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Abstract. Heavy-particle collisions involving strong electronic coupling can be conveniently 
described by using a complex (optical) potential in the entrance channel. Uniform J W K B  

stationary-phase techniques are used to evaluate T-matrix elements for transitions where 
an electron is ejected. The semi-analytic expressions for the resulting electron energy spectra 
are no more difficult to implement than corresponding ones for totally real potentials. 
Numerical results are reported for Penning and associative ionization from subthermal 
He*(23S) + He*(23S) collisions. These are in excellent agreement with fully quantal, com- 
plex-potential computations. The stationary-phase expressions for T-matrix elements and 
differential cross sections are employed to elucidate the rapid and slow rainbow interference 
oscillations in the spectra, including the significant effects of turning points and the 
imaginary width of the entrance-channel potential. 

1. Introduction 

When a metastable atom collides with a target, a perturbation is induced in the 
electronic configuration that allows a transitional path through autoionization of the 
quasimolecule. Basically, a target electron can jump to the metastable’s ground state, 
while the metastable’s excited electron is ejected (Hotop and Niehaus 1970, Bell 1970). 
Penning ionization (PI )  results if the former metastable atom is asymptotically free, 
and  associative ionization ( A I )  if it is bound in a molecular ion. As part of a recent 
comprehensive review of these and related processes, Niehaus (1990) traces the his- 
torical development of models and theories of PI and  A I  over the last two decades. 
Nakamura (1968a, 1968b, 1969) and Mori (1969) employed Fano’s (1961) theory of 
the interaction of a discrete state with a continuum in which it is embedded to derive 
a n  early quantal formalism for wavefunctions and  matrix elements. In a semiclassical 
view, the energy of the ejected electron equals the potential difference at the point of 
transition. The variation of the potential difference with internuclear separation was 
utilized to explain total cross sections and  general shape of electron energy spectra in 
pioneering experimental studies (Schmeltekopf and Gilman 1967, Cermak and Herman 
1968, Hotop and  Niehaus 1968, 1969, 1970). By applying simple J W K B  techniques to 
the overlap integral of the heavy-particle wavefunctions, the main interference 
phenomena underlying the electron spectra were revealed (Miller 1970, Gerber and  
Niehaus 1976). Some of the most significant of these are Airy-type rainbow interference 
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structures that arise from transitions at two different internuclear separations (Morgner 
and  Niehaus 1979). This phenomenon arises in many other processes, including 
far-wing and  half-collisional photon processes (Bieniek and Streeter 1983, and referen- 
ces therein). 

A variety of semiclassical and  J W K B  stationary-phase methods have been used to 
describe such type of spectra (Miller 1970, Szudy and Baylis 1975, Gerber and Niehaus 
1976, Bieniek and  Streeter 1983, Tellinghuisen 1985). Sayer et a1 (1980) experimentally 
observed the slow Airy-envelope undulations in the collisionally induced far-wing of 
a cesium forbidden line, broadened by rare gas perturbers. Although this is, essentially, 
the spectral equivalent of PI /AI ,  the Airy rainbow undulations have been much harder 
to observe in P I / A I  because of the generally lower resolution of experimental electron 
spectroscopy methods (Morgner and Niehaus 1979, Muller et a1 1987, Merz et a1 1989, 
1990). 

However, in both spectral line broadening and  collisionally induced ionization, 
more rapid oscillations in the spectra, arising from interference between initial and  
final wavefunctional phases, have been washed out in experiments because of phase 
averaging from the large number of collisional angular momenta involved (Szudy and 
Baylis 1975, Bieniek 1977). These rapid oscillations are observed, though, under an  
Airy-type envelope, in half-collision photodissociation and fluorescent dissociation of 
diatomics, because only one angular momenta is basically involved (Eisel er a1 1979, 
Tellinghuisen et a1 1980, Gadea et a1 1983, No11 and  Schmoranzer 1987, Master et a1 
1990). Stationary-phase methods of analytically evaluating T-matrix elements have 
proved to be an  accurate and  insightful means of explaining both the rapid and slow 
oscillations in the resulting continuum spectra (Tellinghuisen 1985, Schmoranzer et a1 
1990). However, with the advances in experimental mixed-beam technology (Muller 
et a1 1987), subthermal collisional energies for P I / A I  are now obtainable in which only 
a few angular momenta contribute. There is hope then that rapid-oscillation phenomena 
may become unambiguously observable in P I / A I  electron energy spectra. 

The stationary-phase (and  even the quantal) techniques that have been used to 
explain far-wing line spectra have neglected the effect of the transitions on the entrance 
channel. Although a distorted-wave approach is almost always accurate in such cases 
because spectral coupling is weak compared to intermolecular potentials, the same is 
not the case for P I / A I  where cross sections are much larger. The entrance channel can 
be significantly perturbed by the strong transitional coupling. Since there is an infinite 
set of final free states to consider, their total effect can be most easily (and  insightfully) 
described by the addition of an  imaginary width to the potential of heavy-particle 
motion in the entrance channel (O’Malley 1967, Miller 1970, Bieniek 1978, Berman 
et a1 1983, Saha et  a1 1983, Jones and  Dahler 1988; see Weiner et a1 1990 for a review 
of an  alternative approach to A I ) .  If the final states effectively form a complete set, as 
is generally the case in P I / A I  because of the large electronic energy range, then the 
complex potential is local (Bieniek 1980b, Lam and George 1984, Mundel and Domcke 
1984, Morgner 1990). 

