.1 – light blue column with different shades that represent the different X3’s levels). The 

tasks for handling the second content heterogeneity type are similar to the theoretical 

solution that solves systematically missing variables presented in Chapter 3.3. Therefore, 

we keep the highest number of levels of that categorical variable. As a result, systematically 

missing data (figure 4.1 – black squares) are introduced for some individuals in specific 

levels. We approach the granularity problem as a missing values problem; we solve it by 

applying imputation (figure 4.1 – red arrows) – a method well established to solve data 

missingness – to the integrated dataset D0. We solve it using FCS with two different ways. 

More details in imputation steps, can be found in Figure 3.1.  

In the first way, we apply FCS imputation to answer the research question and solve 

systematically missing values that arose from the granularity problem. In FCS model X’3 

will be imputed based on X1, X2, and Y. In the second way, we suggest an additional step to 

FCS’s imputation model in order to eliminate misclassification in imputed values. The 

‘group’ variable, that we introduced before, will be included in the imputation model FCS, 

so we have FCSgroup imputation model. In FCSgroup model X’3 will be imputed based on 

X1, X2, X3group and Y. 

MI is implemented in most statistical software under the MAR assumption and provides 

unbiased and valid estimates of associations based on information from the available data. 

The method affects not only the coefficient estimates for variables with missing data but 

also the estimates for other variables with no missing data [133]. In case of MAR data, our 

suggested framework would slightly change so the data missingness could be explained by 

variables on which we have full information. Our suggested probabilistic solutions are based 

on FCS imputation method which can handle MAR data. 

4.4 Simulation studies 

We agree that the most sufficient and reasonable approach to test our idea on solving 

granularity issues on nominal variables after data integration, is to use realistically simulated 

data. We take this approach for evaluation as in synthetic data the true associations between 
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the predictors and the outcome are known and can be used reliable to quantify our integration 

methods’ performance. Hence, in this section, we present the results of simulation studies 

designed to evaluate our approach to handle the second content heterogeneity problem.  

4.4.1 Simulation study design 

We first defined synthetic data that contained enough variables to illustrate the content 

heterogeneity problem of granularity. To simplify things and to be able to recognise easier 

any errors, we specified the bare minimum required to capture this problem. We performed 

a series of simulation studies designed to investigate our probabilistic methods in a simpler 

and generalised setting. The process described in figures 4.2 and 4.3 is repeated 1000 times, 

to obtain different datasets under the specified parameters, that were then used for analysis.  
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Figure 4.2. Granularity’s simulation procedure: A pictorial representation of the simulation procedure for granularity.
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Figure 4.3. Simulation’s procedure to show how the data are integrated, how granularity 

problem is solved through different methods and their comparison.  

FCS: Fully Conditional Specification; FCSgroup: FCS including informative ‘group’ 

variable. 
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The simulation procedure (figures 4.2 and 4.3) was similar with the evaluation shown in 

Chapter 3.4. We simulated X1, X2, X3 and we used the same data generating mechanism as 

in the previous chapter to simulate outcome Y (equation 4.1) with β0 = 1.4938, β1 = -1.7483, 

β2 = 0.4254, β3 = -0.7876, β4 = -0.9554, β5 = 0.4844.  

         𝑌𝑖 = 𝛽0 + 𝛽1 ∗  𝛸1 + 𝛽2 ∗  𝛸2 + 𝛽3 ∗  𝛪(𝛸3 = 𝐵) + 𝛽4 ∗  𝛪(𝛸3 = 𝐶) + 

                                    + 𝛽5 ∗  𝛪(𝛸3 = 𝐷) + 𝑒𝑖          

           (4.1) 

  

Afterwards, we integrated the study datasets in D0 (figure 4.3 – yellow, orange, purple 

datasets), we fit the regression model to true Full Data (green box)and stored estimates 𝜃 and 

standard errors 𝑠�̂�(𝜃). 

We applied the second content heterogeneity problem. For example, in D0, we had three 

levels (‘AB’, ‘C’, ‘D’) in X3 for individuals from D1 and four levels (‘A,’ ‘B’, ‘C’, ‘D’) in 

X3 for individuals from D2.  

Traditional solution 

We solved the content heterogeneity problem of granularity by applying the traditional 

approach where we kept the lowest level that is common (which is higher level than the most 

specific level available) in the problematic variable – Complete Records analysis (figure 4.3 

– black box). Therefore, X’3 had three levels (‘AB’, ‘C’, ‘D’) in D0. Then, we fit a linear 

regression model: Y ~ X1 + X2 + X’3 in D0, analysed Complete Records and stored estimates 

𝜃 and standard errors 𝑠�̂�(𝜃).  

Probabilistic solutions 

After, we introduced the categorical informative variable X3group (figure 4.3 – light blue 

column with different blue shades). In D0, we created ‘X3group’ that groups individuals 

based on X3’s levels (figure 4.3 – different blue shades in the light blue column). If 𝛪(𝛸3 =

𝐴) or 𝛪(𝛸3 = 𝐵) or 𝛪(𝛸3 = 𝐴𝐵) then ‘X3group’ = ‘0’, otherwise ‘X3group’ = ‘1’. If 𝛪(𝛸3 =

𝐴𝐵) (i.e., individuals from D1) set X3 to missing. So, X3 had systematically missing data for 

individuals from D1 in values ‘AB’. In figure 4.3 ‘X3group’ is the light blue column and its 

different shades represents the different X3’s levels. 

We wanted to check if by adding X3group and therefore extra information in the imputation 

model, we achieved better estimates and less misclassification. So, we solved the second 

content heterogeneity problem by applying the probabilistic approaches FCS and FCSgroup 

as presented in figures 4.1 - 4.3 in (red arrows for imputation and red boxes). We fit linear 
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regression models for FCS and FCSgroup: Y ~ X1 + X2 + X’’3 in D0, analysed imputed 

datasets using Rubin’s rules and stored estimates 𝜃, standard errors 𝑠�̂�(𝜃) and confidence 

interval. 

All imputation analyses were performed with R package mice freely available on CRAN 

[98]. We used the seed function () and set starting seed to 975392. In the next section, we 

present the simulations’ results.  

4.4.2 Performance measures and scenarios 

 

To examine the simulations’ results we chose the same performance measures as in chapter 

3, bias, EmpSE, mSE and Coverage. As mentioned in chapter 3.4.3, all performance 

measures were calculated between the estimates coefficients of each 

(probabilistic/traditional) integration model and the generating coefficients and then 

averaged across iterations. In this chapter, estimand 𝜃 was the estimate of 𝜃𝑖  of X3 

coefficients (and mainly X3=B) in each model fit. 

Table 4.1 shows the different scenarios to generate data following figures 4.1- 4.3 and their 

aforementioned tasks. We explore different simulation scenarios by varying the number of 

individuals (N) per study, number of studies (Dn), imputations (m), model errors (𝑒𝑖). The 

number of m and iterations (it) is set to five (default).  

Table 4.1. Scenarios 1 - 5 used to generate data from Figure 4.2. 

 

 Scenario 

1 

Scenario 

2 

Scenario 3 Scenario 4 Scenario 5 

Number of individuals 

per study (N) 

200 1000 200 1000 D1: 200, 

D2:150, 

D3:50, 

D4:75, 

D5:100 

Model error 𝒆𝒊: 

(same for each study) 

N~(0,0.2) 

N~(0,2) 

N~(0,20) 

N~(0,0.2) 

N~(0,2) 

N~(0,20) 

N~(0,0.2) 

N~(0,2) 

N~(0,20) 

N~(0,0.2) 

N~(0,2) 

N~(0,20) 

N~(0,0.2) 

N~(0,2) 

N~(0,20) 

Number of studies (D) 2 2 5 5 5 

Imputations (m) 5 5 5 5 5 

Missingness applied to:  X3 from 

D1 

X3 from 

D1 

X3 from D4, 

D5  

X3 from D2, 

D5 

X3 from D4, 

D5 
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Table 4.2. Scenarios 6 - 10 used to generate data from Figure 4.2. 
 Scenario 

6 

Scenario 7 Scenario 8 Scenario 9 Scenario 

10 

Number of individuals 

per study (N) 

D1:800, 

D2:150, 

D3:50, 

D4:75, 

D5:350, 

D6: 00, 

D7:150, 

D8:500, 

D9:750, 

D10:100 

100 200 500 1000 

Model error 𝒆𝒊: 

(same for each study) 

N~(0,0.2) 

N~(0,2) 

N~(0,20) 

𝑒1: 

N~(0,1.2), 

𝑒2: 

N~(0,1.3) 

𝑒1: 

N~(0,1.2), 

𝑒2: 

N~(0,1.3) 

𝑒1: 

N~(0,1.2), 

𝑒2: 

N~(0,1.3) 

𝑒1: 

N~(0,1.2), 

𝑒2: 

N~(0,1.3) 

Number of studies (D) 10 2 2 2 2 

Imputations (m) 5 5 5 5 5 

Missingness applied to:  X3 from 

D3, D6, 

D9, D10 

X3 from D1 X3 from D1 X3 from D1 X3 from D1 

 

4.4.3 Results 

 

In this section, we present the results of a series of simulation studies. The aim is to compare 

the Complete Records analysis with imputation in the concept of granularity and mainly 

evaluate our probabilistic data integration approaches FCS and FCSgroup against true Full 

Data - before we apply any content heterogeneity. All results in detail are presented in 

Appendix B. 

Simulations with studies of same sizes (Scenarios 1 - 4) 

Scenario 1 

Here, we simulated data for two studies, each with 200 patients and m = 5, it = 5. For each 

simulated dataset, we applied the granularity problem to X3 from D1. We present the 

simulation results in Figure 4.4 we see a graphical representation of the main results with 

𝑒𝑖: (N ~ (0, 0.2)), (N ~ (0, 2)), (N ~ (0, 20)) respectively. We see that both FCS and FCSgroup 
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gave unbiased results and a very good coverage of the confidence interval for all the three 

model errors. It seems that when 𝑒𝑖: N ~ (0, 2), FCSgroup outperformed FCS. When the 

error varied extremely (𝑒𝑖: N ~ (0, 20)), it led to overestimation of model and empirical 

standard errors. Complete Records seemed to be an incompatible technique and led to large 

biases. 

 

 

Figure 4.4. Main results from scenario 1’s simulation study: Comparison of Bias, Coverage 

level, mSE and EmpSE for X3=B after 1000 simulations with Full Data (red line), handling 

granularity with Complete Records (black line), FCS (blue line), FCSgroup (broken blue 

line) for three model errors. 

FCS: Multiple imputation by fully conditional specification; FCSgroup: FCS imputation 

model included X’3; D: number of studies, mSE: mean model standard error; EmpSE: mean 

empirical standard error. 

 

Scenario 2 
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This scenario was like scenario 1 with a difference of 1000 individuals per study. We 

present the simulation results in figure 4.5 with 𝑒𝑖: (N ~ (0, 0.2)), (N ~ (0, 2)), (N ~ (0, 20)) 

respectively. When we increased patients from 200 to 1000 per study, imputation methods 

performed slightly better. Both FCS and FCSgroup gave unbiased results and good 

coverage. However, FCSgroup outperformed FCS. The Complete Records approach 

appeared to be not a good solution to solve the granularity issue and should be avoided. 

 

Figure 4.5. Main results from scenario 2’s simulation study: Comparison of Bias, Coverage 

level, mSE and EmpSE for X3=B after 1000 simulations with Full Data (red line), handling 

granularity with Complete Records (black line), FCS (blue line), FCSgroup (broken blue 

line) for three model errors. 

FCS: Multiple imputation by fully conditional specification; FCSgroup: FCS imputation 

model included X’3; D: number of studies, mSE: mean model standard error; EmpSE: mean 

empirical standard error. 

 

Simulations with studies of different sizes (Scenarios 3 - 4) 

Scenarios 3 - 4 
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In scenarios 3-4, we simulated data for five studies, each with the same number of 

individuals per study. In Scenario 3 each study had 200 patients (so D0 had 1000 patients) 

and in scenario 4 each study had 1000 individuals (so D0 had 5000 patients). For each 

simulated dataset, we chose two random studies (D4 and D5 for scenario 3 and D2 and D5 for 

scenario 4) to apply the granularity issue in X3 in D0. We present the simulation results in 

figures 4.6 and 4.7. In scenario 3, analysis of datasets imputed with FCS and FCSgroup 

model gave good results both in terms of bias, precision, and confidence interval coverage 

when the model error was small and medium (figure 4.6). We see an indication of low bias 

in both FCS and FCSgroup when the model error was large (simulated as 𝑒𝑖:N~(0,20)). In 

scenario 4, as shown in figure 4.6, FCSgroup was very close to the true Full Data. FCS had 

a coverage of 84.9% when the error was small (simulated as 𝑒𝑖:N~(0,0.2)). In general, in 

both scenarios, when applying the Complete Records approach, the results were highly 

biased, resulting in large standard errors and under-coverage. The results show that 

FCSgroup performed slightly better than FCS when we had 200 individuals per study, and 

when we had 1000 individuals per study and small model error. In general, in both scenarios 

FCSgroup outperformed FCS. 
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Figure 4.6. Main results from scenario 3’s simulation study: Comparison of Bias, Coverage 

level, mSE and EmpSE for X3=B after 1000 simulations with Full Data (red line), handling 

granularity with Complete Records (black line), FCS (blue line), FCSgroup (broken blue 

line) for three model errors. 

FCS: Multiple imputation by fully conditional specification; FCSgroup: FCS imputation 

model included X’3; D: number of studies, mSE: mean model standard error; EmpSE: mean 

empirical standard error. 
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Figure 4.7. Main results from scenario 4’s simulation study: Comparison of Bias, Coverage 

level, mSE and EmpSE for X3=B after 1000 simulations with Full Data (red line), handling 

granularity with Complete Records (black line), FCS (blue line), FCSgroup (broken blue 

line) for three model errors. 

FCS: Multiple imputation by fully conditional specification; FCSgroup: FCS imputation 

model included X’3; D: number of studies, mSE: mean model standard error; EmpSE: mean 

empirical standard error. 

 

Overall, in all scenarios both methods produced unbiased or very little biased results (Figure 

4.8). FCSgroup produced better mean estimate than FCS except the following cases: 

𝑒𝑖:N~(0,20)), D2_N200 and D2_N1000. With regards to coverage (figure 4.9), both 

imputation models produced similar coverage to true Full Data in almost all cases. We 

observe under-coverage (84.9%) in FCS in scenario 4 when model error was small. In 

figures 4.10 and 4.11 we see mSE and EmpSE for scenarios 1 to 4. We see that as the model 

error increased the mSE and EmpSE increased as well. mSE and EmpSE were similar per 

scenario and they decreased as the integrated dataset’s size increased.  
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Figure 4.8. Mean bias for X3=B for ‘2 datasets, N=200 per dataset’ (D2_N200), ‘5 datasets, 

N=200 per dataset’ (D5_N200), ‘2 datasets, N=1000 per dataset’ (D2_N1000), and 

(D5_N1000) ‘5 datasets, N=1000 per dataset’ for three model errors. 

FCS: Multiple imputation by fully conditional specification; FCSgroup: FCS imputation 

model included X’3. 

 

 

Figure 4.9. Coverage for X3=B for ‘2 datasets, N=200 per dataset’ (D2_N200), ‘5 datasets, 

N=200 per dataset’ (D5_N200), ‘2 datasets, N=1000 per dataset’ (D2_N1000), and 

(D5_N1000) ‘5 datasets, N=1000 per dataset’ for three model errors. 

FCS: Multiple imputation by fully conditional specification; FCSgroup: FCS imputation 

model included X’3. 
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Figure 4.10. mSE for X3=B for ‘2 datasets, N=200 per dataset’ (D2_N200), ‘5 datasets, 

N=200 per dataset’ (D5_N200), ‘2 datasets, N=1000 per dataset’ (D2_N1000), and 

(D5_N1000) ‘5 datasets, N=1000 per dataset’ for three model errors. 

FCS: Multiple imputation by fully conditional specification; FCSgroup: FCS imputation 

model included X’3; mSE: mean model standard error. 

 

 

Figure 4.11. EmpSE for X3=B for ‘2 datasets, N=200 per dataset’ (D2_N200), ‘5 datasets, 

N=200 per dataset’ (D5_N200), ‘2 datasets, N=1000 per dataset’ (D2_N1000), and 

(D5_N1000) ‘5 datasets, N=1000 per dataset’ for three model errors. 

FCS: Multiple imputation by fully conditional specification; FCSgroup: FCS imputation 

model included X’3; EmpSE: mean empirical standard error. 

 



 

111 

 

Simulations with studies of different size and same model error per study (Scenarios 5 - 6) 

Scenario 5 

We simulated data for five studies, each with different number of individuals (D1:200, 

D2:150, D3:50, D4:75, D5:100). We chose X3 to have three levels in two studies (D4 and D5). 

See results in figure 4.12. FCS and FCSgroup produced almost identical results with true 

data. FCS had slightly better results than FCSgroup in terms of bias when the model error 

was high (𝑒𝑖: N ~ (0, 20)). Both probabilistic models outperformed Complete Records. 

 

Figure 4.12. Main results from scenario 5’s simulation study: Comparison of Bias, 

Coverage level, mSE and EmpSE for X3=B after 1000 simulations with Full Data (red line), 

handling granularity with Complete Records (black line), FCS (blue line), FCSgroup 

(broken blue line) for three model errors. 

FCS: Multiple imputation by fully conditional specification; FCSgroup: FCS imputation 

model included X’3; D: number of studies, mSE: mean model standard error; EmpSE: mean 

empirical standard error. 

 

Scenario 6 
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We simulated data from ten studies, each with different number of individuals (D1:800, 

D2:150, D3:50, D4:75, D5:350, D6: 200, D7:150, D8:500, D9:750, D10:100). We decided X3 

to have three levels in four studies (D3, D6, D9, and D10). Results for this scenario are shown 

in figure 4.13. As in scenario 5, FCS and FCSgroup produced identical results with true data. 

FCSgroup had slightly better results in terms of bias when the model error is medium (𝑒𝑖: N 

~ (0, 2)). 

 

Figure 4.13. Main results from scenario 6’s simulation study: Comparison of Bias, 

Coverage level, mSE and EmpSE for X3 after 1000 simulations with Full Data (red line), 

handling granularity with Complete Records (black line), FCS (blue line), FCSgroup 

(broken blue line) for three model errors. 

FCS: Multiple imputation by fully conditional specification; FCSgroup: FCS imputation 

model included X’3; D: number of studies, mSE: mean model standard error; EmpSE: mean 

empirical standard error. 

 

Overall, as we have seen in figures 4.14 - 4.17 in both scenarios, we had good coverage and 

there was either with no bias or very small bias (FCSgroup, D5_diffsize, large model error). 

When we had 10 datasets with different sizes both imputation models provided unbiased 
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results and FCSgroup had slightly better estimates than FCS. However, in the 5 different 

size datasets example FCS showed better mean estimate than FCSgroup when model errors 

were small and large. In scenarios 5 and 6, both probabilistic models outperformed Complete 

Records. In figures 4.16 and 4.17 we see mSE and EmpSE for scenarios 5 and 6. We see 

that as the model error increased the mSE and EmpSE increased as well. mSE and EmpSE 

are similar per scenario, and they decreased as the integrated dataset’s size increased.  

 

 

Figure 4.14. Mean bias for X3=B for ‘5 datasets, N=different per dataset’ (D5_diffsize), ‘10 

datasets, N=different per dataset’ (D10_diffsize) for the three model errors. 

FCS: Multiple imputation by fully conditional specification; FCSgroup: FCS imputation 

model included X’3. 
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Figure 4.15. Coverage for X3=B for ‘5 datasets, N=different per dataset’ (D5_diffsize), ‘10 

datasets, N=different per dataset’ (D10_diffsize) for the three model errors. 

FCS: Multiple imputation by fully conditional specification; FCSgroup: FCS imputation 

model included X’3. 

 

 

 

 

Figure 4.16. mSE for X3=B for ‘5 datasets, N=different per dataset’ (D5_diffsize), ‘10 

datasets, N=different per dataset’ (D10_diffsize) for the three model errors. 
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FCS: Multiple imputation by fully conditional specification; FCSgroup: FCS imputation 

model included X’3; mSE: mean model standard error. 

 

 

 

Figure 4.17. EmpSE for X3=B for ‘5 datasets, N=different per dataset’ (D5_diffsize), ‘10 

datasets, N=different per dataset’ (D10_diffsize) for the three model errors. 

FCS: Multiple imputation by fully conditional specification; FCSgroup: FCS imputation 

model included X’3; EmpSE: mean empirical standard error. 

 

Simulations with equal size studies, different model error per study (7 - 10) 

Scenarios 7 – 10 

Here, we again simulated data from 2 studies, each with either 100, 200, 500 or 1000 

individuals (with size varying between scenarios). Study 1, had model error 𝑒𝑖:N~(0,1.2), 

whereas study 2, had model error 𝑒𝑖:N~(0,1.3).  For each simulated dataset, we applied the 

granularity problem to X3=B from D1. We present the simulation results in figure 4.18. The 

results indicate that even when the FCS produced slightly biased results (Scenarios 9-10) 

the results were closer to the truth than Complete Records. In all cases we see an 

overestimation of the standard error in FCS and in FCSgroup. However, the standard error 

reduced as the number of individuals and therefore the number of individuals in total) per 

study increased. FCSgroup shows lower and closer mSE and EmpSE to the true model’s. 

FCSgroup shows virtually some bias and small under-coverage of the confidence interval. 

FCS shows no bias and very good coverage levels, almost identical with true model’s, in all 
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the examined size studies. Both FCS and FCSgroup outperform Complete Records which is 

not suggested as a solution on this case either. 

 

Figure 4.18. Main results from scenarios 7-10’s simulation study: Comparison of Bias, 

Coverage level, mSE and EmpSE for X3 after 1000 simulations with Full Data (red line), 

handling granularity with Complete Records (black line), FCS (blue line), FCSgroup 

(broken blue line) for three model errors. 

FCS: Multiple imputation by fully conditional specification; FCSgroup: FCS imputation 

model included X’3; D: number of studies, mSE: mean model standard error; EmpSE: mean 

empirical standard error. 

 

4.4.4 Summary of findings from simulation studies 

 

Drawing together the results from the simulation studies, we conclude the following: 

Studies with the same model errors 
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In most cases, FCS and FCSgroup performed really well and gave unbiased and close to 

reality results, therefore they solved granularity problem successfully. Ιn all scenarios as the 

model error increased, mSE and EmpSE increased as well. We can also say that FCSgroup 

produced slightly more similar estimates to true Full Data.  

Studies with different model errors 

In these simulation studies, we may conclude that if the number of imputations and iterations 

was larger, it achieved better convergence.  Smaller datasets provided better estimates 

probably because of less variability. When we had 500 or 1000 individuals per study, we 

see smaller standard errors and very mild under-coverage. 

Studies of same sizes 

For both probabilistic methods, bias remained negligible, and coverage was very good and 

there was a lot more gain in information compared with a Complete Records analysis. 

FCSgroup was slightly better than FCS in most cases (with the exclusion of 𝑒𝑖:N~(0,20)), 

D2_N200 and D2_N1000). 

Studies of different sizes 

In both scenarios, there was good coverage and there was mostly no bias except in 

FCSgroup, D5_diffsize, 𝑒𝑖:N~(0,20). When we had 10 datasets with different sizes both 

imputation models provided unbiased results and FCSgroup had slightly better estimates 

than FCS. However, in the 5 different size datasets example FCS shows better mean estimate 

than FCSgroup when model errors were small and large.  

Size of the model error 

The smaller the model error per study, the smaller the EmpSE and mSE observed. We also 

see an indication that as the model error increased, the difference between EmpSE and mSE 

slightly increased. 

Overall 

Based on the results from the simulations, a probabilistic approach is a precise way and 

useful addition to structured healthcare data integration toolkit. When the data integration is 

more complex, a higher number of imputations may be needed as it may take more iterations 

to reach the appropriate convergence [134]. Results agree with the ones presented in chapter 

3 as FCS gave unbiased estimates with good coverage confidence intervals. The difference 

with chapter 3 is that here we applied FCSgroup which seems to help categorical variables 

to achieve better estimate classification. The probabilistic approaches gave precise results 
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across a range of scenarios and in all cases outperformed the complete case analysis and 

gave estimates close to real data. They did not introduce practically important bias in any of 

the scenarios considered, although it was a little conservative in larger datasets with different 

model errors. We suggest that the worst that can happen is that estimates are very little biased 

(worst scenario – difference between true mean estimator and mean estimate - around 0.1) 

and we had around 90% coverage level. However, the vast majority of results indicates that 

our probabilistic solutions are well evaluated and are expected to provide valid results. Our 

new suggestion about including a categorical informative variable in the imputation model 

seems to help classification and may outperform FCS. It also proves that using the available 

extra information may help having better estimations and imputed granularity levels. 

4.5 Application – MASTERPLANS exemplar 

Here, we illustrate the granularity problem and its possible solutions (through traditional 

and probabilistic approaches) in the MASTERPLANS cohort data. 

4.5.1 Data characteristics and granularity problem example 

To demonstrate the utility of the developed approaches (figure 4.1) we applied to real-world 

biomedical and health datasets such as the studies in Lupus. For datasets D1, D2, D3, we had 

datasets that contain data from ALMS, LUNAR and EXPLORER respectively. Suppose we 

were interested in the overall effect of ethnicity in drug response (BILAG score) on patients 

with SLE. For this purpose, we wanted to fit a linear regression model with BILAG score as 

the outcome, adjusting for ethnicity, age, gender, and creatinine (equation 4.2).  

             𝐵𝐼𝐿𝐴𝐺 𝑆𝑐𝑜𝑟𝑒 =  𝐸𝑡ℎ𝑛𝑖𝑐𝑖𝑡𝑦 +  𝐴𝑔𝑒 +  𝐺𝑒𝑛𝑑𝑒𝑟 +  𝐶𝑟𝑒𝑎𝑡𝑖𝑛𝑖𝑛𝑒          (4.2) 

For this research question, a granularity problem occured in ethnicity variable (see table 

4.3). In one hand, ethnicity in ALMS had 14 levels, i.e., ‘Algerian’, ‘Asian’, ‘Black or 

African American’, ‘Caucasian’, ‘Cape Coloured’, ‘East Indian’, ‘Eritrean’, ‘Hispanic’, 

‘Mexican Mestizo’, ‘Middle Eastern’, ‘Mixed’, ‘Moroccan’, ‘Native American’, 

‘Nicaraguan’). On the other hand, ethnicity’s levels in LUNAR and EXPLORER were 3 i.e., 

‘Caucasian’ and ‘Black or African American’ and ‘Other’. Therefore, in ALMS, ethnicity’s 

granularity was very high. 
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Table 4.3. Mapping between ethnicity’s levels. Traditional VS Probabilistic data 

integration. 

 

Traditional data integration Probabilistic data integration 

Ethnicity’s levels 

‘Caucasian’ ‘Caucasian’  

‘Black or African American’ ‘Black or African American’ 

 

 

 

 

 

‘Other’ 

‘Algerian’ 

‘Asian’ 

‘Cape Coloured’ 

‘East Indian’ 

‘Eritrean’ 

‘Hispanic’ 

‘Mexican Mestizo’ 

‘Middle Eastern’ 

‘Mixed’ 

‘Moroccan’ 

‘Native American’ 

‘Nicaraguan’ 

 

Table 4.4 summarises the information on granularity problem of ethnicity before and after 

lupus data sets’ integration and gives us a summary of the ethnicity’s data characteristics for 

the 530 patients included in the final analyses. 

Table 4.4. Ethnicity’s data characteristics after integrating lupus studies ALMS, LUNAR, 

EXPLORER. 

 

Data characteristics D0, N=530 

(%) 

ALMS,  

N=204 

(38.50)  

LUNAR,  

N=107 

(24.00) 

EXPLORER, N=199 

(37.50) 

Ethnicity (%)     

Algerian  1 (0.19) 1 (0.50)   

Asian    67 (12.59) 67 (32.80)   

Black or African 

American      

100 (18.90) 22 (10.80) 33 (26.00) 45 (22.60) 
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Cape Coloured 1 (0.19) 1 (0.50)   

Caucasian    251 (47.38) 90 (44.10) 41 (32.30) 120 (60.30) 

East Indian     1 (0.19) 1 (0.50)   

Eritrean        1 (0.19) 1 (0.50)   

Hispanic        2 (0.38) 2 (1.00)   

Mexican Mestizo 14 (2.64) 14 (6.90)   

Middle Eastern 1 (0.19) 1 (0.50)   

Mixed         1 (0.19) 1 (0.50)   

Moroccan        1 (0.19) 1 (0.50)   

Native American 1 (0.19) 1 (0.50)   

Nicaraguan 1 (0.19) 1 (0.50)   

Other 87 (16.40)  53 (41.70) 34 (17.10) 

  

4.5.2  Results 

4.5.2.1 Traditional Data Integration – mapping common levels to the least granular  

 

Traditionally, such problems are resolved by mapping all datasets to a common data model. 

This model would only include variables’ levels that are present in all datasets, and, in case 

of granularity problem, levels that exist in all datasets (figure 4.1, table 4.3) i.e., ‘Black or 

African American’, ‘Caucasian’ and ‘Other’. Le Sueur et al [129], came across this content 

heterogeneity issue in two variables in their data integration approach. In particular, ethnicity 

in some datasets included more categories and subsets than others (the same problem that 

we address here) and visit time was captured either as sequential visit numbers (i.e., ‘visit 

1’, ‘visit 2’ etc) in one study or as time from baseline (in days, weeks, or months) in another 

study. They solved the granularity issue by harmonising to lowest granularity present e.g. in 

ethnicity across datasets were reduced to 3 levels (‘Black or African American’, ‘White’, 

‘Other’). 

Table 4.10 shows the coefficients for the linear regression model that estimated the drug 

response by applying equation 4.2 after applying complete case analysis in SLE data. We 

see that ‘Other’ is significant (p-value = 0.0393) and it implies that ethnicity is associated 

with drug response. We also see that gender is significant (p-value = 0.0219) and is 

associated with drug response. Concerning age (p-value = 0.0900) there is weak evidence to 

show significance and we may need a larger sample. 
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Table 4.5. Coefficients (estimate, standard error, t statistic and p-values) for linear 

regression model from equation 4.2 after applying complete case analysis in SLE data. 

 

 estimate standard error t statistic p-value 

(Intercept) 5.5780 1.2099 4.6100 0.0000 

Ethnicity     

Caucasian 0.9739 0.7332 1.3280 0.1847 

Other -1.5937 0.7713 -2.0660 0.0393 * 

Age 0.0403 0.0237 1.6980 0.0900 . 

Gender     

Male -1.9346 0.8417 -2.2990 0.0219 * 

Creatinine 0.4629 0.8915 0.5190 0.6038 

Significance codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 

 

4.5.2.2 Probabilistic Data Integration – multiple imputation 

 

Le Sueur et al mention [129] in their paper that their traditional data integration approach to 

SLE data has a limitation as there is unavoidable loss of information either due to differences 

in granularity or data capture. For example, excluding specific groups changes the attributes 

of the patients who are being analysed and excluding patients and rows of data due to 

missingness, it makes smaller the sample size and introduces potential biases.  

We chose to illustrate how our probabilistic approaches would answer the research question 

in equation 4.2. Therefore, we applied the suggested probabilistic data integration 

approaches FCS and FCSgroup to answer the research question shown in equation 4.2. We 

retained the highest number of levels in ethnicity which was 14 levels (table 4.3). For 

FCSgroup’s imputation model, we added the informative categorical variable ‘ethnicitygroup’ 

that classified patients based on the ‘Other’ ethnicity. With this additional variable we tried 

to eliminate misclassification in imputation. For both approaches FCS and FCSgroup, the 

chosen parameters were 20 imputed datasets, 20 iterations, and seed number 384839. 

First, we applied FCS imputation to answer to equation 4.2’s research question. In Table 4.6 

we see the coefficients (estimate, standard error, t statistic and p-values) for linear regression 

model obtained from equation 4.2 after applying FCS in SLE data to solve the granularity 

problem. In figure 4.19, we can see the barplot for the variable: ‘Ethnicity’, in second content 
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heterogeneity problem. The top figure shows the observed values, and the bottom figure 

shows the imputed data in FCS. In table 4.12 we find equation 4.2’s coefficients after 

applying FCS imputation in SLE data. 

Secondly, we apply FCSgroup imputation to answer to equation 4.2’s research question. In 

Table 4.7 we see the coefficients for linear regression model obtained from equation 4.2 

after applying FCSgroup in SLE data to solve the granularity problem. In figure 4.20, the 

top subfigure shows the observed values, and the bottom subfigure shows the imputed data 

in FCSgroup.  
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Figure 4.19. Barplot for the variable: ‘Ethnicity’, in content heterogeneity problem 2. Top figure shows the observed values and bottom figure shows the imputed 

data for each imputation in FCS. 
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Figure 4.20. Barplot for the variable: ‘Ethnicity’, in content heterogeneity problem 2. Top figure shows the observed values and bottom figure shows the imputed 

data for each imputation in FCSgroup.
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Table 4.6. Coefficients (estimate, standard error, t statistic and p-values) for linear 

regression model from equation 4.2 after applying FCS in SLE data. 

 

 estimate standard error t statistic p-value 

(Intercept) -0.4413 5.5811 -0.0791 0.9370 

Ethnicity     

Asian 3.5605 5.5269 0.6442 0.5198 

Black or African American 5.6116 5.4971 1.0208 0.3079 

Cape Coloured -1.2059 7.9282 -0.1521 0.8792 

Caucasian 6.6572 5.4796 1.2149 0.2250 

East Indian 5.3604 8.6922 0.6167 0.5381 

Eritrean 9.5691 7.7793 1.2301 0.2194 

Hispanic 3.6259 6.7893 0.5341 0.5935 

Mexican Mestizo 1.3876 5.7023 0.2433 0.8078 

Middle Eastern -1.4825 7.8027 -0.1900 0.8494 

Mixed 1.5852 7.3992 0.2142 0.8305 

Moroccan 4.5089 7.7296 0.5833 0.5599 

Native American 1.4248 7.9580 0.1790 0.8580 

Nicaraguan 10.9610 7.8240 1.4010 0.1619 

Age 0.0441 0.0239 1.8431 0.0659 . 

Gender     

Male -1.8161 0.8417 -2.1576 0.0314 * 

Creatinine 0.5338 0.9548 0.5591 0.5764 

Significance codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 

Table 4.7. Coefficients (estimate, standard error, t statistic and p-values) for linear 

regression model from equation 4.2 after applying FCSgroup in SLE data. 

 

 estimate standard error t statistic p-value 

(Intercept) 0.1907 5.2396 0.0364 0.9710 

Ethnicity     

Asian 3.7827 5.1608 0.7330 0.4640 

Black or African American 5.6627 5.1161 1.1068 0.2690 

Cape Coloured -1.3142 7.1144 -0.1847 0.8535 

Caucasian 6.5507 5.1010 1.2842 0.1997 
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East Indian 8.7870 5.4468 1.6133 0.1075 

Eritrean 12.7096 6.4423 1.9728 0.0500 * 

Hispanic 3.6611 6.8804 0.5321 0.5951 

Mexican Mestizo 2.1342 5.1624 0.4134 0.6795 

Middle Eastern -2.1434 7.6921 -0.2787 0.7806 

Mixed 2.2200 6.3032 0.3522 0.7248 

Moroccan 4.4725 6.4906 0.6891 0.4912 

Native American 2.6655 6.0514 0.4405 0.6598 

Nicaraguan 7.5501 6.0377 1.2505 0.2118 

Age 0.0528 0.0240 2.2033 0.0280 * 

Gender     

Male -1.7109 0.8501 -2.0125 0.0447 * 

Creatinine -0.3564 1.1341 -0.3142 0.7536 

Significance codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 

4.6 Discussion 

This work was motivated by a scope to explore probabilistic solutions such as multiple 

imputation to situations where for some studies a certain variable has not been collected in 

the same level of granularity. In this context, we introduced the second problem of content 

heterogeneity which is that of granularity problem. We gave an overview of this specific 

content heterogeneity problem from a theoretical perspective and argued that as with the 

missing variable problem, the granularity problem too could be translated to systematically 

missing data problem and therefore solved with established methods like imputation. The 

motivation was that we could ask a research question including the most of information and 

that it would allow us borrow information across studies. We described our suggested 

probabilistic method and how to impute data based on methods that already exist in the 

literature. This work included an exploration of the general applicability of the suggested 

method, and comparison of results of the proposed integration techniques with gold standard 

results through statistical simulation studies. Moreover, to demonstrate their utility, we 

applied them to real-world biomedical and health datasets such as the studies in SLE that 

were used for our examples.  

This study offers an alternative to Complete Records analysis with cutting-edge probabilistic 

approaches to solve granularity issues. The probabilistic approaches give mostly valid 

results across a range of model errors and at all times outperformed the traditional data 

integration approach. To the best of our knowledge, there is no current research that has 



 

127 

 

applied imputation methods like FCS to solve a content heterogeneity problem such as the 

granularity problem. In addition, this study suggests an innovative idea, to use the traditional 

data integration approach in the imputation model in the form of a categorical informative 

group variable. The FCSgroup model takes advantage of the given information concerning 

subgroups and levels in categorical levels in imputation. 

Summary of the main findings 

In the simulated studies for handling missing data, in the form of granularity problem after 

integrating data from different biomedical data sources, parametric imputations produced 

estimates with no material bias for a linear model in data artificially introduced MCAR 

missingness. FCS produced unbiased estimates and almost 95% confidence intervals in most 

cases. In very few cases - where we had different model errors between studies - the coverage 

probability was smaller than 95% suggesting than confidence intervals may have been 

conservative. Overall, our results suggest that a probabilistic method such as multiple 

imputation by chained equation methods is useful for imputing complex health/biomedical 

datasets in which there is a granularity problem in the common categorical variables in the 

datasets after integration and especially for linear regression models.  

Imputation method including the extra informative variable (FCSgroup) 

The simulation studies showed that the usage of the extra informative variable in the 

imputation model helped the imputation itself and improved data classification. FCSgroup 

showed accuracy and in some cases outperformed standard FCS.  

Strengths 

This study has numerous strengths that are worth mentioning. It has been one of the first 

research studies that talk about and investigate solutions to granularity problems of 

categorical variables after structured data integration in biomedical data sources. It has been 

the first study in a biomedical concept that describes this content heterogeneity problem in 

detail, solves it with a theoretical solution, evaluates and compares traditional and 

probabilistic approaches using a series of simulation studies and illustrates the paradigm in 

real-world data. This work also extends past research on data integration challenges in SLE 

by providing an alternative solution to differences in granularity thus addressing the 

limitation of inevitable loss of information mentioned by Le Sueur et al. [129]. Different 

methods were applied in real-world data (MASTERPLANS) and the results show that 

probabilistic approaches do offer unbiased results especially in comparison to complete 

record analysis.  
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More specifically about our illustration to real-world lupus data. Results show a practically 

useful gain in information over Complete Records with FCS and FCSgroup. However, we 

need to be careful with the analysis as individuals in those lupus studies were asked about 

their ethnicity and they clarified that they belong to the ‘Other’ category and not in 

‘Caucasian’ or ‘Black or African American’. MICE package does not have an option to 

exclude categories in imputation in nominal/categorical variable. Our additional step in 

imputation - FCSgroup – tries to do exactly that, eliminate misclassification and it shows 

that it can do it.  

Limitations 

Although, this extended study has strengths, it was based on real-world problem, analyses 

were realistically complex and many scenarios were investigated, it has various drawbacks. 

The most important is that we chose for simplicity reasons to ignore practice/study level 

clustering at the imputation and analysis stages.  If patients from the same practice/study are 

more similar than patients from different practices/studies, the variance of parameter 

estimates may have been underestimated and parameter estimated may also be biased. 

Whereas we presented promising results in two simulation studies where model errors were 

different in the two datasets. This may need further investigation and we could properly 

choose other imputation methods such as joint modelling multiple imputation [102] and 

multilevel imputation methods [114], [135].  

Another limitation in producing general application of the proposed methods is that their 

evaluation was based on specific data generating mechanisms and scenarios. However, our 

simulation studies were complex enough and included many situations. We extended the 

simulation study to a larger number of data sources, a variety of study sizes and model errors. 

Another thought for future work is to compare methods’ performance when the fitted model 

is logistic, or a multinomial logistic model. In broad terms, linear regression is used to 

estimate the dependent variable in case of a change in independent variable whereas logistic 

regression is used to calculate the probability of an event. In order to perform logistic 

regression successfully we need to choose the correct variables into the model, avoid the use 

of highly correlated variables, probably restrict the number of variables, be careful how to 

handle continuous variables (chosen categories and loss of information), check the 

assumptions regarding the relationship between input and output variables, and interpret the 

results carefully (odds VS risk) [136]. Nevertheless, we expect to see that our suggested 

probabilistic methodologies that solve data integration problems lead to similar results and 

conclusions when using a logistic model in our study. We consider FCSgroup to be 
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promising, but it should be tested on a larger range of data sets and in simulations to explore 

whether it gives unbiased estimates where there are nontrivial nonlinearities or interactions 

in imputation models. However, if we see the illustration in the lupus data, we need to be 

careful as if the majority of data are captured in very few levels, then the imputation follows 

the observed probability and that means that levels with very few observations may not have 

as many values after imputation as it would be in reality. Therefore, we need to be careful 

when our research interest is about finding out specific things about clustered/subgrouped 

individuals. Thus, inclusion of the extra informative variable in the imputation model 

(FCSgroup) may be useful when researchers are interested in limiting the imputed values to 

levels or ranges and focusing on clustering/subgroups. 

In summary, the results of our comprehensive set of simulation studies show that researchers 

can use probabilistic methods for solving content heterogeneity presented as granularity 

problem when studies are collected from similar cohorts. FCS is one of the most 

recommended methods for multiple imputation in health and biomedical data and we have 

shown that FCS and FCSgroup work reasonably well under artificially introduced 

missingness completely at random for granularity issues in realistically complex data sets. 

FCS and FCSgroup should be further investigated in some extreme case scenarios.  
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Chapter 5:  Mixed numeric and non-numeric data types 

5.1 Introduction 

In Chapters 3 and 4, we focused on two types of content heterogeneity that may exist in 

integrated datasets, systematically missing values and varying granularity. In this chapter 

we address a third type of content heterogeneity, one that arises from representational 

differences of a common variable across different datasets. Similar to previous 

methodological chapters, in this chapter we describe the content heterogeneity problem 

using an example (Section 5.2), and then our generic probabilistic approach to data 

harmonisation (Section 5.3). Subsequently, we evaluate the suggested approach through 

simulation studies (Section 5.4), and we apply and evaluate it to real-world data (Section 

5.5). We finish the chapter with a discussion about utility of the methods on mixed type 

problem, limitations, and future steps for improvement (Section 5.6). 

5.2  Problem identification of mixed numeric and non-numeric data types 

We define content heterogeneity caused by mixed numeric and non-numeric data types 

as the situation where a numerical attribute is represented numerically in some datasets 

and non-numerically (in categories) in other datasets. An example is where participants’ 

age is recorded as a categorical variable with categories ‘0-20’, ‘21-40’, ‘41-60’, ‘>60’ in 

dataset A, and recorded as an integer number in dataset B. In such cases there would be 

uncertainty regarding the specific ages of patients from dataset A, if we try to express 

them as integer numbers (for integration with dataset B). Traditionally, this problem has 

been solved by mapping all values to the least granular data type (in the example the age 

grouping by 20 years). The evidence instance is linked to the age range defined in the 

database by the minimum and the maximum values of the range [137]. This is likely to 

result in severe loss of information as more datasets are integrated.  

 In this chapter, we propose an alternative, probabilistic approach for integrating datasets 

with content heterogeneity caused by mixed numeric and non-numeric data types. 

5.3 Methodology 

As in previous chapters we assume that the variable in question is relevant to a defined 

research question, and which we aim to address using a regression model.  As depicted 

in figure 4.1, we stack the extracted structured data from D1, D2 to Dn in one large 

integrated dataset D0. To address the research question, we select the relevant variables 

from D0 that will be included in the regression model. The problem that we have here is 
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that at least one variable that will be included in the model is represented using different 

data types across D1, …, Dn (figure 5.1 – yellow, orange, purple datasets). 

From a probabilistic point, we have already showed in previous chapters that imperfect 

harmonisation of different data sources is not problematic if we can determine which 

information each of the data sources brings in answering our research question. The tasks 

for handling the third content heterogeneity problem are similar to the theoretical 

solutions that solve systematically missing values and granularity presented in Chapters 

3.3 and 4.3. As in previous chapters we argue that by translating the mixed type problem 

to missing data problem, we can solve it using the common and gold standard FCS 

method. Likewise, we add an informative categorical variable (blue column in figure 5.1) 

that keeps the information to which mixed type variable’s level each individual belongs 

(different shades in blue column in figure 5.1). 

The mixed type variable has both categories and continuous values. The traditional data 

integration approach would be to convert the mixed type to a categorical variable – 

mapping common levels (black box in figure 5.1). But we would like to have the most 

granular data, therefore to change the mixed type variable to continuous. Hence, we 

introduce missingness in the mixed type variable – categorical data are removed (black 

squares in figure 5.1). Therefore, in the integrated dataset we have missing data which we 

impute based on all the available information in D0, excluding (FCS) or including 

(FCSgroup) the categorical informative ‘group’ variable in the imputation model (red 

boxes in figure 5.1).  

Our goal ideally was on the creation of a single, very large table that obtained all the 

information that was described by the stacked tables that we have integrated (figure 5.1 – 

yellow, orange, purple datasets). Moreover, that integrated table had systematically 

missing values in the form of the mixed type content heterogeneity problem. 

5.4 Simulation studies 

In this section, we show various simulation studies’ results designed to evaluate the use 

of our probabilistic methods to solve content heterogeneity in the form of a mixed type 

problem. These simulation studies had similar design, scenarios, and data generating 

mechanisms to simulations presented in chapters 3 and 4. We start with a reminder of the 

simulation design and the scenarios with explicitly showing how they changed to adapt 

to mixed type problem. We begin in Subsection 5.4.1 with the general design of the 

simulation and in 5.4.2 is the description of the performance measures. Then, we continue 
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in other subchapters and investigate what happens with different number of individuals 

(N) per study, number of studies (Dn) and model errors (𝑒𝑖). The number of imputations 

(m) and the number of iterations (it) are set to five (default). All simulation results can be 

found in Appendix C. 

5.4.1 Simulation study design 

Simulation studies followed similar design presented in chapter 4, figure 4.1. 

Simulation’s procedure that shows how the data were integrated, how mixed type variable 

problem was solved through different methods and their comparison is presented in figure 

5.1. 
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Figure 5.1. Simulation’s procedure to show how the data are integrated, how mixed type 

variable problem is solved through different methods and their comparison. 

FCS: Fully Conditional Specification; FCSgroup: FCS including informative ‘group’ 

variable. 

 

As we see in figure 5.1, we followed similar steps with previous chapters’ simulations 

(3.4.1 and 4.4.1). Differences are found in betas used to simulate outcome Y, starting seed 

number and application of content heterogeneity problem. We simulated same continuous 
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variables X1, X2, and categorical X3 and we used similar data generating mechanism as 

in the previous chapter to simulate outcome Y (equation 5.1). We had different betas in 

every chapter, particularly in this one we had: β0 = 1.4938, β1 = - 1.7483, β2 = 0.4255, β3 

= 1.4589, β4 = - 0.9554, β5 = 0.4845. Y is complete, had no missing data and had known 

dependency on X variables.  

𝑌𝑖 = 𝛽0 + 𝛽1 ∗  𝛸1 + 𝛽2 ∗  𝛸2 + 𝛽3 ∗  𝛪(𝛸3 = 𝐵) + 𝛽4 ∗  𝛪(𝛸3 = 𝐶) + 𝛽4 ∗  𝛪(𝛸3 =

𝐷) + 𝑒𝑖           

(5.1) 

After study datasets’ integration in D0, we fit a linear regression model Y ~ X1 + X2 + X3 

to the true Full Data and stored estimates 𝜃 , standard errors 𝑠�̂�(𝜃) and coverage level 

(green box in figure 5.1). Afterwards, we applied the third content heterogeneity problem. 

In D0, there was one numeric representation and multiple other datasets with a categorical 

representation. For example, X2 was a categorical variable (two levels: [min-mean), 

[mean-max]) for individuals from D1 and a continuous variable for individuals from D2.   