If the transitional coupling is small, then the imaginary part of the potential can 
be neglected in the production of the initial heavy-particle wavefunction, even though 
the imaginary part of the phaseshift must still be approximately determined (Miller 
1970, Bieniek 1974, 1978). However, if it is large (e.g. the imaginary part of the complex 
phaseshift is not insignificant compared to unity), then the effects of the imaginary 
part of the potential on the initial wavefunction (and thereby on T-matrix elements) 
must be dealt with. 
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Although the imaginary width has been incorporated into quantum mechanical 
calculations (e.g., Hickman and  Morgner 1976, Bieniek 1978, Waibel et a1 1988, Padial 
et a1 1989), we develop here a simple way of incorporating a complex potential into 
the evaluation of T-matrix elements by J W K B  stationary-phase techniques. The final 
result needs little extra computational effort beyond the functions normally used, 
requiring only the additional calculation of a local imaginary phase for the entrance- 
channel JWKB wavefunction. In most situations, this can be done accurately with 
approximate expressions employing real quantities already computed. As will be shown 
below, the agreement with quantal complex-potential computations is excellent in the 
case of subthermal collisions of two He*(23S) metastables, and gives much insight into 
the causes of structure in both experimental (Muller et a1 1987) and  theoretical electron 
energy spectra. 

2. Equations for cross sections 

The full development of the formal equations for wavefunctions and  cross sections 
can be found elsewhere (Bieniek 1978); the relevant ones are summarized here. The 
emitted PI /AI  electrons can carry away angular momentum, producing a range of 
final-state heavy-particle angular momentum J‘. However if only a few h are carried, 
the range of J‘ can often be adequately described in integrated energy spectra by their 
average value, which is just the entrance J (Bieniek 1978). Preliminary quantal calcula- 
tions with and  without his approximation (Muller et a1 1990) did show some broadening 
due  to rotational energy transfer, although not a large amount. Similar results were 
seen by Merz et a1 (1989, 1990) in He* + Li(Na) P I / A I  systems, although there was a 
more noticeable effect in angular distributions. Since we are only concerned here with 
energy spectra integrated over all angles, we will assume the ejected electron has no 
significant amount of angular momentum. 

Let t (  R )  be the effective electronic coupling amplitude, as a function of internuclear 
separation R, between initial and  final electronic potentials, incorporating the effects 
of all partial waves of the ejected electrons. The complex potential in the entrance 
channel is then V,(R) = V,(R) -i$(R), with the imaginary width T ( R )  = 2n1t(R)12. 
The Schrodinger equation for the corresponding radial wavefunction F:( R )  is 

h 2  -+VI(R)+(-)-------E]F:(R)=O d2 h 2  J ( J + l )  [ -% d R 2  2m R’ 
where m is the collisional reduced mass, E and J the collisional energy and angular 
momentum. The bar over F;’ indicates a complex quantity. F;’(R) has the asymptotic 
form 
F;’(R) - k;‘I2 sin(k,R -+Jn+ 8: +iT’) 

- k;”*[cosh( 7’) sin(k,R - 4 J n  + 8 : )  + i  sinh(7’) cos(k,R -$J.n+ S f ) ]  

(2) 
where 8: and 7’ are, respectively, the real and  imaginary parts of the complex phase 
shift, and  k,  is the asymptotic wavenumber. If F : ( R )  is the corresponding radial 
wavefunction for the final-state potential (which has no imaginary component), the 
differential cross section for the electron energy spectrum is: 
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where 

T$(E) = exp[i(a;+ ~ ! ) ] T ~ ( E )  

with 

I 2m 
.hT 

TJ(E)=-exp(-vJ) F j ( R ) t ( R ) F : ( R )  dR 

wi  is the statistical weight of the heavy-particles in initial state i, and J,,, = cc (formally). 
du/dE can be written as 

d a  4 r 3  Jmax 

dE k f  J = Q  
- U,  1 ( 2 J + 1 ) l T J ( ~ ) / * .  (4) 

The main purpose of this paper is the evaluation of the effective T-matrix element 
T J  ( E )  by JWKB stationary-phase methods, and a discussion illustrating the interpretive 
usefulness of the consequent analytic forms. 

The total cross section for PI and AI can be computed in two ways. One ( U , )  is 
simply to integrate the differential spectrum. Another (ao) is to employ the unitarity 
properties of the S-matrix to obtain a total cross section from the opacity function 
0, = I -exp(-4vJ);  i.e. 

a , = j - - d e  d u  
d s  

uo is directly and formally based on the completeness of the set of final states, while 
one must compute these states individually to obtain aI. The degree of agreement 
between these two methods is a measure of the internal self-consistency of the 
wavefunctions employed to compute the differential spectra. 