Traditional solution 

We solved mixed type problem applying the traditional approach where we kept the least 

common denominator in X2. So, X’2 had two levels [min-mean), [mean-max] in D0. Then, 

we fit a linear regression model: Y ~ X1 + X’2 +X3 in D0, analysed Complete Records and 

stored estimates 𝜃,  standard errors 𝑠�̂�(𝜃) and coverage level (black boxes in figure 5.1). 

Probabilistic solutions  

In D0, we created the categorical informative ‘group’ variable ‘X2group’ that grouped 

individuals in two levels: [min-mean) and [mean-max] based on their X2 values (figure 

5.1 – blue column with different blue shades). Afterwards we introduced data missingness 

due to mixed type problem. For example, for the last 1000 individuals in D0 (individuals 

from D2), we set their X2 values to missing. So, X2 had systematically missing data (black 

squares in figure 5.1) for individuals from D2 and complete continuous data for 

individuals from D1 (colourful squares in the relevant column in figure 5.1). We then 

solved the third content heterogeneity problem by applying the probabilistic approaches 

FCS, and FCSgroup as presented in figures 4.1 and 5.1 using predictive mean matching 

as a method (red boxes in figure 5.1). Afterwards, we fit linear regression models Y ~ X1 

+ X’’2 + X3 after imputations in D0 where X’’2 contains the imputed values. We analysed 

imputed datasets using Rubin’s rules and store estimates 𝜃 , standard errors 𝑠�̂�(𝜃) and 
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coverage level (last two black boxes in figure 5.1). All imputation analyses were 

performed with R package mice freely available on CRAN [98]. We used 0605215 as 

starting seed number to generate a sequence of random numbers. In the next section, we 

present the simulations’ results. 

5.4.2 Performance measures and scenarios 

Similar to previous chapters, across all simulation scenarios, we present the results of the 

analyses with different performance measures in terms of bias, mSE estimated from the 

models, EmpSE (i.e., standard deviation of the simulation estimates) and confidence 

coverage level. A valid method should yield unbiased results, similar model and empirical 

standard errors, and coverage levels close to 95%. In this chapter, our estimand 𝜃 was the 

estimate 𝜃𝑖 of X2 coefficient in each model fit. In tables 5.1 and 5.2 we see ten scenarios 

used to generate data from figure 5.1 for mixed type problem. In each simulation, we have 

data missingness, due to the mixed type problem. For example when missingness was 

applied to X2 from D2, it means that in D2, the numerical variable X2 had been mutated 

to a categorical variable with two levels. 

Table 5.1. Scenarios 1 - 5 used to generate data from Figure 5.1 for content heterogeneity 

type 3. 
 Scenario 1 Scenario 2 Scenario 3 Scenario 4 Scenario 5 

Number of individuals 

per study (N) 

200 1000 200 1000 D1: 200, 

D2:150, 

D3:50, 

D4:75, 

D5:100 

Model error 𝒆𝒊: 

(same for each study) 

N~(0,0.2) 

N~(0,2) 

N~(0,20) 

N~(0,0.2) 

N~(0,2) 

N~(0,20) 

N~(0,0.2) 

N~(0,2) 

N~(0,20) 

N~(0,0.2) 

N~(0,2) 

N~(0,20) 

N~(0,0.2) 

N~(0,2) 

N~(0,20) 

Number of studies (D) 2 2 5 5 5 

Imputations (m) 5 5 5 5 5 

Missingness applied 

to:  

X2 from D2 X2 from D2 X2 from 

D4, D5  

X2 from 

D2, D5 

X2 from 

D4, D5 
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Table 5.2. Scenarios 6 - 10 used to generate data from Figure 5.1 for content 

heterogeneity type 3. 
 Scenario 6 Scenario 7 Scenario 8 Scenario 9 Scenario 

10 

Number of 

individuals per 

study (N) 

D1:800, 

D2:150, 

D3:50, 

D4:75, 

D5:350, 

D6:200, 

D7:150, 

D8:500, 

D9:750, 

D10:100 

100 200 500 1000 

Model error 𝒆𝒊: 

(same for each 

study) 

N~(0,0.2) 

N~(0,2) 

N~(0,20) 

𝑒1: 

N~(0,1.2), 

𝑒2: 

N~(0,1.3) 

𝑒1: 

N~(0,1.2), 

𝑒2: 

N~(0,1.3) 

𝑒1: 

N~(0,1.2), 

𝑒2: 

N~(0,1.3) 

𝑒1: 

N~(0,1.2), 

𝑒2: 

N~(0,1.3) 

Number of studies 

(D) 

10 2 2 2 2 

Imputations (m) 5 5 5 5 5 

Missingness applied 

to:  

X2 from D3, 

D6, D9, D10 

X2 from D2 X2 from D2 X2 from D2 X2 from D2 

 

5.4.3 Results 

Simulations with studies of same sizes (Scenarios 1 - 4) 

Scenario 1 

Here, we simulated data for two studies, each with 200 patients. For each simulated 

dataset, we had data missingness, due to the mixed type problem, to X2 from D2. This 

means that in D2, the numerical variable X2 had been converted to a categorical variable 

with two levels.  In Figure 5.4 we see a graphical representation of the main results. 

Simulation results indicate that FCS and FCSgroup gave unbiased results and good 

coverage of the confidence interval for medium and large model errors whereas coverage 

was around 90% and unbiased estimates when the model error was small. The Complete 

Records approach appeared to be not a good solution to solve the mixed type issue and 

should be avoided. 
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Figure 5.2. Main results from scenario 1’s simulation study: Comparison of Bias, 

Coverage level, mSE and EmpSE for X2 after 1000 simulations with Full Data (red line), 

handling mixed type with Complete Records (black line), FCS (blue line), FCSgroup 

(broken blue line) for three model errors. 

FCS: Fully Conditional Specification; FCSgroup: FCS imputation model included X’2; 

mSE: mean model Standard Error; EmpSE: mean Empirical Standard Error 

 

Scenario 2 

This scenario was like scenario 1 with a difference of 1000 individuals per study. We 

present the simulation results in figure 5.5 with 𝑒𝑖: (N ~ (0, 0.2)), (N ~ (0, 2)), (N ~ (0, 

20)).  Estimates were unbiased for both imputation models when ei: N ~ (0, 0.2). FCS 

had good coverage in comparison with FCSgroup whose coverage is around 90% when 

𝑒𝑖:  N ~ (0, 0.2). For 𝑒𝑖: N ~ (0, 2), both imputation methods had unbiased estimates and 

good coverage. For 𝑒𝑖: N ~ (0, 20), FCS and FCSgroup had good coverage and very good 

estimates. Complete Records seemed to be an incompatible technique and led to large 

biases. 
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Figure 5.3. Main results from scenario 2’s simulation study: Comparison of Bias, 

Coverage level, mSE and EmpSE for X2 after 1000 simulations with Full Data (red line), 

handling mixed type with Complete Records (black line), FCS (blue line), FCSgroup 

(broken blue line) for three model errors. 

FCS: Fully Conditional Specification; FCSgroup: FCS imputation model included X’2; 

mSE: mean model Standard Error; EmpSE: mean Empirical Standard Error 

 

Scenarios 3 – 4 

In scenarios 3-4, we simulated data for five studies, each with the same number of 

individuals per study. In Scenario 3 each study has 200 individuals (so D0 had 1000 

individuals in total) and in scenario 4 each study had 1000 individuals (so D0 has 5000 

individuals in total). For each simulated dataset, we chose two random studies (D4 and D5 

for scenario 3 and D2 and D5 for scenario 4) to apply data missingness due to mixed type 

issue in X2 in D0. We present the simulation results in figures 5.4 and 5.5 for scenarios 3 

and 4 respectively.  In scenarios 3 and 4, analyses of datasets imputed with FCS and 
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FCSgroup models gave great results in terms of bias, precision, and confidence interval 

coverage in any examined model error (figures 5.6 – 5.9).  

 

Figure 5.4. Main results from scenario 3’s simulation study: Comparison of Bias, 

Coverage level, mSE and EmpSE for X2 after 1000 simulations with Full Data (red line), 
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handling mixed type with Complete Records (black line), FCS (blue line), FCSgroup 

(broken blue line) for three model errors. 

FCS: Fully Conditional Specification; FCSgroup: FCS imputation model included X’2; 

mSE: mean model Standard Error; EmpSE: mean Empirical Standard Error 

 

 

Figure 5.5. Main results from scenario 4’s simulation study: Comparison of Bias, 

Coverage level, mSE and EmpSE for X2 after 1000 simulations with Full Data (red line), 

handling mixed type with Complete Records (black line), FCS (blue line), FCSgroup 

(broken blue line) for three model errors. 

FCS: Fully Conditional Specification; FCSgroup: FCS imputation model included X’2; 

mSE: mean model Standard Error; EmpSE: mean Empirical Standard Error 

 

Overall, in all scenarios when applying the Complete Records approach the regression 

estimates were highly biased which led to very large standard errors and great under-

coverage. The results show that FCS and FCSgroup were valid methods to solve mixed 

type problem after data integration. In general, we cannot conclude if FCSgroup 
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performed better than FCS. mSE and EmpSE (figures 5.8 and 5.9) were similar per 

scenario, and they decreased as the integrated dataset’s size increased. We also observe 

that FCSgroup had the closest mSE and EmpSE to Full Data. For all imputation methods 

the larger the integrated dataset, the smaller the bias. 

 

Figure 5.6. Mean bias for X2 for ‘2 datasets, N=200 per dataset’ (D2_N200), ‘5 datasets, 

N=200 per dataset’ (D5_N200), ‘2 datasets, N=1000 per dataset’ (D2_N1000) and ‘5 

datasets, N=1000 per dataset’ (D5_N1000) for the three model errors. 

FCS: Multiple imputation by fully conditional specification; FCSgroup: FCS imputation 

model included X’2. 
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Figure 5.7. Coverage for X2 for ‘2 datasets, N=200 per dataset’ (D2_N200), ‘5 datasets, 

N=200 per dataset’ (D5_N200), ‘2 datasets, N=1000 per dataset’ (D2_N1000) and ‘5 

datasets, N=1000 per dataset’ (D5_N1000) for the three model errors. 

FCS: Multiple imputation by fully conditional specification; FCSgroup: FCS imputation 

model included X’2. 

 

 
Figure 5.8. mSE for X2 for ‘2 datasets, N=200 per dataset’ (D2_N200), ‘5 datasets, 

N=200 per dataset’ (D5_N200), ‘2 datasets, N=1000 per dataset’ (D2_N1000) and ‘5 

datasets, N=1000 per dataset’ (D5_N1000) for the three model errors. 

FCS: Multiple imputation by fully conditional specification; FCSgroup: FCS imputation 

model included X’2; mSE: mean model standard error. 
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Figure 5.9. EmpSE for X2 for ‘2 datasets, N=200 per dataset’ (D2_N200), ‘5 datasets, 

N=200 per dataset’ (D5_N200), ‘2 datasets, N=1000 per dataset’ (D2_N1000) and ‘5 

datasets, N=1000 per dataset’ (D5_N1000) for the three model errors. 

FCS: Multiple imputation by fully conditional specification; FCSgroup: FCS imputation 

model included X’2; EmpSE: mean empirical standard error. 

 

Simulations with studies of different size and same model error per study (scenarios 5-6) 

Scenarios 5 – 6  

In scenario 5, we simulated data for five studies, each with different number of 

individuals (D1:200, D2:150, D3:50, D4:75, D5:100). We chose X2 to have mixed type 

issue and therefore data missingness in two studies (D4 and D5). Simulation results for 

scenario 5 are in figure 5.9. FCS and FCSgroup produced almost identical results with 

true Full Data. FCS had slightly better results than FCSgroup in terms of bias but again 

almost the same. FCSgroup had higher coverage and lower mSE and EmpSE than FCS. 

Both probabilistic models outperformed completely Complete Records which once again 

was not suggested as an integration approach. 

In scenario 6, we simulated data from ten studies, each with different number of 

individuals (D1:800, D2:150, D3:50, D4:75, D5:350, D6: 200, D7:150, D8:500, D9:750, 

D10:100). We decided X2 to have data missingness due to mixed type issue in four studies 

(D3, D6, D9, and D10). Results for scenario 6 are shown in figure 5.10. As in scenario 5, 

FCS and FCSgroup produced identical results with true data. Complete Records produced 

large bias in estimates and under-coverage. 
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Figure 5.10. Main results from scenarios 5’s simulation study: Comparison of Bias, 

Coverage level, mSE and EmpSE for X2 after 1000 simulations with Full Data (red line), 

handling mixed type with Complete Records (black line), FCS (blue line), FCSgroup 

(broken blue line) for three model errors. 

FCS: Fully Conditional Specification; FCSgroup: FCS imputation model included X’2; 

mSE: mean model Standard Error; EmpSE: mean Empirical Standard Error 
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Figure 5.11. Main results from scenario 6’s simulation study: Comparison of Bias, 

Coverage level, mSE and EmpSE for X2 after 1000 simulations with Full Data (red line), 

handling mixed type with Complete Records (black line), FCS (blue line), FCSgroup 

(broken blue line) for three model errors. 

FCS: Fully Conditional Specification; FCSgroup: FCS imputation model included X’2; 

mSE: mean model Standard Error; EmpSE: mean Empirical Standard Error 

 

Overall, both scenarios (figures 5.12 – 5.13) achieved good coverage and no bias for the 

two probabilistic models, FCS and FCSgroup. When we had 10 datasets with different 

sizes both imputation models provided unbiased results and FCSgroup had slightly better 

estimates than FCS. However, in the 5 different size datasets example FCS showed better 

mean estimate than FCSgroup when model errors were small and large. In figures 5.14 

and 5.15 we see mSE and EmpSE for scenarios 5 and 6. We see that as the model error 

increased the mSE and EmpSE increased as well. mSE and EmpSE are similar per 



 

 146 

scenario, and they decreased as the integrated dataset’s size increased. In scenarios 5 and 

6, all probabilistic models outperformed Complete Records. 

 

 

Figure 5.12. Mean bias for X2 for ‘5 datasets, N=different per dataset’ (D5_diffsize), ‘10 

datasets, N=different per dataset’ (D10_diffsize) for the three model errors. 

FCS: Multiple imputation by fully conditional specification; FCSgroup: FCS imputation 

model included X’2. 

 

 

Figure 5.13. Coverage for for X2 for ‘5 datasets, N=different per dataset’ (D5_diffsize), 

‘10 datasets, N=different per dataset’ (D10_diffsize) for the three model errors. 

FCS: Multiple imputation by fully conditional specification; FCSgroup: FCS imputation 

model included X’2. 
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Figure 5.14. mSE for X2 for ‘5 datasets, N=different per dataset’ (D5_diffsize), ‘10 

datasets, N=different per dataset’ (D10_diffsize) for the three model errors. 

FCS: Multiple imputation by fully conditional specification; FCSgroup: FCS imputation 

model included X’2; mSE: mean model standard error. 

 

 

Figure 5.15. EmpSE for X2 for ‘5 datasets, N=different per dataset’ (D5_diffsize), ‘10 

datasets, N=different per dataset’ (D10_diffsize) for the three model errors. 

FCS: Multiple imputation by fully conditional specification; FCSgroup: FCS imputation 

model included X’2; EmpSE: mean empirical standard error. 

 

Simulations with equal size studies, different model error per study (7 - 10) 

Scenarios 7 – 10 
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Here, we again simulated data from two equal size studies but with different model error 

per study. In Scenarios 7-10 each dataset had 100, 200, 500 and 1,000 individuals 

respectively. For each simulated dataset, we applied the mixed type problem to X2 from 

D2. We present the simulation results in figure 5.16. 

 

Figure 5.16. Main results from scenario 7-10’s simulation study: Comparison of Bias, 

Coverage level, mSE and EmpSE for X2 after 1000 simulations with Full Data (red line), 

handling mixed type with Complete Records (black line), FCS (blue line), FCSgroup 

(broken blue line) for three model errors. 

FCS: Fully Conditional Specification; FCSgroup: FCS imputation model included X’2; 

mSE: mean model Standard Error; EmpSE: mean Empirical Standard Error 

 

5.4.1 Summary of findings from simulation studies 
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Bringing all the simulation results together we come to the following conclusions: 

Studies with same model errors 

We observe that FCS and FCSgroup provided unbiased estimates, almost identical with 

true Full Data and they solved mixed type successfully. In all scenarios as the model error 

increased, mSE and EmpSE increase by remaining equal between them.  

Studies with different model errors 

For probabilistic method FCSgroup had good coverage and no bias for the four study 

sizes. FCS’s coverage started with 90% when we had 100 individuals per study and 

slowly reduced as the study size increased.  

Studies of same sizes  

FCS, and FCSgroup’s biases remained negligible, and coverage was very good and there 

was a lot more gain in information compared with a Complete Records analysis.  

Studies of different sizes 

In both scenarios we see great results in FCS and FCSgroup. Simulation’s results show 

that mSE and EmpSE decreased as the study size increased. The same happens with bias. 

Coverage was good in both scenarios, and it does not show any particular difference. 

Size of model error  

Similarly, with chapter 3.4 and 4.4 the smaller the model error per study, the smaller the 

EmpSE and mSE observed. We also observe that as the model error increased, the 

difference between EmpSE and mSE slightly increased. 

Overall 

The probabilistic approaches FCS and FCSgroup are suggested to solve the third type of 

content heterogeneity – mixed type variable. Results indicate a preference in including 

the ‘group’ variable in the imputation model as we have closer to reality mSE and EmpSE. 

In the scenarios tested we did not see a clear difference between FCS and FCSgroup. 

Therefore, more complex scenarios may be needed to test that. Most of the simulations’ 

results come to the conclusion that probabilistic approaches are expected to give close to 

reality results. Our new suggestion about including a categorical informative variable in 

the imputation model seems to help classification but does not outperform FCS in all 



 

 150 

cases. It shows that using the available extra information may help having better 

estimations and well imputed mixed type variables. 

5.5 Application and evaluation – MASTERPLANS exemplar 

Here, we illustrated and evaluated the probabilistic integration approach for the 

imputation of real, rather than simulated data, again comparing the results with those 

obtained using traditional data integration with FCS and FCSgroup.  

5.5.1 Data characteristics and mixed type problem description  

 

To illustrate the developed approaches (Figures 5.1-5.2) we have applied to real-world 

biomedical and health datasets such as the studies in Lupus. For datasets D1, D2, D3, we 

have datasets that contain data from ALMS, LUNAR, and EXPLORER respectively. The 

following analysis used a dataset that included patients in total from all the three studies 

together, with multiple visits per subject. For the measure of response to treatment and 

creatinine levels, in order to limit to one per patient, we kept the value recorded at visit 

that had the least absolute difference from 90 days (3 months). The number of the patients 

were 597 after that filtering. The integrated dataset consists of the following 17 variables: 

gender, age, ethnicity, height, weight, BMI, creatinine, current treatment, and various 

BILAG disease activity scores (Total, Cardiorespiratory, General, Mucocutaneous, 

Musculoskeletal, Neurological, Renal, Vasculitis, and Haematology). Suppose we are 

interested in the effect of BMI to Renal response. For this purpose, we wanted to fit a 

linear regression model with BMI the main interest adjusting for age, ethnicity, creatinine, 

and gender. So, the linear regression model that answers the research question will look 

like equation 5.2.  

𝑅𝑒𝑛𝑎𝑙 𝐵𝐼𝐿𝐴𝐺 𝑆𝑐𝑜𝑟𝑒 =  𝐴𝑔𝑒 +  𝐸𝑡ℎ𝑛𝑖𝑐𝑖𝑡𝑦 +  𝐶𝑟𝑒𝑎𝑡𝑖𝑛𝑖𝑛𝑒 +  𝐺𝑒𝑛𝑑𝑒𝑟 +  𝐵𝑀𝐼     (5.2) 

Table 5.3 gives us a summary of the baseline characteristics for the 597 patients included 

in the final analyses. Since these are well-controlled trials, our dataset had no missing 

values and we were capable to answer the research question (equation 5.2) straight away. 

Patients’ age was obtained as a continuous variable and was complete for all the three 

studies. We consider this to be an advantage because it allowed us to compare the imputed 

data against the true, raw data. Similar idea with the real-world example that Quartagno 

and Carpenter [102] presented in their research paper.  
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Table 5.3. MASTERPLANS’ data characteristics after integrating lupus studies ALMS, 

LUNAR, EXPLORER: mixed type issue. 

 

Data characteristics Integrated 

dataset N = 597 

(%) 

ALMS 

N = 248 

(41.5)  

LUNAR  

N = 138 

(23.1) 

EXPLORER N 

= 211 (35.4) 

Gender (%)     

Female 526 (88.1) 212 (85.5) 124 (89.9) 190 (90.0) 

Male 71 (11.9) 36 (14.5) 14 (10.1) 21 (10.0) 

Age, years     

Mean± SD 34.44 ± 11.52 31.5 ± 

10.48 

30.57 ± 

9.34 

40.42 ± 11.61 

Mix – Max 12.0 – 71.0 12.0 – 

64.0 

17.0 – 56.0 18.0 - 71.0 

Median (IQR) 34.0 (25.0 – 

42.0) 

31.5 (24.0 

– 38.0) 

29.0 (23.0 – 

36.0) 

41.0 (31.5 – 

49.5) 

Ethnicity (%)     

Black or African 

American 

115 (19.3) 26 (10.5) 37 (26.8) 52 (24.6) 

Caucasian 273 (45.7) 108 (43.5) 44 (31.9) 121 (57.3) 

Other 209 (35.0) 114 (46.0) 57 (41.3) 38 (18.1) 

Height, cm     

Mean ± SD 163.0 ± 9.07 161.6 ± 

9.45 

163.1 ± 

8.81 

164.69 ± 8.52 

Min – Max 132.0 – 198.1    132.0 – 

191.0 

143.5 – 

195.6 

141.0 – 198.1 



 

 152 

Median (IQR) 162.5 (157.0 – 

168.0)  

160.0 

(156.0 – 

166.0) 

162.5 

(157.5 – 

167.9) 

163.8 (159.8 – 

170.2) 

Weight, kg     

Mean ± SD 70.15 ± 19.53 63.21 ± 

15.22 

71.06 ± 

16.76 

77.72 ± 22.63 

Min-Max 34.20 – 156.63 34.20 – 

121.10 

41.77 – 

120.31 

42.00 – 156.63 

Median (IQR) 65.65 (55.84 – 

80.54) 

61.10 

(52.50 – 

70.75) 

67.50 

(58.57 – 

82.13) 

74.20(60.72 –

90.26) 

BILAG score (total)     

Mean ± SD 13.68 ± 8.25 17.71 ± 

7.58 

10.33 ± 

7.22 

11.13 ± 7.68 

Min – Max 0.0 – 54.0 1.0 – 54.0 0.0 – 52.0 1.0 – 44.0 

Median (IQR) 13.0 (7.0 – 18.0) 17.0 (13.0 

– 22.0) 

8.50 (5.0 – 

13.75) 

10.0 (1.0 – 15.0) 

BMI, kg/m2     

Mean ± SD 26.28 ± 6.58 24.11 ± 

5.01 

26.64 ± 

5.62 

28.60 ± 7.85 

Min – Max 13.85 – 56.98 13.85 – 

49.13 

16.69 – 

42.65 

16.55 – 56.98 

Median (IQR) 24.69 (21.68 – 

29.41) 

22.96 

(20.57 –

26.71) 

25.16 

(22.52 –

29.77) 

26.81 (23.07 –

33.05) 

Treatment     

Placebo + AZA OR 149 (25.0) 122 (49.2)  27 (12.8) 
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Placebo + MMF OR 

MMF 

220 (36.9) 126 (50.8) 68 (49.3) 26 (12.3) 

Placebo + MTX OR 

MTX 

16 (2.6)   16 (7.6) 

RITUX + AZA 45 (7.5)   45 (21.3) 

RITUX + MMF 127 (21.3)  70 (50.7) 57 (27.0) 

RITUX + MTX 40 (6.7)   40 (19.0) 

Creatinine, mg     

Mean ± SD 0.89 ± 0.44 0.91 ± 

0.53 

0.97 ± 0.52 0.80 ± 0.21 

Min – Max 0.31 – 5.27 0.34 – 

5.27 

0.30 – 3.50 0.40 – 1.70 

Median (IQR) 0.8 (0.63 – 0.97) 0.8 (0.62 – 

1.0) 

0.8 (0.7 – 

1.1) 

0.8 (0.7 – 0.9) 

Cardiorespiratory 

score  

    

Mean ± SD 0.46 ± 1.46 0.36 ± 

1.34 

0.23 ± 1.14 0.74 ± 1.72 

Min – Max 0.0 – 12.0 0.0 – 12.0 0.0 – 12.0 0.0 – 12.0 

Median (IQR) 0.0 (0.0 – 0.0) 0.0 (0.0 – 

0.0) 

0.0 (0.0 – 

0.0) 

0.0 (0.00 – 1.0) 

General score     

Mean ± SD 1.11 ± 1.91 1.05 ± 

2.19 

0.81 ± 1.46 1.37 ± 1.79 

Min – Max 0.0 – 12.0 0.0 – 12.0 0.0 – 12.0 0.0 – 12.0 

Median (IQR) 1.0 (0.0 – 1.0) 0.0 (0.0 – 

1.0) 

1.00 (0.0 – 

1.0) 

1.0 (1.0 – 1.0) 
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Mucocutaneous 

score 

    

Mean ± SD 2.02 ± 2.85 1.72 ± 

2.74 

1.20 ± 1.84 2.89 ± 3.27 

Min – Max 0.0 – 12.0 0.0 – 12.0 0.0 – 5.0 0.0 – 12.0 

Median (IQR) 2.02 (0.0 – 5.0) 0.0 (0.0 –

5.0) 

0.0 (0.0 – 

1.0) 

1.0 (1.0 – 5.0) 

Musculoskeletal 

score 

    

Mean ± SD 1.65 ± 2.83 0.89 ± 

1.75 

0.93 ± 2.29 3.02 ± 3.58 

Min – Max 0.0 –12.0 0.0 – 12.0 0.0 – 12.0 0.0 – 12.0 

Median (IQR) 1.0 (0.0 –1.0) 0.0 (0.0 – 

1.0) 

0.0 (0.0 – 

1.0) 

1.0 (0.0 – 5.0) 

Neurological Score     

Mean ± SD 0.29 ± 1.1 0.07 ± 

0.48 

0.28 ± 0.89 0.56 ± 1.6 

Min – Max 0.0 –12.0 0.0 – 5.0 0.0 – 5.0 0.0 – 12.0 

Median (IQR) 0.0 (0.0 – 0.0) 0.0 (0.0 – 

0.0) 

0.0 (0.0 – 

0.0) 

0.0 (0.0 – 0.0) 

Renal Score      

Mean ± SD 5.84 ± 5.37 11.1 ± 

2.60 

4.68 ± 3.51 0.42 ± 1.7 

Min – Max 0.0 – 12.0 1.0 – 12.0 0.0 – 12.0 0.0 – 12.0 

Median (IQR) 5.0 (0.01 – 2.0) 12.0 (12.0 

–12.0) 

5.0 (1.0 – 

12.0) 

0.0 (0.0 – 0.0) 

Vasculitis Score     
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Mean ± SD 0.59 ± 1.52 0.37 ± 

1.26 

0.44 ± 1.06 0.94 ± 1.95 

Min – Max 0.0 –12.0 0.0 – 12.0 0.0 – 5.0 0.0 – 5.0 

Median (IQR) 0.0 (0.0 –1.0) 0.0 (0.0 – 

0.0) 

0.0 (0.0 – 

1.0) 

0.0 (0.0 – 1.0) 

Haematology Score     

Mean ± SD 1.72 ± 2.24 2.15 ± 

2.61 

1.75 ± 2.28 1.19 ± 1.53 

Min – Max 0.0 – 12.0 0.0 – 12.0 0.0 – 12.0 0.0 – 5.0 

Median (IQR) 1.72 (0.0 – 5.0) 1.0 (0.0 –

5.0) 

1.0 (0.0 – 

5.0) 

1.0 (0.0 – 1.0) 

5.5.2 Probabilistic Data Integration – mixed type problem 

In order to illustrate and evaluate the imputation methods as a tool to answer a research 

question (equation 5.2), after data integration, we sampled with replacement from the 

original data 1000 datasets with the same sample size and in each of these we introduced 

the mixed type problem to Age variable. More specifically about the mixed type problem, 

we chose one of the lupus studies and specifically LUNAR to have Age as a categorical 

variable (‘0-20’, ‘21-40’, ‘41-60’, ‘>60’) and the other two studies, ALMS and 

EXPLORER, to have Age as an integer. Therefore, we had an example of mixed type 

problem for patients in the integrated dataset. We then created a categorical informative 

agegroup variable with four levels ‘0-20’, ‘21-40’, ‘41-60’, ‘>60’ and assigned to 

individuals based on their true age. We then removed patients’ Age records from LUNAR 

study, so data missingness was introduced. We knew patients’ actual age and therefore 

agegroup for ALMS and EXPLORER, but we only knew the agegroup for LUNAR’s 

patients.  

Our goal was to answer our predefined research question (equation 5.2), so we needed to 

apply the suggested probabilistic data integration approaches that take advantage of 

available information. We kept the largest number of levels in Age which was the 

continuous variable. Therefore, in the integrated dataset we had missing data for the Age 

variable and would impute them based on some available information using FCS and 

FCSgroup. In both imputation models the following variables were used as predictors: 
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gender, age, ethnicity, BMI, creatinine, current treatment, BILAG disease activity scores 

(Cardiorespiratory, General, Mucocutaneous, Musculoskeletal, Neurological, Renal, 

Vasculitis, and Haematology). We set seed to 547683. BMI and total BILAG score 

variables in the MASTERPLANS dataset were combinations or recoded versions of other 

data, so were not included in the imputation models [138]. We used predictive mean 

matching as method, a different number of imputations (5, 10, 15, 20), and iteration 

number was set to 10. At the end, we fit linear regression models to the complete datasets 

that resulted from all multiple imputation methods.  

Figures 5.17 and 5.18 show estimate and coverage level for the set of fixed effect Age 

parameter estimate from Full Data analysis and handling missing data with the two 

imputation models, FCS and FCSgroup. Figure 5.17 compares coverage levels for the set 

effect parameter estimated from Full Data analysis, and handling missing data with either 

FCS or FCSgroup. Coverage levels for all imputation methods were close to 95%, 

although on average FCSgroup was better and similar to the true Full Data.  Again, the 

results showed very small bias in estimates for Age in FCS. In particular, estimates from 

FCSgroup were the most unbiased and identical to the true model (Full Data sample). The 

increasing number of imputed datasets indicates that it helped achieving a better coverage 

but with similar estimates. All imputation methods could be used to solve mixed type 

problem and we would have a clear preference in using the agegroup variable in the 

imputation model to achieve close to reality results. Hence, a comparison between the 

imputation strategies is consistent with the results from the simulation studies and 

confirms that FCSgroup specifically performed very similarly in real world data and when 

there was a larger number of variables. Application in real-world data shows a practically 

useful gain in information over Complete Records with multiple imputation using FCS 

and FCSgroup. 
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Figure 5.17. Results of the resampling study with the MASTERPLANS Data: boxplot of 

Age estimate in the linear model. 

FCS: Fully Conditional Specification; FCSgroup: Fully Conditional Specification 

including informative ‘group’ variable. The numbers (5, 10, 15, 20) after the imputation 

method indicate the number of imputations (5, 10, 15, 20) - iterations are fixed to 10. 



 

 158 

 

Figure 5.18. Results of the resampling study with the MASTERPLANS Data: boxplot of 

Age coverage level in the linear model. 

FCS: Fully Conditional Specification; FCSgroup: Fully Conditional Specification 

including informative ‘group’ variable. The numbers (5, 10, 15, 20) after the imputation 

method indicate the number of imputations (5, 10, 15, 20) - iterations are fixed to 10. 

 

Note: We also ran analyses using true SLE data without performing simulations through 

resampling method - only using the initial complete integrated dataset. In Appendix C, 

we can find tables which present coefficients (estimate, standard error, t statistic and p-

values) for linear regression model from equation 5.2 in true data, after applying 

Complete Records analysis, FCS (5 imputations, 10 iterations) and FCSgroup (5 

imputations, 10 iterations) in SLE data. 
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5.6 Discussion 

Summary of main findings  

Here we describe a new probabilistic approach for tackling mixed-type variable problem 

after data integration, from both a theoretical and a practical perspective. Our initial 

assessment revealed very promising results, and we see that our probabilistic method 

offers accurate results, and imputed data values that are close to the real observed data. 

Based on this, we would argue that the mixed type variable problem could be resolved to 

produce homogeneous type variable, without removing information; and multiple 

imputation could provide ‘close to reality’ results that will enable us to answer research 

question(s).  

By default, a harmonised type of a variable could be produced, for example, if age 

captured as a continuous variable in one study is transformed into a categorical variable 

to match other datasets where it was captured as a category [139]. Our simulations using 

artificially and real-world data show that this traditional approach should not be 

recommended as large bias was introduced in the fitted models. Our alternative approach 

relies on probabilistic methodologies. Multiple imputation has also been suggested and 

evaluated as a method for individual patient data meta-analysis in cases of complete 

missing variables and heterogeneity among studies [97], [121]. 

In the simulation studies of methods for handling missing data, in the form of mixed type 

problem after integrating data from different biomedical data sources, most parametric 

imputations produced estimates with no material bias for a linear model in data artificially 

introduced MCAR missingness. FCS and FCSgroup produced unbiased estimates and 

almost 95% confidence intervals in most cases. FCS, in very few cases - where we had 

different model errors between studies - the coverage probability was a bit smaller than 

95% suggesting than confidence intervals may have been conservative. Overall, our 

results suggest that a probabilistic method such as multiple imputation by chained 

equations methods is useful for imputing complex biomedical datasets in which there is 

a mixed type problem in the common after integration and especially for linear regression 

models. Probabilistic approaches have also been suggested and experimentally evaluated 

in real-world data (MASTERPLANS) in previously described problems of content 

heterogeneity i.e., missing variables (Chapter 3) and granularity (Chapter 4) [140]. To our 

knowledge, no published study to date has considered imputation as a method to solve 

data heterogeneity among studies when a variable presented in mixed-type i.e., 
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categorical and integer. In addition, this study suggests an original idea that takes 

advantage of the current traditional solution which includes as a step in the imputation 

models in order to achieve better coefficients. Our goal is to take advantage of the given 

information concerning subgroups and levels in mixed type variables in multiple 

imputation. The suggested probabilistic approaches give mostly valid results across a 

range of model errors and always outperform the traditional data integration approach. 

Imputation method including the extra informative variable (FCSgroup) 

The simulation studies showed that the usage of the extra informative variable in the 

imputation model improved the imputation itself and improved data classification. 

FCSgroup showed accuracy and in most cases outperformed standard FCS. In 

MASTERPLANS exemplar, FCSgroup advantage over FCS was clear. 

Limitations 

Similarly with chapters 3 and 4 this study has advantages, and it is based on an everyday 

problem in data science and statistical analysis. The approaches that we have presented 

here were extensively evaluated and were further applied to real-world datasets. The 

application of probabilistic approaches to solve data integration’s mixed type problem 

comprised a number of critical choices (such as the choice of predictive modelling 

algorithms [141], number of simulated datasets, number of imputations) that requires 

thorough methodological investigation. It also relies on assumptions (such as reasons for 

missingness) that can influence the end result and should therefore be further investigated 

through sensitivity analyses when it is applied in practice. Nonetheless, the suggested 

methods were tested in many different scenarios with artificial data and real-world data 

in which many variables were present and three different cohort studies were integrated.  

Conclusions and further development  

Existing methods for dataset integration lean on mapping to common data models, often 

resulting in a significant loss of information that occurs in the source datasets. Suggested 

traditional solutions that solve mixed numeric and non-numeric data types after data 

integration should be properly evaluated. This study offers the idea how the current 

universally accepted solution may not be the best. Ideally, shared data models would be 

implemented at source, enabling uniform data collection at different sites and studies. But 

data standardisation is always incomplete, and our approach grasps this weakness instead 

of suffocating it. Our data integration solution is based on probabilistic methodologies. 

This chapter included evaluation of the general applicability of the method and compared 
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results of the proposed integration techniques with gold standard results through 

statistical simulation studies. It has also illustrated this approach using a real-world 

example from lupus cohort studies.  In summary, the results of our comprehensive set of 

simulation studies show that researchers can use FCSgroup and FCS, implemented in 

mice R package, for imputation to solve mixed type problem with confidence. They can 

also choose to apply FCS in case the integrated dataset is already very large and 

complicated and if by adding some extra steps and variables in imputation gives big 

delays in data analysis. Finally, our general suggestion is the inclusion of the informative 

variable in the imputation model, especially when computational time allows it, as it 

helped the algorithm achieve better results and estimates, and smaller standard errors. 
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Chapter 6:  Combined types of content heterogeneity 

6.1 Introduction 

In previous chapters we investigated four different types of content heterogeneity 

problems that can occur in integrated datasets. The objective of this chapter is to address 

the combination of content heterogeneity problems. The motivation is that in reality we 

see that content heterogeneity problems often do not present in isolation but appear 

alongside each other when we stack multiple datasets. Therefore, we have to be able to 

address combinations of content heterogeneity problems that co-exist within a single, 

stacked dataset. Here, we focus on combinations of the problem of varying granularity 

(previously addressed in Chapter 4) and the problem of mixed numeric and categorical 

data types (previously addressed in Chapter 5). 

As before we assume that we have multiple study datasets and want to answer research 

question(s) by performing regression analysis on the stacked combination of these study 

datasets. We assume again that the datasets are non-overlapping and that each dataset’s 

observations are independent and identically distributed. Similar to previous chapters, in 

section 6.2) we explore the usage of probabilistic approaches to solve the combination of 

content heterogeneity problems (depicted in Figure 6.1 below), and compare them with 

traditional approaches that use a common data model consisting only of variables that are 

present in all datasets with similar granularity and as the same data type. 

We investigate the combination of the two problems through simulation studies (Section 

6.3) and through application of the method in real-world data (Section 6.4). Finally, we 

reflect on the utility of the methods to address this combination of problems, their 

limitations, and discuss potential further research (Section 6.5). 

6.2  Probabilistic methods to solve combined content heterogeneity types  

Similarly, to previous chapters we assume that the variables in question are relevant to 

the research question that we want to answer. In figure 6.1 we see the main tasks to solve 

two content heterogeneity problems probabilistically. The figure is similar to figure 4.1. 

After data integration, we select variables that will be included in the regression model. 

In the mixed type problem, we assume that there is at least one numeric representation 

and at least one other study with a categorical representation. In the granularity problem, 

we assume that at least one study has less granular categorical representation than the 

other studies. We also assume that the study with less granular categorical representation 
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does not have numeric representation, so data missingness (black squares) due to 

granularity and mixed type are not present in the same study. 

Another difference with figure 4.1 is that due to the parallel existence of both content 

heterogeneity problems, we add one ‘group’ categorical informative variable for each 

problem respectively (figure 6.1 – light blue column for granularity and dark blue column 

for mixed type). Afterwards, to solve data missingness due to combined content 

heterogeneity problems in D0 we apply multiple imputation (figure 6.1 – red arrows). We 

also want to evaluate our idea about the inclusion of ‘group’ variable(s). To evaluate the 

impact of the ‘artificial cluster’ within the imputation model we used four imputation 

models, either excluding or including the ‘group’ variables. It means that they were added 

as predictor(s) in the imputation models. In chapters 4 and 5 we showed that FCS and 

FCSgroup offered very good results. In more detail, in section 4.3, we saw that FCS and 

FCSgroup were almost identical whereas in section 5.3, FCSgroup outperformed FCS in 

some cases. 

Thus, this chapter explores situations where two content heterogeneity probles are solved 

through multiple imputation simultaneously. In order to explore the practical 

consequences of imputation model differences, missing data are imputed using the 

following four imputation models: 

- FCS, multiple imputation by chained equations – both categorical informative 

variables are excluded from imputation models, so they are not used as predictors 

during imputation modelling; 

- FCSgroup, multiple imputation by chained equations - inclusion of relevant 

categorical informative variable in the relevant imputation model. In other words, 

each ‘group’ variable is used as predictor during imputation modelling only for the 

relevant content heterogeneity problem; 

- FCSgroups, multiple imputation by chained equations - inclusion of both categorical 

informative variables in both imputation models. Therefore, both ‘group’ variables 

are used as predictors during imputation modelling for both content heterogeneity 

problems; 

- FCS3group2, multiple imputation by chained equations – FCS imputation model is 

used in solving granularity problem, FCSgroup imputation model is used in solving 

mixed type problem.  

 



 

 164 

 

Figure 6.1. Main tasks of our probabilistic data integration processes to solve combined 

content heterogeneity problems. 

6.3 Simulation studies 

The methods proposed in section 6.2 suggest that using multiple imputation procedures 

and including/excluding categorical informative variables. We therefore conducted 

simulation studies aiming to explore and compare the performance of methods in a 

probabilistic procedure to solve combined types of content heterogeneity and explore 

whether the inclusion of ‘group’ variables improved imputation models. As mentioned in 

chapter 3.4.3, all performance measures were calculated between the estimates 

coefficients of each (probabilistic/traditional) integration model and the generating 

coefficients and then averaged across iterations. In this chapter, estimand 𝜃 was the 

estimate 𝜃𝑖 of X2 and X3 coefficients in each model fit. 

6.3.1 Simulation design and scenarios 

The process of data simulation was similar to previous chapters, except for the simulation 

data that introduced content heterogeneities, betas used for generating outcome variable 

and starting seed number. We chose 240621 as a starting seed in the random number 

generator. We see a pictorial representation of the simulation procedure for the combined 

problems in figure 6.3. We simulated, two continuous variables with normal distribution 
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X1, X2, and one categorical X3 with four levels (‘A’, ‘B’, ‘C’, ‘D’) as in previous chapters. 

We used the same data generating mechanism as in chapters 3 to 5 (equations 3.1, 4.1,5.1) 

to simulate outcome Y but with different betas than previous chapters. In particular, we 

have β0 = 1.4883, β1 = -1.7553, β2 = 0.4236, β3 = 1.4656, β4 = -0.9567, β5 = 0.4977. Y 

was complete, had no missing data and had known dependency on X variables. After 

joining the study datasets and fitting a linear regression model (true Full Data) to the 

combined dataset D0: 

1) We introduced content heterogeneity as mixed type problem as follows. We 

replaced X2 with two levels LOW and HIGH to D0 for some individuals, when X2<T, 

then X2 = LOW, and X2 = HIGH otherwise, for a given threshold T. In this case, T 

was mean value. For example, for the last 1000 individuals in D0 (i.e., the 

individuals from dataset D2), we set X2 to missing. Now, X2 had systematically 

(MCAR) missing values for observations from D2 but X’2 had values across the 

entire combined dataset. It corresponds to the situation that we would have in 

practice, because the categorical values can always be derived from the numeric 

values but not vice versa. 

2) We added a categorical informative variable X’2  in D0 with two levels LOW and 

HIGH, where X’2=LOW when X2<T, and X’2=HIGH otherwise, for a given threshold 

T. In this case, T was mean value. 

3) We added content heterogeneity as granularity as follows. We replaced values in 

X3 for a specific study, in D0. For example, the first 1000 individuals in D0 (i.e., 

the individuals from dataset D1), whenever X3 was equal to ‘A’ or ‘B’, we replaced 

it by a new value, ‘AB’. Thus, the levels in X3 were inconsistent across D0 and 

therefore granularity problem was introduced. In particular, the first 1000 

individuals in D0 (individuals from D1) had the following values in X3: ‘AB’, ‘C’, 

‘D’ and the last 1000 individuals in D0 (individuals from D2) had the following 

values in X3: ‘A’, ‘B’, ‘C’, ‘D’.  

4) We added a categorical informative variable X’3 in D0 with two levels ‘0’, ‘1’, 

‘2’, where X’3 = ‘0’ when X3 = ‘A’ or X3 =  ‘B’ or X3 = ‘AB’, X’3 =‘1’ when X3 = 

‘C’ and X’3 =‘1’ when X3 = ‘D’. 

Afterwards, as we see in figures 6.1 - 6.2 we analysed 1,000 simulated datasets, solving 

missingness using the traditional data integration approach (Complete Records), and 

probabilistic approaches i.e., parametric FCS (excluded X’2 and X’3 as predictors from 

imputation), FCSgroup (FCS included as predictor X’2 when imputed X2 and included 

X’3 as predictor when imputed X3), FCSgroups (included both X’2 and X’3 as predictors 
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when imputed X2 and X3) and FCS2group3 (excluded X’2 as predictor when imputed X2 

and included X’3 as predictor when imputed X3). In all of the examined scenarios (tables 

6.1 and 6.2), missing data were present in X2 and X3. In every case, the analysis model 

was the linear regression model (Y ~ X1 + X2 + X3). We imputed continuous variable X2 

applying FCS, FCSgroup, FCSgroups with predictive mean matching (pmm) technique. 

We imputed categorical variable X3 applying FCS, FCSgroup, and FCSgroups with 

unordered data by polytomous regression (polyreg) technique. We used 240621 as 

starting seed number to generate sequences of random numbers. Regardless of the 

imputation model, all complete datasets were analysed using the same multivariable 

linear regression model Y ~ X1 + X2’’ +X3’’ where X2’’ and X3’’ were the imputed data. 

The data were imputed either with m =5 or 10 times and it= 5 or 10 iterations of the 

chained equations algorithms. All imputation analyses have been performed with R 

package mice freely available on CRAN [98]. 
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Figure 6.2. Combined content heterogeneity problems’ simulation procedure: A pictorial 

representation of the simulation procedure for the combined content hterogeneoty problems. 
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Figure 6.3. The flow diagram for the simulation process to solve granularity and mixed type 

problems  after structured data integration in healthcare. 

 

During different simulation scenarios (Tables 6.1 and 6.2), we investigated how the different 

level of model errors (small-medium-large) per study affects the parameter estimates. We 

also investigated how the number of imputed datasets, the number of iterations (when 

needed), number of individuals and different model error per study affected FCS, FCSgroup, 

FCSgroups and FCS2group3.  
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Table 6.1. Scenarios 1 - 5 used to generate data from Figure 6.2. 

 Scenario 

1 

Scenario 

2 

Scenario 3 Scenario 4 Scenario 

5 

Number of individuals 

per study (N) 

200 1000 200 1000 D1: 200, 

D2:150, 

D3:50, 

D4:75, 

D5:100 

Model error 𝒆𝒊: 

(same for each study) 

N~(0,0.2) 

N~(0,2) 

N~(0,20) 

N~(0,0.2) 

N~(0,2) 

N~(0,20) 

N~(0,0.2) 

N~(0,2) 

N~(0,20) 

N~(0,0.2) 

N~(0,2) 

N~(0,20) 

N~(0,0.2) 

N~(0,2) 

N~(0,20) 

Number of studies (D) 2 2 5 5 5 

Imputations (m) 10 10 5 5 5 

Iterations (it) 10 10 5 5 5 

Missingness applied to:  X2 from 

D2 

X3 from 

D1 

X2 from 

D2 

X3 from 

D1 

X2 from D1, 

D4 

X3 from D2, 

D5 

X2 from D1, 

D4 

X3 from D2, 

D5 

X2 from 

D5 

X3 from 

D4 

 

Table 6.2. Scenarios 6 - 10 used to generate data from Figure 6.2. 

 Scenario 

6 

Scenario 7 Scenario 8 Scenario 9 Scenario 

10 

Number of individuals 

per study (N) 

D1:800, 

D2:150, 

D3:50, 

D4:75, 

D5:350, 

D6:200, 

D7:150, 

D8:500, 

D9:750, 

D10:100 

100 200 500 1000 

Model error 𝒆𝒊: 

(same for each study) 

N~(0,0.2) 

N~(0,2) 

N~(0,20) 

𝑒1: 

N~(0,1.2), 

𝑒2: 

N~(0,1.3) 

𝑒1: 

N~(0,1.2), 

𝑒2: 

N~(0,1.3) 

𝑒1: 

N~(0,1.2), 

𝑒2: 

N~(0,1.3) 

𝑒1: 

N~(0,1.2), 

𝑒2: 

N~(0,1.3) 

Number of studies (D) 10 2 2 2 2 
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Imputations (m) 5 10 10 10 10 

Iterations (it) 5 10 10 10 10 

Missingness applied to:  X2 from 

D3, D9 

X3 from 

D6, D10 

X2 from D1 

X3 from D2 

X2 from D1 

X3 from D2 

X2 from D1 

X3 from D2 

X2 from D1 

X3 from D2 

 

6.3.2 Results 

 

In this section we present the results of the series of simulation studies designed to evaluate 

the use of different multiple imputation models. Similarly with the previous experimental 

chapters we performed scenarios, similar analyses, and results assessment. The data were 

analysed before content heterogeneities’ application as a benchmark for the multiple 

imputation procedure, and after mapping to common levels using complete case analysis 

(Complete Records). After imputation, the estimates were combined using Rubin’s rules. As 

in previous chapter, the performance of each method was assessed by computing the 

empirical mean of the parameter estimates, root mean square estimated standard error 

(mSE), empirical Monte Carlo standard error (EmpSE), and the coverage of nominal 95% 

confidence intervals (Cov).  

All imputation models included most variables (mentioned in section 6.2) in the analysis 

model as predictors. Hence, the imputation methods were considered very compatible with 

the analysis model. Concerning graphical representation of results, we are aware that ideally 

the information included in figures 6.4 to 6.18 could also include regression estimates and 

performance measures for all X3’s categories. Therefore, in order to provide the reader with 

a more gentle introduction to the main findings of the study, we decided to include a 

graphical representation of the main results and focus on X2 and X3=B. Appendix D provides 

all the results obtained from simulation studies for all scenarios in tables, and the comparing 

method complete case analysis. They also include results for some additional cases of 

scenarios that had fewer number of imputations and iterations. 

Simulations with studies of same sizes (Scenarios 1 - 4) 

Scenario 1 

In this scenario, we simulated data from two studies, each with 200 individuals. For each 

simulated dataset, we applied mixed type problem in X2 (missingness in D2) and granularity 

problem in X3 (missingness in D1). We present the simulation results in figure 6.4 with 𝑒𝑖: 
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(N ~ (0, 0.2)), (N ~ (0, 2)), (N ~ (0, 20)) respectively. We show results when multiple 

imputation models had 10 imputations and 10 iterations each. Analyses of datasets imputed 

gave very good results both in terms of bias (figure 6.4), precision (figures 6.10 and 6.11) 

and confidence interval coverage (figure 6.4). When simulating model error 𝑒𝑖: N ~ (0, 0.2), 

X3 estimates were biased for FCS which resulted in low coverage. FCSgroups may have 

needed more imputations and iterations to achieve better convergence, when simulating 

model error 𝑒𝑖: N ~ (0, 20) in X2. In general, FCSgroup and FCSgroups and FCS3group2 

were almost compatible models with Full Data. Almost all imputation models offered really 

close to reality results and better estimates than Complete Records. 

 

Figure 6.4. Main results from scenario 1’s simulation study: Comparison of Bias and 

Coverage level, for X3=B and X2 after 1000 simulations with true Full Data (red line), 

handling granularity and mixed type with FCS (black line), FCSgroup (blue line), 

FCSgroups (broken blue line) and FCS3group2 (green line), for three model errors. 

FCS: both imputation models excluded categorical informative variables X’2 and X’3; 

FCSgroup: imputation model for X2 included X’2 and imputation model for X3 included X’3; 
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FCSgroups: both imputation models included X’2 and X’3; FCS3group2: X2 was imputed 

with FCSgroup and X3 was imputed with FCS; D: number of studies; m: imputed datasets; 

it: iterations. 

 

Scenario 2 

This scenario is like scenario 1 with a difference of 1000 individuals per study. We present 

the simulation results in figure 6.5 with 𝑒𝑖: (N ~ (0, 0.2)), (N ~ (0, 2)), (N ~ (0, 20)) 

respectively. Like scenario 1, FCS gives biased results when model error is 𝑒𝑖: N ~ (0, 0.2). 

𝑒𝑖: N ~ (0, 2). It leads to biased X3 estimates and low coverage. FCSgroup and FCSgroups 

provided the most accurate estimates (FCS3group2 followed) and should be chosen as the 

preferred methods. 

 

Figure 6.5. Main results from scenario 2’s simulation study: Comparison of Bias and 

Coverage level, for X3=B and X2 after 1000 simulations with true Full Data (red line), 
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handling granularity and mixed type with FCS (black line), FCSgroup (blue line), 

FCSgroups (broken blue line) and FCS3group2 (green line), for three model errors. 

FCS: both imputation models excluded categorical informative variables X’2 and X’3; 

FCSgroup: imputation model for X2 included X’2 and imputation model for X3 included X’3; 

FCSgroups: both imputation models included X’2 and X’3; FCS3group2: X2 was imputed 

with FCSgroup and X3 was imputed with FCS; D: number of studies; m: imputed datasets; 

it: iterations. 

 

Scenarios 3 – 4 

In scenarios 3 - 4, we simulated data for five studies, each with the same number of 

individuals per study. In Scenario 3 each study had 200 individuals (so D0 had 1000 

individuals) and in scenario 4 each study had 1000 individuals (so D0 had 5000 individuals). 

For each simulated dataset, we chose two random studies (D4 and D5 for scenario 3 and D2 

and D5 for scenario 4) to apply the mixed type issue in X2 in D0. We present the simulation 

results in figures 6.6 and 6.7.  In scenario 3, all imputation models gave very good results in 

terms of bias (figure 6.6), precision (figures 6.10, 6.11), and confidence interval coverage 

(figure 6). The integration of more same size studies showed that it helped imputation 

models gain more information and performed better. Similarly, in scenario 4, all imputation 

models performed very well so the mean estimates were very close to true Full Data. 

FCSgroup and FCSgroups gave the most accurate results in all model errors checked. Using 

FCS when imputing categorical X3 showed worse estimates than using FCSgroup and 

FCSgroups. So, including ‘group’ variable(s) helped imputation model’s accuracy.  
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Figure 6.6. Main results from scenario 3’s simulation study: Comparison of Bias and 

Coverage level, for X3=B and X2 after 1000 simulations with true Full Data (red line), 

handling granularity and mixed type with FCS (black line), FCSgroup (blue line), 

FCSgroups (broken blue line) and FCS3group2 (green line), for three model errors. 

FCS: both imputation models excluded categorical informative variables X’2 and X’3; 

FCSgroup: imputation model for X2 included X’2 and imputation model for X3 included X’3; 

FCSgroups: both imputation models included X’2 and X’3; FCS3group2: X2 was imputed 

with FCSgroup and X3 was imputed with FCS; D: number of studies; m: imputed datasets; 

it: iterations. 
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Figure 6.7. Main results from scenario 4’s simulation study: Comparison of Bias and 

Coverage level, for X3=B and X2 after 1000 simulations with true Full Data (red line), 

handling granularity and mixed type with FCS (black line), FCSgroup (blue line), 

FCSgroups (broken blue line) and FCS3group2 (green line), for three model errors. 

FCS: both imputation models excluded categorical informative variables X’2 and X’3; 

FCSgroup: imputation model for X2 included X’2 and imputation model for X3 included X’3; 

FCSgroups: both imputation models included X’2 and X’3; FCS3group2: X2 was imputed 

with FCSgroup and X3 was imputed with FCS; D: number of studies; m: imputed datasets; 

it: iterations. 

 

Overall, in all scenarios imputation methods produced accurate results (figure 6.8). As 

model error increased, mSE and EmpSE increased as well. mSE and EmpSE (figures 6.10 

and 6.11) were almost identical per scenario and per imputation model, and they also 

decreased as the integrated dataset’s size increased. In all four scenarios, when applying the 

Complete Records approach, the results were highly biased, resulting in large standard errors 

and under-coverage. 
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X2 

 

X3=B 

 

Figure 6.8. Bias for X2 and X3=B for ‘2 datasets, N=200 per dataset’ (D2_N200), ‘5 datasets, 

N=200 per dataset’ (D5_N200), ‘2 datasets, N=1000 per dataset’ (D2_N1000) and ‘5 

datasets, N=1000 per dataset’ (D5_N1000) for the three model errors. 

FCS: both imputation models excluded categorical informative variables X’2 and X’3; 

FCSgroup: imputation model for X2 included X’2 and imputation model for X3 included X’3; 

FCSgroups: both imputation models included X’2 and X’3; FCS3group2: X2 was imputed 

with FCSgroup and X3 was imputed with FCS; D: number of studies; m: imputed datasets; 

it: iterations. 

 

 

 

 

X2 
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X3=B 

 

Figure 6.9. Coverage for X2 and X3=B for ‘2 datasets, N=200 per dataset’ (D2_N200), ‘5 

datasets, N=200 per dataset’ (D5_N200), ‘2 datasets, N=1000 per dataset’ (D2_N1000) and 

‘5 datasets, N=1000 per dataset’ (D5_N1000) for the three model errors.  

FCS: both imputation models excluded categorical informative variables X’2 and X’3; 

FCSgroup: imputation model for X2 included X’2 and imputation model for X3 included X’3; 

FCSgroups: both imputation models included X’2 and X’3; FCS3group2: X2 was imputed 

with FCSgroup and X3 was imputed with FCS; D: number of studies; m: imputed datasets; 

it: iterations. 

 

X2 

 

X3=B 
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Figure 6.10. mSE for X2 and X3=B for ‘2 datasets, N=200 per dataset’ (D2_N200), ‘5 

datasets, N=200 per dataset’ (D5_N200), ‘2 datasets, N=1000 per dataset’ (D2_N1000) and 

‘5 datasets, N=1000 per dataset’ (D5_N1000) for the three model errors. 

FCS: both imputation models excluded categorical informative variables X’2 and X’3; 

FCSgroup: imputation model for X2 included X’2 and imputation model for X3 included X’3; 

FCSgroups: both imputation models included X’2 and X’3; FCS3group2: X2 was imputed 

with FCSgroup and X3 was imputed with FCS; mSE:mean model standard error. 
 

X2 

 

X3=B 
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Figure 6.11. EmpSE for for X2 and X3=B for ‘2 datasets, N=200 per dataset’ (D2_N200), ‘5 

datasets, N=200 per dataset’ (D5_N200), ‘2 datasets, N=1000 per dataset’ (D2_N1000) and 

‘5 datasets, N=1000 per dataset’ (D5_N1000) for the three model errors. 

FCS: both imputation models excluded categorical informative variables X’2 and X’3; 

FCSgroup: imputation model for X2 included X’2 and imputation model for X3 included X’3; 

FCSgroups: both imputation models included X’2 and X’3; FCS3group2: X2 was imputed 

with FCSgroup and X3 was imputed with FCS; EmpSE: mean empirical standard error. 

 

Simulations with studies of different size and same model error per study (Scenarios 5 - 6) 

Scenario 5 

We simulate data for five studies, each with different number of individuals (D1:200, 

D2:150, D3:50, D4:75, D5:100). X3 had missing values in study D4 and X2 had missing values 

in study D5. See results in figure 6.12.  All imputation models offered similar results when 

the model error was either 𝑒𝑖: N ~ (0, 0.2) or 𝑒𝑖: N ~ (0, 2). When the model error was 𝑒𝑖: N 

~ (0, 20)), mSE and EmpSE increased but without introducing bias. 
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Figure 6.12. Main results from scenario 5’s simulation study: Comparison of Bias and 

Coverage level, for X3=B and X2 after 1000 simulations with true Full Data (red line), 

handling granularity and mixed type with FCS (black line), FCSgroup (blue line), 

FCSgroups (broken blue line) and FCS3group2 (green line), for three model errors. 

FCS: both imputation models excluded categorical informative variables X’2 and X’3; 

FCSgroup: imputation model for X2 included X’2 and imputation model for X3 included X’3; 

FCSgroups: both imputation models included X’2 and X’3; FCS3group2: X2 was imputed 

with FCSgroup and X3 was imputed with FCS; D: number of studies; m: imputed datasets; 

it: iterations. 

 

Scenario 6 

We simulate data from ten studies, each with different number of individuals (D1:800, 

D2:150, D3:50, D4:75, D5:350, D6:200, D7:150, D8:500, D9:750, D10:100). There were 

missing data in X3 in studies D6 and D10, due to granularity problem, and missing data in X2 

in studies D3 and D9 , due to mixed type problem. Results for this scenario are shown in 

figure 6.13. Compared to scenario 5, estimates from imputation models were closer to the 

true Full Data model and that led mSE and EmpSe be also smaller. Coverage levels were 

around 92-95%. 
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Figure 6.13. Main results from scenario 6’s simulation study: Comparison of Bias and 

Coverage level, for X3=B and X2 after 1000 simulations with true Full Data (red line), 

handling granularity and mixed type with FCS (black line), FCSgroup (blue line), 

FCSgroups (broken blue line) and FCS3group2 (green line), for three model errors. 

FCS: both imputation models excluded categorical informative variables X’2 and X’3; 

FCSgroup: imputation model for X2 included X’2 and imputation model for X3 included X’3; 

FCSgroups: both imputation models included X’2 and X’3; FCS3group2: X2 was imputed 

with FCSgroup and X3 was imputed with FCS; D: number of studies; m: imputed datasets; 

it: iterations. 

 

Overall, we can see a comparison of bias, coverage level, mSE and EmpSE for both 

scenarios for the three model errors in figures 6.14 to 6.17 respectively. Bias decreased when 

integrated dataset had more individuals - scenario 6 (figure 6.14). Model error affected 

estimations’ accuracy. When outcome Y had a big range (𝑒𝑖: N ~ (0, 20)), missing data’s 

estimates were getting slightly worse. FCSgroup and FCSgroups had better estimates than 

FCS and FCS3group2 but again all imputation methods were unbiased. mSE and EmpSE 
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are similar per scenario, they decreased as the integrated dataset’s size increased. In 

scenarios 5 and 6, all probabilistic models outperform Complete Records. 

X2 

 

X3=B 

 

Figure 6.14. Bias for X2 and X3=B for ‘5 datasets, N=different per dataset’ (D5_diffsize), ‘10 

datasets, N=different per dataset’ (D10_diffsize) for the three model errors. 

FCS: both imputation models excluded categorical informative variables X’2 and X’3; 

FCSgroup: imputation model for X2 included X’2 and imputation model for X3 included X’3; 

FCSgroups: both imputation models included X’2 and X’3; FCS3group2: X2 was imputed 

with FCSgroup and X3 was imputed with FCS. 
 

X2 
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X3=B 

 

Figure 6.15. Coverage for X2 and X3=B for ‘5 datasets, N=different per dataset’ 

(D5_diffsize), ‘10 datasets, N=different per dataset’ (D10_diffsize) for the three model 

errors. 

FCS: both imputation models excluded categorical informative variables X’2 and X’3; 

FCSgroup: imputation model for X2 included X’2 and imputation model for X3 included X’3; 

FCSgroups: both imputation models included X’2 and X’3; FCS3group2: X2 was imputed 

with FCSgroup and X3 was imputed with FCS. 
 

X2 
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X3=B 

 

Figure 6.16. mSE for X2 and X3=B for ‘5 datasets, N=different per dataset’ (D5_diffsize), 

‘10 datasets, N=different per dataset’ (D10_diffsize) for the three model errors. 

FCS: both imputation models excluded categorical informative variables X’2 and X’3; 

FCSgroup: imputation model for X2 included X’2 and imputation model for X3 included X’3; 

FCSgroups: both imputation models included X’2 and X’3; FCS3group2: X2 was imputed 

with FCSgroup and X3 was imputed with FCS; mSE: mean model standard error. 

 

X2 
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X3=B 

 

Figure 6.17. EmpSE for X2 and X3=B   for ‘5 datasets, N=different per dataset’ (D5_diffsize), 

‘10 datasets, N=different per dataset’ (D10_diffsize) for the three model errors. 

FCS: both imputation models excluded categorical informative variables X’2 and X’3; 

FCSgroup: imputation model for X2 included X’2 and imputation model for X3 included X’3; 

FCSgroups: both imputation models included X’2 and X’3; FCS3group2: X2 was imputed 

with FCS and X3 was imputed with FCS; EmpSE: mean empirical standard error. 

 

Simulations with equal size studies, different model error per study (7 - 10) 

Scenarios 7 – 10 

We simulated data from two equal size studies but with different model error per study and 

different number of individuals per scenario. In Scenarios 7-10 each study had 100, 200, 500 

and 1,000 individuals respectively. We present results for 10 imputations 10 iterations. 
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Simulations results improved a lot and achieved better convergence when we increased the 

number of imputations and iterations from 5 to 10 (check tables D.29-D.32 in Appendix D). 

For each simulated dataset, we applied the mixed type problem to X2 (data missingness in 

D2) and granularity problem to X3 (data missingness in D1). We present the simulation results 

in figure 5.18. Results showed that FCS produced biased estimates and under-coverage of 

the confidence interval. FCSgroup and FCSgroups showed no bias and very good coverage 

levels, almost identical with true model’s, in all the examined size studies. FCSgroup, 

FCSgroups and FCS3group2 outperformed Complete Records which was not suggested as 

a data integration solution on this case either. FCS did not perform well and should not be 

chosen to solve both content heterogeneity problems as indicated scenarios 8 to 10.  

 

Figure 6.18. Main results from scenario 7-10’s simulation study: Comparison of Bias and 

Coverage level, for X3=B and X2 after 1000 simulations with true Full Data (red line), 

handling granularity and mixed type with FCS (black line), FCSgroup (blue line), 

FCSgroups (broken blue line) and FCS3group2 (green line), for three model errors. 
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FCS: both imputation models excluded categorical informative variables X’2 and X’3; 

FCSgroup: imputation model for X2 included X’2 and imputation model for X3 included X’3; 

FCSgroups: both imputation models included X’2 and X’3; FCS3group2: X2 was imputed 

with FCSgroup and X3 was imputed with FCS; D: number of studies; m: imputed datasets; 

it: iterations. 

 

6.3.3 Summary of findings from simulation studies 

In this section we summarise briefly the main points from simulation studies with combined 

heterogeneity types of problems. 

Studies with the same model errors 

We observe that FCSgroup and FCSgroups provided unbiased estimates, almost identical 

with true Full Data and they solved mixed type and granularity successfully. In all scenarios 

as the model error increased, mSE and EmpSE increased by remaining equal between them.  

Studies with different model errors 

Smaller datasets provide worse estimates probably because of smaller data sample. 

FCSgroup and FCSgroups had good coverage and standard errors were close to reference 

model’s (Full Data). FCS should not be the preferred imputation model. We had to increase 

the number of imputations and iterations to 10 to explore if estimates would have been 

improved. Therefore, we may conclude that if the number of imputations and iterations is 

larger, it achieves better convergence.  

Studies of same sizes 

In all scenarios, FCSgroup and FCSgroups were compatible models with Full Data. 

FCS3group2’s showed slightly biased estimates in X3 which makses sense as X3 was 

imputed with FCS. Imputation model FCS produced biased results in some cases was similar 

– probably due to data misclassification. However, for both scenarios 1 and 2 we had to 

increase the number of imputations and iterations from 5 to 10 and estimates improved 

significantly afterwards. In scenarios 2 and 4, where we had 5 studies integrated into one, 

regression estimates were unbiased and there was no need to increase the number of imputed 

datasetes. Therefore, when the integrated dataset consisted of two datasets, more than 5 

imputations and iterations were needed to achieve unbiased results and good coverage. In 

general, FCSgroup, and FCSgroups’ biases remained negligible, and coverage was very 

good and there was a lot more gain in information compared with a Complete Records 

analysis. 

Studies of different sizes 
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In both scenarios, we have good coverage and there is either no bias or small (FCSgroup, 

D5_diffsize, large model error). When we have 10 datasets with different sizes both 

imputation models provided unbiased results and FCSgroup had slightly better estimates 

than FCS. However, in the 5 different size datasets example FCS shows better mean estimate 

than FCSgroup when model errors are small and large. Additionally, mSE and EmpSE 

decreased as the study size increased, the same happened to bias. 

Size of the model error 

The larger the model error per study, the larger mSE and EmpSE which made sense as all 

imptuation methods followed Full Data standard errors. When outcome Y had a big range 

(𝑒𝑖: N ~ (0, 20)), missing data’s estimates were getting slightly worse.  

Size of studies 

In cases with the same model error per study, we observed that the larger the dataset the 

better the estimates. On the contrary, in cases with different model error per study, estimates 

were getting worse with the increase of study size. A reason could be that data missingness 

was higher (only two datasets were integrated). mSE and EmpSE had same pattern in all 

scenarios, they decreased as the integrated dataset’s size increased. 

Number of imputations and iterations 

In scenarios where we had two integrated study datasets (scenarios: 1, 2, 7-10), we increased 

the number of imputations to investigate if it would help the imputation algorithms perform 

better. They indeed improved a lot and provided very good results in most cases. In the FCS 

case and specifically in scenarios 7-10, the algorithm improved but not in the level to achieve 

unbiased and accepted results. Imputations for all scenarios with 5 imputations and 5 

iterations are in Appendix D. All results for scenarios described in tables 6.1 and 6.2 are also 

available in Appendix D. Imputations and iterations’ number should be larger when we have 

two datasets that each one has one content heterogeneity problem and therefore both studies 

have missing data.  

Overall 

In FCS, as the model error’s variance increases there was underestimations for categorical 

X3 and overestimation of refression coefficient for continuous X2. We could say that large 

variances of the measured outcome Y would have large estimated values for the variance of 

the missing covariates. Our new suggestion about including categorical informative 

variable(s) in the imputation model(s) seems to help classification and it outperformed 

default FCS in many cases. Furthermore, as we discussed in chapter 5, FCS and FCSgroup 
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gave similar unbiased results with good coverage. We wanted to explore it more and for that 

reason, we introduced FCS3group2, to detect a difference between FCS and FCSgroup in 

mixed type problem when combined with granularity. Based on our parametric simulation 

studies we could conclude in FCSgroup’s superiority above FCS in complex situations. 

The probabilistic approaches FCSgroup and FCSgroups are suggested to solve coexisting 

content heterogeneity problems in an integrated dataset, i.e. granularity and mixed type 

problematic variables. Likewise, results show that using the available extra information may 

help having better estimations while solving both content hterogeneities. 

 

6.4 Application – MASTERPLANS exemplar  

As we did in the previous experimental chapters, in this section we illustrated the application 

of probabilistic approaches to solve content heterogeneity problems after integrating real-

world data. We also compared traditional and probabilistic data integration in combined 

content heterogeneity problems.  

6.4.1 Data characteristics and combined types of content heterogeneity 

 

To illustrate the developed approaches (Figures 6.1 and 6.2), we integrated health data in 

order to answer a biomedical research question about SLE. For datasets D1, D2, D3, we had 

datasets that contained data from ALMS, LUNAR, and EXPLORER respectively. The 

integrated dataset D0 consisted of the following 17 variables: gender, age, ethnicity, height, 

weight, BMI, creatinine, current treatment, and various BILAG disease activity scores 

(Total, Cardiorespiratory, General, Mucocutaneous, Musculoskeletal, Neurological, Renal, 

Vasculitis, and Haematology). For the measure of response to treatment and creatinine 

levels, in order to limit to one per patient, we kept the value recorded at visit that had the 

least absolute difference from 90 days (3 months). The number of the patients were 597 after 

that filtering. Our aim was to construct a model predicting ‘Renal response’ using BMI and 

4 other variables: age, ethnicity, creatinine, and gender (equation 6.1). For variables’ 

summary and patients’ baseline characteristics, we advise the reader to check Table 5.3, in 

section 5.5. 

𝑅𝑒𝑛𝑎𝑙 𝐵𝐼𝐿𝐴𝐺 𝑆𝑐𝑜𝑟𝑒 =  𝐴𝑔𝑒 +  𝐸𝑡ℎ𝑛𝑖𝑐𝑖𝑡𝑦 +  𝐶𝑟𝑒𝑎𝑡𝑖𝑛𝑖𝑛𝑒 +  𝐺𝑒𝑛𝑑𝑒𝑟 +  𝐵𝑀𝐼         (6.1) 

In order to ask the research question shown in equation 6.1,  we introduced two content 

heterogeneity problems to illustrate the probabilistic and traditional data integration 

approaches (table 6.3).  
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About mixed type problem (table 6.4), we mutated ‘age’ variable from a continuous variable 

to a categorical one. In ALMS, patients’ age was as ‘0-20’, ‘21-40’, ‘41-60’, ‘>60’ and in 

LUNAR and EXPLORER, patients age records were as integers. We also added the 

categorical informative ‘agegroup’ variable to D0 that categorised patients into four levels ‘0-

20’, ‘21-40’, ‘41-60’, ‘>60’ based on their true age. We then removed patients’ age records 

from ALMS study, so data missingness was introduced.  

About granularity problem (table 6.4), ‘ethnicity variable’ in ALMS had 14 levels, i.e., 

‘Algerian’, ‘Asian’, ‘Black or African American’, ‘Cape Coloured’, ‘Caucasian’, ‘East 

Indian’, ‘Eritrean’, ‘Hispanic’, ‘Mexican Mestizo’, ‘Middle Eastern’, ‘Mixed’, ‘Moroccan’, 

‘Native American’, ‘Peruvian’). However, in LUNAR and EXPLORER ethnicity’s levels 

were 3 i.e., ‘Caucasian’ and ‘Black or African American’ and ‘Other’. Therefore, in ALMS, 

ethnicity’s granularity was very high. We added the categorical informative ‘ethnicitygroup’ 

variable to D0 that categorised patients into three levels ‘Caucasian’ and ‘Black or African 

American’ and ‘Other’ based on their true ethnicity. We then removed patients’ ethnicity 

records (only for level ‘Other’) from LUNAR and EXPLORER studies, so data missingness 

was introduced. 

Table 6.3. Ethnicity’s data characteristics after integrating lupus studies ALMS, LUNAR, 

EXPLORER. 

Data characteristics D0, N=597 

(%) 

ALMS,  

N=248 

(41.50)  

LUNAR,  

N=138 

(23.10) 

EXPLORER, N=211 

(35.40) 

Ethnicity (%)     

Algerian  2 (0.34) 2 (0.81)   

Asian    81 (13.60) 81 (32.70)   

Black or African 

American      

115 (19.30) 26 (10.50) 37 (26.80) 52 (24.60) 

Cape Coloured 1 (0.16) 1 (0.40)   

Caucasian    273 (45.70) 108 (43.50) 44 (31.90) 121 (57.30) 

East Indian     1 (0.16) 1 (0.40)   

Eritrean        2 (0.34) 2 (0.81)   

Hispanic        2 (0.34) 2 (0.81)   

Mexican Mestizo 19 (3.18) 19 (7.66)   

Middle Eastern 1 (0.16) 1 (0.40)   

Mixed         2 (0.34) 2 (0.81)   
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Moroccan        1 (0.16) 1 (0.40)   

Native American 1 (0.16) 1 (0.40)   

Peruvian 1 (0.16) 1 (0.40)   

Other 95 (15.90)  57 (41.30) 38 (18.10) 

 

Table 6.4. Mapping between ethnicity’s levels, and age’s levels. Traditional VS 

Probabilistic data integration. 

Traditional data integration Probabilistic data integration 

Age – mixed type problem 

‘0-20’  

 

Integer 

‘21-40’ 

‘41-60’ 

‘>60’ 

Ethnicity – granularity problem 

‘Black or African American’ ‘Black or African American’ 

‘Caucasian’ ‘Caucasian’  

 

 

 

 

 

‘Other’ 

‘Algerian’ 

‘Asian’ 

‘Cape Coloured’ 

‘East Indian’ 

‘Eritrean’ 

‘Hispanic’ 

‘Mexican Mestizo’ 

‘Middle Eastern’ 

‘Mixed’ 

‘Moroccan’ 

‘Native American’ 

‘Peruvian’ 

 

6.4.2 Results 

6.4.2.1 Traditional Data Integration – mapping all values present in all datasets 

Traditionally, people solve these problems by mapping all datasets to a common data model. 

This model would need homogeneity in all similar variable types across studies. In the case 

of a mixed type problem for the Age variable (table 6.4), it was converted to a categorical 
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variable across all the three studies. So, we replaced patients’ age records in LUNAR and 

EXPLORER as categories ‘0-20’, ‘21-40’, ‘41-60’, ‘>60’ (practically, we used the ‘agegroup’ 

and ‘ethnicitygroup’ that we have already introduced in our dataset). This model would have 

also included only variables’ levels that were present in all datasets, and, in case of 

granularity problem, levels that existed in all datasets i.e. ‘Black or African American’, 

‘Caucasian’ and ‘Other’. Table 6.5 shows the coefficients for the linear regression model 

that estimates the renal drug response based on age, ethnicity, creatinine, gender, and BMI.   

Table 6.5. Coefficients (estimate, standard error, t statistic and p-values) for linear 

regression model from equation 6.1 after applying complete case analysis (Complete 

Records) in SLE data to solve combined content heterogeneity problems. 

 estimate standard error 

 

t statistic p-value 

(Intercept) 8.7826 1.1361 7.7300 0.0000*** 

Age     

21-40 -2.0013 0.6879 -2.9090 0.0038** 

41-60 -4.0000 0.7592 -5.2680 0.0000*** 

>60 -5.0391 1.7704 -2.8460 0.0046** 

Ethnicity     

Caucasian 1.4780 0.5548 2.6640 0.0079** 

Other 2.8542 0.5850 4.8790 0.0000*** 

Creatinine 1.8614 0.4609 4.0390 0.0001*** 

Gender     

Male 0.5598 0.6317 0.8860 0.3759 

BMI -0.1505 0.0319 -4.7200 0.0000*** 

Significance codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 

 

6.4.2.2 Probabilistic Data Integration – multiple imputation  

 

Our aim was to answer a research question (equation 6.1), so we applied the suggested 

probabilistic data integration approaches. About mixed type problem, we kept the largest 

number of levels in Age, as integer variable. Therefore, D0 had missing data in ALMS for 

the Age variable. About granularity problem, we kept the highest number of levels in 

ethnicity which was 14 levels and had missing data in LUNAR and EXPLORER and 

imputed them based on some available information using FCS, FCSgroup, FCSgroups, 

FCS3group2. In all imputation models the following variables were used as predictors: 

gender, age, ethnicity, BMI, creatinine, current treatment, BILAG disease activity scores 
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(Cardiorespiratory, General, Mucocutaneous, Musculoskeletal, Neurological, Renal, 

Vasculitis, and Haematology). BMI and total BILAG score variables in the 

MASTERPLANS dataset were not included in the imputation models because they were 

recoded versions and combinations of other data. We chose as imputation methods, pmm for 

Age and polyreg for Ethnicity and we also set imputations and iterations to 10. At the end, 

we fitted linear regression models to complete datasets that resulted from all multiple 

imputation methods, so we answered the research question (equation 6.1). Coefficients are 

shown in tables 6.6 to 6.9 for FCS, FCSgroup, FCSgroups, and FCS3group2 respectively. 

We set seed to 945783. 

In general, the results of application in integrated SLE data show that multiple imputation 

approaches have a substantial impact on point estimates of the coefficients. We observe a 

gain in precision for all MI methods for complete variables (creatinine, BMI, gender) and 

for incomplete variables (age, ethnicity). Results from different imputation methods agree 

except for traditional data integration approach, whose coefficients and standard errors vary 

substantially. 

Table 6.6. Coefficients (estimate, standard error, t statistic and p-values) for linear 

regression model from equation 6.1 after applying FCS in SLE data to solve combined 

content heterogeneity problems.  

 

FCS estimate standard error 

 

t statistic p-value 

(Intercept) 15.6709 3.4977 4.4804 0.0000*** 

Age -0.1374 0.0303 -4.5395 0.0002*** 

Ethnicity     

Asian -0.7194 3.3569 -0.2143 0.8306 

Black or African American -7.0475 3.5002 -2.0135 0.0466 . 

Cape Coloured -2.0421 5.5761 -0.3662 0.7151 

Caucasian -5.2502 3.5227 -1.4904 0.1394 

East Indian -1.0406 6.7519 -0.1541 0.8784 

Eritrean -7.6973 4.7869 -1.6080 0.1126 

Hispanic -0.9387 5.0923 -0.1843 0.8544 

Mexican Mestizo -1.1088 3.9314 -0.2820 0.7789 

Middle Eastern 0.1794 5.0909 0.0352 0.9719 

Mixed -1.6365 4.9665 -0.3295 0.7426 

Moroccan 0.5780 6.8938 0.0838 0.9336 

Native American 0.0344 5.6953 0.0060 0.9952 
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Peruvian -0.9578 6.5631 -0.1459 0.8846 

Creatinine 1.9187 0.4471 4.2914 0.0000*** 

Gender     

Male 0.4283 0.5958 0.7188 0.4726 

BMI -0.0796 0.0321 -2.4812 0.0138* 

Significance codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 

 

Table 6.7. Coefficients (estimate, standard error, t statistic and p-values) for linear 

regression model from equation 6.1 after applying FCSgroup in SLE data to solve combined 

content heterogeneity problems. 

FCSgroup estimate standard error 

 

t statistic p-value 

(Intercept) 15.8747 3.4962 4.5405 0.0000*** 

Age -0.0985 0.0216 -4.5519 0.0000*** 

Ethnicity     

Asian -2.6276 3.4009 -0.7726 0.4403 

Black or African American -6.5011 3.3889 -1.9184 0.0558 

Cape Coloured 2.5737 5.9644 0.4315 0.6663 

Caucasian -4.9060 3.3736 -1.4542 0.1467 

East Indian -4.8222 4.6470 -1.0377 0.3003 

Eritrean -8.6377 3.5095 -2.4612 0.0142 . 

Hispanic 0.2636 4.8983 0.0538 0.9572 

Mexican Mestizo -4.5726 3.4310 -1.3327 0.1834 

Middle Eastern 2.5390 5.7418 0.4422 0.6587 

Mixed -2.2083 4.2658 -0.5177 0.6050 

Moroccan 1.5953 5.6949 0.2801 0.7795 

Native American 0.7154 4.5510 0.1572 0.8752 

Peruvian 0.9829 5.7976 0.1695 0.8655 

Creatinine 1.7781 0.4584 3.8789 0.0001*** 

Gender     

Male 0.3531 0.6299 0.5607 0.5753 

BMI -0.1325 0.0333 -3.9840 0.0001*** 

Significance codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 
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Table 6.8. Coefficients (estimate, standard error, t statistic and p-values) for linear 

regression model from equation 6.1 after applying FCSgroups in SLE data to solve 

combined content heterogeneity problems. 

FCSgroups estimate standard error 

 

t statistic p-value 

(Intercept) 16.4658 3.5548 4.6320 0.0000*** 

Age -0.1022 0.0258 -3.9582 0.0004*** 

Ethnicity     

Asian -3.0366 3.4337 -0.8843 0.3769 

Black or African American -6.9395 3.4042 -2.0385 0.0420  . 

Cape Coloured 1.3636 6.3171 0.2159 0.8294 

Caucasian -5.3452 3.3868 -1.5783 0.1151 

East Indian -4.8568 6.0353 -0.8047 0.4241 

Eritrean -8.8236 3.5534 -2.4831 0.0133  . 

Hispanic -0.0543 4.9299 -0.0110 0.9912 

Mexican Mestizo -5.0844 3.4913 -1.4563 0.1459 

Middle Eastern 0.5645 5.8023 0.0973 0.9227 

Mixed -2.7119 4.5142 -0.6007 0.5488 

Moroccan 0.4434 5.8237 0.0761 0.9393 

Native American 0.6399 4.8482 0.1320 0.8951 

Peruvian -2.1492 6.3573 -0.3381 0.7367 

Creatinine 1.7904 0.4665 3.8380 0.0001*** 

Gender     

Male 0.3332 0.6310 0.5280 0.5977 

BMI -0.1338 0.0337 -3.9748 0.0001*** 

Significance codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 

Table 6.9. Coefficients (estimate, standard error, t statistic and p-values) for linear 

regression model from equation 6.1 after applying FCS3group2 in SLE data to solve 

combined content heterogeneity problems. 

FCS3group2 estimate standard error 

 

t statistic p-value 

(Intercept) 13.6279 3.2933 4.1381 0.0001*** 

Age -0.1041 0.0200 -5.2043 0.0000*** 

Ethnicity     

Asian 0.7701 3.2518 0.2368 0.8132 

Black or African American -5.3824 3.2259 -1.6685 0.0974 



 

 196 

Cape Coloured 0.3644 5.9764 0.0610 0.9517 

Caucasian -3.8681 3.1966 -1.2101 0.2282 

East Indian 0.6654 5.5836 0.1192 0.9054 

Eritrean -5.8187 4.1777 -1.3928 0.1653 

Hispanic 2.7048 4.4621 0.6062 0.5450 

Mexican Mestizo 0.6828 3.3129 0.2061 0.8369 

Middle Eastern 2.3303 6.2876 0.3706 0.7126 

Mixed -0.0277 4.5513 -0.0061 0.9952 

Moroccan 1.9202 5.6577 0.3394 0.7349 

Native American 2.6555 5.9393 0.4471 0.6556 

Peruvian 3.3890 5.6728 0.5974 0.5507 

Creatinine 1.8067 0.4449 4.0613 0.0001*** 

Gender     

Male 0.3935 0.5903 0.6666 0.5053 

BMI -0.0969 0.0306 -3.1627 0.0017** 

Significance codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 

 

6.5 Discussion 

This work was motivated by a wish to extend multiple imputation for biomedical research 

to situations where content heterogeneity problems appear alongside each other when we 

stack multiple datasets and ask research questions. Therefore, we should be able to address 

combinations of content heterogeneity problems that co-exist within a single, stacked 

dataset. In this chapter, we addressed combinations of the varying granularity of a 

categorical variable, and a variable with mixed numeric and categorical data types. In this 

context, we proposed using full conditional specification approaches (multiple imputation) 

to solve combined content heterogeneities. The motivation is that this will allow appropriate 

borrowing of information across studies. We evaluated four imputation models (FCS, 

FCSgroup, FCSgroups, FCS3group2) through simulation studies and illustrated applications 

of the methods in SLE data.  

In this section, we reflect on the utility of the methods to address a combination of content 

heterogeneity problems, their limitations, and discuss potential further research. 

Summary of the main findings 

Here, we described a new probabilistic approach for tackling granularity and mixed-type 

variable problems after data integration, from both a theoretical and a practical perspective. 
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Our initial assessment revealed very good results, and we see that our probabilistic method 

offered accurate results, and imputed data values were close to the real observed data. Based 

on this, we would argue that heterogeneous-type variables could be resolved to, without 

removing information; and multiple imputation could provide accurate results when 

answering research question(s).  

Our probabilistic approaches differ in the way the categorical informative variable(s) used 

in imputation models. In the simulation studies, multiple imputations with chained equations 

with the inclusion of informative categorical variable(s) (FCSgroup and FCSgroups) 

produced estimates with no material bias for the linear models that we had data artificially 

introduced MCAR missingness. FCSgroup and FCSgroups produced good mSE and 

EmpSE, and confidence intervals close to 95% similar to reference true data. In very few 

cases - where we had different model errors between studies (scenarios 7-10) - the coverage 

probability was smaller than 93% suggesting than confidence intervals may have been 

conservative. FCS produced biased results in some scenarios which resulted FCS3group2 to 

have worse results than FCSgroup and FCSgroups. Our simulation studies showed broadly 

good performance for the FCSgroup, FCSgroups and FCS3group2 methods, a low impact 

on the different explored scenarios. 

Overall, our results suggest that a probabilistic method such as multiple imputation by 

chained equations is useful for imputing complicated health data in which there is a 

combinations of content heterogeneity problems such as granularity and mixed type 

problems in datasets after integration. Specifically, in cases that our research question will 

be answered through linear regression models.  

Imputation method including the extra informative variable(s) (FCSgroup and 

FCSgroups)  

Traditional data integration approach could work in our advantage by introducing auxiliary 

variables in imputation model. Auxiliary variable is a variable that is used as a predictor in 

imputation but is not included as a predictor in regression analysis. The reason for their 

inclusion is because they may be correlated with the variables of interest or help retaining 

the missing process random [142]. The simulations results were very clear about our 

innovative idea to use the traditional approach, in the form of auxiliary variables that can 

help to make estimates on incomplete data, while they are not part of the main analysis to 

data integration as an additional step to  algorithms’ performance. The inclusion of the 

relevant informative categorical variable to the relevant imputation predictor (FCSgroup) 

and the inclusions of both categorical variables to both imputation predictors (FCSgroups) 

outperformed standard FCS. FCSgroup and FCSgroups methods performed equally well, 
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with negligible bias, similar empirical standard errors, appropriate model-based standard 

errors and appropriate coverage. In some cases, FCS3group produced worse estimates than 

FCSgroup and FCSgroup which showed that the default imputation method FCS, used in 

mixed type variable, resulted in underestimations. Hence, the usage of the extra informative 

variable(s) in the imputation model as predictors helped the imputations and improved 

imputed data classification. Including ‘group’ variable means in imputation models had 

serious impact on results. 

Strengths 

This study offers a great deal of strengths that should be mentioned. It offers a range of 

pragmatic alternative approaches to two common data integration problems in biomedical 

research.  

To our knowledge, it has been the first study in a biomedical concept that describes the 

combinations of two content heterogeneity problems in detail, solved them with a theoretical 

solution, evaluated and compared traditional and probabilistic approaches using a series of 

simulation studies and illustrated the paradigm in real-world data. This work offers also an 

alternative to the work presented by Le Sueur et al. [129] where they showed traditional 

approach to solve different heterogeneities. In general, the advice is that imputation models 

should aim to include as many relevant variables as possible to make missingness 

assumption more plausible [143], [144].  

This chapter also included evaluation of the general applicability of the method and 

compared results of the proposed integration techniques with gold standard methods through 

statistical simulation studies. In addition, the work has used real-world problems presented 

in MASTERPLANS project, tackled them and offered an alternative to current data 

integration approaches. Our research insists that we have gain in precision for all MI 

methods for both complete and incomplete variables.  Results from most different 

imputation models agreed except for traditional approach whose coefficients and standard 

errors varied substantially. 

It also offers an advancement in current MICE package where there is not the option of 

excluding chosen categorical levels in the imputation model. There is only the option of post 

processing of the imputations. The mice() function has an argument called post that takes a 

vector of strings of R commands. These commands are parsed and evaluated after the 

univariate imputation function returns, and thus provides a way of post-processing the 

imputed values while using the processed version in the imputation algorithm [145]. For 

example, we can squeeze the age integer conditionally on the age category. In the example 
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of our simulations, X2 could be squeezed based on the categorical informative variable X’2 

levels: [min-mean], (mean-max]. When ranges limits difference is in decimals – so very 

small difference, postprocessing may not always be an option due to perfect prediction. For 

example, it may tend to impute values mainly in the common range limit - in our case mean 

0. So, the imputation could be problematic because of perfect prediction [146] where 

automated procedures may give severely biased results [147]. Likelihood could tend to a 

limit as one or more regression parameters go to plus or minus infinity: loosely, these 

parameters have maximum likelihood estimate equal to plus or minus infinity [147].  

Results show a clear usage of all the available information and superiority over complete 

case analysis. They gave larger point estimates than the newly introduced methods. The 

difference was not unexpected, since complete cases analysis made different assumptions 

from MI analysis. In the combined content heterogeneity problems, missing data have 

always occurred when information did not have same granularity across studies, so complete 

case analysis tended to exclude individuals under specific categories: this explains the 

differences seen. 

Limitations 

Similarly with other chapters, in applications, we need to remember that all of the techniques 

described so far assume that data are missing under MCAR assumption, and therefore, a 

proper sensitivity analysis to different assumptions should be considered. 

Additionally, despite the exploration of different scenarios (number of imputations and 

iterations, number of studies, study sizes, mode error per study) that made our framework to 

be generalisable, we should consider the number of studies and individuals per study as a 

further problem. A large integrated dataset can make the computational time prohibitive. 

Similarly with previous chapter clustering could be included in multiple imputation 

especially in cases where there are many differences among integrated studies. However, in 

cases of only two studies there is not enough information available for random effect. 

Therefore, we cannot estimate higher-level coefficients that will be used in multilevel 

imputation. 

In conclusion, the main reason for MI's growing popularity for handling missing data is its 

flexibility and practicality. In the case of imputing for solving content heterogeneity, we 

have described and evaluated a probabilistic approach to tackle granularity and mixed type 

problems. This extends current approaches, allowing multiple imputation when some 

variables have a substantial proportion of missing values in specific categories or are not 

collected in the same data type in all studies. We proposed four methods, but results showed 
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that only FCSgroup and FCSgroups easily take account of the potential heterogeneity in the 

imputation model, and they outperform the default FCS approach in most settings.  FCS and 

FCS3group2 gave also good results but in complex cases (missingness in both studies – 

scenarios 1 and 2) may be struggling achieving good coverage. Therefore, including the 

informative variable(s) in the MI method appears to be a solid and efficient way. Our 

simulation evaluation of this approach and its application to real-world data showed 

promising results for implementation in health sciences. 
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Chapter 7:  Discussion 

This discussion offers an overview of the key findings of the thesis. It first reviews the 

overall rationale and objectives of the PhD, and then provides a summary of the four chapters 

with experimental results, with a focus on where the findings intersect. The discussion also 

highlights the contributions of our work to the integration of structured data in biomedical 

domain, implications for real-world translation, as well as the research strengths and 

limitations and implications for future research. 

7.1 Introduction 

 

The integration of data from different sources offers unique opportunities for health 

research; but poor standardisation across different datasets is often considered a major 

barrier to achieving this. The field of informatics has traditionally addressed this problem 

by defining universal information models and standards for coding (e.g., HL7v3 [24], Read 

[25], SNOMED [32]) aiming for perfect data-level standardisation when properly 

implemented, thereafter making data integration and analysis straightforward. To date, 

however, the successes of these efforts to pre-align data have been modest. For example, 

after ten years of development, HL7v3 was launched in 2006 but to date most healthcare 

messaging is still carried out with older version of HL7 that are semantically weak [31]. This 

strategy might result in waste of time, resources and costs of efforts to define coding 

standards and in integrating information models.  

Existing methods for dataset integration rely on mapping to common data models, often 

resulting in a substantial loss of information that is present in the source datasets. For 

instance, in case of severe content heterogeneity, integrated datasets often cover just a small 

set of data items that are present in most source datasets and leave out the other items which 

impairs performance of the final model and reduces sample size and power [148]. But these 

will obviously diminish the potential to accurately answer research questions since it will 

ultimately reduce possibilities to harmonise cohort selection and confounder adjustment.  

Ideally, shared data models would be implemented at the source, enabling uniform data 

collection at different sites and studies. But in reality, data integration is commonly, and 

likely to continue to be, imperfect. Our approach to address data integration and 

harmonisation embraces this imperfection rather than trying to extinguish it.  

In this thesis we have argued for an alternative focus on the development of analytic methods 

that embrace the data variation and heterogeneity, rely less on standardised data items and 

have the capacity to process content heterogeneity in data. We believe that this is a viable 
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alternative − and much can probably be adapted from existing methods for multiple 

imputation. Our proposal is characterised by a probabilistic rather than a functional view of 

integration; by post-alignment rather than pre-alignment of data sources; and by a pragmatic, 

top-down approach to answering research questions rather than a laborious, bottom-up 

approach to data integration.  

The overall scope of this thesis was to explore the potential of probabilistic methods, that 

are based on multiple imputation, to address content heterogeneity in biomedical dataset 

integration. We argued that the existing methodologies and data standards have significant 

limitations, and that health informatics should focus on developing methods for quantifying 

the uncertainty introduced by imperfect integration of existing sources, rather than striving 

for perfect, data-level integration. One potential and promising alternative relies on 

probabilistic methodologies.  

This thesis has provided insights into probabilistic ways to overcome data integration issues 

due to systematically missing values, varying levels of granularity, similar variables with 

different data types, and combinations of those problems. Each content heterogeneity 

problem described in the previous chapters focused on a different aspect of the thesis’ overall 

aim, and the findings were explained, discussed, and concluded in detail in each respective 

chapter. The current chapter will provide a general discussion about main findings of the 

studies, limitations and future steps.  Data from real-world SLE studies were used to 

formulate concrete examples and illustrate our methods’ applications. Simulated data were 

used to evaluate our methodologies that achieve successful data integration. This 

methodology and results presented in this thesis may be generalised to other data sources 

and types and are not limited to only biomedical sources. In respect of our overarching aim 

and objectives, this thesis has achieved to: 

i. Describe representational and content heterogeneity and identify potential issues 

that make structured data integration difficult. In section 3.2 we have described the 

problem of systematically missing values, in section 4.2 the problem of varying 

levels of granularity, in section 5.2 the problem of mixed numeric and non-numeric 

data types, and in section 6.1 we explored combinations of granularity problems and 

mixed data types. 

ii. Build pragmatic probabilistic approaches to successful healthcare data integration. 