3. Stationary phase evaluation of T ( E )  

3.1. Simple J W K B  wavefunction in a complex potential 

In the following presentation, we drop superscripts and subscripts that are obvious 
and not directly utilized in the discussion. Sufficiently far from the turning point, the 
simple JWKB wavefunction in the complex potential V,( R )  = V,( R )  - @(R) is given 
by (Chen 1967) 

F, ( R  ) = A, ( R  ) sin[ @ , ( R )  + ip ( R ) ]  ( 6 a )  
where 

A , ( R )  =[K:(R)]- ’”  

@ , ( R ) =  Re[Kj(r)]  d r -  D:+:.n f 
p ( R ) =  l R  Im[K;(r)] d r +  D; 

R ,  



Uniform stationary-phase methods for a complex potential 4525 

with 

[ K I (  R)I2 = 7 [ Ei - Vf ( R )  + i$( R) ]  
2 m  
h 

h2  ( J + f ) '  
VJ(R) = Y ( R ) + -  - 

2 m  R2 
1 i 2  

Re[K:(R)] = (h % [ $ { E  - V y ( R ) } + t { [ E  - V:(R)]2+[tr(R)]2}'i2]) . ( 6 g )  

R, is the turning point in the real potential, i.e. Vf(R,) = Ei.  0: are turning-point 
corrections given by 

1 2 m  ' I 2  

6 A 2  
0: = -- (-) [r(R,)I3I2 

dVJ  1 dT 
d R  2 d R  
-+- - 

(7) 

RL 

Note that 0: + 0 as T(RJ + 0. The wavefunction can be rewritten in a form that will 
prove more useful: 

F;( R )  = ai( R )  e'g'R'{cosh[p( R ) ]  s in [a j (  R) ]  + i sinh[p ( R ) ]  s in [a j (  R )  ++TI }  ( 8 a )  

where 

a i ( R )  = IAi(R)/ ( 8 b )  

U R )  6( R )  = +$ tan-' 
2 [ E  - VJ(R)] '  

The symbol a ( R )  has been introduced because the amplitude will be modified later 
in situations near the turning point. For the evaluation of T ( s ) ,  we also need the 
final-state wavefunction: 

F f ( R )  = a f ( R j  W O ,  (R)1  ( l o a  1 

a, ( R )  = [kf(R)]-'i2 ( l o b )  

O'r(R)  = df (R)+i.rr (10c)  

where 

with 

= j R  k L ( r )  d r  ( 1 0 d )  
R, 

2m 
[ k : ( R ) I 2 = 7 p , -  VL(R)I (10e )  
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CY is a channel index, and 

h' ( J + f ) 2  
VJ,(R) = Va(R)+-  ~ 

2m R2  ' 

Note that the lower case k i  is totally real, and will prove useful for both initial ( i )  
and final (f) states. 

3.2. Location of stationary-phase points R, 

We wish to find the stationary-phase points of the integrand of T ( E )  in ( 3 c ) ,  from 
around which the major contributions to the integral occur. The integral for T (  E )  can 
be accurately written as 

T ( E )  ='{ I e iB(R)g(R)  cos[A@(R)] d R + i  e i " ' R ' h ( R )  cos[A@(R)-i.ir] dR 
2 I 

where 

2m 
g J ( R )  = cosh[pcL.'(R)] e - 7 ' a f ( R ) a i  ( R ) t ( R )  

2m 
h7r  

h J ( R )  = 7 sinh[p ( R ) ]  eC7'af( R ) a j  ( R ) t  ( R )  

with 

Rapidly oscillatory terms of the form cos[@., + Of ] have been dropped from the integral 

A decision must now be made before the stationary-phase points can be found. 
The varying phase 6 ( R )  [from A , ( R ) ]  can be included with the phases found in the 
cosine factors of ( l l a )  to produce general phase factors exp{i[CDf ( R )  - @ . , ( R )  i 6 ( R ) ] }  
in the integral, or it can be just associated with the prefactors g ( R )  and h ( R ) .  I f  it is 
included as a general phase, the number of stationary-phase points will be formally 
doubled. Since 6 ( R )  is a slowly varying function in almost all situations, it is easier 
to treat it, along with g ( R )  and h ( R ) ,  as a prefactor to the more rapidly changing 
cosine factors. With this in mind, the stationary phase points R ,  of both integrals in 
( l l a )  are located where (Connor 1973, Child 1974) 

of ( 1  l a ) .  
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Letting A V ( R )  = V , ( R )  - V J R ) ,  the R, are related to the energy of the emitted 

(14a) 

electron E by 

E = AV(&)  - Q(R,)  

Q ( R ) = ; [ { [ E  - V.I (R)] '+[$T(R)] ' } ' ' ' - [E  - V : ( R ) ] ] .  

UI(R) = V : ( R )  - Q ( R )  

where 

(14b) 

Defining a modified effective entrance-channel potential 

(15) 

the equations (14a) and (6g) can be rewritten as 

E = U;'(R,) - Vf(R, )  ( 1 6 ~ )  

For R near a turning point [ ( E  - V:(R))<< T ( R ) ] ,  Q ( R ) = T ( R ) / 4 ;  for R far from a 
turning point [ ( E  - v ; ' ( R ) ) > > ~ ( R ) ] ,  Q ( R ) = $ ~ ( R ) / ( E  - v:). Q ( R )  is usually very 
small (and actually negligible), and has little effect in most calculations. This was 
numerically confirmed in separate computations on the He*(23S) + He*(23S) process 
considered in this paper. 

Furthermore, it can be noted that in the limit T(R)+O, we find the usual 
conditions of 

E = A V (  R,) (17a) 

and 

k f (Rs )  = k (Rs ) .  (17b) 

The stationary-phase points R, are then just the J-independent Condon points R,, 
where vertical transitions occur in a classical picture that conserves local heavy-particle 
linear momentum. 

We will now consider explicitly two situations. The first is where there is only a 
single stationary-phase point, RO,  for a particular value of E ,  giving rise to 'reflection' 
structures in the emission spectra; the second is where there are two points R I  and 
R 2 ,  producing rainbow interference structure (Tellinghuisen 1985). 