Methodologies with theoretical solutions were presented in sections 3.3, 4.3, 5.3, and 

6.2. 

iii. Evaluate the accuracy of statistical inference based on the developed probabilistic 

methodologies via simulation studies under complex scenarios. We performed 
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simulation studies to study the empirical properties of the proposed solution, under 

ten scenarios per content heterogeneity problem. Simulation designs, results and 

discussions can be found in sections 3.4, 4.4, 5.4, and 6.3. We also evaluated our 

method to solve mixed type data with a resampling method of SLE data analysis in 

simulation studies in section 5.5. 

i. Illustrate methodologies’ application to real world data’s integration problems. We 

demonstrated that it is feasible to apply our method to real-world data in sections 

3.5, 4.5, 5.5, and 6.4, using the MASTERPLANS exemplar. 

 

7.2 Summary of Results 

 

Our primary aim was to develop an approach to creating an integrated dataset that included 

all the information from the constituent datasets, with a clear understanding that any 

integrated dataset would have many missing data due to content heterogeneity’s different 

forms. In chapters 1 and 2 we introduced the problem of content heterogeneity of different 

kinds, and described in detail the gaps in literature, why this research work is important and 

how content heterogeneity is connected with missing data. Our main conclusion is that 

waiting for all data sources to be interoperable is hindering for opportunities to study human 

health; and the implementation of probabilistic approaches to integration of structured data 

can offer a great advancement in biomedical research.  

In all simulation studies, we had a data generating model, a reference model that was 

estimated on the Full Data sample before introducing content heterogeneity, a complete case 

analysis model that was estimated on complete data after solving content heterogeneity with 

traditional approach, probabilistic imputation model that was estimated on imputed data 

after combined using Rubin’s rules [78], solving content heterogeneity with a probabilistc 

appoach. 

In Chapter 3 we presented the initial results of our attempt to solve the first content 

heterogeneity problem of systematically missing data. As an initial assessment of multiple 

imputation techniques, we applied, evaluated, and examined the utility of FCS with respect 

to simulated datasets and also applied it to the real-world lupus datasets. The conventional 

approach that uses post-alignment of dissimilar datasets was used as a comparison - 

excluding systematically missing variables from analysis. We showed that it led to biased 

estimates of regression coefficients, while FCS gave accurate coefficient estimates with very 

good coverage of the associated confidence interval (94-95.5%). We found that when 
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imputing with 500 and 1000 individuals per study, additional variability resulted in smaller 

standard errors (Scenario 9: 0.052, Scenario 10: 0.036) and mild under‐coverage (Scenario 

9: 88.4%, Scenario 10: 84.7%).  When the model error is ei: N ~ (0, 20), we observed that a 

relatively small part of the observed variation in outcomes was explained by the independent 

variables. In all scenarios, coverage rate was equal and slightly exceeded the nominal rate 

(94.5-95.2%) and the estimated regression coefficients were almost identical to those 

obtained from the original data in which there was no content heterogeneity. Overall, our 

results show that statistical inference on incomplete data, due to systematically missing 

values, that were imputed by regression imputation can produce the correct answer. 

In Chapter 4, we introduced the problem of varying categorical levels of granularity after 

structured data integration. The traditional approach maps variables to a common data model 

removing granularity form the data. It was used as a comparison to our methods. We 

evaluated FCS using simulated datasets and afterwards we applied it to the real-world lupus 

datasets. We also introduced an additional imputation model, FCSgroup that the only 

difference with FCS is that it includes the group variable in the imputation model. Our 

motivation was that imputation model could include additional ‘auxiliary’ variables. In 

general, auxiliary variables are used in the imputation model but not in the regression model 

and they can improve imputations [108], [143]. In their paper, Hardt, Herke and Leonhart 

[142] concluded that when estimating a linear regression coefficient, the inclusion of 

auxiliary variables is most helpful when the correlations between the continuous correlated 

X’s and outcome Y are high (r ≥ 50%). The only difference between FCS and FCSgroup is 

that the latter has one additional variable (‘group’) included in the imputation model. Our 

‘group’ variable acts as an auxiliary variable and in some scenarios improved the FCS 

imputations. The simulation results were similar to chapter 3. Analyses of datasets imputed 

with FCS imputation model gave good results both in terms of bias, precision and confidence 

interval coverage.  

We suggest that FCSgroup should be preferred as an imputation method as it gives at least 

as good results with FCS and it achieves better classification is some scenarios. The general 

suggestion is that the more information you use in imputation the more accurate the results 

will be. So, when there is some flexibility about computational time, FCSgroup should be 

the priority probabilistic method. Both probabilistic ways are preferred to solve granularity 

over complete case analysis/Complete Records. 

In Chapter 5, we focused on the issue of mixed numeric and non-numeric data types. As in 

chapter 4, we also introduced the imputation model FCSgroup that uses a categorical 

variable that can help to make estimates on incomplete data, while they are not part of the 
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main regression analysis. Our probabilistic approaches FCS and FCSgroup had the same 

logic as in Chapter 4. FCSgroup included a categorical ‘group’ variable with the non-

numeric data types of each individual. The simulation results provided useful insight to 

understanding if our probabilistic methods offer indeed accurate results in solving the issue 

of mixed data type. We designed two types of simulation studies to evaluate our designed 

methods to solve this type of content heterogeneity issue. Data were generated (i) by 

producing parametric draws from a known model (many times), and (ii) by repeated 

resampling with replacement from the MASTERPLANS data (where the true data-

generating model was unknown) [112]. Parametric simulation studies used similar 

generating mechanisms with the other chapters. When we introduced different model errors, 

FCSgroup had good coverage (95%) and no bias (~0.001) for the four study sizes (100, 200, 

500, 1000 individuals per study). FCS’s coverage started with 90% when we had 100 

individuals per study and slowly reduced as the study size increased. As we said before, we 

illustrated and evaluated our probabilistic approaches in the MASTERPLANS data. Age had 

no missing data, its type was integer and had complete data which allowed us to compare 

the imputed data against real raw data. Therefore, we applied content heterogeneity due to 

mixed type in Age variable. We concluded that FCSgroup was unbiased and identical to the 

reference model (Full Data sample). FCS results also showed small bias in estimates but 

good coverage for Age. It seems that in FCS, some values may have been imputed outside 

the range of possible values, this method had a low bias and estimated the within- and 

between- imputation variance adequately, resulting in generally good coverage across 

repeated sampling of the missingness. The increasing number of imputed datasets may have 

helped improving -already good- coverage but produced similar estimates.  

We conclude that our parametric simulations did not show any difference between FCS and 

FCSgroup but in resampling simulation FCSgroup resulted in better estimates. Results show 

that the imputed data with FCS were close to true Full Data. Similarly, data were correctly 

imputed under FCSgroup imputation model. Thus, in terms of computational time, 

researchers may prefer to rely on FCS as FCSgroup takes to some degree more time when 

performing imputations and analyses. However, the inclusion of informative ‘group’ 

variable is suggested in cases that there are complex scenarios. In summary, we could argue 

that mixed type variable problem could be resolved through probabilistic ways to produce 

homogeneous type variable, without removing useful information. 

In Chapter 6 we present the evaluation of probabilistic methods, and application when two 

content heterogeneity problems are present in healthcare data in two variables, i.e, the 

problem of granularity and mixed type variable.  To examine our idea about the auxiliary 

variables, we introduced two categorical ‘group’ variables - one for each content 
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heterogeneous variable. Here, we examined four imputation models (FCS, FCSgroup, 

FCSgroups, and FCS3group2) varying in inclusion/exclusion of ‘group’ variable(s). We 

observed that there was no bias in either of the two variables when imputing with FCSgroup, 

and FCSgroups. Both content heterogeneity problems achieved good coverage level when 

imputing with FCSgroup and FCSgroups. FCS3group2 was similar to FCS in some 

scenarios but it showed improvement which means that ‘group’ variable helped the 

algorithm perform better. FCS should not be preferred when we have 2 datasets with 200 

(scenario 1) or 1000 (scenario 3) individuals per study. In those two scenarios, X3’s estimates 

were biased which resulted in low coverage ~ 84%. An explanation for FCS (scenario 1 and 

3) is that there were two integrated studies therefore data missingness in both, so there was 

missing information that could help imputation’s accuracy. As the proportion of missing 

data increases, FCS may need more imputations and iterations [149] to achieve accurate 

estimates. In scenarios 3-6, where we have at least 5 datasets with same and different study 

sizes, FCS and FCS3group2 could also be chosen as imputation models. In scenarios 7-10 

In conclusion, FCSgroup, FCSgroups gave unbiased estimates and good coverage (95%) 

when imputing missing data in both variables X2 and X3. Results proved that including 

‘group’ variable in imputation improved X3’s estimates (FCS3group2). All imputation 

models outperformed the use of Complete Records. 

If we bring all the scenarios together for all the results chapters, some significant findings 

emerge.  

When studies have the same size, FCS gives accurate results in the three types of content 

heterogeneity problems. When granularity and mixed type are combined then FCS should 

not be preferred as an imputation method for categorical granular variable when we have 

two datasets. FCSgroup showed accuracy in granularity and mixed type problem, and when 

these two are combined. FCSgroups also showed very good results, and outperformed 

FCSgroup when we had larger study sample, 1000 individuals per study. FCS3group2 

performed very well in the mixed type but similar to FCS for granularity problem. In general, 

‘group’ variable helps improving imputation model’s accuracy, data classification and 

coverage level.  

When studies are of different size, FCS gave accurate results in both scenarios in the three 

content heterogeneity problems. FCSgroup performed very good and similar to true Full 

Data. We observe that when we had 10 datasets with different sizes (scenario 6) the bias was 

smaller than when we had 5 datasets with different sizes (scenario 5). Coverage probability 

of confidence intervals was very good in scenarios 5 and 6. mSE and EmpSE was smaller 

in scenario 6 than in scenario 5.  
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With regards to the size of the model error, in all cases the larger the model error per study, 

the larger mSE and EmpSE which made sense as all imptuation methods followed Full Data 

standard errors. When outcome Y had a big range (𝑒𝑖: N ~ (0, 20)), missing data’s estimates 

were getting slightly worse in a few scenarios (mainly section 6.3.3). 

When studies have different model errors, in all chapters we saw that as the number of 

individuals increased the mSE and EmpSE decreased. Bias was close to zero and coverage 

level is very good in most cases for FCS and FCSgroup (FCS was not always precise - 

combined types of heterogeneity chapter). Imputation models did not always achieve 

coverage level greater than 90% as the number of individuals went above 500 per study. 

7.3 Novelty of this work 

 

While some applied studies have applied multiple imputation to resolve content 

heterogeneity problems [97], [107], [121], [140], [150], [151], this thesis presents the first 

systematic assessment of the accuracy of this approach in different scenarios.  

Variable and data integration across multiple datasets is important because it can provide 

more statistical power, more detailed models for general application, as well as maximising 

the study population size [152]. Our results showed that even when we have systematically 

missing data after integrating two studies, FCS’s estimates perform better than classical 

methods. 

Our probabilistic approach is not specific to data source or a specific disease or condition. It 

is flexible and automated enough so to benefit significantly other future research projects in 

health/biomedicine domain like bioinformatics [153], molecular epidemiology [154], and 

other research fields like environment [150], earth science [155], food sector [156]. Many of 

the steps carried out are already used to solve a very common problem - missing data - and 

researchers implement it already in numerous biomedical projects [85], [157]–[159]. 

Therefore, the suggested approaches are known to many researchers and do not need 

expertise and extensive training. Current pipelines could include our approach, so they 

answer research questions while achieving content homogeneity. 

Another advantage of this work is that from the start, it focused on existing, real-world 

problems (using SLE data) with a clear impact. We followed a deep methodological 

investigation and designed simulation studies that were compared to the gold standard and 

widely accepted approach for integration. Consequently, the approaches that have presented 

are complete and could be implemented in real world data.  



 

 208 

In addition, we explored many scenarios with variability in the size of the datasets/studies 

(i.e. 80 to 1000 number of individuals per study); varying model error per study (e1: N ~ (0, 

1.2) and e2: N ~ (0, 1.3); varying model error per scenario (ei: N ~ (0, 0.2), ei: N ~ (0, 2) ei: 

N ~ (0, 20)); different number of datasets (2, 5, 10). A sample of 1,000 might seem too large 

if compared against trial data, but it was a necessity if we were to investigate the existence 

of content heterogeneity problems in more than one study dataset and therefore high rates 

of missingness. 

Another application of the presented methods is in prediction models and particularly their 

external evaluation. Prediction models should externally be validated before implementation 

in clinical practice. However, uncollected variables that missing from suitable validation 

cohorts are the main reason making external validation impossible [160]. Hence, results of 

this thesis may facilitate the use of cohort studies that do not include all predictors in a 

prediction model. 

Additionally, our framework could facilitate EHR databases’ integration and analyses. As 

we discussed in Chapter 1, most EHR databases are in OAV format. As we cannot analyse 

data in OAV format (e.g using regression methods), we first need to transform the OAV 

database into a conventional tabular format where each column is a different variable [161]. 

After the OAV database has been transformed into a tabular format, it will often emerge that 

there are missing values for some patients. Our probabilistic data integration method cannot 

be applied to databases in OAV format. But if we first transform the OAV databases to 

tabular format (which researchers already need to do) [162], then we can apply our method. 

This will be exactly the same as for other databases. For example, one EHR may have never 

recorded ‘smoking status’ while another EHR has recorded it. Or they both recorded it, but 

at different levels of granularity. So, all the aforementioned content heterogeneity problems 

may occur, and we can address them once the data are in tabular format. 

When standards are not implemented at the source, in order to achieve integration and 

harmonisation, data are aligned by hand matching up equivalent or similar patient variables 

across the different studies as shown in the published article by Le Sueur et al. [129]. 

Harmonising data across studies could be complex and time and resource consuming. 

However, our probabilistic approach overcomes many challenges arising both form inherent 

complexity of the disease and data differences in terms of capture and representation across 

different studies. Therefore, our presented research highlights and addresses an important 

gap in the current data science toolkit, and we believe that our methods are very promising 

to improve efficiency and avoid analysts’ bias when choosing how to deal with the common 

data harmonisation issues.  
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Overall, our approach is flexible, enabling the inclusion of additional new variables and new 

datasets. It means that the resulting output could be updated easily to answer any new 

research question. We also showed flexibility concerning study size, model errors, and 

number of studies using a small number of variables.  

Addressing content heterogeneity problems using multiple imputation 

Multiple imputation is considered as the most popular method for handling missing data in 

practice and is very easy to use [163]. Multiple imputation has recently been suggested as a 

method for individual patient data meta-analysis in cases of complete missing variables and 

heterogeneity among studies [97].  Methods to handle systematically missing data have been 

proposed for continuous data [122] and recently extended to binary and discrete data [121]. 

Resche-Rigon et al. [122] proposed a one-stage approach for imputing systematically 

missing continuous predictors in IPD meta-analysis. Their approach followed multilevel 

models with random intercept terms and random slopes to account for heterogeneity across 

IPD study datasets. When standard errors are used as as measure of uncertainty around 

between-study covariance parameters this may be demanding as uncertainty lean on being 

heavily skewed.  

Jolani et al. [121] research paper was about a generalised approach using MICE imputation 

of systematically missing predictors in IPD meta-analysis. A generalised linear mixed model 

that allows for between-study heterogeneity. In terms of simulation setting they had similar 

setting to ours. Simulations had either 6 or 15 studies, 500 individuals per study leading to 

a total sample size of 3000 (N=6) and 6500 (N=13). However, they considered two main 

patterns i.e. a univariate pattern where one specific variable was missing (as we did in 

chapter 3), and a bivariate pattern where either variable, between two, was systematically 

missing. The total data missingness was either 20% or 50%. They compared four methods, 

complete case analysis, traditional multiple imputation (FCS), stratified muliple imputation 

and their method multilevel multiple imputation in MICE. Multilevel outperformed the other 

methods and its coverage rates were 90% whereas FCS’s was 85%. Multilevel multiple 

imputation required, however, considerable more computation time to generate an imputed 

dataset as compared with FCS. Their approach needed significant computational power 100–

150 times slower as compared with FCS.   

Moreover, Quartagno and Carpenter [97] developed and evaluated a joint modelling 

approach to multiple imputation of IPD meta-analysis, with an across-study probability 

distribution for the study specific covariance matrices. Their analysis were through R 

package jomo [104]. They explored different scenarios and simulation results were very 

promising. 
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Resche-Rigon and White [107] proposed a MICE algorithm for multilevel data with 

arbitrary patterns of systematically and sporadically missing variables. They suggested two 

methods for imputing a single incomplete variable: an extension of an existing method and 

a new two-stage method which allows for heteroscedastic data. The total number of patients 

was fixed at 2000. The number of studies was 20, 100 individuals per study. Their simulation 

studies showed that with heteroscedastic models their two-stage methods outperformed the 

one-stage method in some scenarios. They also suggested for future work, an important 

extension of their imputation model would be to impute categorical variables.  

In the context of IPD meta analysis, Burgess et al. [164] concluded in their research that in 

most cases the best approach is two-stage analysis (impute separately in each study, apply 

Rubin’s rules to get a single summary for each study and perform meta analysis). Although, 

a one-stage analysis has the potential advantage of allowing us to borrow strength across 

studies, which may be important for estimation of covariate and subgroup effects. Our 

methodology allows to see the data as a whole and share information across the integrated 

dataset. An advancement is that we showed that is works in cases where we have only a few 

datasets integrated, even if they are just two. 

It is clear that the issue of systematically missing values may be resolved to produce accurate 

results through multiple imputation methods. Researchers started exploring this issue 

recently [97], [107], [121], [165]. The application of multiple imputation to solve 

systematically misisng values is also demonstrated by the feasibility of our proposed 

framework. Based on results shown in chapters 3-6, we could argue that content 

heterogeneity could be resolved through multiple imputation and could provide ‘close to 

reality’ results that will enable us answer research question(s). Our plan was to make the 

models complex to allow for more flexibility to better answer any potential research 

questions based on the available information.  

Content heterogeneity expressed as a granularity problem (varying categories among 

datasets) is one of the most common limitations in current frameworks as there is inevitable 

loss of information. Our study proposes multiple imputation techniques to solve granularity 

issues in structured data. A common problem that results from choosing the least granular 

(fine detailed) data is that we may choose specific groups of patients resulting in selection 

biases. An example (as shown in chapters 4 and 6) is about ethnicity. Previously published 

works generally agree that the more granular race, ethnicity, and demographic data in health 

sciences, the better the identification of at-risk populations [132]. However, the scientific 

community still struggles to organise granular data from multiple studies, subgroups, and 

diverse communities [166]. Moreover, data collection and data integration (i.e. EHRs and 
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genomic data) from different sources are essential as they enable the study of rare diseases 

like lymphoma due to adequate data granularity and volume [109]. 

To our knowledge, no published study to date has considered imputation as a method to 

overcome data heterogeneity among studies when a variable presented in mixed type i.e. 

categorical and integer. As we mentioned in chapter 5, Kalter et al [139] argue that a  

variable’s type harmonisation should occur when age is as continuous in a study and as 

categorical in a new study. Then all the previously data from the other studies should be 

converted to categorical data in order to obtain homogeneous datasets for further analysis.  

Data harmonisation extents the utility of existing datasets [167] and increases possibilities 

for multi-centre collaborations [12], [168], [169]. Research community recognises the need 

to explore relationship between disease’s biomarkers and how disease progresses clinically 

[170]. These relationships are affected by different factors such as genetic, demographic, 

environmental, therefore data integration is essential. This need grows in cases where factors 

are uncounted in some studies, only present in small proportions of the population or have 

dissimilar levels. One way to achieve additional power from existing data would be to 

combine data from existing studies. In addition to increased statistical power, combining 

data across studies should also decrease bias due to sampling error, and improve the external 

validity of findings [171].  

Another advantage is the computation time. The setting of our simulation studies allowed to 

eliminate computational time to hours (ranging from 1 to 12 hours). Moreover, simulations 

showed that our methods were unbiased under a small number of imputations and iterations 

(5 each). We also supported this claim with resampling simulation of SLE data (chapter 5) 

where we showed that there was no significant difference among 5,10,15,20 imputations.  

Estimates’ coefficients were very similar, there was only some improvement in coverage 

level which was varying between 94-96% in all imputation models for all imputations.  

Traditionally, representational heterogeneity in multi-dataset analyses has been resolved 

through post-hoc alignment of variables by mapping them to a common data model that is 

consistent with each of the individual study data models. Such common data models tend to 

achieve that consistency by removing granularity from the data. We have shown that this 

approach could lead to biased regression coefficients and should therefore better be avoided. 

However, we have also found that incorporating this approach in probabilistic data 

integration methods can be beneficial for the quality of the imputed values, and thus for the 

accuracy of estimated regression coefficients. We therefore recommend researchers to 

always apply probabilistic data integration, but also to incorporate the traditional common 

data model approach to optimise the quality if imputed values. This thesis shows that 
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sometimes a simple translation of a problem to another more manageable problem can 

enable the use established knowledge to solve it.  

Implications for real-world translation 

Methods that quantify the uncertainty could be more productive compared to the ones that 

strive for perfect data harmonisation. This thesis has tried to make it clear using real-world 

example from SLE cohort studies. MASTERPLANS data have helped us find examples of 

representational heterogeneity to devise our hypothesis, develop our approaches and 

construct our proposed frameworks for data integration and harmonisation while solving 

content heterogeneity problems. We later focused on utilising these data to test, examine 

and improve the different steps in our pipeline and to transform it into a generalisable 

methodology that will have applicability in many different and complex biomedical datasets. 

A significant advantage to this research work was that it embedded real world data currently 

being utilised by other ongoing, large, projects – and as such, providing us with significant 

opportunities to work on, enhance and improve our approaches. Significant comparison of 

our work with the traditional data integration approach and how useful our alternative is, 

was presented in the paper by Le Sueur et al [129]. Our work offers solutions to some 

limitations of the traditional data integration framework approach presented by Le Sueur et 

al [129]. For example, they removed rows with missing data, so patients were excluded if 

they were missing key information. Additionally, their method led to inevitable loss of 

information either due to differences in granularity or data capture; and the final patient 

group may have suffered from selection biases.  And finally, they excluded patients and 

rows of data based on missingness which reduced sample sizes and introduced potential 

biases. 

The research community could argue that to overcome systematically missing variables, 

granularity and mixed type problems, traditional data integration approach could be 

preferred as it does not introduce important bias and has been the common technique for 

many years. However, our illustrations using SLE do not agree with that. The results indicate 

that there is a difference between real data and complete case analysis. In addition, results 

show a practically useful gain in information over Complete Records with multiple 

imputation.  

In conclusion, our approach has a number of essential ingredients. First, it predicates upon 

the belief that data heterogeneity will persist in the foreseeable future despite standardisation 

efforts, and the approach therefore strives for post-alignment rather than pre-alignment of 

big datasets. Second, as post-alignment of heterogeneous data sources will often be 



 

 213 

imperfect, a probabilistic rather than functional (deterministic) view of semantic equivalence 

is adopted in which semantic equivalence is a matter of uncertainty rather than a yes/no 

answer. In this perspective, it is not a problem that two data items are not semantically 

equivalent, as long as we can estimate the probability that they are. Third, the approach is 

extremely pragmatic in the sense that it will always provide an answer − although it might 

not be better than a flat prior in the very worst case where none of the source datasets is 

found to provide useful information to answer the research question. The other side of the 

same coin is that full, data-level standardisation is another special case (the very best case), 

in which the results should then be the same as those that would result from analysing an 

integrated dataset. 

7.4 Limitations 

 

We have identified six main limitations that apply to our work. 

First, we have focused entirely on content heterogeneity and have assumed throughout that 

other types of representational heterogeneity had been resolved beforehand. In practice it 

might be possible, and more efficient, to resolve different types of representational 

heterogeneity in one step rather than in separate steps, but this was beyond the scope of this 

thesis. 

Second (as mentioned briefly in chapter 5), based on our hypotheses, which were common 

for all the results chapters, we assumed that we had more than one study datasets and there 

was no need for record linkage. We also assumed that the observations within each study 

dataset and in the integrated dataset were statistically independent and identically 

distributed. We also made sure that this was the case in all simulation experiments, but one 

could argue that this assumption is not entirely realistic in real-world data, and that it is 

plausible that the observations within study single dataset are to some degree correlated, 

because they came from the same institution or the same geographical location. It would be 

possible to relax this assumption with multilevel regression models but this was beyond the 

scope of this thesis. In this scenario one could also consider using multilevel imputation. 

However, while multilevel imputation can be used for sporadically missing data, it does nor 

when there are systematically missing data: there is then not sufficient information to 

estimate higher-level regression coefficients. So, in theory this would be better, but because 

of the nature of the problem that we are trying to solve (systematically, not sporadically, 

missing data), we cannot use it. Further research is needed to address this methodological 

challenge.  
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Third, another addition to our current work would be investigating situations where patients 

do not have identical distributions.  For example, let’s say we integrate data from two 

different data sources: EHRs and trial data. We determine the expected benefit of using a 

drug in a patient, or set of patients, is certain ages, and under specific risk factors, with or 

without a specific biomarker. The observed effect of the drug is subject to confounding in 

the EHR data but not in the trial data. The two institutions that started using the treatment 

routinely likely gave it only to patients they believed would benefit from it, and not to others. 

As a result, the groups of treated and untreated patients are unbalanced in the EHR data, and 

comparing their health outcomes without correcting for this imbalance would give an 

unrealistic picture of the effect of the drug. In contrast, in the trial dataset, the groups of 

treated and untreated patients are perfectly balanced by design. To obtain an unbiased 

estimate of the treatment effect from the EHR data, the analysis has to adjust for potential 

confounding factors.  

Additionally, computational time led us to select our largest simulated dataset to include 

5,000 records. Unfortunately, this is not necessarily representative of a contemporary EHRs 

dataset which can hold hundreds of thousands or millions of cases. However, even that 

limited size is very different to the size of a clinical trial, on which multiple imputation 

methods have been routinely evaluated in the past. Therefore, we argue that we manage to 

provide an incomplete view on the relevance of these methods in larger datasets and that 

suggested probabilistic approaches may be less relevant to large health informatics databases 

than to randomised clinical trials or cohort studies. 

Although realistic, our simulated scenarios cannot be extensive, and results may differ in 

other scenarios with different hypothesised associations between exposure, covariate and 

outcome and different distributions. Nevertheless, we would expect the methods to perform 

similarly, and our conclusions not to be affected. 

In addition to that, both evaluations and illustrations did not explore situations where there 

is existing data missingness in some variables and data missingness in outcome. Our 

simulation scenarios explored content heterogeneity problems in exposure and covariates, 

but not in outcome. This would be an area where the current work could be extended to. 

Unanswered questions and future research 

Our work’s imputation approaches were based on FCS, and we only compared with 

traditional data integration approach complete case analysis – mapping to common levels 

and omitting variables. Future steps may include comparing FCS with other missing data 

techniques regression imputation, mean substitution, last observation carried forward, joint 
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modelling, and machine learning techniques (random forest imputation [172], k nearest 

neighbour classification [173], support vector machine [174] etc). 

An outstanding content heterogeneity problem that this thesis has not addressed is the 

overlapping ranges problem. Let’s consider that in dataset 1, patients’ age is represented as 

a categorical variable with ranges ‘0-20’, ’21-40’, ’41-60’, ‘61+’, and in dataset 2 age is 

represented as a categorical variable with ranges ‘0-15’, ’16-25’, ’26-40’, ’41-60’ ‘61+’. 

Finding a common denominator between the same variables is not always a probable 

solution when integrating structured data. The integrated dataset should always be specified 

at the lowest level of granularity (e.g. ‘0-15’, ’16-21’, ’22-25’, ’26-40’, ’41-60’ ‘61+’. Some 

patients will be included in at least one age range. For those that we are not sure in which 

range they belong, we leave age as missing. Based on our type of solution (i.e. the 

probabilistic data integration via multiple imputation techniques), we solve data missingness 

and fit the regression model on the dataset with imputed values. 

As mentioned in limitations, patients from a single centre/study are more likely to be similar 

than patients from different centres/studies. Clustering is apparent from many multi-centre 

studies and meta-analyses. It is probably due to variation across centres/studies that arises 

from residual, unmeasured confounding. Further development to our methods is to account 

for clustering is using multi-level regression analysis [175] in which random effects are used 

to model centre-level and study-level variation.  

One other possibility is the implementation of our methodology to larger real-world datasets 

containing biomedical data such as Asthma e-lab [176] or EHRs. Research has not been 

explored in situations like EHRs where there are potentially millions of records.  

Additionally, our approach comprises a number of critical choices (such as the choice of 

predictive modelling algorithms [141] , number of study datasets, choice imputation models, 

number of imputed datasets, number of iterations etc) that require thorough methodological 

investigation. It also relies on assumptions (such as reasons for missingness) that can 

influence the end result and should therefore be further investigated through sensitivity 

analyses when it is applied in practice. 

Another interesting step could be the creation of a flexible, user-friendly tool to achieve data 

integration using our methods to perform imputation and analysis simultaneously. It could 

impute any type of outcome and confounders, systematically and sporadically missing data, 

granularity, mixed type and combined problems. It could be a freely available tool that may 

be utilised easily with the development of novel statistical software (R package, Rshiny) that 

should not require knowledge of the statistical principles of multiple imputation [77].  
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Prospective alignment of legacy datasets without the availability of standards is labour 

intensive and very often impossible to achieve perfectly. In such cases, very little practical 

guidance is available and data integration frameworks about real-world data have not been 

easily shared to use as guidance. If researchers published healthcare dataset integration steps 

they followed during analyses, many problems would have been identified and therefore 

errors and biases would have been avoided. It would also be extremely beneficial for young 

professionals in health data science to have some guidance. If specific steps were taken 

during data cleaning/preparation/manipulation processes, and they were also shared then 

these traditional techniques would have been questioned, analysed and probably been 

improved much earlier. 

7.5 Conclusion  

 

This thesis aimed to identify issues that make structured data integration ambitious and 

overcome these by using promising alternative techniques. We defined three content 

heterogeneity problems i.e., systematically missing values, varying granularity, mixed type 

variables, and solved these theoretically with our novel approach. We designed a series of 

simulation studies, under a range of scenarios, to apply those problems (and their 

combinations), so to evaluate our methods.  

We conclude that multiple imputation by chained equations is a valid approach to solve 

content heterogeneity problems. We found that in more complex scenarios the usage of a 

‘group’ informative variable facilitated and improved imputations. Our approaches 

consistently outperformed traditional approaches - complete case analysis. Results of this 

thesis may facilitate structured data integration in biomedical research and pave the way for 

more widespread usage of probabilistic approaches to overcome other content heterogeneity 

problems. Translating content heterogeneity into a missing data problem and solving it using 

established methods is a very promising solution and could help leverage disparate datasets 

to gain knowledge and answer critical biomedical research questions.  
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Appendices 

 

Appendix A: Systematically missing values 

Here we give simulation results for 10 scenarios presented in Chapter 3. Full Data refers to 

complete true data, Complete Records to traditional data integration – complete case 

analysis where variable with systematically missing values is omitted from analysis model, 

FCS refers to fully conditional specification - multiple imputation, 𝑒𝑖 refers to model error 

applied in outcome’s data generating mechanism (equation 3.1). 

Simulation with studies of same sizes 

Scenario 1 (D=2, N=200 per study) 

Table A. 1. Simulation results when one chosen study is completely missing X1. Data 

generated under scenario 1, 𝑒𝑖: N ~ (0, 0.2), using equation 3.1. 

 𝑒𝑖:N~(0,0.2) β0 β1 

  Mean mSE EmpSE Cov Mean mSE EmpSE Cov 

Full Data 2.508 0.032 0.031 0.951 0.688 0.010 0.010 0.965 

Complete 

Records 2.504 0.112 0.104 0.966 0.000 0.000 0.000 0.000 

FCS 2.508 0.047 0.047 0.927 0.694 0.014 0.014 0.923 

  β2 β3 

  Mean mSE EmpSE Cov Mean mSE EmpSE Cov 

Full Data -2.059 0.005 0.005 0.953 -0.788 0.039 0.038 0.952 

Complete 

Records -1.990 0.018 0.005 0.000 -0.782 0.137 0.134 0.960 

FCS -2.059 0.007 0.007 0.943 -0.787 0.057 0.059 0.931 

  β4       β5 

  Mean mSE EmpSE Cov Mean mSE EmpSE Cov 

Full Data 0.624 0.034 0.034 0.954 -0.949 0.056 0.056 0.956 

Complete 

Records 0.628 0.120 0.118 0.954 -0.938 0.196 0.194 0.959 

FCS 0.624 0.050 0.052 0.933 -0.951 0.083 0.085 0.932 

Mean: mean estimate over imputed data sets; mSE: standard error derived from Rubin’s rules 

(mean over imputed data sets); EmpSE: standard deviation of estimate over imputed data sets; 

Cov: coverage of nominal 95% confidence interval.  
 

Table A. 2. Simulation results when one chosen study is completely missing X1. Data 

generated under scenario 1, 𝑒𝑖: N ~ (0, 2), using equation 3.1. 

 𝑒𝑖:N~(0,2) β0 β1 

  Mean mSE EmpSE Cov Mean mSE EmpSE Cov 

Full Data 2.510 0.320 0.314 0.951 0.689 0.103 0.099 0.965 

Complete 

Records 2.506 0.337 0.325 0.966 0.000 0.000 0.000 0.000 

FCS 2.518 0.339 0.335 0.962 0.680 0.138 0.140 0.926 

  β2 β3 
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  Mean mSE EmpSE Cov Mean mSE EmpSE Cov 

Full Data -2.058 0.051 0.051 0.953 -0.788 0.391 0.378 0.952 

Complete 

Records -1.989 0.053 0.049 0.768 -0.782 0.413 0.399 0.962 

FCS -2.055 0.055 0.051 0.959 -0.795 0.415 0.404 0.962 

  β4       β5 

  Mean mSE EmpSE Cov Mean mSE EmpSE Cov 

Full Data 0.622 0.343 0.341 0.954 -0.947 0.559 0.557 0.956 

Complete 

Records 0.626 0.362 0.355 0.963 -0.937 0.589 0.570 0.957 

FCS 0.614 0.364 0.368 0.954 -0.963 0.594 0.591 0.948 

Mean: mean estimate over imputed data sets; mSE: standard error derived from Rubin’s rules 

(mean over imputed data sets); EmpSE: standard deviation of estimate over imputed data sets; 

Cov: coverage of nominal 95% confidence interval.  
 

Table A. 3. Simulation results when one chosen study is completely missing X1. Data 

generated under scenario 1, 𝑒𝑖: N ~ (0, 20), using equation 3.1. 

 𝑒𝑖:N~(0,20) β0 β1 

  Mean mSE EmpSE Cov Mean mSE EmpSE Cov 

Full Data 2.530 3.196 3.140 0.951 0.704 1.027 0.988 0.965 

Complete 

Records 2.527 3.194 3.132 0.952 0.000 0.000 0.000 0.000 

FCS 2.528 3.218 3.158 0.947 0.691 1.479 1.429 0.940 

  β2 β3 

  Mean mSE EmpSE Cov Mean mSE EmpSE Cov 

Full Data -2.046 0.514 0.505 0.953 -0.791 3.914 3.777 0.952 

Complete 

Records -1.976 0.503 0.491 0.951 -0.786 3.912 3.778 0.956 

FCS -2.042 0.525 0.514 0.961 -0.800 3.940 3.804 0.950 

  β4       β5 

  Mean mSE EmpSE Cov Mean mSE EmpSE Cov 

Full Data 0.606 3.432 3.412 0.954 -0.927 5.592 5.572 0.956 

Complete 

Records 0.609 3.429 3.403 0.956 -0.927 5.588 5.556 0.953 

FCS 0.609 3.457 3.442 0.954 -0.933 5.632 5.617 0.954 

Mean: mean estimate over imputed data sets; mSE: standard error derived from Rubin’s rules 

(mean over imputed data sets); EmpSE: standard deviation of estimate over imputed data sets; 

Cov: coverage of nominal 95% confidence interval.  
 

Scenario 2 (D=2, N=1000 per study) 

Table A. 4. Simulation results when one chosen study is completely missing X1. Data 

generated under scenario 2, 𝑒𝑖: N ~ (0, 0.2), using equation 3.1. 

 𝒆𝒊:N~(0,0.2) β0 β1 

  Mean mSE EmpSE Cov Mean mSE EmpSE Cov 

Full Data 2.508 0.014 0.014 0.954 0.687 0.005 0.005 0.957 

Complete 

Records 2.508 0.050 0.046 0.972 0.000 0.000 0.000 0.000 

FCS 2.508 0.020 0.021 0.927 0.689 0.006 0.006 0.933 
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  β2 β3 

  Mean mSE EmpSE Cov Mean mSE EmpSE Cov 

Full Data -2.059 0.002 0.002 0.950 -0.787 0.017 0.017 0.950 

Complete 

Records -1.990 0.008 0.002 0.000 -0.789 0.061 0.059 0.955 

FCS -2.059 0.003 0.003 0.936 -0.787 0.025 0.026 0.931 

  β4       β5 

  Mean mSE EmpSE Cov Mean mSE EmpSE Cov 

Full Data 0.624 0.015 0.015 0.952 -0.949 0.025 0.024 0.948 

Complete 

Records 0.624 0.053 0.051 0.967 -0.949 0.086 0.086 0.952 

FCS 0.624 0.022 0.022 0.932 -0.949 0.035 0.036 0.924 

Mean: mean estimate over imputed data sets; mSE: standard error derived from Rubin’s rules 

(mean over imputed data sets); EmpSE: standard deviation of estimate over imputed data sets; 

Cov: coverage of nominal 95% confidence interval.  
 

Table A. 5. Simulation results when one chosen study is completely missing X1. Data 

generated under scenario 2, 𝑒𝑖: N ~ (0, 2), using equation 3.1. 

 𝒆𝒊:N~(0,2) β0 β1 

  Mean mSE EmpSE Cov Mean mSE EmpSE Cov 

Full Data 2.510 0.141 0.142 0.954 0.686 0.046 0.046 0.957 

Complete 

Records 2.510 0.149 0.148 0.953 0.000 0.000 0.000 0.000 

FCS 2.511 0.150 0.148 0.955 0.685 0.061 0.063 0.929 

  β2 β3 

  Mean mSE EmpSE Cov Mean mSE EmpSE Cov 

Full Data -2.060 0.023 0.023 0.950 -0.786 0.173 0.174 0.950 

Complete 

Records -1.991 0.024 0.022 0.168 -0.789 0.183 0.184 0.952 

FCS -2.060 0.024 0.023 0.960 -0.786 0.184 0.182 0.950 

  β4       β5 

  Mean mSE EmpSE Cov Mean mSE EmpSE Cov 

Full Data 0.623 0.152 0.153 0.952 -0.951 0.246 0.240 0.948 

Complete 

Records 0.623 0.160 0.159 0.956 -0.951 0.259 0.255 0.952 

FCS 0.620 0.161 0.160 0.947 -0.952 0.261 0.255 0.949 

Mean: mean estimate over imputed data sets; mSE: standard error derived from Rubin’s rules 

(mean over imputed data sets); EmpSE: standard deviation of estimate over imputed data sets; 

Cov: coverage of nominal 95% confidence interval.  
 

Table A. 6. Simulation results when one chosen study is completely missing X1. Data 

generated under scenario 2, 𝑒𝑖: N ~ (0, 20), using equation 3.1. 

 𝒆𝒊:N~(0,20) β0 β1 

  Mean mSE EmpSE Cov Mean mSE EmpSE Cov 

Full Data 2.518 1.416 1.395 0.960 0.672 0.457 0.461 0.948 

Complete 

Records 2.518 1.416 1.394 0.960 0.000 0.000 0.000 0.000 

FCS 2.519 1.419 1.392 0.961 0.648 0.659 0.678 0.933 

  β2 β3 
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  Mean mSE EmpSE Cov Mean mSE EmpSE Cov 

Full Data -2.060 0.228 0.224 0.952 -0.794 1.734 1.714 0.942 

Complete 

Records -1.993 0.224 0.220 0.943 -0.795 1.735 1.714 0.941 

FCS -2.057 0.234 0.231 0.952 -0.796 1.738 1.710 0.945 

  β4       β5 

  Mean mSE EmpSE Cov Mean mSE EmpSE Cov 

Full Data 0.620 1.521 1.507 0.958 -0.997 2.460 2.446 0.956 

Complete 

Records 0.621 1.521 1.506 0.960 -0.996 2.461 2.446 0.956 

FCS 0.620 1.524 1.505 0.961 -0.997 2.465 2.453 0.958 

Mean: mean estimate over imputed data sets; mSE: standard error derived from Rubin’s rules 

(mean over imputed data sets); EmpSE: standard deviation of estimate over imputed data sets; 

Cov: coverage of nominal 95% confidence interval.  
 

Scenario 3 (D=5, N=200 per study) 

Table A. 7. Simulation results when two chosen studies are completely missing X1. Data 

generated under scenario 3, 𝑒𝑖: N ~ (0, 0.2), using equation 3.1. 

 𝒆𝒊:N~(0,0.2) β0 β1 

  Mean mSE EmpSE Cov Mean mSE EmpSE Cov 

Full Data 2.508 0.020 0.019 0.960 0.687 0.006 0.006 0.955 

Complete 

Records 2.505 0.070 0.069 0.950 0.000 0.000 0.000 0.000 

FCS 2.508 0.026 0.026 0.942 0.689 0.008 0.008 0.934 

  β2 β3 

  Mean mSE EmpSE Cov Mean mSE EmpSE Cov 

Full Data -2.059 0.003 0.003 0.958 -0.789 0.025 0.024 0.946 

Complete 

Records -1.990 0.011 0.003 0.000 -0.785 0.086 0.090 0.940 

FCS -2.059 0.004 0.004 0.934 -0.789 0.032 0.032 0.949 

  β4       β5 

  Mean mSE EmpSE Cov Mean mSE EmpSE Cov 

Full Data 0.623 0.022 0.021 0.960 -0.949 0.035 0.035 0.949 

Complete 

Records 0.626 0.076 0.077 0.945 -0.949 0.123 0.126 0.940 

FCS 0.623 0.028 0.028 0.946 -0.948 0.046 0.047 0.942 

Mean: mean estimate over imputed data sets; mSE: standard error derived from Rubin’s rules 

(mean over imputed data sets); EmpSE: standard deviation of estimate over imputed data sets; 

Cov: coverage of nominal 95% confidence interval.  
 

Table A. 8. Simulation results when two chosen studies are completely missing X1.  Data 

generated under scenario 3, 𝑒𝑖: N ~ (0, 2), using equation 3.1. 

 𝒆𝒊:N~(0,2) β0 β1 

  Mean mSE EmpSE Cov Mean mSE EmpSE Cov 

Full Data 2.511 0.201 0.190 0.960 0.687 0.065 0.065 0.955 

Complete 

Records 2.508 0.212 0.203 0.960 0.000 0.000 0.000 0.000 

FCS 2.510 0.209 0.198 0.954 0.689 0.081 0.083 0.940 
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  β2 β3 

  Mean mSE EmpSE Cov Mean mSE EmpSE Cov 

Full Data -2.058 0.032 0.031 0.958 -0.802 0.246 0.238 0.946 

Complete 

Records -1.989 0.033 0.031 0.438 -0.798 0.259 0.257 0.948 

FCS -2.058 0.034 0.032 0.963 -0.801 0.256 0.248 0.954 

  β4       β5 

  Mean mSE EmpSE Cov Mean mSE EmpSE Cov 

Full Data 0.617 0.215 0.206 0.960 -0.949 0.349 0.351 0.949 

Complete 

Records 0.620 0.227 0.220 0.960 -0.949 0.368 0.374 0.939 

FCS 0.619 0.224 0.216 0.959 -0.949 0.363 0.364 0.948 

Mean: mean estimate over imputed data sets; mSE: standard error derived from Rubin’s rules 

(mean over imputed data sets); EmpSE: standard deviation of estimate over imputed data sets; 

Cov: coverage of nominal 95% confidence interval.  
 

Table A. 9. Simulation results when two chosen studies are completely missing X1. Data 

generated under scenario 3, 𝑒𝑖: N ~ (0, 20), using equation 3.1. 

 𝒆𝒊:N~(0,20) β0 β1 

  Mean mSE EmpSE Cov Mean mSE EmpSE Cov 

Full Data 2.535 2.006 1.897 0.960 0.680 0.647 0.649 0.955 

Complete 

Records 2.532 2.006 1.905 0.957 0.000 0.000 0.000 0.000 

FCS 2.535 2.010 1.899 0.960 0.688 0.850 0.862 0.941 

  β2 β3 

  Mean mSE EmpSE Cov Mean mSE EmpSE Cov 

Full Data -2.048 0.324 0.314 0.958 -0.931 2.457 2.385 0.946 

Complete 

Records -1.980 0.317 0.309 0.953 -0.927 2.457 2.395 0.943 

FCS -2.048 0.329 0.314 0.965 -0.931 2.462 2.388 0.946 

  β4       β5 

  Mean mSE EmpSE Cov Mean mSE EmpSE Cov 

Full Data 0.556 2.155 2.058 0.960 -0.949 3.491 3.509 0.949 

Complete 

Records 0.561 2.155 2.065 0.958 -0.950 3.491 3.514 0.948 

FCS 0.558 2.159 2.062 0.962 -0.951 3.498 3.509 0.952 

Mean: mean estimate over imputed data sets; mSE: standard error derived from Rubin’s rules 

(mean over imputed data sets); EmpSE: standard deviation of estimate over imputed data sets; 

Cov: coverage of nominal 95% confidence interval.  
 

Scenario 4 (D=5, N=1000 per study) 

Table A. 10. Simulation results when two chosen studies are completely missing X1.  Data 

generated under scenario 4, 𝑒𝑖: N ~ (0, 0.2), using equation 3.1. 

 𝒆𝒊:N~(0,0.2) β0 β1 

  Mean mSE EmpSE Cov Mean mSE EmpSE Cov 

Full Data 2.508 0.009 0.009 0.949 0.687 0.003 0.003 0.942 

Complete 

Records 2.508 0.031 0.031 0.951 0.000 0.000 0.000 0.000 



 

 239 

FCS 2.507 0.012 0.012 0.930 0.688 0.004 0.004 0.945 

  β2 β3 

  Mean mSE EmpSE Cov Mean mSE EmpSE Cov 

Full Data -2.059 0.001 0.001 0.943 -0.787 0.011 0.011 0.943 

Complete 

Records -1.990 0.005 0.001 0.000 -0.788 0.038 0.040 0.947 

FCS -2.059 0.002 0.002 0.935 -0.787 0.014 0.015 0.926 

  β4       β5 

  Mean mSE EmpSE Cov Mean mSE EmpSE Cov 

Full Data 0.624 0.010 0.010 0.944 -0.949 0.016 0.016 0.954 

Complete 

Records 0.624 0.034 0.035 0.940 -0.952 0.055 0.056 0.937 

FCS 0.624 0.012 0.014 0.919 -0.949 0.020 0.020 0.942 

Mean: mean estimate over imputed data sets; mSE: standard error derived from Rubin’s rules 

(mean over imputed data sets); EmpSE: standard deviation of estimate over imputed data sets; 

Cov: coverage of nominal 95% confidence interval.  
 

Table A. 11. Simulation results when two chosen studies are completely missing X1.  Data 

generated under scenario 4, 𝑒𝑖: N ~ (0, 2), using equation 3.1. 

 𝒆𝒊:N~(0,2) β0 β1 

  Mean mSE EmpSE Cov Mean mSE EmpSE Cov 

Full Data 2.506 0.090 0.093 0.949 0.686 0.029 0.029 0.942 

Complete 

Records 2.506 0.094 0.097 0.936 0.000 0.000 0.000 0.000 

FCS 2.506 0.093 0.096 0.947 0.686 0.036 0.037 0.937 

  β2 β3 

  Mean mSE EmpSE Cov Mean mSE EmpSE Cov 

Full Data -2.059 0.014 0.014 0.943 -0.786 0.110 0.114 0.943 

Complete 

Records -1.991 0.015 0.014 0.002 -0.787 0.116 0.120 0.937 

FCS -2.059 0.015 0.015 0.952 -0.785 0.114 0.118 0.935 

  β4       β5 

  Mean mSE EmpSE Cov Mean mSE EmpSE Cov 

Full Data 0.627 0.096 0.099 0.944 -0.947 0.155 0.159 0.954 

Complete 

Records 0.627 0.101 0.105 0.938 -0.950 0.164 0.170 0.952 

FCS 0.627 0.100 0.103 0.945 -0.947 0.161 0.166 0.947 

Mean: mean estimate over imputed data sets; mSE: standard error derived from Rubin’s rules 

(mean over imputed data sets); EmpSE: standard deviation of estimate over imputed data sets; 

Cov: coverage of nominal 95% confidence interval.  
 