Case 1. Single-stationary phase point. For a single, classically accessible solution Ro( E )  

of (14) (e.g. monotonic difference potentials), one can make a cubic fit to the phases 
at R O ,  and evaluate T ( E )  analytically. Using an expression derived by Bieniek and 
Streeter (1983) for totally real potentials and by noting that the imaginary cosine 
integral in T ( E )  (equation ( l l a ) )  just differs from the real term by the phase - 7 r / 2 ,  
one finds for a single stationary-phase point that T (  E )  is given by (Bieniek and Streeter 
1983) 

T " ( E )  = Z(R0 ,  5 0 ,  P o )  (18a)  

where 

Z ( R , ,  5, p )  = pl  4(G: +iH,) Ai(-p)+ q ~ - l ' ~ ( H : - - i G ; )  Ai'(-p) (18b) 
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G,’ =;( C, + S,) COS(( + 6,) * ;( C, - S,) COS(( - 6,) 

H :  = $( C,+ S,) sin((+ 6,) kf( C,- S,) sin((- 6,) 

A subscript of s indicates evaluation of the quantity at the stationary phase point R,. 
Ai(x) is the regular, homogeneous Airy function. 

The quantities C, and S, are, respectively, the coupling strengths that come from 
the real and  imaginary parts of v’K,(R)F,(R).  (The C and S were chosen to remind 
one of the c o s h p  and  s i n h p  factors in (Sa).)  These real and  imaginary strengths 
appear together only because K , ( R )  is complex. If T(R,) is considered to be small 
compared to E - V;’( R,) everywhere, then it is reasonable to make the approximations 

6 ( R ) = 0  and K , ( R ) - k , ( R ) .  (20) 
(We will d o  this in all the numerical results reported below.) With these approximations, 

G,’ = C, cos 5 
G; = S, COS 5 

H: = C, sin 5: 
H ;  = S, sin ( 

To( E )  then simplifies to 

T ~ ( E )  = ~ “ { ( E C ~   COS(^^^) + i s o  s in( to) l  A~(-P,) 

+ q0p-”4[ CO sin( to) - i s o   COS((^)] Ai’( -po ) }  (22) 
The association of the coupling strength C, ( S , )  with the real (imaginary) part of the 
entrance channel wavefunction is now obvious through the cosh pu,(sinh p,) factors in 
C, (SJ. 

Case 2. Two interfering stationary-phase points. If A V (  R )  has an extremum, there will 
generally be two points of stationary phase, R ,  and R2,  that are solutions of (14). 
These two ‘transition’ points give rise to many interesting interference effects. If one 
again uses standard uniform methods (Connor 1973) to evaluate ( l l a ) ,  one obtains a 
T-matrix element T2( E )  for situations with two stationary-phase points: 

= [ Z ( R , ,  U12,YlZ)+Z(R2, u l 2 , r l z ) l  (23a) 
where 
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Note that the arguments of to and po in (18a) are replaced by u I 2  and y , , ,  which 
contain information from both points. u I 2  preserves information about the absolute 
phases relative to the turning points, while y12 produces inteference effects between 
R I  and R2.  If we again make the approximation 6(  R,) = 0,  we find 

T2(&) =y?’[(C1+ C2) cos(u12)+i(Sl+S2) W u 1 2 ) l  Ai(-yI2) 

+ q , ~ ; i ’ ~ [ ( C ,  - C2)  sin(u12) -i(Sl - S 2 )  cos(u12)l Ai‘(-y12) (24) 
where we have used the fact sign(A@y) = -sign(A@;). When R I  and R2 coalesce for 
E at and beyond the extremum in AV( R ) ,  located at R,  where AV’( R,) = 0, one can 
extend T 2 ( & )  into the dark side of the classical rainbow singularity at E , =  AV(R,) in 
an accurate way described elsewhere (Sando and Wormhoudt 1973, Bieniek and Streeter 
1983). Generally, the trigonometric functions cos( uI2)  and sin( u12) in (24) oscillate 
much more rapidly than the envelope demarcated by the Airy functions. This fact will 
prove the basis for much of the interpretive discussion of the numerical results for 
He*(23S) + He*(23S) autoionization. 

4. Turning points and barrier penetration 

Before this can be done, a few finer points and nuances of an actual computation 
must be addressed. One is turning-point effects; another is penetration through a 
centrifugal barrier. 

As a stationary-phase point R, approaches a turning point R,,  the simple 
JWKB amplitudes aj(R,) = a;(R,) = [ k ~ ( R , ) ] - ” 2 +  CO, producing overly large coupling 
strengths C, and S , .  A judicious choice of a convolution function may hide this 
problem, yet the accuracy must be suspected. Fortunately, the amplitudes can be 
prevented from becoming infinite by using modified amplitudes that are associated 
with uniform J W K B  wavefunctions, which are valid near to and far from a turning 
point. These are given by (Bieniek 1980a) 

1 /4  

[ A i 2 ( - ~ a ) + B i 2 ( - ~ a ) ] 1 ’ 2  ( 2 5 a )  

where 

X J R )  = [ 5 4 a ( ~ ) 1 2 / 3  ( 2 5 b )  

for state cy, with 4a( R )  given by ( 1 0 d ) .  The phase Q e (  R )  can be left unmodified. This 
produces a wavefunction which indeed has a large but infinite amplitude near R,. Far 
from the turning point [i.e. 4 , (R)  2 T ] ,  a,,,(R) = [ka (R)] -1 ’2 .  Thus the a,,,(R) can 
be directly substituted for a,(R) in determining the coupling strengths of (18e, f). 
(Please note that this introduces no new functions into a computation and requires 
little additional computer time.) 

With modified amplitudes, the coupling strengths C, and S, remain finite near a 
turning point. Unfortunately, both C, and S, then approach zero as R5+ R, because 
A@: + CO in (18e, f ). Consequently, the contribution to a transition at a turning point 
is much smaller than usual, rather than larger. Yet this will generally produce little 
numerical error in a calculation of cross sections because R, will be near a given R,( E )  

for only a very few values of J,  if any. 
For situations with only a single stationary-phase point Ro, we can actually make 

a significant improvement over the use of modified amplitudes near a turning point. 
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We note that for R, near R,, p (R , )  is small [see (6d ) l .  This implies sinh p ( R ) < <  
c o s h p ( R )  near R, in such cases, and Fy is almost totally real around R,. Since 
most of the contribution to TO(&) comes from around R,, we have F f -  
cosh p(R)a , , , (R)  sin[Qi(R)];  i.e., the wavefunction acts as if it has arisen from the 
totally real potential V : ( R ) ,  with a modified normalization of cosh p ( R )  = 1. We make 
the connection of this to the corresponding uniform J W K B  wavefunction (Berry and  
Mount 1972): 

Using the corresponding expression for the final-state wavefunction (without a cosh 
factor), one can analytically evaluate by stationary phase the overlap of these two 
uniform JWKB wavefunctions for a single R, (Bieniek 1977): 

where po  = sign(&- R,). This is valid even in the collisional inaccessible region of the 
repulsive inner core ( Ro < R,). 

Tu( E )  will only be valid while sinh p (R,) << cosh p ( R,), i.e. near R,. However, in 
most cases, by the time R, is sufficiently far from R, so that this condition is no longer 
met, &, in=min(48(Ro) ,  4 r ( R 0 ) )  is large enough ( * T )  that the simple J W K B  wave- 
function, equation (6a) ,  is accurate; i.e. Tu(&) is accurate for &,,”< 7~ and To(&) is 
accurate when 7~ (Bieniek 1980a). A smooth transition can be made between 
the two cases by defining a new T-matrix element T,(E) for a single stationary-phase 
condition: 

[ W T I ( & ) ) I 2  = W ~ [ R ~ ( ~ ~ ( E ) ) I ’ + ( ~  - w o ) [ ~ , ( ~ ) 1 2  ( 2 8 a )  
[ I ~ ( T , ( E ) ) ] * =  w 0 [ ~ m ( T O ( ~ ) ) I 2  (28b) 

where 

and  & is the chosen boundary between uniform and simple J W K B  domains. ( + u 5  = 7~ 

in this study, which produces wavefunctions accurate to within a few percent.) 
The penetration of the J W K B  wavefunction through the centrifugal barrier of the 

entrance channel must be included for accurate computations. F I (  R )  will be reduced 
in the interior region by some factor exp(-y:). In the most simple approximation, 
y ;  = 0 if E, is above the barrier peak. If E, is lower than the barrier peak, located at 
R;, , then 

with Rbl  and  Rb2 as the inner and outer turning points of the centrifugal barrier i.e. 
E, = Vy(R,,) (Child 1974). (More refined expressions for y can be used to account 
for subtleties in the transmission and reflections coefficients, including undulations 
just above and  below penetration (Bieniek 1974, Child 1976, Bieniek 1980a). Please 
note that the factor - 2 / ~  in (14a)  of Bieniek (1980a) should be -.n-’.) In  all formula 
presented so far, each C, and S, must be multiplied by e-’’ if R,< RLp. This decreases 
the coupling strengths. Furthermore, we must consider the effect of barrier penetration 
on the imaginary phase. One can show 
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Replacing the sin' in the integrand by its average of i, this expression simplifies to 

where 
e-2?J  if R < RL, 

11 if R >  R i p  
E ( r )  = 

For low energy collisions, T ( R )  is only large in the interior region ( R  < R i p )  once 
penetration occurs. In these cases, the correction represented by (30) is significant. If 
a computation of cross sections were cut off at J,,,, equal to the last J before barrier 
penetration, cross sections would be underestimated, for incident flux at  higher J does 
indeed get into the interaction region. However, if e-? were not introduced via C,, 
S , ,  and E ( R )  into the computation, one would continue a computation to higher J 
with no natural cut-off. The calculation would not know that the imaginary potential 
should be 'felt' less in the interior region because of the smaller wavefunctional 
amplitudes. Cross sections (whether differential or total) would be overestimated. With 
these factors, cross sections will converge. In fact with the decrease of 7' = p J ( w )  
following barrier penetration, one can simply use the opacity function as a convergence 
criterion; i.e. computations continue until a J,,, value is reaches such that OJm,bx is 
less than some minimum value Omin chosen for a desired convergence. 

5. Numerical treatment of the He*(23S)+ He*(23S) system 

Two colliding metastable He"(23S) atoms follow a ' X i ,  'C: o r  'Z; potential. Because 
P I / A I  is a n  electron transfer process, heavy-particle metastables that follow the ' X i  
potential d o  not participate in autoionization (Hill et a1 1972). Therefore four transition 
amplitudes contribute to the process of the collision of two HeX(23S) atoms: 

Het(3C:, J -odd)  + He:(*C:, J ' -odd)  + e-(/-even) 

Het(3C:, J-odd) + He:(*C,', J ' -even) + e-(1-odd) 

Hef('C,', J-even) + Hel('C;, J ' -odd)  + e-(l-odd) 

(31a) 

(316) 

(3 1 c )  

(31d)  

where J ( J ' )  is the heavy particle angular momentum in the entrance (exit) channel, 
and  1 is the angular momentum of the ejected electron. 