Table A. 12. Simulation results when two chosen studies are completely missing X1.  Data 

generated under scenario 4, 𝑒𝑖: N ~ (0, 20), using equation 3.1. 

 𝒆𝒊:N~(0,20) β0 β1 

  Mean mSE EmpSE Cov Mean mSE EmpSE Cov 

Full Data 2.490 0.895 0.925 0.949 0.673 0.289 0.295 0.942 

Complete 

Records 2.490 0.896 0.926 0.947 0.000 0.000 0.000 0.000 

FCS 2.489 0.896 0.926 0.946 0.667 0.381 0.383 0.948 
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  β2 β3 

  Mean mSE EmpSE Cov Mean mSE EmpSE Cov 

Full Data -2.063 0.144 0.144 0.943 -0.774 1.096 1.136 0.943 

Complete 

Records -1.996 0.142 0.142 0.934 -0.775 1.097 1.136 0.942 

FCS -2.062 0.147 0.147 0.953 -0.773 1.097 1.135 0.945 

  β4       β5 

  Mean mSE EmpSE Cov Mean mSE EmpSE Cov 

Full Data 0.651 0.962 0.993 0.944 -0.926 1.552 1.589 0.954 

Complete 

Records 0.651 0.962 0.994 0.944 -0.929 1.553 1.592 0.953 

FCS 0.652 0.963 0.994 0.943 -0.926 1.553 1.591 0.953 

Mean: mean estimate over imputed data sets; mSE: standard error derived from Rubin’s rules 

(mean over imputed data sets); EmpSE: standard deviation of estimate over imputed data sets; 

Cov: coverage of nominal 95% confidence interval.  
 

Simulation with studies of different sizes 

Scenario 5 (D=5, N: different per study) 

Table A. 13. Simulation results when two chosen studies are completely missing X1.  Data 

generated under scenario 5, 𝑒𝑖: N ~ (0, 0.2), using equation 3.1. 

 𝒆𝒊:N~(0,0.2) β0 β1 

  Mean mSE EmpSE Cov Mean mSE EmpSE Cov 

Full Data 2.508 0.027 0.027 0.943 0.688 0.009 0.008 0.956 

Complete 

Records 2.511 0.093 0.091 0.960 0.000 0.000 0.000 0.000 

FCS 2.509 0.032 0.033 0.938 0.690 0.010 0.010 0.944 

  β2 β3 

  Mean mSE EmpSE Cov Mean mSE EmpSE Cov 

Full Data -2.059 0.004 0.004 0.950 -0.788 0.032 0.033 0.942 

Complete 

Records -1.990 0.015 0.004 0.000 -0.791 0.114 0.115 0.949 

FCS -2.059 0.005 0.005 0.945 -0.790 0.040 0.041 0.944 

  β4       β5 

  Mean mSE EmpSE Cov Mean mSE EmpSE Cov 

Full Data 0.624 0.028 0.029 0.943 -0.949 0.046 0.048 0.944 

Complete 

Records 0.621 0.100 0.102 0.947 -0.958 0.163 0.164 0.948 

FCS 0.623 0.035 0.035 0.941 -0.950 0.057 0.058 0.942 

Mean: mean estimate over imputed data sets; mSE: standard error derived from Rubin’s rules 

(mean over imputed data sets); EmpSE: standard deviation of estimate over imputed data sets; 

Cov: coverage of nominal 95% confidence interval.  
 

Table A. 14. Simulation results when two chosen studies are completely missing X1.  Data 

generated under scenario 5, 𝑒𝑖: N ~ (0, 2), using equation 3.1. 

 𝒆𝒊:N~(0,2) β0 β1 

  Mean mSE EmpSE Cov Mean mSE EmpSE Cov 

Full Data 2.510 0.265 0.272 0.943 0.690 0.086 0.085 0.956 
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Complete 

Records 2.513 0.279 0.286 0.945 0.000 0.000 0.000 0.000 

FCS 2.512 0.272 0.278 0.937 0.687 0.100 0.104 0.943 

  β2 β3 

  Mean mSE EmpSE Cov Mean mSE EmpSE Cov 

Full Data -2.060 0.043 0.042 0.950 -0.793 0.325 0.335 0.942 

Complete 

Records -1.991 0.044 0.042 0.678 -0.796 0.342 0.353 0.943 

FCS -2.059 0.044 0.043 0.946 -0.795 0.334 0.344 0.946 

  β4       β5 

  Mean mSE EmpSE Cov Mean mSE EmpSE Cov 

Full Data 0.623 0.285 0.294 0.943 -0.952 0.464 0.484 0.944 

Complete 

Records 0.621 0.300 0.310 0.941 -0.960 0.489 0.506 0.940 

FCS 0.622 0.293 0.300 0.950 -0.948 0.476 0.495 0.946 

Mean: mean estimate over imputed data sets; mSE: standard error derived from Rubin’s rules 

(mean over imputed data sets); EmpSE: standard deviation of estimate over imputed data sets; 

Cov: coverage of nominal 95% confidence interval.  
 

Table A. 15. Simulation results when two chosen studies are completely missing X1.  Data 

generated under scenario 5, 𝑒𝑖: N ~ (0, 20), using equation 3.1. 

 𝒆𝒊:N~(0,20) β0 β1 

  Mean mSE EmpSE Cov Mean mSE EmpSE Cov 

Full Data 2.533 2.650 2.720 0.943 0.716 0.857 0.849 0.956 

Complete 

Records 2.534 2.650 2.721 0.941 0.000 0.000 0.000 0.000 

FCS 2.532 2.655 2.724 0.943 0.696 1.048 1.077 0.937 

  β2 β3 

  Mean mSE EmpSE Cov Mean mSE EmpSE Cov 

Full Data -2.065 0.428 0.424 0.950 -0.840 3.248 3.346 0.942 

Complete 

Records -1.994 0.420 0.419 0.943 -0.843 3.247 3.344 0.941 

FCS -2.062 0.433 0.430 0.945 -0.838 3.254 3.350 0.942 

  β4       β5 

  Mean mSE EmpSE Cov Mean mSE EmpSE Cov 

Full Data 0.618 2.847 2.938 0.943 -0.974 4.639 4.841 0.944 

Complete 

Records 0.617 2.846 2.939 0.941 -0.977 4.638 4.822 0.945 

FCS 0.618 2.852 2.943 0.942 -0.960 4.647 4.854 0.940 

Mean: mean estimate over imputed data sets; mSE: standard error derived from Rubin’s rules 

(mean over imputed data sets); EmpSE: standard deviation of estimate over imputed data sets; 

Cov: coverage of nominal 95% confidence interval.  
 

Scenario 6 (D=10, N: different per study) 

Table A. 16. Simulation results when four chosen studies are completely missing X1.  Data 

generated under scenario 6, 𝑒𝑖: N ~ (0, 0.2), using equation 3.1. 

 𝒆𝒊:N~(0,0.2) β0 β1 

  Mean mSE EmpSE Cov Mean mSE EmpSE Cov 
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Full Data 2.508 0.011 0.012 0.955 0.687 0.004 0.004 0.963 

Complete 

Records 2.509 0.040 0.038 0.958 0.000 0.000 0.000 0.000 

FCS 2.508 0.014 0.015 0.934 0.688 0.004 0.004 0.941 

  β2 β3 

  Mean mSE EmpSE Cov Mean mSE EmpSE Cov 

Full Data -2.059 0.002 0.002 0.949 -0.787 0.014 0.014 0.948 

Complete 

Records -1.990 0.006 0.002 0.000 -0.790 0.049 0.048 0.954 

FCS -2.059 0.002 0.002 0.949 -0.787 0.017 0.018 0.923 

  β4       β5 

  Mean mSE EmpSE Cov Mean mSE EmpSE Cov 

Full Data 0.624 0.012 0.012 0.950 -0.949 0.020 0.019 0.953 

Complete 

Records 0.622 0.043 0.043 0.939 -0.951 0.069 0.066 0.953 

FCS 0.624 0.015 0.016 0.937 -0.949 0.025 0.026 0.925 

Mean: mean estimate over imputed data sets; mSE: standard error derived from Rubin’s rules 

(mean over imputed data sets); EmpSE: standard deviation of estimate over imputed data sets; 

Cov: coverage of nominal 95% confidence interval.  
 

Table A. 17. Simulation results when four chosen studies are completely missing X1.  Data 

generated under scenario 6, 𝑒𝑖: N ~ (0, 2), using equation 3.1. 

 𝒆𝒊:N~(0,2) β0 β1 

  Mean mSE EmpSE Cov Mean mSE EmpSE Cov 

Full Data 2.505 0.113 0.115 0.955 0.687 0.037 0.036 0.963 

Complete 

Records 2.507 0.119 0.121 0.945 0.000 0.000 0.000 0.000 

FCS 2.505 0.117 0.119 0.949 0.687 0.045 0.045 0.939 

  β2 β3 

  Mean mSE EmpSE Cov Mean mSE EmpSE Cov 

Full Data -2.059 0.018 0.018 0.949 -0.785 0.139 0.139 0.948 

Complete 

Records -1.990 0.019 0.018 0.031 -0.788 0.146 0.148 0.950 

FCS -2.059 0.019 0.018 0.957 -0.785 0.143 0.146 0.943 

  β4       β5 

  Mean mSE EmpSE Cov Mean mSE EmpSE Cov 

Full Data 0.625 0.122 0.122 0.950 -0.952 0.197 0.193 0.953 

Complete 

Records 0.623 0.128 0.129 0.947 -0.953 0.207 0.202 0.953 

FCS 0.625 0.126 0.126 0.952 -0.950 0.203 0.203 0.954 

Mean: mean estimate over imputed data sets; mSE: standard error derived from Rubin’s rules 

(mean over imputed data sets); EmpSE: standard deviation of estimate over imputed data sets; 

Cov: coverage of nominal 95% confidence interval.  
 

Table A. 18. Simulation results when four chosen studies are completely missing X1.  Data 

generated under scenario 6, 𝑒𝑖: N ~ (0, 20), using equation 3.1. 

 𝒆𝒊:N~(0,20) β0 β1 

  Mean mSE EmpSE Cov Mean mSE EmpSE Cov 

Full Data 2.481 1.132 1.152 0.955 0.685 0.366 0.360 0.963 
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Complete 

Records 2.484 1.133 1.152 0.954 0.000 0.000 0.000 0.000 

FCS 2.481 1.133 1.152 0.951 0.679 0.464 0.462 0.942 

  β2 β3 

  Mean mSE EmpSE Cov Mean mSE EmpSE Cov 

Full Data -2.056 0.183 0.178 0.949 -0.761 1.387 1.393 0.948 

Complete 

Records -1.987 0.179 0.175 0.936 -0.765 1.388 1.394 0.947 

FCS -2.055 0.185 0.180 0.950 -0.762 1.388 1.395 0.949 

  β4       β5 

  Mean mSE EmpSE Cov Mean mSE EmpSE Cov 

Full Data 0.633 1.216 1.218 0.950 -0.979 1.967 1.933 0.953 

Complete 

Records 0.630 1.217 1.219 0.951 -0.979 1.967 1.933 0.955 

FCS 0.634 1.217 1.219 0.949 -0.978 1.968 1.936 0.953 

Mean: mean estimate over imputed data sets; mSE: standard error derived from Rubin’s rules 

(mean over imputed data sets); EmpSE: standard deviation of estimate over imputed data sets; 

Cov: coverage of nominal 95% confidence interval.  
 

Scenario 7 (D=2, N=100 per study, 𝑒1: N ~ (0, 1.2), 𝑒2: N ~ (0, 1.3)) 

Table A. 19. Simulation results when one chosen study is completely missing X1.  Data 

generated under scenario 7, 𝑒1: N ~ (0, 1.2), 𝑒2: N ~ (0, 1.3), using equation 3.1. 

𝒆𝟏: N~(0,1.2), 

𝒆𝟐: N~(0,1.3) 
β0 β1 

  Mean mSE EmpSE Cov Mean mSE EmpSE Cov 

Full Data 2.512 0.286 0.287 0.953 0.690 0.091 0.089 0.964 

Complete 

Records 2.509 0.324 0.314 0.960 0.000 0.000 0.000 0.000 

FCS 2.507 0.324 0.328 0.948 0.655 0.117 0.126 0.927 

  β2 β3 

  Mean mSE EmpSE Cov Mean mSE EmpSE Cov 

Full Data -2.056 0.046 0.045 0.947 -0.800 0.350 0.360 0.944 

Complete 

Records -1.987 0.051 0.044 0.745 -0.799 0.397 0.401 0.945 

FCS -2.050 0.051 0.049 0.956 -0.793 0.395 0.415 0.937 

  β4       β5 

  Mean mSE EmpSE Cov Mean mSE EmpSE Cov 

Full Data 0.623 0.307 0.312 0.943 -0.977 0.504 0.502 0.955 

Complete 

Records 0.627 0.348 0.343 0.955 -0.968 0.572 0.561 0.951 

FCS 0.629 0.347 0.357 0.935 -0.971 0.569 0.567 0.948 

Mean: mean estimate over imputed data sets; mSE: standard error derived from Rubin’s rules 

(mean over imputed data sets); EmpSE: standard deviation of estimate over imputed data sets; 

Cov: coverage of nominal 95% confidence interval.  
 

Scenario 8 (D=2, N=200 per study, 𝑒1: N ~ (0, 1.2), 𝑒2: N ~ (0, 1.3)) 
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Table A. 20. Simulation results when one chosen study is completely missing X1.  Data 

generated under scenario 8, 𝑒1: N ~ (0, 1.2), 𝑒2: N ~ (0, 1.3), using equation 3.1. 

𝒆𝟏: N~(0,1.2), 

𝒆𝟐: N~(0,1.3) 
β0 β1 

  Mean mSE EmpSE Cov Mean mSE EmpSE Cov 

Full Data 2.509 0.200 0.197 0.950 0.688 0.064 0.062 0.962 

Complete 

Records 2.505 0.227 0.216 0.967 0.000 0.000 0.000 0.000 

FCS 2.516 0.226 0.225 0.949 0.654 0.082 0.083 0.925 

  β2 β3 

  Mean mSE EmpSE Cov Mean mSE EmpSE Cov 

Full Data -2.058 0.032 0.032 0.954 -0.787 0.245 0.237 0.952 

Complete 

Records -1.989 0.036 0.031 0.517 -0.781 0.278 0.270 0.957 

FCS -2.053 0.036 0.033 0.959 -0.791 0.276 0.273 0.955 

  β4       β5 

  Mean mSE EmpSE Cov Mean mSE EmpSE Cov 

Full Data 0.623 0.215 0.214 0.955 -0.948 0.350 0.349 0.954 

Complete 

Records 0.627 0.244 0.238 0.958 -0.938 0.397 0.380 0.955 

FCS 0.617 0.242 0.247 0.949 -0.961 0.396 0.399 0.946 

Mean: mean estimate over imputed data sets; mSE: standard error derived from Rubin’s rules 

(mean over imputed data sets); EmpSE: standard deviation of estimate over imputed data sets; 

Cov: coverage of nominal 95% confidence interval.  
 

Scenario 9 (D=2, N=500 per study, 𝑒1: N ~ (0, 1.2), 𝑒2: N ~ (0, 1.3)) 

Table A. 21. Simulation results when one chosen study is completely missing X1.  Data 

generated under scenario 9, 𝑒1: N ~ (0, 1.2), 𝑒2: N ~ (0, 1.3), using equation 3.1. 

𝒆𝟏: N~(0,1.2), 

𝒆𝟐: N~(0,1.3) 
β0 β1 

  Mean mSE EmpSE Cov Mean mSE EmpSE Cov 

Full Data 2.503 0.126 0.126 0.951 0.686 0.040 0.040 0.952 

Complete 

Records 2.501 0.143 0.137 0.963 0.000 0.000 0.000 0.000 

FCS 2.507 0.142 0.141 0.948 0.654 0.052 0.055 0.884 

  β2 β3 

  Mean mSE EmpSE Cov Mean mSE EmpSE Cov 

Full Data -2.058 0.020 0.020 0.948 -0.783 0.154 0.158 0.949 

Complete 

Records -1.989 0.023 0.020 0.093 -0.780 0.175 0.173 0.954 

FCS -2.054 0.023 0.021 0.963 -0.789 0.174 0.178 0.946 

  β4       β5 

  Mean mSE EmpSE Cov Mean mSE EmpSE Cov 

Full Data 0.629 0.135 0.133 0.946 -0.947 0.218 0.223 0.947 

Complete 

Records 0.630 0.153 0.146 0.955 -0.942 0.248 0.249 0.954 

FCS 0.625 0.152 0.150 0.945 -0.951 0.246 0.252 0.949 

Mean: mean estimate over imputed data sets; mSE: standard error derived from Rubin’s rules 

(mean over imputed data sets); EmpSE: standard deviation of estimate over imputed data sets; 

Cov: coverage of nominal 95% confidence interval.  
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Scenario 10 (D=2, N=1000 per study, 𝑒1: N ~ (0, 1.2), 𝑒2: N ~ (0, 1.3)) 

Table A. 22. Simulation results when one chosen study is completely missing X1.  Data 

generated under scenario 10, 𝑒1: N ~ (0, 1.2), 𝑒2: N ~ (0, 1.3), using equation 3.1. 

𝒆𝟏: N~(0,1.2), 

𝒆𝟐: N~(0,1.3) 
β0 β1 

  Mean mSE EmpSE Cov Mean mSE EmpSE Cov 

Full Data 2.509 0.088 0.089 0.952 0.687 0.029 0.028 0.957 

Complete 

Records 2.509 0.100 0.099 0.955 0.000 0.000 0.000 0.000 

FCS 2.510 0.100 0.099 0.952 0.654 0.036 0.037 0.847 

  β2 β3 

  Mean mSE EmpSE Cov Mean mSE EmpSE Cov 

Full Data -2.060 0.014 0.014 0.951 -0.787 0.108 0.109 0.951 

Complete 

Records -1.991 0.016 0.014 0.004 -0.789 0.123 0.123 0.954 

FCS -2.056 0.016 0.015 0.955 -0.786 0.122 0.122 0.947 

  β4       β5 

  Mean mSE EmpSE Cov Mean mSE EmpSE Cov 

Full Data 0.623 0.095 0.096 0.951 -0.950 0.154 0.150 0.948 

Complete 

Records 0.624 0.108 0.106 0.956 -0.950 0.174 0.172 0.947 

FCS 0.622 0.107 0.107 0.949 -0.950 0.173 0.169 0.952 

Mean: mean estimate over imputed data sets; mSE: standard error derived from Rubin’s rules 

(mean over imputed data sets); EmpSE: standard deviation of estimate over imputed data sets; 

Cov: coverage of nominal 95% confidence interval.  
 



 

 246 

Appendix B: Varying granularity of categorical variables 

 

In this section, we give simulation results for 10 scenarios presented in Chapter 4. Full Data 

refers to complete true data, Complete Records refers to traditional data integration – keep 

the lowest level that is common in analysis model. FCS refers to fully conditional 

specification - multiple imputation, FCSgroup: imputation model includes informative 

‘group’ variable. 𝑒𝑖 refers to model error applied in outcome’s data generating mechanism 

(equation 5.1).  

Simulations with studies of same sizes 

Scenario 1 (D=2, N=200 per study) 

Table B. 1. Simulation results when data missingness (due to granularity problem) is applied 

to X3 from D1. Data generated under scenario 1, 𝑒𝑖: N ~ (0, 0.2), using equation 4.1. 

 

Table B. 2. Simulation results when data missingness (due to granularity problem) is applied 

to X3 from D1. Data generated under scenario 1, 𝑒𝑖: N ~ (0, 2), using equation 4.1. 

𝑒𝑖:N~(0,2) β0 β1 

  Mean mSE EmpSE Cov Mean mSE EmpSE Cov 

Full Data 1.487 0.319 0.309 0.952 -1.750 0.103 0.106 0.942 

Complete 

Records 2.469 0.186 0.190 0.001 -1.750 0.104 0.108 0.940 

 𝑒𝑖:N~(0,0.2) β0 β1 

  Mean mSE EmpSE Cov Mean mSE EmpSE Cov 

Full Data 1.493 0.032 0.031 0.952 -1.749 0.010 0.011 0.942 

Complete 

Records 2.466 0.039 0.065 0.000 -1.748 0.022 0.022 0.957 

FCS 1.493 0.043 0.036 0.974 -1.748 0.013 0.012 0.967 

FCSgroup 1.510 0.044 0.034 0.974 -1.748 0.012 0.011 0.972 

  β2 β3 

  Mean mSE EmpSE Cov Mean mSE EmpSE Cov 

Full Data 0.426 0.005 0.005 0.958 1.460 0.039 0.039 0.956 

Complete 

Records 0.425 0.011 0.011 0.941 0.000 0.000 0.000 0.000 

FCS 0.425 0.006 0.005 0.978 1.464 0.050 0.042 0.982 

FCSgroup 0.425 0.006 0.005 0.975 1.431 0.051 0.042 0.957 

  β4       β5 

  Mean mSE EmpSE Cov Mean mSE EmpSE Cov 

Full Data -0.954 0.034 0.033 0.950 0.485 0.056 0.056 0.950 

Complete 

Records -1.927 0.047 0.067 0.000 -0.488 0.105 0.081 0.000 

FCS -0.946 0.045 0.037 0.980 0.455 0.079 0.068 0.943 

FCSgroup -0.971 0.046 0.037 0.974 0.470 0.067 0.058 0.964 

Mean: mean estimate over imputed data sets; mSE: standard error derived from Rubin’s rules 

(mean over imputed data sets); EmpSE: standard deviation of estimate over imputed data sets; 

Cov: coverage of nominal 95% confidence interval.  
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FCS 1.678 0.464 0.482 0.916 -1.750 0.107 0.111 0.944 

FCSgroup 1.474 0.371 0.422 0.916 -1.751 0.104 0.108 0.937 

  β2 β3 

  Mean mSE EmpSE Cov Mean mSE EmpSE Cov 

Full Data 0.427 0.051 0.050 0.958 1.474 0.391 0.388 0.956 

Complete 

Records 0.426 0.052 0.050 0.956 0.000 0.000 0.000 0.000 

FCS 0.427 0.053 0.052 0.950 1.527 0.562 0.583 0.932 

FCSgroup 0.427 0.052 0.051 0.954 1.491 0.473 0.549 0.896 

  β4       β5 

  Mean mSE EmpSE Cov Mean mSE EmpSE Cov 

Full Data -0.943 0.343 0.333 0.950 0.492 0.558 0.561 0.950 

Complete 

Records -1.925 0.226 0.232 0.011 -0.490 0.501 0.499 0.499 

FCS -0.967 0.484 0.507 0.940 0.514 0.659 0.680 0.936 

FCSgroup -0.930 0.392 0.442 0.926 0.506 0.590 0.623 0.938 

Mean: mean estimate over imputed data sets; mSE: standard error derived from Rubin’s rules 

(mean over imputed data sets); EmpSE: standard deviation of estimate over imputed data sets; 

Cov: coverage of nominal 95% confidence interval.  

 

Table B. 3. Simulation results when data missingness (due to granularity problem) is applied 

to X3 from D1. Data generated under scenario 1, 𝑒𝑖: N ~ (0, 20), using equation 4.1. 

 

Scenario 2 (D=2, N=1000 per study) 

 𝑒𝑖:N~(0,20) β0 β1 

  Mean mSE EmpSE Cov Mean mSE EmpSE Cov 

Full Data 1.429 3.191 3.093 0.952 -1.770 1.027 1.063 0.942 

Complete 

Records 2.500 1.831 1.793 0.921 -1.771 1.026 1.062 0.944 

FCS 1.554 4.519 4.664 0.942 -1.769 1.029 1.068 0.941 

FCSgroup 1.312 3.773 4.408 0.905 -1.776 1.030 1.072 0.940 

  β2 β3 

  Mean mSE EmpSE Cov Mean mSE EmpSE Cov 

Full Data 0.437 0.513 0.495 0.958 1.610 3.908 3.879 0.956 

Complete 

Records 0.435 0.513 0.494 0.959 0.000 0.000 0.000 0.000 

FCS 0.436 0.515 0.497 0.959 1.703 5.557 5.693 0.940 

FCSgroup 0.437 0.515 0.498 0.958 1.754 4.883 5.879 0.881 

  β4       β5 

  Mean mSE EmpSE Cov Mean mSE EmpSE Cov 

Full Data -0.836 3.427 3.328 0.950 0.561 5.578 5.606 0.950 

Complete 

Records -1.907 2.216 2.212 0.922 -0.511 4.919 4.932 0.948 

FCS -0.738 4.705 4.902 0.943 0.603 6.442 6.589 0.939 

FCSgroup -0.719 3.977 4.622 0.911 0.677 5.939 6.341 0.924 

Mean: mean estimate over imputed data sets; mSE: standard error derived from Rubin’s rules 

(mean over imputed data sets); EmpSE: standard deviation of estimate over imputed data sets; 

Cov: coverage of nominal 95% confidence interval.  
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Table B. 4. Simulation results when data missingness (due to granularity problem) is applied 

to X3 from D1. Data generated under scenario 2, 𝑒𝑖: N ~ (0, 0.2), using equation 4.1. 

 𝑒𝑖:N~(0,0.2) β0 β1 

  Mean mSE EmpSE Cov Mean mSE EmpSE Cov 

Full Data 1.494 0.014 0.014 0.955 -1.748 0.005 0.005 0.944 

Complete 

Records 2.467 0.017 0.029 0.000 -1.748 0.010 0.010 0.949 

FCS 1.485 0.016 0.015 0.943 -1.748 0.005 0.005 0.958 

FCSgroup 1.498 0.016 0.014 0.957 -1.748 0.005 0.005 0.953 

  β2 β3 

  Mean mSE EmpSE Cov Mean mSE EmpSE Cov 

Full Data 0.425 0.002 0.002 0.954 1.458 0.017 0.016 0.959 

Complete 

Records 0.425 0.005 0.005 0.959 0.000 0.000 0.000 0.000 

FCS 0.425 0.002 0.002 0.957 1.471 0.019 0.017 0.931 

FCSgroup 0.425 0.002 0.002 0.961 1.452 0.018 0.017 0.956 

  β4       β5 

  Mean mSE EmpSE Cov Mean mSE EmpSE Cov 

Full Data -0.956 0.015 0.015 0.957 0.483 0.025 0.024 0.953 

Complete 

Records -1.928 0.021 0.029 0.000 -0.489 0.046 0.036 0.000 

FCS -0.943 0.017 0.015 0.917 0.466 0.028 0.027 0.906 

FCSgroup -0.959 0.017 0.015 0.966 0.480 0.026 0.024 0.961 

Mean: mean estimate over imputed data sets; mSE: standard error derived from Rubin’s rules 

(mean over imputed data sets); EmpSE: standard deviation of estimate over imputed data sets; 

Cov: coverage of nominal 95% confidence interval.  

 

Table B. 5. Simulation results when data missingness (due to granularity problem) is applied 

to X3 from D1. Data generated under scenario 2, 𝑒𝑖: N ~ (0, 2), using equation 4.1. 

 𝑒𝑖:N~(0,2) β0 β1 

  Mean mSE EmpSE Cov Mean mSE EmpSE Cov 

Full Data 1.500 0.142 0.140 0.954 -1.749 0.046 0.046 0.944 

Complete 

Records 2.469 0.083 0.085 0.000 -1.748 0.046 0.047 0.946 

FCS 1.706 0.205 0.205 0.813 -1.749 0.047 0.048 0.949 

FCSgroup 1.499 0.164 0.176 0.925 -1.749 0.046 0.047 0.940 

  β2 β3 

  Mean mSE EmpSE Cov Mean mSE EmpSE Cov 

Full Data 0.426 0.023 0.023 0.954 1.453 0.174 0.164 0.958 

Complete 

Records 0.425 0.023 0.023 0.954 0.000 0.000 0.000 0.000 

FCS 0.426 0.024 0.024 0.954 1.498 0.249 0.243 0.947 

FCSgroup 0.426 0.023 0.023 0.950 1.455 0.211 0.225 0.927 

  β4       β5 

  Mean mSE EmpSE Cov Mean mSE EmpSE Cov 

Full Data -0.961 0.152 0.150 0.956 0.470 0.246 0.238 0.953 

Complete 

Records -1.930 0.101 0.098 0.000 -0.499 0.221 0.211 0.008 

FCS -0.995 0.214 0.212 0.944 0.490 0.291 0.290 0.947 

FCSgroup -0.959 0.174 0.184 0.932 0.471 0.260 0.265 0.942 
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Mean: mean estimate over imputed data sets; mSE: standard error derived from Rubin’s rules 

(mean over imputed data sets); EmpSE: standard deviation of estimate over imputed data sets; 

Cov: coverage of nominal 95% confidence interval.  

 

Table B. 6. Simulation results when data missingness (due to granularity problem) is applied 

to X3 from D1. Data generated under scenario 2, 𝑒𝑖: N ~ (0, 20), using equation 4.1. 

 𝑒𝑖:N~(0,20) β0 β1 

  Mean mSE EmpSE Cov Mean mSE EmpSE Cov 

Full Data 1.555 1.417 1.400 0.954 -1.753 0.457 0.463 0.944 

Complete 

Records 2.491 0.817 0.806 0.786 -1.753 0.457 0.464 0.944 

FCS 1.742 1.997 1.971 0.947 -1.753 0.458 0.463 0.942 

FCSgroup 1.547 1.669 1.839 0.915 -1.753 0.457 0.463 0.943 

  β2 β3 

  Mean mSE EmpSE Cov Mean mSE EmpSE Cov 

Full Data 0.427 0.229 0.229 0.954 1.403 1.736 1.639 0.958 

Complete 

Records 0.426 0.229 0.229 0.954 0.000 0.000 0.000 0.000 

FCS 0.427 0.229 0.229 0.954 1.401 2.457 2.379 0.956 

FCSgroup 0.427 0.229 0.229 0.950 1.415 2.176 2.424 0.918 

  β4       β5 

  Mean mSE EmpSE Cov Mean mSE EmpSE Cov 

Full Data -1.008 1.522 1.504 0.956 0.338 2.459 2.382 0.953 

Complete 

Records -1.944 0.988 0.954 0.835 -0.598 2.169 2.086 0.924 

FCS -0.959 2.082 2.042 0.951 0.382 2.843 2.784 0.950 

FCSgroup -1.001 1.760 1.908 0.924 0.346 2.615 2.697 0.939 

Mean: mean estimate over imputed data sets; mSE: standard error derived from Rubin’s rules 

(mean over imputed data sets); EmpSE: standard deviation of estimate over imputed data sets; 

Cov: coverage of nominal 95% confidence interval.  

 

Scenario 3 (D=5, N =200 per study) 

Table B. 7. Simulation results when data missingness (due to granularity problem) is applied 

to X3 from D4  and D5. Data generated under scenario 3, 𝑒𝑖: N ~ (0, 0.2), using equation 4.1. 

 𝑒𝑖:N~(0,0.2) β0 β1 

  Mean mSE EmpSE Cov Mean mSE EmpSE Cov 

Full Data 1.494 0.020 0.020 0.939 -1.749 0.006 0.006 0.952 

Complete 

Records 2.467 0.025 0.042 0.000 -1.749 0.014 0.013 0.956 

FCS 1.489 0.023 0.021 0.960 -1.748 0.007 0.007 0.962 

FCSgroup 1.499 0.023 0.021 0.953 -1.748 0.007 0.006 0.957 

  β2 β3 

  Mean mSE EmpSE Cov Mean mSE EmpSE Cov 

Full Data 0.425 0.003 0.003 0.959 1.459 0.025 0.024 0.956 

Complete 

Records 0.426 0.007 0.007 0.950 0.000 0.000 0.000 0.000 

FCS 0.425 0.004 0.003 0.962 1.467 0.027 0.025 0.964 

FCSgroup 0.425 0.003 0.003 0.968 1.451 0.027 0.025 0.963 
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  β4       β5 

  Mean mSE EmpSE Cov Mean mSE EmpSE Cov 

Full Data -0.956 0.022 0.022 0.947 0.486 0.035 0.035 0.951 

Complete 

Records -1.928 0.030 0.042 0.000 -0.487 0.065 0.049 0.000 

FCS -0.947 0.024 0.022 0.955 0.470 0.041 0.037 0.951 

FCSgroup -0.960 0.024 0.023 0.954 0.482 0.037 0.035 0.958 

Mean: mean estimate over imputed data sets; mSE: standard error derived from Rubin’s rules 

(mean over imputed data sets); EmpSE: standard deviation of estimate over imputed data sets; 

Cov: coverage of nominal 95% confidence interval.  
 

Table B. 8. Simulation results when data missingness (due to granularity problem) is applied 

to X3 from D4  and D5. Data generated under scenario 3, 𝑒𝑖: N ~ (0, 2), using equation 4.1. 

 𝑒𝑖:N~(0,2) β0 β1 

  Mean mSE EmpSE Cov Mean mSE EmpSE Cov 

Full Data 1.496 0.201 0.203 0.939 -1.751 0.065 0.064 0.952 

Complete 

Records 2.470 0.118 0.122 0.000 -1.751 0.066 0.065 0.948 

FCS 1.665 0.265 0.272 0.907 -1.750 0.067 0.066 0.956 

FCSgroup 1.502 0.227 0.244 0.926 -1.751 0.065 0.065 0.947 

  β2 β3 

  Mean mSE EmpSE Cov Mean mSE EmpSE Cov 

Full Data 0.426 0.032 0.031 0.959 1.461 0.246 0.242 0.956 

Complete 

Records 0.426 0.033 0.032 0.961 0.000 0.000 0.000 0.000 

FCS 0.426 0.033 0.032 0.957 1.480 0.322 0.318 0.947 

FCSgroup 0.426 0.033 0.032 0.953 1.453 0.289 0.303 0.934 

  β4       β5 

  Mean mSE EmpSE Cov Mean mSE EmpSE Cov 

Full Data -0.957 0.216 0.218 0.947 0.498 0.349 0.345 0.951 

Complete 

Records -1.931 0.142 0.146 0.000 -0.476 0.313 0.303 0.133 

FCS -0.997 0.278 0.285 0.931 0.496 0.394 0.396 0.942 

FCSgroup -0.963 0.241 0.254 0.932 0.492 0.365 0.370 0.946 

Mean: mean estimate over imputed data sets; mSE: standard error derived from Rubin’s rules 

(mean over imputed data sets); EmpSE: standard deviation of estimate over imputed data sets; 

Cov: coverage of nominal 95% confidence interval.  
 

Table B. 9. Simulation results when data missingness (due to granularity problem) is applied 

to X3 from D4  and D5. Data generated under scenario 3, 𝑒𝑖: N ~ (0, 20), using equation 4.1. 

 𝑒𝑖:N~(0,20) β0 β1 

  Mean mSE EmpSE Cov Mean mSE EmpSE Cov 

Full Data 1.518 2.012 2.030 0.939 -1.771 0.649 0.639 0.952 

Complete 

Records 2.504 1.158 1.150 0.858 -1.772 0.648 0.639 0.949 

FCS 1.809 2.600 2.654 0.932 -1.772 0.649 0.640 0.950 

FCSgroup 1.602 2.302 2.473 0.926 -1.772 0.649 0.639 0.952 

  β2 β3 

  Mean mSE EmpSE Cov Mean mSE EmpSE Cov 
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Full Data 0.431 0.324 0.313 0.959 1.481 2.463 2.416 0.956 

Complete 

Records 0.431 0.324 0.313 0.965 0.000 0.000 0.000 0.000 

FCS 0.430 0.325 0.313 0.963 1.360 3.195 3.133 0.954 

FCSgroup 0.431 0.325 0.313 0.962 1.362 2.970 3.155 0.932 

  β4       β5 

  Mean mSE EmpSE Cov Mean mSE EmpSE Cov 

Full Data -0.974 2.160 2.182 0.947 0.617 3.490 3.451 0.951 

Complete 

Records -1.960 1.400 1.415 0.900 -0.369 3.076 3.016 0.940 

FCS -1.097 2.727 2.777 0.942 0.480 3.872 3.873 0.941 

FCSgroup -1.058 2.434 2.587 0.924 0.533 3.668 3.732 0.947 

Mean: mean estimate over imputed data sets; mSE: standard error derived from Rubin’s rules 

(mean over imputed data sets); EmpSE: standard deviation of estimate over imputed data sets; 

Cov: coverage of nominal 95% confidence interval.  
 

Scenario 4 (D=5, N=1000 per study) 

Table B. 10. Simulation results when data missingness (due to granularity problem) is 

applied to X3 from D2  and D5. Data generated under scenario 4, 𝑒𝑖: N ~ (0, 0.2), using 

equation 4.1. 

 𝑒𝑖:N~(0,0.2) β0 β1 

  Mean mSE EmpSE Cov Mean mSE EmpSE Cov 

Full Data 1.494 0.009 0.009 0.934 -1.748 0.003 0.003 0.947 

Complete 

Records 2.466 0.011 0.018 0.000 -1.748 0.006 0.006 0.948 

FCS 1.485 0.010 0.010 0.863 -1.748 0.003 0.003 0.951 

FCSgroup 1.495 0.009 0.009 0.937 -1.748 0.003 0.003 0.951 

  β2 β3 

  Mean mSE EmpSE Cov Mean mSE EmpSE Cov 

Full Data 0.425 0.001 0.001 0.949 1.459 0.011 0.011 0.940 

Complete 

Records 0.425 0.003 0.003 0.945 0.000 0.000 0.000 0.000 

FCS 0.425 0.002 0.001 0.956 1.469 0.012 0.012 0.849 

FCSgroup 0.425 0.001 0.001 0.951 1.457 0.011 0.012 0.941 

  β4       β5 

  Mean mSE EmpSE Cov Mean mSE EmpSE Cov 

Full Data -0.955 0.010 0.010 0.938 0.485 0.016 0.016 0.948 

Complete 

Records -1.927 0.013 0.018 0.000 -0.487 0.029 0.022 0.000 

FCS -0.945 0.010 0.010 0.831 0.474 0.016 0.017 0.898 

FCSgroup -0.956 0.010 0.010 0.934 0.484 0.016 0.016 0.953 

Mean: mean estimate over imputed data sets; mSE: standard error derived from Rubin’s rules 

(mean over imputed data sets); EmpSE: standard deviation of estimate over imputed data sets; 

Cov: coverage of nominal 95% confidence interval.  
 

 



 

 252 

Table B. 11. Simulation results when data missingness (due to granularity problem) is 

applied to X3 from D2  and D5. Data generated under scenario 4, 𝑒𝑖: N ~ (0, 2), using equation 

4.1. 

 𝑒𝑖:N~(0,2) β0 β1 

  Mean mSE EmpSE Cov Mean mSE EmpSE Cov 

Full Data 1.492 0.089 0.093 0.934 -1.750 0.029 0.029 0.947 

Complete 

Records 2.465 0.053 0.053 0.000 -1.750 0.029 0.030 0.953 

FCS 1.649 0.117 0.126 0.722 -1.750 0.030 0.030 0.950 

FCSgroup 1.492 0.101 0.112 0.923 -1.750 0.029 0.030 0.949 

  β2 β3 

  Mean mSE EmpSE Cov Mean mSE EmpSE Cov 

Full Data 0.425 0.014 0.014 0.949 1.460 0.110 0.115 0.940 

Complete 

Records 0.425 0.015 0.015 0.950 0.000 0.000 0.000 0.000 

FCS 0.425 0.015 0.015 0.956 1.493 0.143 0.152 0.923 

FCSgroup 0.425 0.015 0.015 0.949 1.461 0.129 0.144 0.915 

  β4       β5 

  Mean mSE EmpSE Cov Mean mSE EmpSE Cov 

Full Data -0.952 0.096 0.100 0.938 0.489 0.155 0.156 0.948 

Complete 

Records -1.925 0.064 0.066 0.000 -0.484 0.139 0.135 0.000 

FCS -0.979 0.123 0.133 0.921 0.502 0.175 0.182 0.941 

FCSgroup -0.951 0.107 0.117 0.927 0.490 0.162 0.167 0.943 

Mean: mean estimate over imputed data sets; mSE: standard error derived from Rubin’s rules 

(mean over imputed data sets); EmpSE: standard deviation of estimate over imputed data sets; 

Cov: coverage of nominal 95% confidence interval.  
 

Table B. 12. Simulation results when data missingness (due to granularity problem) is 

applied to X3 from D2  and D5. Data generated under scenario 4, 𝑒𝑖: N ~ (0, 20), using 

equation 4.1. 

 𝑒𝑖:N~(0,20) β0 β1 

  Mean mSE EmpSE Cov Mean mSE EmpSE Cov 

Full Data 1.480 0.894 0.929 0.934 -1.762 0.289 0.292 0.947 

Complete 

Records 2.460 0.517 0.508 0.537 -1.762 0.289 0.292 0.946 

FCS 1.643 1.152 1.225 0.925 -1.762 0.289 0.292 0.950 

FCSgroup 1.483 1.030 1.128 0.929 -1.762 0.289 0.292 0.951 

  β2 β3 

  Mean mSE EmpSE Cov Mean mSE EmpSE Cov 

Full Data 0.423 0.144 0.143 0.949 1.472 1.096 1.150 0.940 

Complete 

Records 0.423 0.145 0.143 0.950 0.000 0.000 0.000 0.000 

FCS 0.423 0.145 0.143 0.949 1.484 1.417 1.491 0.941 

FCSgroup 0.423 0.145 0.143 0.949 1.467 1.334 1.487 0.924 

  β4       β5 

  Mean mSE EmpSE Cov Mean mSE EmpSE Cov 

Full Data -0.925 0.961 1.004 0.938 0.528 1.553 1.564 0.948 

Complete 

Records -1.905 0.625 0.636 0.683 -0.453 1.371 1.339 0.901 

FCS -0.915 1.209 1.292 0.932 0.536 1.718 1.762 0.946 
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FCSgroup -0.927 1.089 1.186 0.941 0.525 1.636 1.683 0.946 

Mean: mean estimate over imputed data sets; mSE: standard error derived from Rubin’s rules 

(mean over imputed data sets); EmpSE: standard deviation of estimate over imputed data sets; 

Cov: coverage of nominal 95% confidence interval.  
 

Simulations with studies of different sizes 

Scenario 5 (D=5, N: different per study) 

Table B. 13. Simulation results when data missingness (due to granularity problem) is 

applied to X3 from D4  and D5. Data generated under scenario 5, 𝑒𝑖: N ~ (0, 0.2), using 

equation 4.1. 

 𝑒𝑖:N~(0,0.2) β0 β1 

  Mean mSE EmpSE Cov Mean mSE EmpSE Cov 

Full Data 1.494 0.027 0.027 0.958 -1.748 0.009 0.009 0.933 

Complete 

Records 2.467 0.032 0.056 0.000 -1.749 0.018 0.018 0.948 

FCS 1.491 0.030 0.027 0.971 -1.748 0.009 0.009 0.959 

FCSgroup 1.500 0.031 0.027 0.970 -1.748 0.009 0.009 0.957 

  β2 β3 

  Mean mSE EmpSE Cov Mean mSE EmpSE Cov 

Full Data 0.425 0.004 0.004 0.957 1.457 0.033 0.032 0.959 

Complete 

Records 0.425 0.009 0.009 0.961 0.000 0.000 0.000 0.000 

FCS 0.425 0.005 0.004 0.965 1.461 0.036 0.032 0.975 

FCSgroup 0.425 0.005 0.004 0.962 1.447 0.036 0.033 0.964 

  β4       β5 

  Mean mSE EmpSE Cov Mean mSE EmpSE Cov 

Full Data -0.956 0.029 0.028 0.958 0.486 0.046 0.048 0.944 

Complete 

Records -1.928 0.039 0.057 0.000 -0.487 0.086 0.069 0.000 

FCS -0.950 0.032 0.028 0.971 0.472 0.055 0.051 0.955 

FCSgroup -0.961 0.032 0.029 0.970 0.481 0.049 0.048 0.962 

Mean: mean estimate over imputed data sets; mSE: standard error derived from Rubin’s rules 

(mean over imputed data sets); EmpSE: standard deviation of estimate over imputed data sets; 

Cov: coverage of nominal 95% confidence interval.  
 

Table B. 14. Simulation results when data missingness (due to granularity problem) is 

applied to X3 from D4  and D5. Data generated under scenario 5, 𝑒𝑖: N ~ (0, 2), using equation 

4.1. 

 𝑒𝑖:N~(0,2) β0 β1 

  Mean mSE EmpSE Cov Mean mSE EmpSE Cov 

Full Data 1.497 0.266 0.266 0.958 -1.748 0.086 0.089 0.933 

Complete 

Records 2.455 0.155 0.165 0.000 -1.749 0.087 0.091 0.938 

FCS 1.606 0.323 0.323 0.949 -1.748 0.087 0.091 0.937 

FCSgroup 1.491 0.292 0.302 0.942 -1.748 0.086 0.090 0.938 

  β2 β3 

  Mean mSE EmpSE Cov Mean mSE EmpSE Cov 

Full Data 0.425 0.043 0.042 0.957 1.437 0.325 0.316 0.959 
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Complete 

Records 0.425 0.043 0.042 0.958 0.000 0.000 0.000 0.000 

FCS 0.426 0.044 0.042 0.958 1.461 0.394 0.393 0.945 

FCSgroup 0.426 0.043 0.042 0.958 1.447 0.368 0.387 0.931 

  β4       β5 

  Mean mSE EmpSE Cov Mean mSE EmpSE Cov 

Full Data -0.957 0.285 0.281 0.958 0.497 0.461 0.481 0.944 

Complete 

Records -1.915 0.187 0.193 0.000 -0.462 0.413 0.438 0.365 

FCS -0.973 0.341 0.337 0.958 0.509 0.502 0.513 0.944 

FCSgroup -0.951 0.310 0.316 0.951 0.502 0.477 0.500 0.943 

Mean: mean estimate over imputed data sets; mSE: standard error derived from Rubin’s rules 

(mean over imputed data sets); EmpSE: standard deviation of estimate over imputed data sets; 

Cov: coverage of nominal 95% confidence interval.  
 

Table B. 15. Simulation results when data missingness (due to granularity problem) is 

applied to X3 from D4  and D5. Data generated under scenario 5, 𝑒𝑖: N ~ (0, 20), using 

equation 4.1. 

 𝑒𝑖:N~(0,20) β0 β1 

  Mean mSE EmpSE Cov Mean mSE EmpSE Cov 

Full Data 1.525 2.657 2.659 0.958 -1.746 0.855 0.895 0.933 

Complete 

Records 2.344 1.525 1.536 0.922 -1.747 0.855 0.894 0.931 

FCS 1.607 3.188 3.168 0.954 -1.747 0.856 0.893 0.933 

FCSgroup 1.458 2.953 3.089 0.932 -1.747 0.856 0.893 0.933 

  β2 β3 

  Mean mSE EmpSE Cov Mean mSE EmpSE Cov 

Full Data 0.426 0.428 0.417 0.957 1.238 3.251 3.164 0.959 

Complete 

Records 0.426 0.427 0.416 0.957 0.000 0.000 0.000 0.000 

FCS 0.426 0.428 0.416 0.954 1.288 3.917 3.893 0.950 

FCSgroup 0.426 0.428 0.416 0.956 1.344 3.771 3.994 0.929 

  β4       β5 

  Mean mSE EmpSE Cov Mean mSE EmpSE Cov 

Full Data -0.967 2.853 2.812 0.958 0.606 4.608 4.811 0.944 

Complete 

Records -1.786 1.843 1.827 0.928 -0.213 4.057 4.355 0.928 

FCS -0.934 3.365 3.315 0.956 0.652 4.946 5.043 0.944 

FCSgroup -0.900 3.131 3.223 0.943 0.673 4.786 5.013 0.950 

Mean: mean estimate over imputed data sets; mSE: standard error derived from Rubin’s rules 

(mean over imputed data sets); EmpSE: standard deviation of estimate over imputed data sets; 

Cov: coverage of nominal 95% confidence interval.  
 

Scenario 6 (D=10, N: different per study) 

Table B. 16. Simulation results when data missingness (due to granularity problem) is 

applied to X3 from D3 , D6 , D9  and D10. Data generated under scenario 6, 𝑒𝑖: N ~ (0, 0.2), 

using equation 4.1. 