In our numerical treatment, we used transitions (31a)  (attractive exit channel) and 
(3 1 d )  (repulsive exit channel) as model cases. We employed the entrance-channel 
potentials of Muller et a1 (1987) and the exit-channel potentials of Khan and Jordan 
(1986). Following Garrison et a1 (1973), we used the same effective imaginary width 
for the similar 'Z: and '2 :  entrance potentials, given by T ( R ) = T o e x p ( - a R ) ,  with 
To = 8.163 eV and  a = 0.921 a i ' .  In all calculations, we neglect the nuclear symmetry 
effects (indicated by the angular momenta in (31)) in this homonuclear collision. 
(Additional calculations including those by Muller et a/ (1990) showed no  noticeable 
consequence.) Furthermore, final bound and  quasibound levels in the stationary-phase 
calculations were smeared into a continuum, and  were represented with wavefunctions 
in the form of (10). This essentially releases the boundary condition at the right-hand 
turning point. This is a good approximation if energy spectra are convoluted by an  

He$( 'Z i ,  J-even) + Hel('X.,', J ' -even) + e-(l-even) 
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instrument function whose width is too large to resolve rovibronic level spacing. Finally, 
all stationary phase calculations assumed Re[ K:( R ) ]  = ky( R )  and 6( R,) = 0. Con- 
sequently, the R, are equal to the J-independent Condon points of (17a).  

The electron energy spectra for 'E: + ' C l  and 'C: + 'E: transitions, at  a collisional 
energy of E,  = 1 meV (chosen to match the experiment of Muller et a1 (1987)) are 
shown in figure 1. The electron energy scales have been shifted by the asymptotic 
transition energy E " =  AV(co) .  The J W K B  stationary-phase curves are based on all the 
techniques and  modifications presented above. The computational cut-off criterion was 
chosen to be 0,,,=0.01, which made J,,,= 15, the first J with centrifugal-barrier 
penetration. Also displayed in this figure are the spectra obtained with a quantum 
mechanical complex-potential computer code, in which all wavefunctions and matrix 
elements were calculated wholly numerically. In order to simulate the experimental 
results (Muller et a1 1987) more closely, all spectra were convoluted by a Gaussian 
function of width 36 meV. This explains the lack of discrete structure for the AI portion 
of the H e f ( 3 E 3  + He:(2E:) spectrum (figure l ( a ) ) .  

Relative e l e c t r o n  energy E - eo [mevl 

Figure 1. Comparison of uniform complex, stationary-phase calculations with quantum 
mechanically calculated electron energy spectra for the transitions 'Z: + 'Xu and 'Z,+ 'Z, 
at  a collisional energy of E, = 1 meV. The spectra are convoluted by 36 meV ( F W H M )  
gaussian, a n d  shifted by E ( ,  = A V(w) = 15.052 eV. The  hatched region is due  to the tunnelling 
into the repulsive wall (see text) .  

Note that the stationary-phase and quantal results are compared on an absolute 
scale. The agreement is most satisfying. The total J W K B  cross sections obtained from 
opacity functions were uo(lZ; + 'E:) = 2661 U:  and go(3E: + 'E:) = 2659 U : .  These 
differed by less than 1% from the quantal values. This illustrates the importance of 
barrier penentration. If the J W K B  computations were terminated just before the onset 
of penetration of the centrifugal barrier (i.e., setting J,,, equal to 14) then the cross 
sections were 13y0 too low. If J,,,= 15 were chosen but (6d ) ,  instead of (30a),  was 
used to determine ~ ' l m ~ ~ ~  = p'ln~*(x), then the J W K B  total cross sections were about 15% 
too high. 

However, the J W K B  total cross sections go obtained from opacity functions are not 
a stringent test of the stationary-phase technique. J W K B  go will generally be in good 
agreement with quantal results as long as O., is nearly unity before the onset of 
centrifugal-barrier penetration, and falls off rapidly over a small range of J following 
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penetration. This is the case for homonuclear He*(23S) collisions. A much more 
stringent test is the J W K B  integrated cross section U, (equation ( 5 a ) ) .  I t  is most gratifying 
that CT,(~X; + 'X:) = 2689 a i ,  making ul/uo = 1.01 and also within 1% of the quantal 
value. This indicates that the delicate balance of amplitudes and phases, and their 
localized contributions around R, , are accurately represented by the presented for- 
mulae, both the real and imaginary parts. For 'Xi + 'Xi transitions, the J W K B  u, ( 'X;  + 
*Xi) = 2389 a i ,  giving ul/uo = 0.90. This discrepancy is mostly due to the underestima- 
tion of d u / d s  for electron energies E - eo== -275 meV (see figure l ( b ) ) .  Both electron 
spectra in figure 1 exhibit well the rainbow phenomena (Airy-terms in equation (24)) 
caused by the extremum in the difference potential. 