 𝑒𝑖:N~(0,0.2) β0 β1 

  Mean mSE EmpSE Cov Mean mSE EmpSE Cov 
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Full Data 1.494 0.011 0.011 0.953 -1.748 0.004 0.004 0.938 

Complete 

Records 2.467 0.014 0.024 0.000 -1.748 0.008 0.008 0.944 

FCS 1.487 0.012 0.011 0.932 -1.748 0.004 0.004 0.946 

FCSgroup 1.495 0.012 0.011 0.961 -1.748 0.004 0.004 0.944 

  β2 β3 

  Mean mSE EmpSE Cov Mean mSE EmpSE Cov 

Full Data 0.425 0.002 0.002 0.945 1.459 0.014 0.014 0.957 

Complete 

Records 0.425 0.004 0.004 0.939 0.000 0.000 0.000 0.000 

FCS 0.425 0.002 0.002 0.952 1.468 0.015 0.014 0.930 

FCSgroup 0.425 0.002 0.002 0.946 1.457 0.014 0.014 0.957 

  β4       β5 

  Mean mSE EmpSE Cov Mean mSE EmpSE Cov 

Full Data -0.955 0.012 0.012 0.953 0.484 0.020 0.020 0.950 

Complete 

Records -1.928 0.017 0.024 0.000 -0.488 0.037 0.028 0.000 

FCS -0.947 0.013 0.012 0.920 0.475 0.021 0.021 0.926 

FCSgroup -0.956 0.013 0.012 0.958 0.483 0.020 0.020 0.950 

Mean: mean estimate over imputed data sets; mSE: standard error derived from Rubin’s rules 

(mean over imputed data sets); EmpSE: standard deviation of estimate over imputed data sets; 

Cov: coverage of nominal 95% confidence interval.  
 

Table B. 17. Simulation results when data missingness (due to granularity problem) is 

applied to X3 from D3 , D6 , D9  and D10. Data generated under scenario 6, 𝑒𝑖: N ~ (0, 2), using 

equation 4.1. 

 𝑒𝑖:N~(0,2) β0 β1 

  Mean mSE EmpSE Cov Mean mSE EmpSE Cov 

Full Data 1.493 0.113 0.111 0.953 -1.747 0.037 0.037 0.938 

Complete 

Records 2.467 0.066 0.069 0.000 -1.747 0.037 0.038 0.941 

FCS 1.627 0.143 0.141 0.847 -1.747 0.037 0.038 0.941 

FCSgroup 1.493 0.126 0.130 0.946 -1.747 0.037 0.038 0.940 

  β2 β3 

  Mean mSE EmpSE Cov Mean mSE EmpSE Cov 

Full Data 0.424 0.018 0.018 0.945 1.461 0.139 0.135 0.957 

Complete 

Records 0.424 0.019 0.019 0.944 0.000 0.000 0.000 0.000 

FCS 0.425 0.019 0.019 0.951 1.488 0.174 0.171 0.948 

FCSgroup 0.425 0.018 0.019 0.941 1.462 0.160 0.165 0.936 

  β4       β5 

  Mean mSE EmpSE Cov Mean mSE EmpSE Cov 

Full Data -0.954 0.122 0.120 0.953 0.485 0.196 0.198 0.950 

Complete 

Records -1.928 0.080 0.083 0.000 -0.489 0.176 0.178 0.000 

FCS -0.976 0.150 0.149 0.947 0.498 0.217 0.219 0.949 

FCSgroup -0.954 0.133 0.137 0.939 0.485 0.204 0.208 0.946 

Mean: mean estimate over imputed data sets; mSE: standard error derived from Rubin’s rules 

(mean over imputed data sets); EmpSE: standard deviation of estimate over imputed data sets; 

Cov: coverage of nominal 95% confidence interval.  
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Table B. 18. Simulation results when data missingness (due to granularity problem) is 

applied to X3 from D3 , D6 , D9  and D10. Data generated under scenario 6, 𝑒𝑖: N ~ (0, 20), 

using equation 4.1. 

 𝑒𝑖:N~(0,20) β0 β1 

  Mean mSE EmpSE Cov Mean mSE EmpSE Cov 

Full Data 1.484 1.132 1.112 0.953 -1.737 0.366 0.373 0.938 

Complete 

Records 2.473 0.653 0.648 0.677 -1.737 0.366 0.373 0.941 

FCS 1.621 1.404 1.377 0.962 -1.737 0.366 0.373 0.939 

FCSgroup 1.486 1.270 1.311 0.942 -1.737 0.366 0.373 0.940 

  β2 β3 

  Mean mSE EmpSE Cov Mean mSE EmpSE Cov 

Full Data 0.416 0.183 0.184 0.945 1.482 1.386 1.351 0.957 

Complete 

Records 0.416 0.183 0.184 0.945 0.000 0.000 0.000 0.000 

FCS 0.416 0.183 0.184 0.944 1.494 1.730 1.686 0.950 

FCSgroup 0.416 0.183 0.184 0.944 1.477 1.630 1.707 0.937 

  β4       β5 

  Mean mSE EmpSE Cov Mean mSE EmpSE Cov 

Full Data -0.941 1.216 1.197 0.953 0.494 1.962 1.977 0.950 

Complete 

Records -1.930 0.790 0.793 0.768 -0.495 1.731 1.771 0.906 

FCS -0.928 1.478 1.452 0.955 0.517 2.140 2.155 0.957 

FCSgroup -0.944 1.345 1.385 0.939 0.492 2.046 2.091 0.947 

Mean: mean estimate over imputed data sets; mSE: standard error derived from Rubin’s rules 

(mean over imputed data sets); EmpSE: standard deviation of estimate over imputed data sets; 

Cov: coverage of nominal 95% confidence interval.  
 

Studies with different model errors 

Scenario 7 (D=2, N=100 per study, 𝑒1: N ~ (0, 1.2), 𝑒2: N ~ (0, 1.3)) 

Table B. 19. Simulation results when data missingness (due to granularity problem) is 

applied to X3 from D1. Data generated under scenario 7, 𝑒1: N ~ (0, 1.2), 𝑒2: N ~ (0, 1.3), 

using equation 4.1. 

𝑒1: N~(0,1.2), 

𝑒2: N~(0,1.3) 
β0 β1 

  Mean mSE EmpSE Cov Mean mSE EmpSE Cov 

Full Data 1.501 0.286 0.291 0.944 -1.743 0.091 0.092 0.935 

Complete 

Records 2.471 0.170 0.186 0.001 -1.743 0.095 0.095 0.948 

FCS 1.668 0.423 0.464 0.900 -1.743 0.098 0.099 0.939 

FCSgroup 1.531 0.334 0.397 0.914 -1.743 0.093 0.097 0.936 

  β2 β3 

  Mean mSE EmpSE Cov Mean mSE EmpSE Cov 

Full Data 0.420 0.046 0.046 0.941 1.455 0.350 0.367 0.939 

Complete 

Records 0.420 0.048 0.048 0.942 0.000 0.000 0.000 0.000 

FCS 0.420 0.049 0.048 0.944 1.472 0.502 0.555 0.934 

FCSgroup 0.420 0.047 0.048 0.939 1.402 0.416 0.505 0.901 

  β4       β5 
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  Mean mSE EmpSE Cov Mean mSE EmpSE Cov 

Full Data -0.963 0.307 0.313 0.948 0.479 0.507 0.490 0.964 

Complete 

Records -1.932 0.206 0.219 0.005 -0.490 0.467 0.445 0.435 

FCS -1.012 0.441 0.480 0.932 0.495 0.600 0.621 0.933 

FCSgroup -0.992 0.352 0.413 0.913 0.452 0.538 0.562 0.949 

Mean: mean estimate over imputed data sets; mSE: standard error derived from Rubin’s rules 

(mean over imputed data sets); EmpSE: standard deviation of estimate over imputed data sets; 

Cov: coverage of nominal 95% confidence interval.  
 

Scenario 8 (D=2, N=200 per study, 𝑒1: N ~ (0, 1.2), 𝑒2: N ~ (0, 1.3)) 

Table B. 20. Simulation results when data missingness (due to granularity problem) is 

applied to X3 from D1. Data generated under scenario 8, 𝑒1: N ~ (0, 1.2), 𝑒2: N ~ (0, 1.3), 

using equation 4.1. 

𝑒1: N~(0,1.2), 

𝑒2: N~(0,1.3) 
β0 β1 

  Mean mSE EmpSE Cov Mean mSE EmpSE Cov 

Full Data 1.490 0.200 0.194 0.952 -1.750 0.064 0.067 0.941 

Complete 

Records 2.468 0.120 0.129 0.000 -1.750 0.067 0.069 0.939 

FCS 1.661 0.294 0.315 0.883 -1.750 0.069 0.072 0.942 

FCSgroup 1.523 0.231 0.258 0.919 -1.750 0.066 0.069 0.932 

  β2 β3 

  Mean mSE EmpSE Cov Mean mSE EmpSE Cov 

Full Data 0.426 0.032 0.031 0.960 1.469 0.244 0.243 0.953 

Complete 

Records 0.426 0.034 0.032 0.957 0.000 0.000 0.000 0.000 

FCS 0.426 0.034 0.034 0.954 1.478 0.347 0.366 0.934 

FCSgroup 0.426 0.033 0.032 0.952 1.411 0.289 0.322 0.909 

  β4       β5 

  Mean mSE EmpSE Cov Mean mSE EmpSE Cov 

Full Data -0.948 0.214 0.209 0.952 0.489 0.349 0.350 0.947 

Complete 

Records -1.926 0.145 0.154 0.000 -0.489 0.322 0.316 0.143 

FCS -0.997 0.306 0.331 0.925 0.508 0.414 0.434 0.934 

FCSgroup -0.981 0.244 0.270 0.928 0.457 0.370 0.386 0.946 

Mean: mean estimate over imputed data sets; mSE: standard error derived from Rubin’s rules 

(mean over imputed data sets); EmpSE: standard deviation of estimate over imputed data sets; 

Cov: coverage of nominal 95% confidence interval.  
 

Scenario 9 (D=2, N=500 per study, 𝑒1: N ~ (0, 1.2), 𝑒2: N ~ (0, 1.3)) 

Table B. 21. Simulation results when data missingness (due to granularity problem) is 

applied to X3 from D1. Data generated under scenario 9, 𝑒1: N ~ (0, 1.2), 𝑒2: N ~ (0, 1.3), 

using equation 4.1. 

𝑒1: N~(0,1.2), 

𝑒2: N~(0,1.3) 
β0 β1 

  Mean mSE EmpSE Cov Mean mSE EmpSE Cov 

Full Data 1.496 0.126 0.124 0.960 -1.750 0.040 0.040 0.946 
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Complete Records 2.468 0.076 0.083 0.000 -1.750 0.042 0.042 0.952 

FCS 1.678 0.183 0.201 0.808 -1.751 0.043 0.043 0.946 

FCSgroup 1.536 0.145 0.164 0.911 -1.750 0.041 0.041 0.947 

  β2 β3 

  Mean mSE EmpSE Cov Mean mSE EmpSE Cov 

Full Data 0.425 0.020 0.021 0.956 1.458 0.154 0.154 0.956 

Complete Records 0.425 0.021 0.022 0.949 0.000 0.000 0.000 0.000 

FCS 0.425 0.022 0.022 0.937 1.465 0.217 0.237 0.922 

FCSgroup 0.425 0.021 0.022 0.941 1.395 0.182 0.209 0.894 

  β4       β5 

  Mean mSE EmpSE Cov Mean mSE EmpSE Cov 

Full Data -0.955 0.135 0.135 0.959 0.479 0.219 0.214 0.955 

Complete Records -1.927 0.091 0.098 0.000 -0.493 0.201 0.193 0.000 

FCS -1.013 0.191 0.211 0.903 0.498 0.258 0.279 0.932 

FCSgroup -0.995 0.153 0.172 0.911 0.439 0.231 0.244 0.930 

Mean: mean estimate over imputed data sets; mSE: standard error derived from Rubin’s rules 

(mean over imputed data sets); EmpSE: standard deviation of estimate over imputed data sets; 

Cov: coverage of nominal 95% confidence interval. 

 

Scenario 10 (D=2, N=1000 per study, 𝑒1: N ~ (0, 1.2), 𝑒2: N ~ (0, 1.3)) 

Table B. 22. Simulation results when data missingness (due to granularity problem) is 

applied to X3 from D1. Data generated under scenario 10, 𝑒1: N ~ (0, 1.2), 𝑒2: N ~ (0, 1.3), 

using equation 4.1. 

𝑒1: N~(0,1.2), 

𝑒2: N~(0,1.3) 
β0 β1 

  Mean mSE EmpSE Cov Mean mSE EmpSE Cov 

Full Data 1.497 0.089 0.087 0.953 -1.749 0.029 0.029 0.942 

Complete 

Records 2.468 0.053 0.057 0.000 -1.748 0.030 0.030 0.950 

FCS 1.681 0.129 0.135 0.675 -1.749 0.031 0.031 0.948 

FCSgroup 1.538 0.102 0.109 0.904 -1.749 0.029 0.030 0.937 

  β2 β3 

  Mean mSE EmpSE Cov Mean mSE EmpSE Cov 

Full Data 0.425 0.014 0.014 0.956 1.455 0.109 0.103 0.959 

Complete 

Records 0.425 0.015 0.015 0.952 0.000 0.000 0.000 0.000 

FCS 0.426 0.015 0.015 0.955 1.457 0.153 0.154 0.940 

FCSgroup 0.426 0.015 0.015 0.948 1.389 0.128 0.134 0.899 

  β4       β5 

  Mean mSE EmpSE Cov Mean mSE EmpSE Cov 

Full Data -0.959 0.095 0.094 0.958 0.475 0.154 0.149 0.953 

Complete 

Records -1.929 0.065 0.065 0.000 -0.495 0.142 0.134 0.000 

FCS -1.018 0.134 0.139 0.919 0.495 0.182 0.185 0.943 

FCSgroup -1.000 0.108 0.114 0.918 0.434 0.163 0.164 0.936 

Mean: mean estimate over imputed data sets; mSE: standard error derived from Rubin’s rules 

(mean over imputed data sets); EmpSE: standard deviation of estimate over imputed data sets; 

Cov: coverage of nominal 95% confidence interval.  
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Appendix C: Mixed numeric and non-numeric data types 

In this appendix, we present simulation results for 10 scenarios presented in Chapter 5. Full 

Data refers to complete true data, Complete Records refers to traditional data integration – 

mapping to common levels - where mixed type problematic variable is converted to 

categorical in analysis model. FCS refers to fully conditional specification - multiple 

imputation, FCSgroup: FCS including informative ‘group’ variable.   𝑒𝑖 refers to model error 

applied in outcome’s data generating mechanism (equation 5.1).  

Simulations with studies of same sizes 

Scenario 1 (D=2, N=200 per study) 

Table C. 1. Simulation results when data missingness (due to mixed type problem) is applied 

to X2 from D2. Data generated under scenario 1, 𝑒𝑖: N ~ (0, 0.2), using equation 5.1. 
 

 

Table C. 2. Simulation results when data missingness (due to mixed type problem) is applied 

to X2 from D2. Data generated under scenario 1, 𝑒𝑖: N ~ (0, 2), using equation 5.1. 

 𝑒𝑖:N~(0,2) β0 β1 

  Mean mSE EmpSE Cov Mean mSE EmpSE Cov 

Full Data 1.482 0.321 0.322 0.953 -1.751 0.103 0.103 0.949 

Complete 

Records 
0.811 0.348 0.346 0.490 -1.689 0.105 0.104 0.915 

FCS 1.479 0.348 0.348 0.955 -1.746 0.112 0.107 0.957 

 𝑒𝑖:N~(0,0.2) β0 β1 

  Mean mSE EmpSE Cov Mean mSE EmpSE Cov 

Full Data 1.493 0.032 0.032 0.953 -1.749 0.010 0.010 0.949 

Complete 

Records 0.824 0.092 0.086 0.000 -1.686 0.028 0.023 0.353 

FCS 1.492 0.048 0.049 0.933 -1.748 0.015 0.015 0.928 

FCSgroup 1.492 0.046 0.048 0.939 -1.748 0.015 0.015 0.939 

  β2 β3 

  Mean mSE EmpSE Cov Mean mSE EmpSE Cov 

Full Data 0.426 0.005 0.005 0.950 1.460 0.039 0.038 0.956 

Complete 

Records 1.338 0.056 0.028 0.000 1.461 0.107 0.106 0.956 

FCS 0.430 0.007 0.007 0.891 1.460 0.059 0.059 0.930 

FCSgroup 0.430 0.007 0.007 0.892 1.461 0.056 0.058 0.927 

  β4       β5 

  Mean mSE EmpSE Cov Mean mSE EmpSE Cov 

Full Data -0.954 0.034 0.033 0.956 0.484 0.056 0.057 0.952 

Complete 

Records -0.954 0.094 0.092 0.955 0.491 0.153 0.151 0.955 

FCS -0.954 0.051 0.051 0.940 0.486 0.084 0.087 0.935 

FCSgroup -0.953 0.049 0.051 0.936 0.486 0.081 0.084 0.932 

Mean: mean estimate over imputed data sets; mSE: standard error derived from Rubin’s rules 

(mean over imputed data sets); EmpSE: standard deviation of estimate over imputed data sets; 

Cov: coverage of nominal 95% confidence interval.  
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FCSgroup 1.483 0.333 0.333 0.952 -1.747 0.107 0.106 0.949 

  β2 β3 

  Mean mSE EmpSE Cov Mean mSE EmpSE Cov 

Full Data 0.427 0.051 0.051 0.950 1.473 0.393 0.385 0.956 

Complete 

Records 
1.342 0.210 0.195 0.004 1.473 0.405 0.400 0.955 

FCS 0.423 0.067 0.073 0.912 1.477 0.427 0.417 0.955 

FCSgroup 0.420 0.061 0.063 0.934 1.473 0.407 0.399 0.954 

  β4       β5 

  Mean mSE EmpSE Cov Mean mSE EmpSE Cov 

Full Data -0.942 0.344 0.335 0.956 0.481 0.559 0.569 0.952 

Complete 

Records 
-0.942 0.355 0.346 0.957 0.488 0.577 0.592 0.950 

FCS -0.938 0.374 0.367 0.961 0.485 0.606 0.626 0.942 

FCSgroup -0.943 0.357 0.347 0.953 0.478 0.579 0.591 0.949 

Mean: mean estimate over imputed data sets; mSE: standard error derived from Rubin’s rules 

(mean over imputed data sets); EmpSE: standard deviation of estimate over imputed data sets; 

Cov: coverage of nominal 95% confidence interval.  

 

Table C. 3. Simulation results when data missingness (due to mixed type problem) is applied 

to X2 from D2. Data generated under scenario 1, 𝑒𝑖: N ~ (0, 20), using equation 5.1. 

 

Scenario 2 (D=2, N=1000 per study) 

 𝑒𝑖:N~(0,20) β0 β1 

  Mean mSE EmpSE Cov Mean mSE EmpSE Cov 

Full Data 1.375 3.207 3.219 0.953 -1.775 1.028 1.026 0.949 

Complete 

Records 0.682 3.369 3.358 0.951 -1.713 1.022 1.020 0.947 

FCS 1.382 3.232 3.244 0.950 -1.766 1.052 1.040 0.952 

FCSgroup 1.382 3.213 3.229 0.953 -1.767 1.036 1.028 0.955 

  β2 β3 

  Mean mSE EmpSE Cov Mean mSE EmpSE Cov 

Full Data 0.436 0.514 0.512 0.950 1.600 3.927 3.847 0.956 

Complete 

Records 1.389 2.039 1.935 0.928 1.599 3.929 3.847 0.954 

FCS 0.430 0.748 0.760 0.927 1.583 3.960 3.876 0.953 

FCSgroup 0.423 0.606 0.605 0.946 1.591 3.935 3.857 0.953 

  β4       β5 

  Mean mSE EmpSE Cov Mean mSE EmpSE Cov 

Full Data -0.817 3.442 3.348 0.956 0.449 5.588 5.694 0.952 

Complete 

Records -0.821 3.443 3.343 0.956 0.451 5.591 5.701 0.954 

FCS -0.821 3.469 3.374 0.953 0.447 5.629 5.761 0.954 

FCSgroup -0.824 3.448 3.359 0.959 0.437 5.597 5.715 0.951 

Mean: mean estimate over imputed data sets; mSE: standard error derived from Rubin’s rules 

(mean over imputed data sets); EmpSE: standard deviation of estimate over imputed data sets; 

Cov: coverage of nominal 95% confidence interval.  
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Table C. 4. Simulation results when data missingness (due to mixed type problem) is applied 

to X2 from D4 and D5. Data generated under scenario 2, 𝑒𝑖: N ~ (0, 0.2), using equation 5.1. 

 𝑒𝑖:N~(0,0.2) β0 β1 

  Mean mSE EmpSE Cov Mean mSE EmpSE Cov 

Full Data 1.493 0.014 0.015 0.936 -1.748 0.005 0.005 0.947 

Complete 

Records 0.823 0.041 0.038 0.000 -1.685 0.012 0.010 0.000 

FCS 1.494 0.020 0.022 0.923 -1.748 0.007 0.007 0.944 

FCSgroup 1.493 0.020 0.022 0.914 -1.749 0.006 0.006 0.940 

  β2 β3 

  Mean mSE EmpSE Cov Mean mSE EmpSE Cov 

Full Data 0.425 0.002 0.002 0.954 1.459 0.017 0.018 0.942 

Complete 

Records 1.338 0.025 0.013 0.000 1.461 0.047 0.046 0.952 

FCS 0.427 0.003 0.003 0.925 1.459 0.025 0.026 0.932 

FCSgroup 0.427 0.003 0.003 0.899 1.460 0.024 0.026 0.926 

  β4       β5 

  Mean mSE EmpSE Cov Mean mSE EmpSE Cov 

Full Data -0.955 0.015 0.016 0.940 0.485 0.025 0.026 0.953 

Complete 

Records -0.953 0.042 0.041 0.956 0.482 0.067 0.067 0.953 

FCS -0.955 0.022 0.023 0.926 0.484 0.035 0.037 0.929 

FCSgroup -0.955 0.021 0.023 0.909 0.485 0.035 0.037 0.921 

Mean: mean estimate over imputed data sets; mSE: standard error derived from Rubin’s rules 

(mean over imputed data sets); EmpSE: standard deviation of estimate over imputed data sets; 

Cov: coverage of nominal 95% confidence interval.  

 

Table C. 5. Simulation results when data missingness (due to mixed type problem) is applied 

to X2 from D4 and D5. Data generated under scenario 2, 𝑒𝑖: N ~ (0, 2), using equation 5.1. 

 𝑒𝑖:N~(0,2) β0 β1 

  Mean mSE EmpSE Cov Mean mSE EmpSE Cov 

Full Data 1.489 0.142 0.146 0.936 -1.747 0.046 0.045 0.947 

Complete 

Records 0.817 0.154 0.159 0.014 -1.684 0.047 0.046 0.728 

FCS 1.489 0.153 0.159 0.935 -1.746 0.050 0.047 0.962 

FCSgroup 1.488 0.147 0.153 0.946 -1.746 0.048 0.046 0.956 

  β2 β3 

  Mean mSE EmpSE Cov Mean mSE EmpSE Cov 

Full Data 0.425 0.023 0.023 0.954 1.463 0.174 0.178 0.942 

Complete 

Records 1.341 0.094 0.093 0.000 1.464 0.179 0.181 0.945 

FCS 0.425 0.030 0.031 0.934 1.464 0.188 0.193 0.940 

FCSgroup 0.424 0.027 0.028 0.943 1.464 0.180 0.185 0.941 

  β4       β5 

  Mean mSE EmpSE Cov Mean mSE EmpSE Cov 

Full Data -0.951 0.152 0.156 0.940 0.487 0.246 0.255 0.953 

Complete 

Records -0.950 0.157 0.160 0.947 0.485 0.253 0.263 0.942 

FCS -0.952 0.165 0.169 0.936 0.487 0.267 0.276 0.949 

FCSgroup -0.950 0.158 0.163 0.941 0.487 0.254 0.263 0.945 
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Mean: mean estimate over imputed data sets; mSE: standard error derived from Rubin’s rules 

(mean over imputed data sets); EmpSE: standard deviation of estimate over imputed data sets; 

Cov: coverage of nominal 95% confidence interval.  

 

Table C. 6. Simulation results when data missingness (due to mixed type problem) is applied 

to X2 from D4 and D5. Data generated under scenario 2, 𝑒𝑖: N ~ (0, 20), using equation 5.1. 

 𝑒𝑖:N~(0,20) β0 β1 

  Mean mSE EmpSE Cov Mean mSE EmpSE Cov 

Full Data 1.441 1.418 1.464 0.936 -1.736 0.457 0.452 0.947 

Complete 

Records 0.757 1.489 1.562 0.909 -1.676 0.454 0.450 0.949 

FCS 1.440 1.421 1.465 0.936 -1.734 0.468 0.457 0.956 

FCSgroup 1.440 1.419 1.464 0.936 -1.735 0.461 0.453 0.951 

  β2 β3 

  Mean mSE EmpSE Cov Mean mSE EmpSE Cov 

Full Data 0.425 0.228 0.231 0.954 1.501 1.736 1.776 0.942 

Complete 

Records 1.368 0.907 0.922 0.822 1.500 1.737 1.776 0.943 

FCS 0.423 0.333 0.329 0.939 1.503 1.741 1.778 0.943 

FCSgroup 0.421 0.272 0.278 0.936 1.501 1.738 1.777 0.942 

  β4       β5 

  Mean mSE EmpSE Cov Mean mSE EmpSE Cov 

Full Data -0.913 1.523 1.561 0.940 0.511 2.456 2.554 0.953 

Complete 

Records -0.913 1.523 1.560 0.940 0.506 2.456 2.556 0.955 

FCS -0.913 1.527 1.562 0.939 0.510 2.462 2.552 0.950 

FCSgroup -0.912 1.524 1.561 0.940 0.512 2.457 2.551 0.952 

Mean: mean estimate over imputed data sets; mSE: standard error derived from Rubin’s rules 

(mean over imputed data sets); EmpSE: standard deviation of estimate over imputed data sets; 

Cov: coverage of nominal 95% confidence interval.  

 

Scenario 3 (D=5, N =200 per study) 

Table C. 7. Simulation results when data missingness (due to mixed type problem) is applied 

to X2 from D2 and D5. Data generated under scenario 3, 𝑒𝑖: N ~ (0, 0.2), using equation 5.1. 

 𝑒𝑖:N~(0,0.2) β0 β1 

  Mean mSE EmpSE Cov Mean mSE EmpSE Cov 

Full Data 1.492 0.020 0.020 0.946 -1.748 0.006 0.006 0.957 

Complete 

Records 0.824 0.057 0.054 0.000 -1.685 0.018 0.014 0.016 

FCS 1.492 0.026 0.027 0.932 -1.749 0.009 0.009 0.941 

FCSgroup 1.493 0.025 0.026 0.936 -1.749 0.008 0.008 0.945 

  β2 β3 

  Mean mSE EmpSE Cov Mean mSE EmpSE Cov 

Full Data 0.425 0.003 0.003 0.954 1.460 0.025 0.024 0.952 

Complete 

Records 1.337 0.035 0.018 0.000 1.463 0.067 0.064 0.954 

FCS 0.427 0.004 0.004 0.934 1.460 0.032 0.033 0.931 

FCSgroup 0.427 0.004 0.004 0.918 1.460 0.031 0.032 0.934 
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  β4       β5 

  Mean mSE EmpSE Cov Mean mSE EmpSE Cov 

Full Data -0.954 0.022 0.022 0.948 0.486 0.035 0.035 0.946 

Complete 

Records -0.955 0.059 0.058 0.951 0.487 0.095 0.092 0.955 

FCS -0.954 0.028 0.029 0.926 0.486 0.046 0.045 0.939 

FCSgroup -0.954 0.027 0.028 0.938 0.485 0.045 0.044 0.949 

Mean: mean estimate over imputed data sets; mSE: standard error derived from Rubin’s rules 

(mean over imputed data sets); EmpSE: standard deviation of estimate over imputed data sets; 

Cov: coverage of nominal 95% confidence interval.  
 

Table C. 8. Simulation results when data missingness (due to mixed type problem) is applied 

to X2 from D2 and D5. Data generated under scenario 3, 𝑒𝑖: N ~ (0, 2), using equation 5.1. 

 𝑒𝑖:N~(0,2) β0 β1 

  Mean mSE EmpSE Cov Mean mSE EmpSE Cov 

Full Data 1.478 0.201 0.201 0.946 -1.749 0.065 0.063 0.957 

Complete 

Records 0.809 0.217 0.218 0.114 -1.685 0.066 0.064 0.850 

FCS 1.478 0.213 0.212 0.950 -1.748 0.069 0.065 0.960 

FCSgroup 1.476 0.205 0.205 0.953 -1.748 0.067 0.064 0.959 

  β2 β3 

  Mean mSE EmpSE Cov Mean mSE EmpSE Cov 

Full Data 0.426 0.032 0.033 0.954 1.474 0.246 0.242 0.952 

Complete 

Records 1.337 0.132 0.131 0.000 1.477 0.254 0.247 0.954 

FCS 0.424 0.039 0.041 0.937 1.474 0.260 0.258 0.952 

FCSgroup 0.424 0.036 0.037 0.945 1.475 0.251 0.247 0.947 

  β4       β5 

  Mean mSE EmpSE Cov Mean mSE EmpSE Cov 

Full Data -0.941 0.215 0.216 0.948 0.504 0.349 0.349 0.946 

Complete 

Records -0.942 0.222 0.221 0.953 0.504 0.360 0.357 0.948 

FCS -0.942 0.228 0.227 0.952 0.502 0.370 0.365 0.954 

FCSgroup -0.939 0.221 0.218 0.955 0.506 0.357 0.357 0.951 

Mean: mean estimate over imputed data sets; mSE: standard error derived from Rubin’s rules 

(mean over imputed data sets); EmpSE: standard deviation of estimate over imputed data sets; 

Cov: coverage of nominal 95% confidence interval.  
 

Table C. 9. Simulation results when data missingness (due to mixed type problem) is applied 

to X2 from D4 and D5. Data generated under scenario 3, 𝑒𝑖: N ~ (0, 20), using equation 5.1. 

 𝑒𝑖:N~(0,20) β0 β1 

  Mean mSE EmpSE Cov Mean mSE EmpSE Cov 

Full Data 1.332 2.006 2.007 0.946 -1.752 0.648 0.630 0.957 

Complete 

Records 0.663 2.107 2.128 0.935 -1.688 0.644 0.626 0.959 

FCS 1.329 2.010 2.011 0.945 -1.747 0.659 0.641 0.956 

FCSgroup 1.332 2.007 2.010 0.944 -1.751 0.652 0.636 0.960 

  β2 β3 

  Mean mSE EmpSE Cov Mean mSE EmpSE Cov 
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Full Data 0.427 0.324 0.326 0.954 1.611 2.458 2.424 0.952 

Complete 

Records 1.341 1.284 1.299 0.890 1.613 2.459 2.417 0.951 

FCS 0.418 0.431 0.435 0.940 1.613 2.464 2.428 0.954 

FCSgroup 0.428 0.368 0.371 0.946 1.611 2.460 2.427 0.954 

  β4       β5 

  Mean mSE EmpSE Cov Mean mSE EmpSE Cov 

Full Data -0.814 2.155 2.156 0.948 0.675 3.493 3.487 0.946 

Complete 

Records -0.816 2.156 2.153 0.950 0.677 3.494 3.487 0.945 

FCS -0.810 2.160 2.158 0.952 0.681 3.501 3.498 0.952 

FCSgroup -0.813 2.156 2.157 0.948 0.678 3.495 3.492 0.946 

Mean: mean estimate over imputed data sets; mSE: standard error derived from Rubin’s rules 

(mean over imputed data sets); EmpSE: standard deviation of estimate over imputed data sets; 

Cov: coverage of nominal 95% confidence interval.  
 

Scenario 4 (D=5, N=1000 per study) 

Table C. 10. Simulation results when data missingness (due to mixed type problem) is 

applied to X2 from D2 and D5. Data generated under scenario 4, 𝑒𝑖: N ~ (0, 0.2), using 

equation 5.1. 

 𝑒𝑖:N~(0,0.2) β0 β1 

  Mean mSE EmpSE Cov Mean mSE EmpSE Cov 

Full Data 1.495 0.027 0.026 0.945 -1.748 0.009 0.009 0.950 

Complete 

Records 0.825 0.076 0.071 0.000 -1.685 0.023 0.019 0.178 

FCS 1.494 0.032 0.033 0.937 -1.748 0.010 0.011 0.931 

FCSgroup 1.494 0.032 0.033 0.940 -1.748 0.010 0.011 0.929 

  β2 β3 

  Mean mSE EmpSE Cov Mean mSE EmpSE Cov 

Full Data 0.425 0.004 0.004 0.955 1.459 0.033 0.033 0.944 

Complete 

Records 1.337 0.046 0.024 0.000 1.461 0.089 0.088 0.949 

FCS 0.427 0.005 0.005 0.938 1.459 0.040 0.041 0.948 

FCSgroup 0.427 0.005 0.005 0.940 1.460 0.039 0.041 0.939 

  β4       β5 

  Mean mSE EmpSE Cov Mean mSE EmpSE Cov 

Full Data -0.956 0.029 0.028 0.950 0.485 0.047 0.046 0.954 

Complete 

Records -0.954 0.078 0.076 0.943 0.490 0.127 0.127 0.955 

FCS -0.956 0.035 0.036 0.941 0.486 0.057 0.058 0.937 

FCSgroup -0.955 0.034 0.035 0.934 0.486 0.056 0.058 0.942 

Mean: mean estimate over imputed data sets; mSE: standard error derived from Rubin’s rules 

(mean over imputed data sets); EmpSE: standard deviation of estimate over imputed data sets; 

Cov: coverage of nominal 95% confidence interval.  
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Table C. 11. Simulation results when data missingness (due to mixed type problem) is 

applied to X2 from D2 and D5. Data generated under scenario 4, 𝑒𝑖: N ~ (0, 2), using equation 

5.1. 

 𝑒𝑖:N~(0,2) β0 β1 

  Mean mSE EmpSE Cov Mean mSE EmpSE Cov 

Full Data 1.501 0.267 0.265 0.945 -1.746 0.086 0.088 0.950 

Complete 

Records 0.832 0.289 0.289 0.368 -1.683 0.088 0.089 0.871 

FCS 1.502 0.277 0.274 0.955 -1.745 0.089 0.090 0.951 

FCSgroup 1.501 0.271 0.271 0.948 -1.746 0.087 0.089 0.958 

  β2 β3 

  Mean mSE EmpSE Cov Mean mSE EmpSE Cov 

Full Data 0.425 0.043 0.042 0.955 1.457 0.326 0.331 0.944 

Complete 

Records 1.336 0.175 0.174 0.001 1.460 0.336 0.344 0.943 

FCS 0.424 0.049 0.050 0.942 1.456 0.339 0.343 0.950 

FCSgroup 0.423 0.046 0.045 0.956 1.458 0.331 0.339 0.946 

  β4       β5 

  Mean mSE EmpSE Cov Mean mSE EmpSE Cov 

Full Data -0.958 0.286 0.285 0.950 0.489 0.466 0.465 0.954 

Complete 

Records -0.957 0.295 0.294 0.952 0.494 0.480 0.483 0.955 

FCS -0.960 0.297 0.293 0.955 0.492 0.483 0.484 0.953 

FCSgroup -0.959 0.291 0.290 0.948 0.492 0.473 0.473 0.954 

Mean: mean estimate over imputed data sets; mSE: standard error derived from Rubin’s rules 

(mean over imputed data sets); EmpSE: standard deviation of estimate over imputed data sets; 

Cov: coverage of nominal 95% confidence interval.  
 

Table C. 12. Simulation results when data missingness (due to mixed type problem) is 

applied to X2 from D2 and D5. Data generated under scenario 4, 𝑒𝑖: N ~ (0, 20), using 

equation 5.1. 

 𝑒𝑖:N~(0,20) β0 β1 

  Mean mSE EmpSE Cov Mean mSE EmpSE Cov 

Full Data 1.563 2.668 2.649 0.945 -1.729 0.856 0.877 0.950 

Complete 

Records 0.896 2.799 2.803 0.946 -1.667 0.850 0.874 0.955 

FCS 1.564 2.673 2.659 0.944 -1.728 0.865 0.885 0.951 

FCSgroup 1.563 2.670 2.652 0.946 -1.729 0.859 0.879 0.949 

  β2 β3 

  Mean mSE EmpSE Cov Mean mSE EmpSE Cov 

Full Data 0.420 0.428 0.417 0.955 1.441 3.258 3.313 0.944 

Complete 

Records 1.331 1.693 1.723 0.914 1.447 3.259 3.320 0.945 

FCS 0.419 0.523 0.524 0.936 1.436 3.264 3.320 0.940 

FCSgroup 0.422 0.466 0.451 0.953 1.443 3.260 3.317 0.945 

  β4       β5 

  Mean mSE EmpSE Cov Mean mSE EmpSE Cov 

Full Data -0.984 2.863 2.849 0.950 0.534 4.655 4.648 -0.984 

Complete 

Records -0.981 2.864 2.852 0.949 0.539 4.656 4.658 -0.981 

FCS -0.985 2.868 2.856 0.951 0.533 4.663 4.665 -0.985 
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FCSgroup -0.984 2.865 2.848 0.951 0.539 4.657 4.652 -0.984 

Mean: mean estimate over imputed data sets; mSE: standard error derived from Rubin’s rules 

(mean over imputed data sets); EmpSE: standard deviation of estimate over imputed data sets; 

Cov: coverage of nominal 95% confidence interval.  
 

Simulations with studies of different sizes 

Scenario 5 (D=5, N: different per study) 

Table C. 13. Simulation results when data missingness (due to mixed type problem) is 

applied to X2 from D4 and D5. Data generated under scenario 5, 𝑒𝑖: N ~ (0, 0.2), using 

equation 5.1. 

 𝑒𝑖:N~(0,0.2) β0 β1 

  Mean mSE EmpSE Cov Mean mSE EmpSE Cov 

Full Data 1.495 0.027 0.026 0.945 -1.748 0.009 0.009 0.950 

Complete 

Records 0.825 0.076 0.071 0.000 -1.685 0.023 0.019 0.178 

FCS 1.494 0.032 0.033 0.937 -1.748 0.010 0.011 0.931 

FCSgroup 1.494 0.032 0.033 0.940 -1.748 0.010 0.011 0.929 

  β2 β3 

  Mean mSE EmpSE Cov Mean mSE EmpSE Cov 

Full Data 0.425 0.004 0.004 0.955 1.459 0.033 0.033 0.944 

Complete 

Records 1.337 0.046 0.024 0.000 1.461 0.089 0.088 0.949 

FCS 0.427 0.005 0.005 0.938 1.459 0.040 0.041 0.948 

FCSgroup 0.427 0.005 0.005 0.940 1.460 0.039 0.041 0.939 

  β4       β5 

  Mean mSE EmpSE Cov Mean mSE EmpSE Cov 

Full Data -0.956 0.029 0.028 0.950 0.485 0.047 0.046 0.954 

Complete 

Records -0.954 0.078 0.076 0.943 0.490 0.127 0.127 0.955 

FCS -0.956 0.035 0.036 0.941 0.486 0.057 0.058 0.937 

FCSgroup -0.955 0.034 0.035 0.934 0.486 0.056 0.058 0.942 

Mean: mean estimate over imputed data sets; mSE: standard error derived from Rubin’s rules 

(mean over imputed data sets); EmpSE: standard deviation of estimate over imputed data sets; 

Cov: coverage of nominal 95% confidence interval.  
 

Table C. 14. Simulation results when data missingness (due to mixed type problem) is 

applied to X2 from D4 and D5. Data generated under scenario 5, 𝑒𝑖: N ~ (0, 2), using equation 

5.1. 

 𝑒𝑖:N~(0,2) β0 β1 

  Mean mSE EmpSE Cov Mean mSE EmpSE Cov 

Full Data 1.501 0.267 0.265 0.945 -1.746 0.086 0.088 0.950 

Complete 

Records 0.832 0.289 0.289 0.368 -1.683 0.088 0.089 0.871 

FCS 1.502 0.277 0.274 0.955 -1.745 0.089 0.090 0.951 

FCSgroup 1.501 0.271 0.271 0.948 -1.746 0.087 0.089 0.958 

  β2 β3 

  Mean mSE EmpSE Cov Mean mSE EmpSE Cov 

Full Data 0.425 0.043 0.042 0.955 1.457 0.326 0.331 0.944 
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Complete 

Records 1.336 0.175 0.174 0.001 1.460 0.336 0.344 0.943 

FCS 0.424 0.049 0.050 0.942 1.456 0.339 0.343 0.950 

FCSgroup 0.423 0.046 0.045 0.956 1.458 0.331 0.339 0.946 

  β4       β5 

  Mean mSE EmpSE Cov Mean mSE EmpSE Cov 

Full Data -0.958 0.286 0.285 0.950 0.489 0.466 0.465 0.954 

Complete 

Records -0.957 0.295 0.294 0.952 0.494 0.480 0.483 0.955 

FCS -0.960 0.297 0.293 0.955 0.492 0.483 0.484 0.953 

FCSgroup -0.959 0.291 0.290 0.948 0.492 0.473 0.473 0.954 

Mean: mean estimate over imputed data sets; mSE: standard error derived from Rubin’s rules 

(mean over imputed data sets); EmpSE: standard deviation of estimate over imputed data sets; 

Cov: coverage of nominal 95% confidence interval.  
 

Table C. 15. Simulation results when data missingness (due to mixed type problem) is 

applied to X2 from D4 and D5. Data generated under scenario 5, 𝑒𝑖: N ~ (0, 20), using 

equation 5.1. 

 𝑒𝑖:N~(0,20) β0 β1 

  Mean mSE EmpSE Cov Mean mSE EmpSE Cov 

Full Data 1.563 2.668 2.649 0.945 -1.729 0.856 0.877 0.950 

Complete 

Records 0.896 2.799 2.803 0.946 -1.667 0.850 0.874 0.955 

FCS 1.564 2.673 2.659 0.944 -1.728 0.865 0.885 0.951 

FCSgroup 1.563 2.670 2.652 0.946 -1.729 0.859 0.879 0.949 

  β2 β3 

  Mean mSE EmpSE Cov Mean mSE EmpSE Cov 

Full Data 0.420 0.428 0.417 0.955 1.441 3.258 3.313 0.944 

Complete 

Records 1.331 1.693 1.723 0.914 1.447 3.259 3.320 0.945 

FCS 0.419 0.523 0.524 0.936 1.436 3.264 3.320 0.940 

FCSgroup 0.422 0.466 0.451 0.953 1.443 3.260 3.317 0.945 

  β4       β5 

  Mean mSE EmpSE Cov Mean mSE EmpSE Cov 

Full Data -0.984 2.863 2.849 0.950 0.534 4.655 4.648 0.954 

Complete 

Records -0.981 2.864 2.852 0.949 0.539 4.656 4.658 0.954 

FCS -0.985 2.868 2.856 0.951 0.533 4.663 4.665 0.954 

FCSgroup -0.984 2.865 2.848 0.951 0.539 4.657 4.652 0.953 

Mean: mean estimate over imputed data sets; mSE: standard error derived from Rubin’s rules 

(mean over imputed data sets); EmpSE: standard deviation of estimate over imputed data sets; 

Cov: coverage of nominal 95% confidence interval.  
 

Simulations with studies of different sizes 

Scenario 5 (D=5, N: different per study) 
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Table C. 16. Simulation results when data missingness (due to mixed type problem) is 

applied to X2 from D3 , D6 , D9  and D10. Data generated under scenario 6, 𝑒𝑖: N ~ (0, 0.2), 

using equation 5.1. 

 𝑒𝑖:N~(0,0.2) β0 β1 

  Mean mSE EmpSE Cov Mean mSE EmpSE Cov 

Full Data 1.494 0.011 0.011 0.951 -1.748 0.004 0.004 0.946 

Complete 

Records 0.827 0.032 0.031 0.000 -1.685 0.010 0.008 0.000 

FCS 1.495 0.014 0.014 0.933 -1.748 0.005 0.005 0.935 

FCSgroup 1.495 0.014 0.015 0.939 -1.749 0.004 0.004 0.939 

  β2 β3 

  Mean mSE EmpSE Cov Mean mSE EmpSE Cov 

Full Data 0.425 0.002 0.002 0.950 1.458 0.014 0.014 0.948 

Complete 

Records 1.337 0.020 0.010 0.000 1.457 0.038 0.039 0.950 

FCS 0.426 0.002 0.002 0.935 1.458 0.017 0.018 0.940 

FCSgroup 0.426 0.002 0.002 0.929 1.458 0.017 0.018 0.941 

  β4       β5 

  Mean mSE EmpSE Cov Mean mSE EmpSE Cov 

Full Data -0.956 0.012 0.012 0.956 0.485 0.020 0.020 0.955 

Complete 

Records -0.958 0.033 0.033 0.950 0.484 0.054 0.053 0.947 

FCS -0.956 0.015 0.016 0.943 0.485 0.025 0.025 0.946 

FCSgroup -0.956 0.015 0.016 0.935 0.485 0.024 0.024 0.939 

Mean: mean estimate over imputed data sets; mSE: standard error derived from Rubin’s rules 

(mean over imputed data sets); EmpSE: standard deviation of estimate over imputed data sets; 

Cov: coverage of nominal 95% confidence interval.  
 

Scenario 6 (D=10, N: different per study) 

Table C. 17. Simulation results when data missingness (due to mixed type problem) is 

applied to X2 from D3 , D6 , D9  and D10. Data generated under scenario 6, 𝑒𝑖: N ~ (0, 2), using 

equation 5.1. 

 𝑒𝑖:N~(0,2) β0 β1 

  Mean mSE EmpSE Cov Mean mSE EmpSE Cov 

Full Data 1.499 0.113 0.115 0.951 -1.749 0.037 0.037 0.946 

Complete 

Records 0.831 0.123 0.123 0.001 -1.686 0.037 0.037 0.617 

FCS 1.499 0.119 0.121 0.946 -1.749 0.039 0.038 0.960 

FCSgroup 1.500 0.116 0.117 0.951 -1.749 0.037 0.037 0.944 

  β2 β3 

  Mean mSE EmpSE Cov Mean mSE EmpSE Cov 

Full Data 0.425 0.018 0.019 0.950 1.452 0.139 0.137 0.948 

Complete 

Records 1.339 0.075 0.075 0.000 1.451 0.143 0.142 0.952 

FCS 0.425 0.022 0.023 0.938 1.452 0.145 0.146 0.945 

FCSgroup 0.425 0.020 0.020 0.952 1.451 0.142 0.139 0.950 

  β4       β5 

  Mean mSE EmpSE Cov Mean mSE EmpSE Cov 

Full Data -0.962 0.122 0.123 0.956 0.486 0.196 0.196 0.955 
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Complete 

Records -0.964 0.126 0.127 0.950 0.485 0.203 0.201 0.954 

FCS -0.962 0.128 0.130 0.949 0.484 0.205 0.210 0.946 

FCSgroup -0.963 0.124 0.126 0.954 0.485 0.200 0.202 0.948 

Mean: mean estimate over imputed data sets; mSE: standard error derived from Rubin’s rules 

(mean over imputed data sets); EmpSE: standard deviation of estimate over imputed data sets; 

Cov: coverage of nominal 95% confidence interval.  
 

Table C. 18. Simulation results when data missingness (due to mixed type problem) is 

applied to X2 from D3 , D6 , D9  and D10. Data generated under scenario 6, 𝑒𝑖: N ~ (0, 20), 

using equation 5.1. 

 𝑒𝑖:N~(0,20) β0 β1 

  Mean mSE EmpSE Cov Mean mSE EmpSE Cov 

Full Data 1.542 1.134 1.149 0.951 -1.755 0.366 0.369 0.946 

Complete 

Records 0.869 1.191 1.203 0.912 -1.694 0.363 0.367 0.949 

FCS 1.543 1.135 1.151 0.950 -1.755 0.371 0.371 0.953 

FCSgroup 1.544 1.135 1.150 0.951 -1.756 0.368 0.371 0.944 

  β2 β3 

  Mean mSE EmpSE Cov Mean mSE EmpSE Cov 

Full Data 0.424 0.183 0.186 0.950 1.389 1.388 1.367 0.948 

Complete 

Records 1.351 0.725 0.747 0.731 1.388 1.389 1.367 0.950 

FCS 0.425 0.232 0.239 0.941 1.389 1.389 1.370 0.949 

FCSgroup 0.425 0.202 0.206 0.950 1.387 1.389 1.367 0.949 

  β4       β5 

  Mean mSE EmpSE Cov Mean mSE EmpSE Cov 

Full Data -1.019 1.218 1.233 0.956 0.499 1.965 1.965 0.955 

Complete 

Records -1.021 1.219 1.233 0.955 0.498 1.965 1.963 0.954 

FCS -1.019 1.219 1.235 0.956 0.497 1.967 1.969 0.954 

FCSgroup -1.020 1.219 1.233 0.956 0.500 1.965 1.966 0.954 

Mean: mean estimate over imputed data sets; mSE: standard error derived from Rubin’s rules 

(mean over imputed data sets); EmpSE: standard deviation of estimate over imputed data sets; 

Cov: coverage of nominal 95% confidence interval.  
 

Studies with different model errors 

Scenario 7 (D=2, N=100 per study, 𝑒1: N ~ (0, 1.2), 𝑒2: N ~ (0, 1.3)) 

Table C. 19. Simulation results when data missingness (due to mixed type problem) is 

applied to X2 from D2. Data generated under scenario 7, 𝑒1: N ~ (0, 1.2), 𝑒2: N ~ (0, 1.3), 

using equation 5.1. 

𝑒1: N~(0,1.2), 

𝑒2: N~(0,1.3) 
β0 β1 

  Mean mSE EmpSE Cov Mean mSE EmpSE Cov 

Full Data 1.493 0.285 0.279 0.955 -1.744 0.091 0.091 0.953 

Complete 

Records 0.825 0.323 0.318 0.455 -1.682 0.098 0.096 0.900 

FCS 1.487 0.331 0.318 0.961 -1.741 0.104 0.097 0.961 
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FCSgroup 1.492 0.306 0.298 0.955 -1.742 0.098 0.095 0.951 

  β2 β3 

  Mean mSE EmpSE Cov Mean mSE EmpSE Cov 

Full Data 0.423 0.046 0.046 0.953 1.464 0.349 0.348 0.953 

Complete 

Records 1.337 0.195 0.187 0.001 1.462 0.376 0.371 0.948 

FCS 0.435 0.054 0.058 0.902 1.469 0.405 0.397 0.953 

FCSgroup 0.428 0.054 0.056 0.923 1.465 0.374 0.368 0.949 

  β4       β5 

  Mean mSE EmpSE Cov Mean mSE EmpSE Cov 

Full Data -0.946 0.306 0.301 0.945 0.499 0.509 0.478 0.968 

Complete 

Records -0.946 0.330 0.323 0.946 0.502 0.548 0.531 0.959 

FCS -0.938 0.355 0.344 0.956 0.506 0.589 0.562 0.956 

FCSgroup -0.944 0.329 0.320 0.950 0.497 0.549 0.518 0.953 

Mean: mean estimate over imputed data sets; mSE: standard error derived from Rubin’s rules 

(mean over imputed data sets); EmpSE: standard deviation of estimate over imputed data sets; 

Cov: coverage of nominal 95% confidence interval.  
 

Scenario 8 (D=2, N=200 per study, 𝑒1: N ~ (0, 1.2), 𝑒2: N ~ (0, 1.3)) 

Table C. 20. Simulation results when data missingness (due to mixed type problem) is 

applied to X2 from D2. Data generated under scenario 8, 𝑒1: N ~ (0, 1.2), 𝑒2: N ~ (0, 1.3), 

using equation 5.1. 

𝑒1: N~(0,1.2), 

𝑒2: N~(0,1.3) 
β0 β1 

  Mean mSE EmpSE Cov Mean mSE EmpSE Cov 

Full Data 1.487 0.201 0.202 0.954 -1.750 0.064 0.064 0.952 

Complete 

Records 0.816 0.227 0.225 0.160 -1.688 0.069 0.067 0.858 

FCS 1.483 0.232 0.232 0.948 -1.752 0.073 0.069 0.963 

FCSgroup 1.487 0.215 0.218 0.947 -1.752 0.069 0.068 0.952 

  β2 β3 

  Mean mSE EmpSE Cov Mean mSE EmpSE Cov 

Full Data 0.426 0.032 0.032 0.952 1.468 0.246 0.241 0.956 

Complete 

Records 1.340 0.138 0.123 0.000 1.468 0.265 0.263 0.955 

FCS 0.441 0.037 0.041 0.898 1.471 0.285 0.279 0.959 

FCSgroup 0.433 0.038 0.040 0.924 1.467 0.263 0.260 0.951 

  β4       β5 

  Mean mSE EmpSE Cov Mean mSE EmpSE Cov 

Full Data -0.947 0.215 0.210 0.955 0.482 0.350 0.356 0.949 

Complete 

Records -0.947 0.232 0.227 0.952 0.489 0.377 0.388 0.947 

FCS -0.942 0.249 0.245 0.943 0.488 0.405 0.420 0.942 

FCSgroup -0.947 0.231 0.228 0.945 0.483 0.377 0.386 0.943 

Mean: mean estimate over imputed data sets; mSE: standard error derived from Rubin’s rules 

(mean over imputed data sets); EmpSE: standard deviation of estimate over imputed data sets; 

Cov: coverage of nominal 95% confidence interval.  
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Scenario 9 (D=2, N=500 per study, 𝑒1: N ~ (0, 1.2), 𝑒2: N ~ (0, 1.3)) 

Table C. 21. Simulation results when data missingness (due to mixed type problem) is 

applied to X2 from D2. Data generated under scenario 9, 𝑒1: N ~ (0, 1.2), 𝑒2: N ~ (0, 1.3), 

using equation 5.1. 

𝑒1: N~(0,1.2), 

𝑒2: N~(0,1.3) 
β0 β1 

  Mean mSE EmpSE Cov Mean mSE EmpSE Cov 

Full Data 1.491 0.126 0.131 0.946 -1.750 0.040 0.041 0.950 

Complete Records 0.824 0.142 0.149 0.005 -1.687 0.043 0.043 0.721 

FCS 1.489 0.145 0.148 0.932 -1.754 0.047 0.043 0.949 

FCSgroup 1.490 0.134 0.137 0.949 -1.752 0.043 0.044 0.950 

  β2 β3 

  Mean mSE EmpSE Cov Mean mSE EmpSE Cov 

Full Data 0.425 0.020 0.021 0.944 1.458 0.154 0.159 0.942 

Complete Records 1.336 0.087 0.082 0.000 1.455 0.166 0.173 0.938 

FCS 0.441 0.023 0.025 0.858 1.459 0.177 0.183 0.930 

FCSgroup 0.433 0.023 0.025 0.908 1.459 0.165 0.168 0.940 

  β4       β5 

  Mean mSE EmpSE Cov Mean mSE EmpSE Cov 

Full Data -0.953 0.135 0.142 0.941 0.487 0.218 0.215 0.953 

Complete Records -0.953 0.146 0.154 0.945 0.485 0.236 0.234 0.951 

FCS -0.951 0.156 0.160 0.941 0.491 0.251 0.250 0.945 

FCSgroup -0.952 0.144 0.149 0.941 0.492 0.234 0.231 0.949 

Mean: mean estimate over imputed data sets; mSE: standard error derived from Rubin’s rules 

(mean over imputed data sets); EmpSE: standard deviation of estimate over imputed data sets; 

Cov: coverage of nominal 95% confidence interval. 

 

Scenario 10 (D=2, N=1000 per study, 𝑒1: N ~ (0, 1.2), 𝑒2: N ~ (0, 1.3)) 

Table C. 22. Simulation results when data missingness (due to mixed type problem) is 

applied to X2 from D2. Data generated under scenario 10, 𝑒1: N ~ (0, 1.2), 𝑒2: N ~ (0, 1.3), 

using equation 5.1. 

𝑒1: N~(0,1.2), 

𝑒2: N~(0,1.3) 
β0 β1 

  Mean mSE EmpSE Cov Mean mSE EmpSE Cov 

Full Data 1.490 0.089 0.091 0.939 -1.748 0.029 0.028 0.949 

Complete 

Records 0.819 0.100 0.102 0.000 -1.685 0.031 0.029 0.434 

FCS 1.493 0.103 0.107 0.931 -1.753 0.033 0.030 0.969 

FCSgroup 1.490 0.095 0.099 0.940 -1.752 0.031 0.030 0.954 

  β2 β3 

  Mean mSE EmpSE Cov Mean mSE EmpSE Cov 

Full Data 0.425 0.014 0.014 0.952 1.462 0.109 0.111 0.944 

Complete 

Records 1.340 0.061 0.059 0.000 1.463 0.117 0.117 0.945 

FCS 0.441 0.016 0.017 0.805 1.461 0.126 0.130 0.936 

FCSgroup 0.434 0.016 0.017 0.912 1.462 0.116 0.120 0.935 

  β4       β5 

  Mean mSE EmpSE Cov Mean mSE EmpSE Cov 

Full Data -0.953 0.095 0.097 0.942 0.486 0.154 0.159 0.948 
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Complete 

Records -0.951 0.103 0.104 0.950 0.484 0.166 0.171 0.938 

FCS -0.955 0.110 0.114 0.935 0.485 0.177 0.187 0.940 

FCSgroup -0.952 0.102 0.105 0.942 0.487 0.165 0.170 0.947 

Mean: mean estimate over imputed data sets; mSE: standard error derived from Rubin’s rules 

(mean over imputed data sets); EmpSE: standard deviation of estimate over imputed data sets; 

Cov: coverage of nominal 95% confidence interval.  
 

Table C. 23. Coefficients (estimate, standard error, t statistic and p-values) for linear 

regression model from equation 5.2 in true Full SLE data. 

 estimate standard error 

 

t statistic p-value 

(Intercept) 9.8625 1.1281 8.7430 2.00E-16*** 

Age -0.1067 0.0184 -5.7970 0.0000*** 

Ethnicity     

Caucasian 1.5653 0.5555 2.8180 0.0050** 

Other 2.8451 0.5816 4.8920 0.0000*** 

Creatinine 1.8558 0.4583 4.0490 0.0001*** 

Gender     

Male 0.4494 0.6316 0.7120 0.4770 

BMI -0.1429 0.0320 -4.4700 0.0000*** 

Significance codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 

Table C. 24. Coefficients (estimate, standard error, t statistic and p-values) for linear 

regression model from equation 5.2 after applying FCSgroup (5 imputations, 10 iterations) 

in SLE data. 

 estimate standard error 

 

t statistic p-value 

(Intercept) 9.9518 1.1363 8.7581 0.0000*** 

Age -0.1087 0.0196 -5.5363 0.0000*** 

Ethnicity     

Caucasian 1.5987 0.5585 2.8624 0.0044*** 

Other 2.8680 0.5827 4.9218 0.0000*** 

Creatinine 1.9025 0.4588 4.1468 0.0000*** 

Gender     

Male 0.4584 0.6318 0.7255 0.4685 

BMI -0.1459 0.0320 -4.5641 0.0000*** 

Significance codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 

Table C. 25. Coefficients (estimate, standard error, t statistic and p-values) for linear 

regression model from equation 5.2 after applying FCS (5 imputations, 10 iterations) in SLE 

data. 

 estimate standard error 

 

t statistic p-value 

(Intercept) 9.8373 1.1386 8.6399 0.0000*** 

Age -0.1058 0.0188 -5.6115 0.0000*** 

Ethnicity     

Caucasian 1.6092 0.5573 2.8873 0.0040*** 

Other 2.8860 0.5821 4.9581 0.0000*** 

Creatinine 1.9031 0.4591 4.1453 0.0000*** 
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Gender     

Male 0.4706 0.6324 0.7441 0.4571 

BMI -0.1464 0.0319 -4.5875 0.0000*** 

Significance codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 

Table C. 26. Coefficients (estimate, standard error, t statistic and p-values) for linear 

regression model from equation 5.2 after applying complete case analysis (Complete 

Records) in SLE data. 

 estimate standard error 

 

t statistic p-value 

(Intercept) 8.7826 1.1361 7.7300 0.0000*** 

Age     

21-40 -2.0013 0.6879 -2.9090 0.0038** 

41-60 -4.0000 0.7592 -5.2680 0.0000*** 

>60 -5.0391 1.7704 -2.8460 0.0046** 

Ethnicity     

Caucasian 1.4780 0.5548 2.6640 0.0079 

Other 2.8542 0.5850 4.8790 0.0000 

Creatinine 1.8614 0.4609 4.0390 0.0001 

Gender     

Male 0.5598 0.6317 0.8860 0.3759 

BMI -0.1505 0.0319 -4.7200 0.0000 

Significance codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 
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Appendix D: Combined types of content heterogeneity 

This section presents all simulation results for 10 scenarios presented in Chapter 6. Full Data 

refers to complete true data, Complete Records refers to traditional data integration – 

mapping to common levels - where mixed type problematic variable is converted to 

categorical, and the other problematic variable’s levels (due to granularity) are mapped to 

the least granular in order to be included in the analysis model. FCS refers to fully 

conditional specification - multiple imputation, FCSgroup: imputation model includes only 

the relevant informative ‘group’ variable, FCSgroups: both imputation models include both 

informative ‘group’ variables, FCS3group2: X3 is imputed excluding its informative ‘group’ 

variable, X2 is imputed including its informative ‘group’ variables,  𝑒𝑖 refers to model error 

applied in outcome’s data generating mechanism (equation 5.1).  

Simulations with studies of same sizes 

Scenario 1 (D=2, m=10, it=10, N=200 per study) 

Table D. 1. Simulation results when data missingness due to granularity problem is applied 

to X3 from D1 and due to mixed type problem is applied to X2 from D2. Data generated under 

scenario 1, 𝑒𝑖: N ~ (0, 0.2), using equation 5.1. 

 𝑒𝑖: N ~ (0, 0.2) β0 β1 

  Mean mSE EmpSE Cov Mean mSE EmpSE Cov 

Full Data 1.488 0.032 0.032 0.949 -1.755 0.010 0.010 0.946 

Complete 

Records 1.803 0.069 0.078 0.011 -1.693 0.034 0.030 0.546 

FCS 2.055 0.429 0.377 0.835 -1.750 0.025 0.019 0.986 

FCSgroup 1.523 0.068 0.055 0.956 -1.752 0.018 0.016 0.973 

FCSgroups 1.526 0.071 0.058 0.965 -1.752 0.018 0.016 0.963 

FCS3group2 1.575 0.170 0.156 0.993 -1.752 0.020 0.017 0.971 

  β2 β3 

  Mean mSE EmpSE Cov Mean mSE EmpSE Cov 

Full Data 0.424 0.005 0.005 0.949 1.466 0.039 0.039 0.952 

Complete 

Records 1.331 0.067 0.047 0.000 0.000 0.000 0.000 0.000 

FCS 0.427 0.012 0.009 0.986 0.901 0.438 0.380 0.843 

FCSgroup 0.427 0.009 0.008 0.963 1.406 0.075 0.060 0.918 

FCSgroups 0.427 0.009 0.008 0.957 1.401 0.079 0.065 0.925 

FCS3group2 0.428 0.010 0.008 0.976 1.384 0.174 0.156 0.994 

  β4       β5 

  Mean mSE EmpSE Cov Mean mSE EmpSE Cov 

Full Data -0.957 0.034 0.035 0.947 0.496 0.056 0.057 0.954 

Complete 

Records -1.936 0.073 0.084 0.000 -0.487 0.163 0.155 0.000 

FCS -1.479 0.418 0.371 0.841 -0.126 0.457 0.380 0.816 

FCSgroup -0.992 0.071 0.059 0.953 0.465 0.103 0.087 0.972 

FCSgroups -0.995 0.074 0.061 0.957 0.460 0.105 0.091 0.965 

FCS3group2 -1.027 0.168 0.156 0.991 0.302 0.209 0.184 0.914 

Mean: mean estimate over imputed data sets; mSE: standard error derived from Rubin’s rules 

(mean over imputed data sets); EmpSE: standard deviation of estimate over imputed data sets; 

Cov: coverage of nominal 95% confidence interval.  
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Table D. 2. Simulation results when data missingness due to granularity problem is applied 

to X3 from D1 and due to mixed type problem is applied to X2 from D2. Data generated under 

scenario 1, 𝑒𝑖: N ~ (0, 2), using equation 5.1. 

 𝑒𝑖: N ~ (0, 2) β0 β1 

  Mean mSE EmpSE Cov Mean mSE EmpSE Cov 

Full Data 1.480 0.320 0.312 0.954 -1.756 0.103 0.102 0.953 

Complete Records 1.799 0.220 0.226 0.694 -1.694 0.107 0.104 0.912 

FCS 1.953 0.785 0.586 0.950 -1.750 0.117 0.109 0.960 

FCSgroup 1.476 0.404 0.421 0.934 -1.751 0.108 0.107 0.952 

FCSgroups 1.530 0.454 0.433 0.946 -1.752 0.108 0.107 0.953 

FCS3group2 1.769 0.601 0.514 0.946 -1.753 0.111 0.108 0.954 

  β2 β3 

  Mean mSE EmpSE Cov Mean mSE EmpSE Cov 

Full Data 0.424 0.051 0.050 0.952 1.478 0.391 0.386 0.950 

Complete Records 1.338 0.213 0.201 0.007 0.000 0.000 0.000 0.000 

FCS 0.431 0.076 0.078 0.936 1.430 0.968 0.665 0.991 

FCSgroup 0.421 0.062 0.062 0.948 1.479 0.522 0.554 0.918 

FCSgroups 0.421 0.064 0.062 0.956 1.401 0.603 0.572 0.944 

FCS3group2 0.426 0.064 0.064 0.942 1.501 0.713 0.603 0.980 

  β4       β5 

  Mean mSE EmpSE Cov Mean mSE EmpSE Cov 

Full Data -0.946 0.343 0.332 0.954 0.495 0.560 0.547 0.957 

Complete Records -1.932 0.232 0.233 0.008 -0.492 0.519 0.515 0.520 

FCS -1.234 0.802 0.609 0.972 0.244 0.941 0.764 0.972 

FCSgroup -0.942 0.425 0.438 0.932 0.495 0.625 0.630 0.947 

FCSgroups -0.996 0.472 0.451 0.942 0.443 0.661 0.634 0.957 

FCS3group2 -1.069 0.618 0.533 0.964 0.414 0.773 0.697 0.961 

Mean: mean estimate over imputed data sets; mSE: standard error derived from Rubin’s rules 

(mean over imputed data sets); EmpSE: standard deviation of estimate over imputed data sets; 

Cov: coverage of nominal 95% confidence interval.  
 

Table D. 3. Simulation results when data missingness due to granularity problem is applied 

to X3 from D1 and due to mixed type problem is applied to X2 from D2. Data generated under 

scenario 1, 𝑒𝑖: N ~ (0, 20), using equation 5.1. 

 𝑒𝑖: N ~ (0, 20) β0 β1 

  Mean mSE EmpSE Cov Mean mSE EmpSE Cov 

Full Data 1.553 3.197 3.284 0.938 -1.770 1.027 1.032 0.953 

Complete Records 1.901 2.098 2.070 0.949 -1.708 1.019 1.025 0.952 

FCS 1.656 4.835 4.628 0.957 -1.752 1.050 1.047 0.953 

FCSgroup 1.458 3.761 4.379 0.919 -1.763 1.038 1.037 0.953 

FCSgroups 1.470 3.876 4.265 0.921 -1.768 1.039 1.040 0.954 

FCS3group2 1.718 4.561 4.534 0.953 -1.763 1.036 1.038 0.952 

  β2 β3 

  Mean mSE EmpSE Cov Mean mSE EmpSE Cov 

Full Data 0.421 0.513 0.511 0.955 1.503 3.916 4.101 0.939 

Complete Records 1.314 2.034 2.043 0.918 0.000 0.000 0.000 0.000 

FCS 0.416 0.755 0.733 0.947 1.697 6.068 5.878 0.962 

FCSgroup 0.423 0.610 0.593 0.956 1.639 4.889 5.957 0.898 

FCSgroups 0.433 0.621 0.601 0.953 1.617 5.095 5.760 0.911 

FCS3group2 0.419 0.604 0.585 0.951 1.617 5.623 5.784 0.939 
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  β4       β5 

  Mean mSE EmpSE Cov Mean mSE EmpSE Cov 

Full Data -1.030 3.432 3.518 0.948 0.185 5.607 5.651 0.959 

Complete Records -2.036 2.218 2.098 0.935 -0.826 4.952 4.869 0.956 

FCS -0.901 5.022 4.858 0.953 0.357 6.705 6.522 0.965 

FCSgroup -0.935 3.964 4.563 0.919 0.282 5.955 6.278 0.946 

FCSgroups -0.947 4.075 4.454 0.923 0.273 6.031 6.183 0.949 

FCS3group2 -0.967 4.746 4.758 0.942 0.251 6.476 6.438 0.963 

Mean: mean estimate over imputed data sets; mSE: standard error derived from Rubin’s rules 

(mean over imputed data sets); EmpSE: standard deviation of estimate over imputed data sets; 

Cov: coverage of nominal 95% confidence interval.  
 

Scenario 2 (D=2, N=1000 per study, m=10, it=10) 

Table D. 4. Simulation results when data missingness due to granularity problem is applied 

to X3 from D1 and due to mixed type problem is applied to X2 from D2. Data generated under 

scenario 2, 𝑒𝑖: N ~ (0, 0.2), using equation 5.1. 

 𝑒𝑖: N ~ (0, 0.2) β0 β1 

  Mean mSE EmpSE Cov Mean mSE EmpSE Cov 

Full Data 1.488 0.014 0.015 0.937 -1.755 0.005 0.005 0.954 

Complete Records 1.799 0.031 0.038 0.000 -1.693 0.015 0.013 0.006 

FCS 2.580 0.431 0.248 0.448 -1.752 0.011 0.009 0.972 

FCSgroup 1.494 0.023 0.021 0.958 -1.755 0.007 0.007 0.942 

FCSgroups 1.495 0.023 0.021 0.950 -1.755 0.007 0.007 0.950 

FCS3group2 1.493 0.091 0.084 0.948 -1.755 0.007 0.007 0.940 

  β2 β3 

  Mean mSE EmpSE Cov Mean mSE EmpSE Cov 

Full Data 0.424 0.002 0.002 0.933 1.465 0.017 0.017 0.952 

Complete Records 1.332 0.030 0.022 0.000 0.000 0.000 0.000 0.000 

FCS 0.425 0.005 0.005 0.974 0.376 0.436 0.251 0.449 

FCSgroup 0.425 0.003 0.003 0.919 1.454 0.026 0.025 0.927 

FCSgroups 0.425 0.003 0.003 0.926 1.452 0.026 0.025 0.927 

FCS3group2 0.425 0.004 0.004 0.926 1.466 0.093 0.084 0.912 

  β4       β5 

  Mean mSE EmpSE Cov Mean mSE EmpSE Cov 

Full Data -0.957 0.015 0.016 0.938 0.498 0.025 0.025 0.953 

Complete Records -1.934 0.033 0.039 0.000 -0.480 0.072 0.066 0.000 

FCS -1.996 0.417 0.242 0.449 -0.717 0.459 0.259 0.426 

FCSgroup -0.962 0.024 0.022 0.950 0.492 0.037 0.034 0.958 

FCSgroups -0.963 0.024 0.022 0.952 0.491 0.037 0.034 0.956 

FCS3group2 -0.954 0.090 0.083 0.913 0.420 0.115 0.100 0.859 

Mean: mean estimate over imputed data sets; mSE: standard error derived from Rubin’s rules 

(mean over imputed data sets); EmpSE: standard deviation of estimate over imputed data sets; 

Cov: coverage of nominal 95% confidence interval.  
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Table D. 5. Simulation results when data missingness due to granularity problem is 

applied to X3 from D1 and due to mixed type problem is applied to X2 from D2. Data 

generated under scenario 2, 𝑒𝑖: N ~ (0, 2), using equation 5.1. 

𝑒𝑖: N ~ (0, 2) β0 β1 

  Mean mSE EmpSE Cov Mean mSE EmpSE Cov 

Full Data 1.485 0.142 0.143 0.947 -1.757 0.046 0.046 0.959 

Complete Records 1.801 0.098 0.097 0.110 -1.693 0.048 0.047 0.745 

FCS 2.242 0.463 0.310 0.661 -1.762 0.052 0.049 0.962 

FCSgroup 1.488 0.177 0.200 0.914 -1.755 0.048 0.048 0.952 

FCSgroups 1.520 0.217 0.206 0.950 -1.755 0.048 0.048 0.957 

FCS3group2 1.793 0.267 0.238 0.808 -1.758 0.049 0.048 0.957 

  β2 β3 

  Mean mSE EmpSE Cov Mean mSE EmpSE Cov 

Full Data 0.424 0.023 0.022 0.958 1.469 0.174 0.170 0.953 

Complete Records 1.331 0.095 0.088 0.000 0.000 0.000 0.000 0.000 

FCS 0.442 0.034 0.034 0.911 1.179 0.566 0.334 0.978 

FCSgroup 0.423 0.027 0.026 0.958 1.463 0.230 0.256 0.919 

FCSgroups 0.421 0.029 0.026 0.967 1.415 0.296 0.270 0.957 

FCS3group2 0.428 0.028 0.027 0.956 1.483 0.319 0.277 0.969 

  β4       β5 

  Mean mSE EmpSE Cov Mean mSE EmpSE Cov 

Full Data -0.956 0.152 0.155 0.943 0.504 0.246 0.245 0.945 

Complete Records -1.938 0.104 0.106 0.000 -0.475 0.227 0.221 0.004 

FCS -1.531 0.470 0.319 0.806 -0.026 0.517 0.378 0.876 

FCSgroup -0.959 0.186 0.209 0.917 0.503 0.273 0.286 0.930 

FCSgroups -0.990 0.225 0.216 0.954 0.471 0.301 0.289 0.948 

FCS3group2 -1.095 0.275 0.246 0.934 0.417 0.342 0.321 0.953 

Mean: mean estimate over imputed data sets; mSE: standard error derived from Rubin’s rules 

(mean over imputed data sets); EmpSE: standard deviation of estimate over imputed data sets; 

Cov: coverage of nominal 95% confidence interval.  
 

Table D. 6. Simulation results when data missingness due to granularity problem is applied 

to X3 from D1 and due to mixed type problem is applied to X2 from D2. Data generated under 

scenario 2, 𝑒𝑖: N ~ (0, 20), using equation 5.1. 

𝑒𝑖: N ~ (0, 20) β0 β1 

  Mean mSE EmpSE Cov Mean mSE EmpSE Cov 

Full Data 1.460 1.419 1.435 0.947 -1.769 0.457 0.457 0.959 

Complete 

Records 1.802 0.936 0.910 0.938 -1.705 0.454 0.454 0.951 

FCS 1.682 2.178 2.172 0.946 -1.765 0.468 0.470 0.954 

FCSgroup 1.460 1.655 1.945 0.907 -1.766 0.461 0.461 0.955 

FCSgroups 1.484 1.705 1.917 0.914 -1.769 0.462 0.461 0.955 

FCS3group2 1.683 2.005 2.131 0.933 -1.766 0.461 0.461 0.957 

  β2 β3 

  Mean mSE EmpSE Cov Mean mSE EmpSE Cov 

Full Data 0.425 0.229 0.218 0.958 1.503 1.737 1.704 0.953 

Complete 

Records 1.325 0.907 0.861 0.856 0.000 0.000 0.000 0.000 

FCS 0.421 0.335 0.311 0.962 1.527 2.732 2.582 0.953 

FCSgroup 0.421 0.271 0.250 0.969 1.498 2.152 2.577 0.895 

FCSgroups 0.427 0.274 0.253 0.970 1.464 2.235 2.541 0.907 
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FCS3group2 0.419 0.269 0.250 0.970 1.517 2.461 2.536 0.939 

  β4       β5 

  Mean mSE EmpSE Cov Mean mSE EmpSE Cov 

Full Data -0.954 1.524 1.546 0.943 0.564 2.458 2.452 0.945 

Complete 

Records -1.959 0.989 0.976 0.823 -0.438 2.167 2.124 0.947 

FCS -0.949 2.257 2.262 0.945 0.576 2.976 2.944 0.947 

FCSgroup -0.954 1.746 2.034 0.910 0.565 2.603 2.767 0.929 

FCSgroups -0.977 1.794 2.010 0.919 0.541 2.636 2.746 0.936 

FCS3group2 -0.951 2.089 2.217 0.931 0.572 2.837 2.918 0.937 

Mean: mean estimate over imputed data sets; mSE: standard error derived from Rubin’s rules 

(mean over imputed data sets); EmpSE: standard deviation of estimate over imputed data sets; 

Cov: coverage of nominal 95% confidence interval.  
 

Scenario 3 (D=5, N=200 per study, m=10, it=10) 

Table D. 7. Simulation results when data missingness due to granularity problem is applied 

to X3 from D2, D5 and due to mixed type problem is applied to X2 from D1, D4. Data generated 

under scenario 3, 𝑒𝑖: N ~ (0, 0.2), using equation 5.1. 

 𝑒𝑖: N ~ (0, 0.2) β0 β1 

  Mean mSE EmpSE Cov Mean mSE EmpSE Cov 

Full Data 1.489 0.020 0.021 0.944 -1.755 0.006 0.006 0.954 

Complete 

Records 1.799 0.044 0.052 0.000 -1.692 0.021 0.019 0.127 

FCS 1.485 0.029 0.027 0.946 -1.755 0.009 0.009 0.943 

FCSgroup 1.492 0.027 0.027 0.950 -1.755 0.008 0.008 0.938 

FCSgroups 1.492 0.027 0.027 0.928 -1.755 0.009 0.008 0.938 

FCS3group2 1.485 0.028 0.027 0.951 -1.755 0.009 0.009 0.950 

  β2 β3 

  Mean mSE EmpSE Cov Mean mSE EmpSE Cov 

Full Data 0.424 0.003 0.003 0.947 1.465 0.025 0.025 0.950 

Complete 

Records 1.332 0.042 0.030 0.000 0.000 0.000 0.000 0.000 

FCS 0.425 0.004 0.005 0.906 1.470 0.035 0.034 0.939 

FCSgroup 0.425 0.004 0.004 0.919 1.459 0.033 0.033 0.933 

FCSgroups 0.425 0.004 0.004 0.911 1.459 0.032 0.034 0.922 

FCS3group2 0.426 0.004 0.004 0.908 1.470 0.033 0.033 0.933 

  β4       β5 

  Mean mSE EmpSE Cov Mean mSE EmpSE Cov 

Full Data -0.958 0.022 0.022 0.946 0.499 0.035 0.036 0.936 

Complete 

Records -1.933 0.046 0.055 0.000 -0.478 0.102 0.093 0.000 

FCS -0.952 0.031 0.030 0.940 0.488 0.050 0.049 0.932 

FCSgroup -0.961 0.029 0.030 0.943 0.496 0.046 0.047 0.933 

FCSgroups -0.961 0.029 0.030 0.936 0.496 0.046 0.047 0.932 

FCS3group2 -0.952 0.030 0.029 0.936 0.485 0.048 0.049 0.930 

Mean: mean estimate over imputed data sets; mSE: standard error derived from Rubin’s rules 

(mean over imputed data sets); EmpSE: standard deviation of estimate over imputed data sets; 

Cov: coverage of nominal 95% confidence interval.  
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Table D. 8. Simulation results when data missingness due to granularity problem is applied 

to X3 from D2, D5 and due to mixed type problem is applied to X2 from D1, D4. Data generated 

under scenario 3, 𝑒𝑖: N ~ (0, 2), using equation 5.1. 

𝑒𝑖: N ~ (0, 2) β0 β1 

  Mean mSE EmpSE Cov Mean mSE EmpSE Cov 

Full Data 1.484 0.202 0.205 0.946 -1.757 0.065 0.066 0.941 

Complete Records 1.805 0.139 0.147 0.388 -1.695 0.068 0.069 0.844 

FCS 1.563 0.246 0.250 0.927 -1.754 0.070 0.069 0.948 

FCSgroup 1.480 0.222 0.231 0.943 -1.755 0.067 0.068 0.937 

FCSgroups 1.481 0.221 0.231 0.944 -1.755 0.067 0.068 0.941 

FCS3group2 1.558 0.236 0.240 0.923 -1.754 0.068 0.068 0.945 

  β2 β3 

  Mean mSE EmpSE Cov Mean mSE EmpSE Cov 

Full Data 0.423 0.032 0.032 0.954 1.472 0.247 0.250 0.943 

Complete Records 1.328 0.135 0.138 0.000 0.000 0.000 0.000 0.000 

FCS 0.420 0.040 0.042 0.928 1.486 0.300 0.305 0.933 

FCSgroup 0.421 0.037 0.037 0.940 1.479 0.278 0.284 0.943 

FCSgroups 0.422 0.036 0.037 0.942 1.477 0.277 0.288 0.934 

FCS3group2 0.421 0.037 0.037 0.950 1.487 0.289 0.287 0.944 

  β4       β5 

  Mean mSE EmpSE Cov Mean mSE EmpSE Cov 

Full Data -0.951 0.216 0.223 0.941 0.509 0.350 0.343 0.958 

Complete Records -1.937 0.147 0.158 0.000 -0.475 0.323 0.313 0.145 

FCS -0.966 0.260 0.269 0.937 0.511 0.392 0.395 0.949 

FCSgroup -0.947 0.236 0.250 0.939 0.514 0.367 0.367 0.947 

FCSgroups -0.948 0.236 0.250 0.932 0.514 0.367 0.367 0.944 

FCS3group2 -0.966 0.250 0.260 0.937 0.509 0.380 0.373 0.955 

Mean: mean estimate over imputed data sets; mSE: standard error derived from Rubin’s rules 

(mean over imputed data sets); EmpSE: standard deviation of estimate over imputed data sets; 

Cov: coverage of nominal 95% confidence interval.  
 

Table D. 9. Simulation results when data missingness due to granularity problem is applied 

to X3 from D2, D5 and due to mixed type problem is applied to X2 from D1, D4. Data generated 

under scenario 3, 𝑒𝑖: N ~ (0, 20), using equation 5.1. 

𝑒𝑖: N ~ (0, 20) β0 β1 

  Mean mSE EmpSE Cov Mean mSE EmpSE Cov 

Full Data 1.443 2.015 2.047 0.946 -1.773 0.649 0.662 0.941 

Complete Records 1.821 1.325 1.392 0.930 -1.711 0.644 0.660 0.942 

FCS 1.527 2.268 2.307 0.943 -1.773 0.659 0.673 0.944 

FCSgroup 1.436 2.178 2.253 0.941 -1.767 0.652 0.662 0.942 

FCSgroups 1.451 2.175 2.254 0.943 -1.769 0.653 0.662 0.945 

FCS3group2 1.527 2.263 2.306 0.945 -1.768 0.652 0.662 0.943 

  β2 β3 

  Mean mSE EmpSE Cov Mean mSE EmpSE Cov 

Full Data 0.419 0.324 0.325 0.954 1.534 2.466 2.496 0.943 

Complete Records 1.304 1.285 1.336 0.882 0.000 0.000 0.000 0.000 

FCS 0.424 0.427 0.443 0.935 1.526 2.781 2.791 0.946 

FCSgroup 0.410 0.366 0.370 0.949 1.542 2.755 2.832 0.934 

FCSgroups 0.415 0.369 0.369 0.943 1.521 2.748 2.854 0.929 

FCS3group2 0.415 0.367 0.369 0.949 1.525 2.777 2.795 0.944 

  β4       β5 
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  Mean mSE EmpSE Cov Mean mSE EmpSE Cov 

Full Data -0.899 2.163 2.230 0.941 0.608 3.497 3.429 0.958 

Complete Records -1.930 1.401 1.471 0.883 -0.419 3.083 3.019 0.940 

FCS -0.902 2.408 2.491 0.936 0.605 3.672 3.602 0.949 

FCSgroup -0.891 2.316 2.429 0.926 0.616 3.596 3.559 0.945 

FCSgroups -0.906 2.314 2.432 0.933 0.605 3.594 3.552 0.949 

FCS3group2 -0.901 2.404 2.491 0.937 0.614 3.661 3.593 0.951 

Mean: mean estimate over imputed data sets; mSE: standard error derived from Rubin’s rules 

(mean over imputed data sets); EmpSE: standard deviation of estimate over imputed data sets; 

Cov: coverage of nominal 95% confidence interval.  
 

Scenario 4 (D=5, Ν=1000 per study, m=10, it=10) 

Table D. 10. Simulation results when data missingness due to granularity problem is applied 

to X3 from D2, D5 and due to mixed type problem is applied to X2 from D1, D4. Data generated 

under scenario 4, 𝑒𝑖: N ~ (0, 0.2), using equation 5.1. 

 𝑒𝑖: N ~ (0, 0.2) β0 β1 

  Mean mSE EmpSE Cov Mean mSE EmpSE Cov 

Full Data 1.488 0.009 0.009 0.950 -1.755 0.003 0.003 0.950 

Complete 

Records 1.799 0.020 0.024 0.000 -1.693 0.010 0.009 0.000 

FCS 1.482 0.013 0.012 0.925 -1.755 0.004 0.004 0.928 

FCSgroup 1.489 0.012 0.012 0.936 -1.756 0.004 0.004 0.941 

FCSgroups 1.489 0.012 0.012 0.944 -1.755 0.004 0.004 0.933 

FCS3group2 1.483 0.012 0.012 0.912 -1.756 0.004 0.004 0.949 

  β2 β3 

  Mean mSE EmpSE Cov Mean mSE EmpSE Cov 

Full Data 0.424 0.001 0.001 0.939 1.466 0.011 0.011 0.947 

Complete 

Records 1.332 0.019 0.014 0.000 0.000 0.000 0.000 0.000 

FCS 0.424 0.002 0.002 0.941 1.473 0.015 0.015 0.912 

FCSgroup 0.424 0.002 0.002 0.926 1.465 0.014 0.014 0.930 

FCSgroups 0.424 0.002 0.002 0.926 1.465 0.014 0.014 0.934 

FCS3group2 0.424 0.002 0.002 0.933 1.473 0.015 0.015 0.921 

  β4       β5 

  Mean mSE EmpSE Cov Mean mSE EmpSE Cov 

Full Data -0.957 0.010 0.010 0.945 0.498 0.015 0.016 0.942 

Complete 

Records -1.933 0.021 0.026 0.000 -0.478 0.045 0.042 0.000 

FCS -0.950 0.013 0.013 0.908 0.490 0.021 0.022 0.910 

FCSgroup -0.957 0.012 0.013 0.942 0.498 0.020 0.020 0.939 

FCSgroups -0.958 0.012 0.013 0.930 0.497 0.020 0.021 0.936 

FCS3group2 -0.950 0.013 0.013 0.920 0.490 0.021 0.022 0.906 

Mean: mean estimate over imputed data sets; mSE: standard error derived from Rubin’s rules 

(mean over imputed data sets); EmpSE: standard deviation of estimate over imputed data sets; 

Cov: coverage of nominal 95% confidence interval.  
 

Table D. 11. Simulation results when data missingness due to granularity problem is applied 

to X3 from D2, D5 and due to mixed type problem is applied to X2 from D1, D4. Data generated 

under scenario 4, 𝑒𝑖: N ~ (0, 2), using equation 5.1. 

 𝑒𝑖: N ~ (0, 2) β0 β1 
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  Mean mSE EmpSE Cov Mean mSE EmpSE Cov 

Full Data 1.488 0.089 0.088 0.951 -1.757 0.029 0.030 0.951 

Complete Records 1.801 0.062 0.063 0.001 -1.694 0.030 0.030 0.469 

FCS 1.568 0.109 0.110 0.887 -1.755 0.031 0.031 0.960 

FCSgroup 1.488 0.098 0.099 0.952 -1.756 0.030 0.030 0.960 

FCSgroups 1.487 0.098 0.099 0.953 -1.756 0.030 0.030 0.955 

FCS3group2 1.563 0.105 0.104 0.896 -1.756 0.030 0.031 0.954 

  β2 β3 

  Mean mSE EmpSE Cov Mean mSE EmpSE Cov 

Full Data 0.424 0.014 0.015 0.938 1.469 0.110 0.107 0.950 

Complete Records 1.333 0.060 0.061 0.000 0.000 0.000 0.000 0.000 

FCS 0.421 0.018 0.018 0.943 1.483 0.133 0.133 0.944 

FCSgroup 0.423 0.016 0.017 0.940 1.468 0.123 0.123 0.953 

FCSgroups 0.423 0.016 0.016 0.946 1.469 0.123 0.123 0.947 

FCS3group2 0.423 0.017 0.017 0.947 1.483 0.128 0.126 0.941 

  β4       β5 

  Mean mSE EmpSE Cov Mean mSE EmpSE Cov 

Full Data -0.957 0.096 0.095 0.950 0.506 0.155 0.158 0.946 

Complete Records -1.936 0.066 0.068 0.000 -0.473 0.143 0.143 0.000 

FCS -0.973 0.116 0.115 0.947 0.509 0.174 0.182 0.943 

FCSgroup -0.958 0.104 0.105 0.950 0.506 0.162 0.168 0.945 

FCSgroups -0.957 0.105 0.105 0.949 0.506 0.163 0.169 0.949 

FCS3group2 -0.973 0.111 0.109 0.949 0.508 0.168 0.173 0.948 

Mean: mean estimate over imputed data sets; mSE: standard error derived from Rubin’s rules 

(mean over imputed data sets); EmpSE: standard deviation of estimate over imputed data sets; 

Cov: coverage of nominal 95% confidence interval.  
 

Table D. 12. Simulation results when data missingness due to granularity problem is applied 

to X3 from D2, D5 and due to mixed type problem is applied to X2 from D1, D4. Data generated 

under scenario 4, 𝑒𝑖: N ~ (0, 20), using equation 5.1. 

 𝑒𝑖: N ~ (0, 20) β0 β1 

  Mean mSE EmpSE Cov Mean mSE EmpSE Cov 

Full Data 1.481 0.895 0.884 0.951 -1.771 0.289 0.295 0.951 

Complete 

Records 1.811 0.591 0.593 0.905 -1.708 0.287 0.293 0.940 

FCS 1.563 1.004 0.987 0.957 -1.769 0.294 0.301 0.947 

FCSgroup 1.481 0.965 0.963 0.950 -1.770 0.291 0.297 0.948 

FCSgroups 1.480 0.961 0.968 0.948 -1.769 0.291 0.297 0.949 

FCS3group2 1.565 1.002 0.984 0.954 -1.769 0.291 0.297 0.951 

  β2 β3 

  Mean mSE EmpSE Cov Mean mSE EmpSE Cov 

Full Data 0.426 0.144 0.146 0.938 1.502 1.096 1.072 0.950 

Complete 

Records 1.343 0.573 0.590 0.623 0.000 0.000 0.000 0.000 

FCS 0.423 0.191 0.191 0.935 1.498 1.233 1.215 0.958 

FCSgroup 0.424 0.164 0.166 0.940 1.501 1.222 1.217 0.951 

FCSgroups 0.423 0.164 0.165 0.943 1.504 1.214 1.221 0.940 

FCS3group2 0.422 0.164 0.164 0.947 1.497 1.230 1.213 0.955 

  β4       β5 

  Mean mSE EmpSE Cov Mean mSE EmpSE Cov 

Full Data -0.961 0.961 0.949 0.950 0.586 1.550 1.576 0.946 
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Complete 

Records -1.963 0.625 0.636 0.620 -0.416 1.368 1.370 0.904 

FCS -0.960 1.066 1.040 0.956 0.586 1.622 1.658 0.942 

FCSgroup -0.962 1.027 1.024 0.946 0.585 1.593 1.635 0.950 

FCSgroups -0.960 1.023 1.027 0.942 0.586 1.590 1.632 0.955 

FCS3group2 -0.964 1.065 1.038 0.957 0.588 1.620 1.644 0.952 

Mean: mean estimate over imputed data sets; mSE: standard error derived from Rubin’s rules 

(mean over imputed data sets); EmpSE: standard deviation of estimate over imputed data sets; 

Cov: coverage of nominal 95% confidence interval.  
 

Simulations with studies of different sizes 

Scenario 5 (D=5, N: different per study m=5, it=5) 

Table D. 13. Simulation results when data missingness due to granularity problem is applied 

to X3 from D4 and due to mixed type problem is applied to X2 from D5. Data generated under 

scenario 5, 𝑒𝑖: N ~ (0, 0.2), using equation 5.1. 

𝑒𝑖: N ~ (0, 0.2) β0 β1 

  Mean mSE EmpSE Cov Mean mSE EmpSE Cov 

Full Data 1.487 0.026 0.027 0.949 -1.756 0.009 0.009 0.951 

Complete Records 1.798 0.058 0.070 0.000 -1.693 0.028 0.025 0.385 

FCS 1.486 0.031 0.031 0.954 -1.755 0.010 0.010 0.944 

FCSgroup 1.489 0.030 0.030 0.949 -1.755 0.010 0.010 0.944 

FCSgroups 1.489 0.030 0.030 0.945 -1.755 0.010 0.010 0.944 

FCS3group2 1.486 0.030 0.030 0.949 -1.755 0.010 0.010 0.947 

  β2 β3 

  Mean mSE EmpSE Cov Mean mSE EmpSE Cov 

Full Data 0.424 0.004 0.004 0.941 1.467 0.032 0.033 0.956 

Complete Records 1.332 0.056 0.039 0.000 0.000 0.000 0.000 0.000 

FCS 0.424 0.005 0.005 0.939 1.469 0.038 0.037 0.952 

FCSgroup 0.424 0.005 0.005 0.944 1.464 0.037 0.037 0.947 

FCSgroups 0.424 0.005 0.005 0.939 1.464 0.037 0.036 0.948 

FCS3group2 0.424 0.005 0.005 0.946 1.470 0.037 0.037 0.951 

  β4       β5 

  Mean mSE EmpSE Cov Mean mSE EmpSE Cov 

Full Data -0.955 0.028 0.029 0.953 0.499 0.046 0.048 0.930 

Complete Records -1.930 0.061 0.074 0.000 -0.480 0.134 0.128 0.000 

FCS -0.953 0.033 0.033 0.955 0.494 0.055 0.055 0.941 

FCSgroup -0.957 0.033 0.032 0.953 0.497 0.052 0.053 0.950 

FCSgroups -0.958 0.032 0.032 0.948 0.497 0.052 0.052 0.943 

FCS3group2 -0.953 0.032 0.032 0.952 0.493 0.054 0.053 0.939 

Mean: mean estimate over imputed data sets; mSE: standard error derived from Rubin’s rules 

(mean over imputed data sets); EmpSE: standard deviation of estimate over imputed data sets; 

Cov: coverage of nominal 95% confidence interval.  
 

Table D. 14. Simulation results when data missingness due to granularity problem is applied 

to X3 from D4 and due to mixed type problem is applied to X2 from D5. Data generated under 

scenario 5, 𝑒𝑖: N ~ (0, 2), using equation 5.1. 

 𝑒𝑖: N ~ (0, 2) β0 β1 

  Mean mSE EmpSE Cov Mean mSE EmpSE Cov 

Full Data 1.485 0.266 0.269 0.946 -1.755 0.086 0.085 0.951 
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Complete Records 1.794 0.183 0.190 0.590 -1.693 0.089 0.086 0.909 

FCS 1.529 0.293 0.308 0.930 -1.754 0.088 0.086 0.957 

FCSgroup 1.483 0.280 0.289 0.943 -1.754 0.087 0.086 0.954 

FCSgroups 1.482 0.280 0.290 0.933 -1.754 0.087 0.085 0.948 

FCS3group2 1.525 0.289 0.302 0.933 -1.754 0.087 0.086 0.947 

  β2 β3 

  Mean mSE EmpSE Cov Mean mSE EmpSE Cov 

Full Data 0.421 0.043 0.044 0.934 1.462 0.325 0.332 0.950 

Complete Records 1.331 0.177 0.175 0.000 0.000 0.000 0.000 0.000 

FCS 0.420 0.047 0.048 0.944 1.474 0.359 0.379 0.932 

FCSgroup 0.420 0.045 0.045 0.952 1.465 0.347 0.365 0.934 

FCSgroups 0.419 0.045 0.046 0.949 1.465 0.348 0.366 0.934 

FCS3group2 0.420 0.045 0.046 0.941 1.475 0.354 0.371 0.930 

  β4       β5 

  Mean mSE EmpSE Cov Mean mSE EmpSE Cov 

Full Data -0.950 0.285 0.290 0.949 0.513 0.461 0.457 0.947 

Complete Records -1.923 0.193 0.198 0.002 -0.464 0.426 0.432 0.370 

FCS -0.955 0.313 0.329 0.929 0.518 0.486 0.493 0.948 

FCSgroup -0.948 0.299 0.310 0.939 0.514 0.472 0.468 0.943 

FCSgroups -0.947 0.299 0.311 0.937 0.515 0.472 0.470 0.941 

FCS3group2 -0.951 0.309 0.323 0.936 0.518 0.481 0.484 0.938 

Mean: mean estimate over imputed data sets; mSE: standard error derived from Rubin’s rules 

(mean over imputed data sets); EmpSE: standard deviation of estimate over imputed data sets; 

Cov: coverage of nominal 95% confidence interval.  
 