Through stationary-phase analysis, one can readily perceive the relationship 
between potentials and structure in the spectra. In figure 2, we show this relationship 
for the ' X L + 2 Z i  transition. To emphasize the import of the turning points, we have 
employed simple J W K B  amplitudes a i (  R,) = [ ki( Rs)]-''* throughout the calculation 
of this spectrum and have not convoluted it. The R, are located where A E  = E - E ~  

crosses the potential difference curve. For A E  > 0, there is only one stationary-phase 
point, Roe For A E  < 0 there are two, R ,  and R 2 .  However, the turning point RF in the 
entrance (metastable) channel is located at a position (2.4.4 a, over the relevant J-range) 
such that two points are collisionally accessible only for A s  < -250 meV. The Airy-peak 
in the spectrum, at P E  = -600 meV, is due to the extremum in A V (  R ) .  As A E  increases 
from -600 meV to -250 meV, the inner stationary-phase point R I  approaches RF. 
a,( R I )  is getting larger, producing larger coupling strengths C, and SI in equation 
(24). This is why d u / d s  increases so dramatically between -300 meV to -250 meV. 
(The only reason it does not go to infinity at some point is that none of the R I ( & )  
associated with the chosen electron-energy grid points happen to land directly on RF 
for any J.)  For A &  > -250 meV, only the outer point R2 is collisionally accessible. Since 
this is associated with a low t ( R )  because of the large separation, d a / d E  falls off 
percipitously as the T-matrix element switches from T2(&) to TI(&) .  (It is unfortunate 
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Figure 2. Correlation of the difference potential energy (left half)  a n d  the electron spectrum 
(right half) for transition 'Xg+'Zg. Condon  points R, t o  the left of RT ( the turning point 
in the entrance channel for 1 meV collisions) are not classically accessible, while those to 
the right of i t  are.  Thus for F - E ( ]  2 -250 meV, only one  point of stationary phase in the 
marked long-range part of the difference potential contributes to the electron spectrum, 
which was calculated using only simple J W K B  wavefunctional amplitudes.  
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that no uniform formula exists (Uzer and Child 1982) for T 2 ( & )  for two stationary-phase 
points, one of which is in a classically inaccessible region, for this would eliminate 
the small discrepancy between J W K B  and quantal dcrlde around Ae i= -275 meV in 
figure l (b ) . )  By comparing the 'C;+'C; in figures l ( b )  and 2, one can see the 
importance of using uniform J W K B  amplitudes (equation (25)) instead of just simple 
J W K B  amplitudes, for the latter significantly overestimates the increase in peak height 
due to turning-point effects. 

Similar arguments can be used for the 'Xi + 'X: spectrum. The difference potential 
is similar in shape and  magnitude to the ' C l +  'C; curve, but is shifted to larger 
internuclear separations by about 0.5 a,. This makes both R I  and Rz  collisionally 
accessible for Ae < 0 (PI) ,  and  a single Ro accessible for h e  > 0 ( A I ) .  A &  = 0 is effectively 
the boundary between PI and  A I  because E, = 1 meV is so small on the scale of A V (  R )  
in the interaction region. 

To understand the sources of structure and the conditions that moderate them, it 
is useful to consider only the dominate terms in lT2(e)l .  The Ai'(-y12) term in (24) is 
small compared to the Ai(-y12) term in this system, as is usually the case in rainbow 
spectra. If we neglect this term and  cross terms, we find the differential cross section 
to be 

where 

I T ~ ( E ) ~ ~ ~ , , , = ~ ~ ~ ~ [ ( C , +  C2)2 c o s ' ( ~ : ~ ) + ( S ~ + S ~ ) ~  ~ i n ~ ( u : ~ ) ]  Ai2(-y,,) (326) 
where the (C,  + C2)2  term arises from the real parts of the entrance-channel wavefunc- 
tion F; ' (R)  of ( 8 a )  and of T 2 ( e )  of (24), and the ( S , + S 2 ) 2  term comes from the 
imaginary parts. The superscript J is explicitly shown on the most J-sensitive element. 

Let us now consider the contribution from the 'real' portion of (32b), and examine 
the effect of phase-averaging due  to the sum over angular momenta. Figure 3 displays 

I I 1 I / / I  1 1 1 1 1 1 1 1 1 , 1  
-1000 -500 0 -500 0 

R e l a t i v e  e l e c t r o n  energy  E - eo [mevl 

Figure 3. J-dependence of the electron spectra for the transition ' X U + ? X u  (figure 3 ( a ) )  
a n d  'Z,+2X, (figure 3 ( b ) ) .  The broken curves are  spectra for J = 0 ,  multiplied by a factor 
of 100 (figure 3 ( a ) )  a n d  200 (figure 3 ( b ) ) .  The full curves represent the spectrum summed 
over J = 0-15 partial waves ( E ,  = 1 meV). Additionally, the Ai'-envelope, produced by 
replacing cos ' (u)  in equation (24) with 4, are  indicated by the chain curves. 
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the spectra obtained by ignoring the imaginary contribution to (326), and plots the 
computed spectra for J,,, = 0 (i.e. J = 0 only), J,,, = 15, and  J,,, = 15 with COS'(U) 
replaced by 1/2. (As in figure 2, simple J W K B  amplitudes are used, and the spectra are 
not convoluted.) The latter approximation shows the Airy-envelope. One can see in 
both transitions the rapid oscillations typical for a single J due to the cos2( u , ~ )  factor; 
this is reminiscent of the spectra from bound-free spectral processes discussed in the 
introduction. However, once the sum over J is made, the rapid oscillations have been 
largely washed out for the 'Z: -+ 'E: transition, but not for the ' C l  -+ *El  transition. 
The former nearly achieves the pure slow undulations of the Airy envelope because 
of the larger degree of phase-averaging of U:, over J ;  i.e. (cos' U;~(E)) '  is actually 
about 4 for all E. More phase-averaging occurs in the + 'Xi because of differences 
in turning points AR, = /R,Y(E,)  - R:(E)~ between metastable and ionic channels for F 