Table D. 15. Simulation results when data missingness due to granularity problem is applied 

to X3 from D4 and due to mixed type problem is applied to X2 from D5. Data generated under 

scenario 5, 𝑒𝑖: N ~ (0, 20), using equation 5.1. 

 𝑒𝑖: N ~ (0, 20) β0 β1 

  Mean mSE EmpSE Cov Mean mSE EmpSE Cov 

Full Data 1.457 2.656 2.693 0.946 -1.754 0.856 0.849 0.951 

Complete Records 1.745 1.746 1.772 0.941 -1.703 0.850 0.844 0.952 

FCS 1.485 2.855 2.972 0.941 -1.753 0.861 0.854 0.949 

FCSgroup 1.444 2.786 2.891 0.943 -1.751 0.858 0.848 0.948 

FCSgroups 1.439 2.792 2.889 0.939 -1.749 0.858 0.851 0.948 

FCS3group2 1.469 2.853 2.963 0.938 -1.751 0.858 0.851 0.947 

  β2 β3 

  Mean mSE EmpSE Cov Mean mSE EmpSE Cov 

Full Data 0.396 0.428 0.441 0.934 1.430 3.253 3.323 0.950 

Complete Records 1.332 1.693 1.728 0.920 0.000 0.000 0.000 0.000 

FCS 0.396 0.476 0.486 0.937 1.455 3.506 3.684 0.933 

FCSgroup 0.392 0.448 0.453 0.946 1.452 3.484 3.679 0.931 

FCSgroups 0.388 0.448 0.454 0.946 1.458 3.493 3.690 0.934 

FCS3group2 0.391 0.449 0.459 0.942 1.469 3.499 3.658 0.933 

  β4       β5 

  Mean mSE EmpSE Cov Mean mSE EmpSE Cov 

Full Data -0.892 2.852 2.905 0.949 0.651 4.614 4.575 0.947 

Complete Records -1.845 1.847 1.856 0.919 -0.310 4.067 4.086 0.948 

FCS -0.869 3.043 3.179 0.938 0.678 4.745 4.764 0.943 

FCSgroup -0.877 2.974 3.086 0.935 0.663 4.692 4.683 0.942 

FCSgroups -0.872 2.979 3.090 0.937 0.672 4.695 4.681 0.937 

FCS3group2 -0.849 3.043 3.168 0.938 0.677 4.741 4.764 0.937 
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Mean: mean estimate over imputed data sets; mSE: standard error derived from Rubin’s rules 

(mean over imputed data sets); EmpSE: standard deviation of estimate over imputed data sets; 

Cov: coverage of nominal 95% confidence interval.  
 

Scenario 6 (D=10, N: different per study, m=5, it=5) 

Table D. 16. Simulation results when data missingness due to granularity problem is applied 

to X3 from D6, D10 and due to mixed type problem is applied to X2 from D3, D9. Data 

generated under scenario 6, 𝑒𝑖: N ~ (0, 0.2), using equation 5.1. 

𝑒𝑖: N ~ (0, 0.2) β0 β1 

  Mean mSE EmpSE Cov Mean mSE EmpSE Cov 

Full Data 1.488 0.011 0.011 0.958 -1.755 0.004 0.004 0.940 

Complete Records 1.798 0.025 0.029 0.000 -1.692 0.012 0.011 0.000 

FCS 1.487 0.013 0.013 0.953 -1.755 0.004 0.005 0.935 

FCSgroup 1.488 0.013 0.012 0.950 -1.755 0.004 0.004 0.933 

FCSgroups 1.488 0.013 0.013 0.947 -1.755 0.004 0.004 0.936 

FCS3group2 1.487 0.013 0.013 0.946 -1.755 0.004 0.004 0.946 

  β2 β3 

  Mean mSE EmpSE Cov Mean mSE EmpSE Cov 

Full Data 0.424 0.002 0.002 0.939 1.466 0.014 0.014 0.956 

Complete Records 1.331 0.024 0.017 0.000 0.000 0.000 0.000 0.000 

FCS 0.424 0.002 0.002 0.931 1.467 0.016 0.016 0.957 

FCSgroup 0.424 0.002 0.002 0.934 1.466 0.016 0.016 0.945 

FCSgroups 0.424 0.002 0.002 0.926 1.466 0.016 0.016 0.948 

FCS3group2 0.424 0.002 0.002 0.928 1.467 0.016 0.016 0.939 

  β4       β5 

  Mean mSE EmpSE Cov Mean mSE EmpSE Cov 

Full Data -0.956 0.012 0.011 0.957 0.498 0.020 0.020 0.947 

Complete Records -1.932 0.026 0.031 0.000 -0.478 0.057 0.052 0.000 

FCS -0.955 0.014 0.014 0.948 0.496 0.023 0.023 0.953 

FCSgroup -0.957 0.014 0.013 0.952 0.497 0.023 0.023 0.947 

FCSgroups -0.957 0.014 0.014 0.945 0.497 0.023 0.023 0.940 

FCS3group2 -0.955 0.014 0.014 0.951 0.497 0.023 0.023 0.950 

Mean: mean estimate over imputed data sets; mSE: standard error derived from Rubin’s rules 

(mean over imputed data sets); EmpSE: standard deviation of estimate over imputed data sets; 

Cov: coverage of nominal 95% confidence interval.  
 

Table D. 17. Simulation results when data missingness due to granularity problem is applied 

to X3 from D6, D10 and due to mixed type problem is applied to X2 from D3, D9. Data 

generated under scenario 6, 𝑒𝑖: N ~ (0, 2), using equation 5.1. 

𝑒𝑖: N ~ (0, 2) β0 β1 

  Mean mSE EmpSE Cov Mean mSE EmpSE Cov 

Full Data 1.491 0.113 0.111 0.960 -1.756 0.037 0.036 0.947 

Complete Records 1.800 0.078 0.078 0.021 -1.692 0.038 0.037 0.613 

FCS 1.508 0.120 0.119 0.950 -1.755 0.038 0.037 0.954 

FCSgroup 1.491 0.116 0.115 0.956 -1.756 0.037 0.037 0.949 

FCSgroups 1.491 0.116 0.115 0.959 -1.756 0.037 0.037 0.946 

FCS3group2 1.507 0.118 0.116 0.955 -1.756 0.037 0.037 0.947 

  β2 β3 

  Mean mSE EmpSE Cov Mean mSE EmpSE Cov 

Full Data 0.423 0.018 0.019 0.943 1.462 0.139 0.136 0.952 

Complete Records 1.329 0.076 0.074 0.000 0.000 0.000 0.000 0.000 
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FCS 0.423 0.021 0.023 0.918 1.464 0.147 0.147 0.946 

FCSgroup 0.423 0.020 0.021 0.940 1.462 0.144 0.140 0.946 

FCSgroups 0.423 0.020 0.021 0.937 1.461 0.144 0.141 0.948 

FCS3group2 0.423 0.020 0.021 0.931 1.464 0.144 0.142 0.945 

  β4       β5 

  Mean mSE EmpSE Cov Mean mSE EmpSE Cov 

Full Data -0.961 0.122 0.120 0.948 0.493 0.196 0.190 0.955 

Complete Records -1.935 0.083 0.085 0.000 -0.479 0.182 0.174 0.000 

FCS -0.965 0.129 0.129 0.952 0.494 0.205 0.198 0.958 

FCSgroup -0.961 0.125 0.123 0.954 0.492 0.200 0.193 0.955 

FCSgroups -0.962 0.125 0.123 0.953 0.492 0.200 0.195 0.958 

FCS3group2 -0.965 0.126 0.124 0.956 0.492 0.201 0.196 0.955 

Mean: mean estimate over imputed data sets; mSE: standard error derived from Rubin’s rules 

(mean over imputed data sets); EmpSE: standard deviation of estimate over imputed data sets; 

Cov: coverage of nominal 95% confidence interval.  
 

Table D. 18. Simulation results when data missingness due to granularity problem is applied 

to X3 from D6, D10 and due to mixed type problem is applied to X2 from D3, D9. Data 

generated under scenario 6, 𝑒𝑖: N ~ (0, 20), using equation 5.1. 

 𝑒𝑖: N ~ (0, 20) β0 β1 

  Mean mSE EmpSE Cov Mean mSE EmpSE Cov 

Full Data 1.510 1.132 1.109 0.960 -1.759 0.366 0.364 0.947 

Complete 

Records 1.811 0.747 0.736 0.928 -1.695 0.363 0.361 0.952 

FCS 1.533 1.161 1.142 0.960 -1.761 0.369 0.370 0.948 

FCSgroup 1.509 1.153 1.135 0.956 -1.761 0.367 0.365 0.945 

FCSgroups 1.518 1.153 1.137 0.957 -1.760 0.367 0.365 0.949 

FCS3group2 1.529 1.161 1.142 0.961 -1.761 0.367 0.365 0.947 

  β2 β3 

  Mean mSE EmpSE Cov Mean mSE EmpSE Cov 

Full Data 0.420 0.183 0.190 0.943 1.432 1.387 1.362 0.952 

Complete 

Records 1.306 0.725 0.726 0.777 0.000 0.000 0.000 0.000 

FCS 0.424 0.215 0.236 0.924 1.425 1.423 1.395 0.944 

FCSgroup 0.425 0.197 0.207 0.942 1.433 1.425 1.398 0.947 

FCSgroups 0.424 0.196 0.206 0.940 1.420 1.426 1.400 0.942 

FCS3group2 0.425 0.196 0.206 0.941 1.432 1.423 1.392 0.944 

  β4       β5 

  Mean mSE EmpSE Cov Mean mSE EmpSE Cov 

Full Data -1.003 1.216 1.195 0.948 0.447 1.963 1.904 0.955 

Complete 

Records -1.957 0.790 0.786 0.751 -0.504 1.732 1.684 0.908 

FCS -1.008 1.244 1.224 0.957 0.446 1.983 1.925 0.957 

FCSgroup -1.002 1.236 1.217 0.951 0.449 1.975 1.917 0.959 

FCSgroups -1.011 1.236 1.217 0.951 0.440 1.976 1.925 0.955 

FCS3group2 -1.004 1.244 1.223 0.958 0.449 1.983 1.935 0.954 

Mean: mean estimate over imputed data sets; mSE: standard error derived from Rubin’s rules 

(mean over imputed data sets); EmpSE: standard deviation of estimate over imputed data sets; 

Cov: coverage of nominal 95% confidence interval.  
 

Studies with different model errors 
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Scenario 7 (D=2, N=100 per study, m=10, it=10, 𝑒1: N~(0,1.2), 𝑒2: N~(0,1.3)) 

Table D. 19. Simulation results when data missingness due to granularity problem is applied 

to X3 from D2 and due to mixed type problem is applied to X2 from D1. Data generated under 

scenario 7, e1: N~(0,1.2), e2: N~(0,1.3)) using equation 5.1. 

𝑒1: N~(0,1.2), 

𝑒2: N~(0,1.3) 
β0 β1 

  Mean mSE EmpSE Cov Mean mSE EmpSE Cov 

Full Data 1.485 0.288 0.290 0.943 -1.753 0.091 0.093 0.945 

Complete Records 1.802 0.208 0.220 0.654 -1.691 0.101 0.102 0.896 

FCS 2.019 0.740 0.555 0.889 -1.748 0.114 0.106 0.963 

FCSgroup 1.551 0.399 0.409 0.943 -1.749 0.101 0.100 0.950 

FCSgroups 1.621 0.434 0.414 0.944 -1.750 0.101 0.099 0.954 

FCS3group2 1.835 0.596 0.495 0.909 -1.752 0.105 0.104 0.955 

  β2 β3 

  Mean mSE EmpSE Cov Mean mSE EmpSE Cov 

Full Data 0.424 0.046 0.046 0.944 1.471 0.352 0.342 0.953 

Complete Records 1.335 0.202 0.185 0.005 0.000 0.000 0.000 0.000 

FCS 0.442 0.065 0.067 0.915 1.250 0.884 0.614 0.984 

FCSgroup 0.431 0.057 0.059 0.940 1.372 0.505 0.514 0.944 

FCSgroups 0.430 0.058 0.058 0.944 1.273 0.566 0.521 0.959 

FCS3group2 0.441 0.060 0.061 0.929 1.372 0.696 0.572 0.973 

  β4       β5 

  Mean mSE EmpSE Cov Mean mSE EmpSE Cov 

Full Data -0.961 0.309 0.315 0.934 0.495 0.504 0.505 0.951 

Complete Records -1.944 0.221 0.233 0.009 -0.484 0.495 0.484 0.481 

FCS -1.351 0.755 0.581 0.931 0.190 0.886 0.744 0.949 

FCSgroup -1.028 0.416 0.431 0.936 0.445 0.603 0.602 0.948 

FCSgroups -1.097 0.451 0.434 0.942 0.371 0.629 0.608 0.954 

FCS3group2 -1.197 0.611 0.517 0.939 0.324 0.747 0.686 0.943 

Mean: mean estimate over imputed data sets; mSE: standard error derived from Rubin’s rules 

(mean over imputed data sets); EmpSE: standard deviation of estimate over imputed data sets; 

Cov: coverage of nominal 95% confidence interval.  
 

Scenario 8 (D=2, N=200 per study, m=10, it=10, 𝑒1: N~(0,1.2), 𝑒2: N~(0,1.3)) 

Table D. 20. Simulation results when data missingness due to granularity problem is applied 

to X3 from D2 and due to mixed type problem is applied to X2 from D1. Data generated under 

scenario 8, e1: N~(0,1.2), e2: N~(0,1.3)) using equation 5.1. 

𝑒1: N~(0,1.2), 

𝑒2: N~(0,1.3) 
β0 β1 

  Mean mSE EmpSE Cov Mean mSE EmpSE Cov 

Full Data 1.504 0.200 0.202 0.953 -1.756 0.064 0.066 0.949 

Complete Records 1.809 0.146 0.157 0.417 -1.693 0.071 0.071 0.863 

FCS 2.252 0.584 0.398 0.725 -1.760 0.080 0.075 0.960 

FCSgroup 1.549 0.273 0.285 0.928 -1.756 0.071 0.072 0.947 

FCSgroups 1.612 0.325 0.301 0.949 -1.756 0.071 0.072 0.944 

FCS3group2 1.880 0.461 0.349 0.877 -1.760 0.074 0.074 0.946 

  β2 β3 

  Mean mSE EmpSE Cov Mean mSE EmpSE Cov 

Full Data 0.422 0.032 0.032 0.944 1.449 0.245 0.246 0.946 

Complete Records 1.328 0.142 0.134 0.000 0.000 0.000 0.000 0.000 

FCS 0.446 0.045 0.047 0.885 1.022 0.690 0.440 0.956 
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FCSgroup 0.429 0.040 0.041 0.939 1.382 0.348 0.354 0.942 

FCSgroups 0.428 0.041 0.040 0.950 1.288 0.432 0.392 0.943 

FCS3group2 0.439 0.042 0.042 0.926 1.337 0.526 0.385 0.981 

  β4       β5 

  Mean mSE EmpSE Cov Mean mSE EmpSE Cov 

Full Data -0.977 0.215 0.214 0.954 0.477 0.350 0.348 0.950 

Complete Records -1.945 0.155 0.161 0.000 -0.485 0.345 0.345 0.179 

FCS -1.573 0.594 0.411 0.833 -0.056 0.677 0.519 0.896 

FCSgroup -1.020 0.286 0.299 0.927 0.437 0.413 0.421 0.945 

FCSgroups -1.083 0.336 0.313 0.940 0.375 0.452 0.427 0.943 

FCS3group2 -1.233 0.471 0.360 0.936 0.276 0.559 0.474 0.958 

Mean: mean estimate over imputed data sets; mSE: standard error derived from Rubin’s rules 

(mean over imputed data sets); EmpSE: standard deviation of estimate over imputed data sets; 

Cov: coverage of nominal 95% confidence interval.  
 

Scenario 9 (D=2, N=500 per study, m=10, it=10, 𝑒1: N~(0,1.2), 𝑒2: N~(0,1.3)) 

Table D. 21. Simulation results when data missingness due to granularity problem is applied 

to X3 from D2 and due to mixed type problem is applied to X2 from D1. Data generated under 

scenario 9, e1: N~(0,1.2), e2: N~(0,1.3)) using equation 5.1. 

𝑒1: N~(0,1.2), 

𝑒2: N~(0,1.3) 
β0 β1 

  Mean mSE EmpSE Cov Mean mSE EmpSE Cov 

Full Data 1.489 0.126 0.125 0.955 -1.754 0.040 0.040 0.951 

Complete Records 1.800 0.093 0.100 0.105 -1.690 0.045 0.044 0.701 

FCS 2.462 0.374 0.282 0.247 -1.761 0.051 0.045 0.966 

FCSgroup 1.528 0.171 0.172 0.943 -1.755 0.044 0.044 0.947 

FCSgroups 1.568 0.214 0.189 0.949 -1.755 0.045 0.043 0.946 

FCS3group2 1.902 0.293 0.225 0.716 -1.760 0.046 0.045 0.957 

  β2 β3 

  Mean mSE EmpSE Cov Mean mSE EmpSE Cov 

Full Data 0.424 0.020 0.021 0.951 1.464 0.154 0.152 0.956 

Complete Records 1.332 0.090 0.087 0.000 0.000 0.000 0.000 0.000 

FCS 0.452 0.028 0.029 0.796 0.822 0.454 0.299 0.734 

FCSgroup 0.432 0.025 0.026 0.921 1.402 0.219 0.213 0.939 

FCSgroups 0.431 0.026 0.026 0.929 1.342 0.289 0.242 0.962 

FCS3group2 0.442 0.026 0.027 0.868 1.323 0.333 0.243 0.970 

  β4       β5 

  Mean mSE EmpSE Cov Mean mSE EmpSE Cov 

Full Data -0.958 0.135 0.138 0.951 0.496 0.218 0.220 0.955 

Complete Records -1.935 0.098 0.107 0.000 -0.482 0.216 0.215 0.004 

FCS -1.783 0.379 0.294 0.399 -0.264 0.431 0.348 0.561 

FCSgroup -0.998 0.179 0.181 0.945 0.457 0.256 0.265 0.926 

FCSgroups -1.037 0.221 0.197 0.955 0.419 0.290 0.276 0.945 

FCS3group2 -1.254 0.299 0.235 0.851 0.262 0.351 0.301 0.916 

Mean: mean estimate over imputed data sets; mSE: standard error derived from Rubin’s rules 

(mean over imputed data sets); EmpSE: standard deviation of estimate over imputed data sets; 

Cov: coverage of nominal 95% confidence interval.  
 

Scenario 10 (D=2, N=1000 per study, m=10, it=10, 𝑒1: N~(0,1.2), 𝑒2: N~(0,1.3)) 
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Table D. 22. Simulation results when data missingness due to granularity problem is applied 

to X3 from D2 and due to mixed type problem is applied to X2 from D1. Data generated under 

scenario 10, e1: N~(0,1.2), e2: N~(0,1.3)) using equation 5.1. 

𝑒1: N~(0,1.2), 

𝑒2: N~(0,1.3) 
β0 β1 

  Mean mSE EmpSE Cov Mean mSE EmpSE Cov 

Full Data 1.487 0.089 0.090 0.949 -1.756 0.029 0.029 0.957 

Complete Records 1.801 0.066 0.067 0.002 -1.693 0.032 0.031 0.498 

FCS 2.537 0.271 0.208 0.018 -1.767 0.036 0.033 0.959 

FCSgroup 1.529 0.120 0.130 0.903 -1.759 0.031 0.031 0.951 

FCSgroups 1.553 0.153 0.141 0.949 -1.759 0.032 0.031 0.952 

FCS3group2 1.910 0.206 0.166 0.463 -1.764 0.033 0.032 0.952 

  β2 β3 

  Mean mSE EmpSE Cov Mean mSE EmpSE Cov 

Full Data 0.424 0.014 0.014 0.959 1.468 0.109 0.107 0.949 

Complete Records 1.331 0.064 0.057 0.000 0.000 0.000 0.000 0.000 

FCS 0.454 0.019 0.020 0.646 0.745 0.330 0.231 0.400 

FCSgroup 0.432 0.017 0.017 0.934 1.398 0.154 0.160 0.916 

FCSgroups 0.431 0.019 0.017 0.948 1.362 0.209 0.182 0.945 

FCS3group2 0.442 0.018 0.018 0.821 1.316 0.235 0.184 0.936 

  β4       β5 

  Mean mSE EmpSE Cov Mean mSE EmpSE Cov 

Full Data -0.957 0.095 0.097 0.942 0.502 0.154 0.154 0.946 

Complete Records -1.937 0.069 0.073 0.000 -0.477 0.152 0.146 0.000 

FCS -1.858 0.274 0.213 0.067 -0.337 0.309 0.254 0.205 

FCSgroup -0.999 0.126 0.136 0.911 0.461 0.180 0.187 0.940 

FCSgroups -1.022 0.158 0.147 0.946 0.436 0.205 0.194 0.949 

FCS3group2 -1.260 0.210 0.171 0.714 0.261 0.248 0.217 0.862 

Mean: mean estimate over imputed data sets; mSE: standard error derived from Rubin’s rules 

(mean over imputed data sets); EmpSE: standard deviation of estimate over imputed data sets; 

Cov: coverage of nominal 95% confidence interval.  
 

Scenario 1’ (D=2, N=200 per study, m=5, it=5) 

Table D. 23. Simulation results when data missingness due to granularity problem is applied 

to X3 from D1 and due to mixed type problem is applied to X2 from D2. Data generated under 

scenario 1’, 𝑒𝑖: N ~ (0, 0.2), using equation 5.1. 

𝑒𝑖: N ~ (0, 0.2)  β0 β1 

  Mean mSE EmpSE Cov Mean mSE EmpSE Cov 

Full Data 1.489 0.032 0.032 0.950 -1.755 0.010 0.011 0.943 

Complete Records 1.804 0.069 0.083 0.020 -1.691 0.034 0.030 0.535 

FCS 2.211 0.465 0.318 0.718 -1.748 0.026 0.021 0.961 

FCSgroup 1.526 0.070 0.057 0.946 -1.753 0.019 0.017 0.958 

FCSgroups 1.533 0.077 0.064 0.950 -1.752 0.019 0.017 0.959 

FCS3group2 1.683 0.256 0.212 0.969 -1.751 0.021 0.018 0.970 

  β2 β3 

  Mean mSE EmpSE Cov Mean mSE EmpSE Cov 

Full Data 0.423 0.005 0.005 0.953 1.464 0.039 0.039 0.951 

Complete Records 1.330 0.067 0.048 0.000 0.000 0.000 0.000 0.000 

FCS 0.426 0.013 0.010 0.982 0.742 0.479 0.323 0.727 

FCSgroup 0.427 0.009 0.008 0.953 1.403 0.077 0.064 0.891 

FCSgroups 0.426 0.010 0.008 0.961 1.390 0.089 0.076 0.894 
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FCS3group2 0.427 0.011 0.009 0.955 1.276 0.260 0.211 0.964 

  β4       β5 

  Mean mSE EmpSE Cov Mean mSE EmpSE Cov 

Full Data -0.957 0.034 0.034 0.953 0.497 0.056 0.056 0.951 

Complete Records -1.937 0.073 0.086 0.000 -0.481 0.164 0.150 0.000 

FCS -1.625 0.454 0.315 0.733 -0.271 0.492 0.328 0.701 

FCSgroup -0.992 0.073 0.059 0.955 0.465 0.105 0.090 0.952 

FCSgroups -1.000 0.080 0.066 0.959 0.457 0.111 0.094 0.954 

FCS3group2 -1.131 0.252 0.210 0.974 0.181 0.299 0.237 0.867 

Mean: mean estimate over imputed data sets; mSE: standard error derived from Rubin’s rules 

(mean over imputed data sets); EmpSE: standard deviation of estimate over imputed data sets; 

Cov: coverage of nominal 95% confidence interval.  
 

Table D. 24. Simulation results when data missingness due to granularity problem is applied 

to X3 from D1 and due to mixed type problem is applied to X2 from D2. Data generated under 

scenario 1’, 𝑒𝑖: N ~ (0, 2), using equation 5.1. 

𝑒𝑖: N ~ (0, 2)  β0 β1 

  Mean mSE EmpSE Cov Mean mSE EmpSE Cov 

Full Data 1.485 0.320 0.322 0.948 -1.753 0.103 0.102 0.953 

Complete Records 1.801 0.220 0.226 0.701 -1.690 0.107 0.108 0.902 

FCS 1.948 0.811 0.611 0.933 -1.747 0.117 0.114 0.954 

FCSgroup 1.468 0.409 0.447 0.915 -1.746 0.108 0.109 0.950 

FCSgroups 1.524 0.460 0.455 0.932 -1.747 0.109 0.108 0.951 

FCS3group2 1.744 0.604 0.530 0.928 -1.749 0.112 0.111 0.948 

  β2 β3 

  Mean mSE EmpSE Cov Mean mSE EmpSE Cov 

Full Data 0.422 0.051 0.052 0.944 1.471 0.391 0.385 0.951 

Complete Records 1.329 0.213 0.207 0.006 0.000 0.000 0.000 0.000 

FCS 0.426 0.078 0.081 0.924 1.393 1.001 0.694 0.984 

FCSgroup 0.417 0.063 0.064 0.931 1.492 0.528 0.578 0.922 

FCSgroups 0.418 0.065 0.063 0.943 1.408 0.611 0.592 0.931 

FCS3group2 0.421 0.066 0.065 0.945 1.508 0.721 0.615 0.973 

  β4       β5 

  Mean mSE EmpSE Cov Mean mSE EmpSE Cov 

Full Data -0.956 0.343 0.348 0.948 0.499 0.558 0.546 0.960 

Complete Records -1.936 0.233 0.243 0.013 -0.477 0.516 0.490 0.516 

FCS -1.235 0.828 0.633 0.956 0.268 0.964 0.793 0.966 

FCSgroup -0.939 0.430 0.464 0.914 0.515 0.628 0.644 0.943 

FCSgroups -0.996 0.479 0.470 0.936 0.460 0.664 0.653 0.956 

FCS3group2 -1.049 0.622 0.549 0.956 0.452 0.780 0.729 0.961 

Mean: mean estimate over imputed data sets; mSE: standard error derived from Rubin’s rules 

(mean over imputed data sets); EmpSE: standard deviation of estimate over imputed data sets; 

Cov: coverage of nominal 95% confidence interval.  
 

Table D. 25. Simulation results when data missingness due to granularity problem is applied 

to X3 from D1 and due to mixed type problem is applied to X2 from D2. Data generated under 

scenario 1’, 𝑒𝑖: N ~ (0, 20), using equation 5.1. 

 𝑒𝑖: N ~ (0, 20) β0 β1 

  Mean mSE EmpSE Cov Mean mSE EmpSE Cov 

Full Data 1.543 3.184 3.291 0.946 -1.757 1.026 1.006 0.950 
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Complete Records 1.858 2.092 2.158 0.935 -1.697 1.018 0.999 0.947 

FCS 1.772 4.815 4.699 0.952 -1.738 1.053 1.027 0.954 

FCSgroup 1.612 3.773 4.395 0.901 -1.746 1.039 1.012 0.957 

FCSgroups 1.685 3.878 4.291 0.918 -1.745 1.039 1.010 0.956 

FCS3group2 1.731 4.561 4.585 0.957 -1.741 1.036 1.009 0.955 

  β2 β3 

  Mean mSE EmpSE Cov Mean mSE EmpSE Cov 

Full Data 0.428 0.513 0.517 0.945 1.491 3.903 3.852 0.951 

Complete Records 1.358 2.033 2.053 0.925 0.000 0.000 0.000 0.000 

FCS 0.399 0.770 0.754 0.941 1.425 6.031 5.701 0.961 

FCSgroup 0.417 0.616 0.597 0.953 1.388 4.925 5.796 0.893 

FCSgroups 0.414 0.623 0.607 0.951 1.281 5.096 5.634 0.908 

FCS3group2 0.405 0.613 0.596 0.946 1.411 5.634 5.587 0.952 

  β4       β5 

  Mean mSE EmpSE Cov Mean mSE EmpSE Cov 

Full Data -0.939 3.420 3.534 0.942 0.229 5.596 5.606 0.947 

Complete Records -1.933 2.215 2.278 0.921 -0.770 4.944 4.986 0.946 

FCS -0.927 5.005 4.918 0.956 0.253 6.711 6.566 0.953 

FCSgroup -1.006 3.977 4.610 0.896 0.147 5.964 6.361 0.932 

FCSgroups -1.082 4.079 4.515 0.918 0.083 6.038 6.273 0.939 

FCS3group2 -0.890 4.752 4.787 0.951 0.322 6.495 6.476 0.951 

Mean: mean estimate over imputed data sets; mSE: standard error derived from Rubin’s rules 

(mean over imputed data sets); EmpSE: standard deviation of estimate over imputed data sets; 

Cov: coverage of nominal 95% confidence interval. 
 

Scenario 2’ (D=2, N=1000 per study, m=5, it=5) 

Table D. 26. Simulation results when data missingness due to granularity problem is applied 

to X3 from D1 and due to mixed type problem is applied to X2 from D2. Data generated under 

scenario 2’, 𝑒𝑖: N ~ (0, 0.2), using equation 5.1. 

 𝑒𝑖:N~(0,0.2) β0 β1 

  Mean mSE EmpSE Cov Mean mSE EmpSE Cov 

Full Data 1.488 0.014 0.014 0.950 -1.755 0.005 0.005 0.944 

Complete 

Records 1.798 0.031 0.037 0.000 -1.692 0.015 0.013 0.006 

FCS 2.570 0.368 0.228 0.414 -1.751 0.012 0.010 0.945 

FCSgroup 1.496 0.023 0.021 0.946 -1.755 0.007 0.007 0.940 

FCSgroups 1.496 0.023 0.021 0.939 -1.755 0.007 0.007 0.947 

FCS3group2 1.524 0.115 0.106 0.972 -1.755 0.008 0.007 0.942 

  β2 β3 

  Mean mSE EmpSE Cov Mean mSE EmpSE Cov 

Full Data 0.424 0.002 0.002 0.955 1.466 0.017 0.018 0.951 

Complete 

Records 1.331 0.030 0.022 0.000 0.000 0.000 0.000 0.000 

FCS 0.424 0.006 0.005 0.959 0.391 0.374 0.230 0.418 

FCSgroup 0.425 0.003 0.003 0.926 1.452 0.026 0.026 0.895 

FCSgroups 0.425 0.003 0.003 0.917 1.451 0.027 0.026 0.911 

FCS3group2 0.425 0.004 0.004 0.951 1.436 0.117 0.105 0.952 

  β4       β5 

  Mean mSE EmpSE Cov Mean mSE EmpSE Cov 

Full Data -0.957 0.015 0.015 0.955 0.498 0.025 0.023 0.957 

Complete 

Records -1.933 0.033 0.038 0.000 -0.477 0.072 0.066 0.000 
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FCS -1.979 0.361 0.225 0.428 -0.704 0.385 0.241 0.389 

FCSgroup -0.964 0.024 0.023 0.934 0.492 0.037 0.036 0.943 

FCSgroups -0.964 0.025 0.022 0.941 0.491 0.037 0.036 0.943 

FCS3group2 -0.983 0.113 0.104 0.953 0.369 0.151 0.128 0.833 

Mean: mean estimate over imputed data sets; mSE: standard error derived from Rubin’s rules 

(mean over imputed data sets); EmpSE: standard deviation of estimate over imputed data sets; 

Cov: coverage of nominal 95% confidence interval.  
 

Table D. 27. Simulation results when data missingness due to granularity problem is applied 

to X3 from D1 and due to mixed type problem is applied to X2 from D2. Data generated under 

scenario 2’, 𝑒𝑖: N ~ (0, 2), using equation 5.1. 

 𝑒𝑖:N~(0,2) β0 β1 

  Mean mSE EmpSE Cov Mean mSE EmpSE Cov 

Full Data 1.494 0.142 0.138 0.953 -1.757 0.046 0.046 0.946 

Complete Records 1.806 0.098 0.103 0.106 -1.694 0.048 0.048 0.742 

FCS 2.155 0.473 0.308 0.689 -1.760 0.053 0.049 0.962 

FCSgroup 1.493 0.180 0.191 0.918 -1.756 0.048 0.049 0.945 

FCSgroups 1.533 0.216 0.192 0.960 -1.755 0.048 0.049 0.949 

FCS3group2 1.804 0.273 0.232 0.796 -1.758 0.049 0.049 0.953 

  β2 β3 

  Mean mSE EmpSE Cov Mean mSE EmpSE Cov 

Full Data 0.423 0.023 0.023 0.947 1.466 0.174 0.170 0.951 

Complete Records 1.327 0.095 0.090 0.000 0.000 0.000 0.000 0.000 

FCS 0.437 0.035 0.035 0.919 1.242 0.575 0.335 0.971 

FCSgroup 0.422 0.028 0.028 0.941 1.466 0.235 0.251 0.924 

FCSgroups 0.420 0.029 0.027 0.949 1.405 0.295 0.256 0.960 

FCS3group2 0.427 0.029 0.029 0.942 1.474 0.326 0.276 0.963 

  β4       β5 

  Mean mSE EmpSE Cov Mean mSE EmpSE Cov 

Full Data -0.962 0.152 0.149 0.955 0.495 0.246 0.242 0.956 

Complete Records -1.939 0.104 0.110 0.000 -0.480 0.227 0.227 0.009 

FCS -1.440 0.481 0.319 0.839 0.064 0.529 0.381 0.872 

FCSgroup -0.961 0.189 0.198 0.935 0.499 0.276 0.283 0.949 

FCSgroups -1.002 0.224 0.200 0.948 0.459 0.302 0.282 0.952 

FCS3group2 -1.104 0.280 0.241 0.941 0.409 0.348 0.319 0.949 

Mean: mean estimate over imputed data sets; mSE: standard error derived from Rubin’s rules 

(mean over imputed data sets); EmpSE: standard deviation of estimate over imputed data sets; 

Cov: coverage of nominal 95% confidence interval.  
 

Table D. 28. Simulation results when data missingness due to granularity problem is applied 

to X3 from D1 and due to mixed type problem is applied to X2 from D2. Data generated under 

scenario 2’, 𝑒𝑖: N ~ (0, 20), using equation 5.1. 

 𝑒𝑖:N~(0,20) β0 β1 

  Mean mSE EmpSE Cov Mean mSE EmpSE Cov 

Full Data 1.541 1.418 1.377 0.953 -1.770 0.457 0.461 0.946 

Complete 

Records 1.874 0.935 0.954 0.915 -1.705 0.454 0.460 0.946 

FCS 1.787 2.154 2.065 0.953 -1.773 0.469 0.466 0.953 

FCSgroup 1.571 1.679 1.883 0.911 -1.768 0.461 0.466 0.948 

FCSgroups 1.572 1.695 1.872 0.914 -1.770 0.462 0.466 0.950 

FCS3group2 1.786 2.019 1.986 0.940 -1.766 0.462 0.465 0.951 
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  β2 β3 

  Mean mSE EmpSE Cov Mean mSE EmpSE Cov 

Full Data 0.420 0.228 0.229 0.947 1.467 1.736 1.704 0.951 

Complete 

Records 1.285 0.907 0.883 0.839 0.000 0.000 0.000 0.000 

FCS 0.436 0.338 0.339 0.938 1.410 2.670 2.608 0.953 

FCSgroup 0.417 0.273 0.277 0.939 1.425 2.191 2.564 0.890 

FCSgroups 0.423 0.276 0.272 0.953 1.435 2.330 2.586 0.906 

FCS3group2 0.414 0.274 0.267 0.948 1.403 2.488 2.519 0.942 

  β4       β5 

  Mean mSE EmpSE Cov Mean mSE EmpSE Cov 

Full Data -1.015 1.523 1.489 0.955 0.467 2.457 2.423 0.956 

Complete 

Records -1.990 0.988 1.017 0.803 -0.506 2.168 2.194 0.920 

FCS -1.020 2.237 2.133 0.952 0.461 2.955 2.910 0.957 

FCSgroup -1.044 1.770 1.949 0.916 0.441 2.621 2.775 0.936 

FCSgroups -1.038 1.846 1.949 0.936 0.445 2.677 2.773 0.938 

FCS3group2 -1.023 2.105 2.053 0.950 0.471 2.843 2.873 0.946 

Mean: mean estimate over imputed data sets; mSE: standard error derived from Rubin’s rules 

(mean over imputed data sets); EmpSE: standard deviation of estimate over imputed data sets; 

Cov: coverage of nominal 95% confidence interval.  
 

Scenario 7’ (D=2, N=100 per study, m=5, it=5, 𝑒1: N~(0,1.2), 𝑒2: N~(0,1.3)) 

Table D. 29. Simulation results when data missingness due to granularity problem is applied 

to X3 from D2 and due to mixed type problem is applied to X2 from D1. Data generated under 

scenario 7’, e1: N~(0,1.2), e2: N~(0,1.3)) using equation 5.1. 

𝑒1: N~(0,1.2), 

𝑒2: N~(0,1.3) 
β0 β1 

  Mean mSE EmpSE Cov Mean mSE EmpSE Cov 

Full Data 1.500 0.287 0.291 0.947 -1.752 0.091 0.093 0.950 

Complete Records 1.805 0.208 0.215 0.651 -1.692 0.101 0.102 0.900 

FCS 2.025 0.749 0.559 0.869 -1.741 0.115 0.108 0.960 

FCSgroup 1.574 0.401 0.411 0.920 -1.748 0.102 0.102 0.944 

FCSgroups 1.644 0.441 0.424 0.924 -1.748 0.102 0.103 0.941 

FCS3group2 1.831 0.594 0.502 0.907 -1.750 0.106 0.105 0.948 

  β2 β3 

  Mean mSE EmpSE Cov Mean mSE EmpSE Cov 

Full Data 0.423 0.046 0.045 0.954 1.451 0.351 0.357 0.946 

Complete Records 1.336 0.202 0.192 0.002 0.000 0.000 0.000 0.000 

FCS 0.433 0.067 0.069 0.909 1.193 0.908 0.634 0.968 

FCSgroup 0.428 0.058 0.060 0.924 1.342 0.511 0.516 0.938 

FCSgroups 0.427 0.060 0.060 0.936 1.236 0.579 0.537 0.937 

FCS3group2 0.436 0.061 0.063 0.924 1.356 0.696 0.576 0.968 

  β4       β5 

  Mean mSE EmpSE Cov Mean mSE EmpSE Cov 

Full Data -0.969 0.308 0.312 0.954 0.503 0.505 0.516 0.940 

Complete Records -1.941 0.220 0.232 0.011 -0.485 0.496 0.498 0.489 

FCS -1.342 0.766 0.576 0.906 0.171 0.902 0.746 0.938 

FCSgroup -1.040 0.420 0.426 0.936 0.429 0.611 0.620 0.943 

FCSgroups -1.111 0.458 0.438 0.928 0.355 0.639 0.634 0.938 

FCS3group2 -1.180 0.608 0.515 0.936 0.329 0.753 0.691 0.944 
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Mean: mean estimate over imputed data sets; mSE: standard error derived from Rubin’s rules 

(mean over imputed data sets); EmpSE: standard deviation of estimate over imputed data sets; 

Cov: coverage of nominal 95% confidence interval.  
 

 

Scenario 8’ (D=2, N=200 per study, m=5, it=5, 𝑒1: N~(0,1.2), 𝑒2: N~(0,1.3)) 

Table D. 30. Simulation results when data missingness due to granularity problem is applied 

to X3 from D2 and due to mixed type problem is applied to X2 from D1. Data generated under 

scenario 8’, e1: N~(0,1.2), e2: N~(0,1.3)) using equation 5.1. 

𝑒1: N~(0,1.2), 

𝑒2: N~(0,1.3) 
β0 β1 

  Mean mSE EmpSE Cov Mean mSE EmpSE Cov 

Full Data 1.487 0.201 0.211 0.943 -1.751 0.064 0.063 0.947 

Complete Records 1.805 0.147 0.155 0.454 -1.688 0.071 0.069 0.846 

FCS 2.223 0.608 0.424 0.726 -1.751 0.081 0.073 0.971 

FCSgroup 1.536 0.280 0.296 0.925 -1.752 0.071 0.069 0.948 

FCSgroups 1.620 0.340 0.314 0.937 -1.752 0.071 0.070 0.952 

FCS3group2 1.865 0.468 0.392 0.856 -1.755 0.074 0.071 0.963 

  β2 β3 

  Mean mSE EmpSE Cov Mean mSE EmpSE Cov 

Full Data 0.423 0.032 0.031 0.957 1.469 0.246 0.248 0.949 

Complete Records 1.331 0.142 0.132 0.000 0.000 0.000 0.000 0.000 

FCS 0.444 0.046 0.048 0.891 1.037 0.725 0.481 0.939 

FCSgroup 0.432 0.040 0.041 0.935 1.393 0.356 0.366 0.926 

FCSgroups 0.429 0.041 0.041 0.939 1.267 0.455 0.399 0.943 

FCS3group2 0.441 0.042 0.043 0.915 1.346 0.535 0.435 0.958 

  β4       β5 

  Mean mSE EmpSE Cov Mean mSE EmpSE Cov 

Full Data -0.956 0.216 0.224 0.945 0.491 0.350 0.361 0.944 

Complete Records -1.939 0.156 0.167 0.000 -0.494 0.345 0.347 0.188 

FCS -1.541 0.619 0.436 0.818 -0.030 0.706 0.552 0.881 

FCSgroup -1.004 0.293 0.306 0.929 0.443 0.420 0.436 0.939 

FCSgroups -1.089 0.351 0.323 0.936 0.359 0.464 0.458 0.940 

FCS3group2 -1.216 0.478 0.402 0.912 0.290 0.567 0.509 0.935 

Mean: mean estimate over imputed data sets; mSE: standard error derived from Rubin’s rules 

(mean over imputed data sets); EmpSE: standard deviation of estimate over imputed data sets; 

Cov: coverage of nominal 95% confidence interval.  
 

Scenario 9’ (D=2, N=500 per study, m=5, it=5, 𝑒1: N~(0,1.2), 𝑒2: N~(0,1.3)) 

Table D. 31. Simulation results when data missingness due to granularity problem is applied 

to X3 from D2 and due to mixed type problem is applied to X2 from D1. Data generated under 

scenario 9’, e1: N~(0,1.2), e2: N~(0,1.3)) using equation 5.1. 

𝑒1: N~(0,1.2), 

𝑒2: N~(0,1.3) 
β0 β1 

  Mean mSE EmpSE Cov Mean mSE EmpSE Cov 

Full Data 1.490 0.126 0.131 0.938 -1.754 0.040 0.041 0.946 

Complete Records 1.801 0.093 0.100 0.098 -1.692 0.045 0.044 0.716 

FCS 2.363 0.412 0.283 0.379 -1.761 0.052 0.047 0.965 

FCSgroup 1.533 0.175 0.189 0.908 -1.756 0.045 0.045 0.949 

FCSgroups 1.598 0.222 0.199 0.926 -1.755 0.045 0.045 0.949 
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FCS3group2 1.895 0.304 0.243 0.718 -1.761 0.047 0.047 0.952 

  β2 β3 

  Mean mSE EmpSE Cov Mean mSE EmpSE Cov 

Full Data 0.423 0.020 0.020 0.939 1.463 0.154 0.162 0.938 

Complete Records 1.328 0.090 0.085 0.000 0.000 0.000 0.000 0.000 

FCS 0.448 0.028 0.030 0.822 0.919 0.496 0.322 0.805 

FCSgroup 0.430 0.025 0.026 0.933 1.393 0.225 0.239 0.915 

FCSgroups 0.427 0.027 0.026 0.945 1.296 0.303 0.256 0.931 

FCS3group2 0.440 0.026 0.028 0.893 1.327 0.346 0.273 0.950 

  β4       β5 

  Mean mSE EmpSE Cov Mean mSE EmpSE Cov 

Full Data -0.959 0.135 0.139 0.937 0.499 0.218 0.211 0.960 

Complete Records -1.933 0.098 0.103 0.000 -0.477 0.216 0.206 0.004 

FCS -1.682 0.418 0.292 0.528 -0.156 0.469 0.349 0.680 

FCSgroup -1.002 0.183 0.197 0.916 0.457 0.259 0.265 0.934 

FCSgroups -1.067 0.228 0.205 0.930 0.390 0.296 0.270 0.946 

FCS3group2 -1.245 0.311 0.251 0.842 0.275 0.363 0.310 0.908 

Mean: mean estimate over imputed data sets; mSE: standard error derived from Rubin’s rules 

(mean over imputed data sets); EmpSE: standard deviation of estimate over imputed data sets; 

Cov: coverage of nominal 95% confidence interval.  
 

Scenario 10’ (D=2, N=1000 per study, m=5, it=5, 𝑒1: N~(0,1.2), 𝑒2: N~(0,1.3)) 

Table D. 32. Simulation results when data missingness due to granularity problem is applied 

to X3 from D2 and due to mixed type problem is applied to X2 from D1. Data generated under 

scenario 10’, e1: N~(0,1.2), e2: N~(0,1.3)) using equation 5.1. 

𝑒1: N~(0,1.2), 

𝑒2: N~(0,1.3) 
β0 β1 

  Mean mSE EmpSE Cov Mean mSE EmpSE Cov 

Full Data 1.493 0.089 0.086 0.955 -1.755 0.029 0.029 0.951 

Complete Records 1.803 0.065 0.069 0.003 -1.692 0.032 0.032 0.485 

FCS 2.481 0.294 0.213 0.091 -1.764 0.036 0.034 0.956 

FCSgroup 1.542 0.122 0.126 0.911 -1.758 0.032 0.032 0.951 

FCSgroups 1.596 0.158 0.131 0.910 -1.757 0.032 0.031 0.945 

FCS3group2 1.926 0.209 0.170 0.420 -1.763 0.033 0.033 0.952 

  β2 β3 

  Mean mSE EmpSE Cov Mean mSE EmpSE Cov 

Full Data 0.423 0.014 0.014 0.941 1.463 0.109 0.107 0.955 

Complete Records 1.331 0.063 0.061 0.000 0.000 0.000 0.000 0.000 

FCS 0.451 0.020 0.021 0.684 0.799 0.358 0.235 0.502 

FCSgroup 0.430 0.018 0.018 0.925 1.387 0.158 0.160 0.921 

FCSgroups 0.427 0.019 0.018 0.958 1.306 0.217 0.172 0.917 

FCS3group2 0.441 0.018 0.020 0.819 1.304 0.238 0.188 0.921 

  β4       β5 

  Mean mSE EmpSE Cov Mean mSE EmpSE Cov 

Full Data -0.963 0.095 0.093 0.953 0.492 0.154 0.153 0.955 

Complete Records -1.939 0.069 0.072 0.000 -0.482 0.152 0.150 0.000 

FCS -1.802 0.298 0.217 0.189 -0.283 0.334 0.261 0.345 

FCSgroup -1.012 0.128 0.132 0.907 0.441 0.184 0.185 0.933 

FCSgroups -1.066 0.163 0.138 0.901 0.387 0.210 0.189 0.933 

FCS3group2 -1.277 0.214 0.175 0.653 0.235 0.251 0.222 0.815 
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Mean: mean estimate over imputed data sets; mSE: standard error derived from Rubin’s rules 

(mean over imputed data sets); EmpSE: standard deviation of estimate over imputed data sets; 

Cov: coverage of nominal 95% confidence interval.  
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Figure D. 1. Density plot for variables: ‘Age’ in combined content heterogeneity problems. 

Blue line shows the observed data and the magenta lines the imputed data from each of the 

imputations in FCS. 

 

Figure D. 2. Density plot for variables: ‘Age’ in combined content heterogeneity problems. 

Blue line shows the observed data and the magenta lines the imputed data from each of the 

imputations in FCSgroup. 
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Figure D. 3. Density plot for variables: ‘Age’ in combined content heterogeneity problems. 

Blue line shows the observed data and the magenta lines the imputed data from each of the 

imputations in FCSgroups. 

 

Figure D. 4. Density plot for variables: ‘Age’ in combined content heterogeneity problems. 

Blue line shows the observed data and the magenta lines the imputed data from each of the 

imputations in FCS3group2. 
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Appendix E: Publication 

This section includes a publication resulted from this PhD work.  
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Appendix F: Research data repository 

 

I am in the process of uploading my code, figures etc in a public repository. I am making it 

available in GitHub via this link: https://github.com/alexiasampri/Doctoral-thesis. 

https://github.com/alexiasampri/Doctoral-thesis