in the region of the Airy maximum. AR, is larger (-2.5 a,,) for the 'E? -$ 'E: transition 
than for the 'CL+ * Z l  case (-1.0 a,,). Thus as J increases in the first transition, there 
is a larger distance between turning points and  stationary-phase points over which the 
phase between initial and  final wavefunctions can be affected by J than for the '1: + 'El  
transition. This generates a more rapidly changing U:, with J,  and a more random 
cos2( U:,). By shifting the He:(2Z;) potential to smaller internuclear distances, thereby 
increases AR,('Zi + 'E;)) to match AR,(3E: -+ *E:), we were able to generate the strong 
phase-averaging found in the 36: + *E: transition, confirming our analysis (Muller 
et a1 1990). 

Figure 4 displays the real contributions to d a / d e  in comparison to the full differen- 
tial cross sections; all spectra have been convoluted and  uniform amplitudes aa,+( R,) 
employed. The difference between each pair of spectra comes from the imaginary parts 
of F: and of T i (  E ) ,  i.e. the (SI + S,)' sin2( U )  term in (32). As can be seen, the imaginary 
contribution is significant. Furthermore, it fills in almost all rapid-oscillation effects. 
Even in the '1; + 'Z; transition, only some shoulders on both sides of the Airy peak 
are noticeable. The cause of this is universal and  enlightening. Consider two limiting 
case: p ( R , )  small compared to unity, and  p ( R J  large. These are essentially low-T 
(weak coupling) and  high-r (strong coupling) cases. For small p ( R s ) ,  sinh ps<< cosh p 5 ,  
yielding (SI + S,)  << ( C, + C2)' (see equations (18e)  and (18f)). In  contrast, if p(  R,) is 
large, sinh p, - cosh p s ,  implying (SI + S2)* = (C, + C2)*. We then have 

(33) 
y!{4( C, + C2)* cos2( u : ~ )  Ai2( -ylz)  
y Z 4 ( ~ ,  + cd2 A~'(-Y,,) 

for small ps 

for large p s .  
ITJ(4Gom = { 
For low I', the rapid-oscillation factor cos2( U:>) is preserved, allowing hope that these 
oscillations can be observed in subthermal collisions with little phase-averaging. 
However, for high r, no rapid oscillations can occur. As has almost completely 
happened in the 'Z;+'C; case, high r tends to destroy rapid oscillations. This can 
be understood by thinking of the rapid oscillations as arising from interference between 
incoming and  outgoing waves. Their relationship is contained in the absolute phase 
functions in (32). As r gets larger and  more flux is lost to transitions, there is less and  
less outgoing wave with which to interfer with the incoming wave. Thus the rapid 
oscillations are filled in. 

We find, then, that the contribution of the imaginary part of the entrance-channel 
wavefunction is significant, even when r( R )  is not really large compared to the real-part 
of the potential. The condition is if t anh[p(R, ) ]  is significant compared to unity. To 
clearly demonstrate the importance of the imaginary terms, we show in figure 5 the 
spectra for two extrema in magnitude of the autoionization width. The spectra compared 
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Figure 4. Comparison of uniform complex stationary-phase calculations (broken curve) 
with the corresponding spectra obtained from only the real part (full curve) of T-matrix 
elements. All spectra are convoluted with 36 meV (FWHM).  

00 

Figure 5. Comparison of stationary phase calculations using the real part of T ( E )  (full  
curve) and the full complex T ( E )  (broken curve) for transition 3 X u + 2 X u  and two different 
widths T i  (figure 5 ( a ) )  and Tz (figure 5 ( b ) )  defined in the text. The base line is shifted for 
the two spectra, in figure 5 ( a ) ,  because they are essentially identical. 

in this figure are calculated using; (1) only the real part of T ( s )  (full curve), and (2) 
a complete complex description (broken curve). The widths are as follows: 

Figure 5 ( a )  r, = 0.8163 meV exp(-0.921 R/a , )  = 10-4r0(R) (34a 1 
Figure 5 ( b )  T z =  16.326 eV exp(-0.921 R/a,)  = 2r,(R) (34b) 

where T, (R)  is the width used in the computations already discussed in figures 1-4. 
This leads to typical opacities of O ( r , )  = 5 x lo-" and O(r2)  = 1.00. Because the 
potential with r, is approximately real, the real and complex description of d a / d s  
are identical (figure 5 ( a ) ) .  For T z ,  the autoionization probability is 100% on the 
incoming trajectory, and the loss of flux cannot be neglected. As can be seen in figure 
5 (  b ) ,  the oscillations due to incoming-outgoing interferences are no longer visible in 
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a full complex calculation at high r, while a real calculation still erroreously shows 
these oscillations. The fact that shoulders are indeed observed in the experimental 
spectrum of Muller er a f  (1987) implies that the actual T ( R )  is not as large as I',(R). 

6. Conclusion 

For collisional systems with strong transitional coupling, the perturbation on the 
entrance channel from transitions can be conveniently described by a complex (optical) 
potential. We have shown how J W K B  stationary-phase methods of analytically evaluat- 
ing T-matrix elements, which have worked so well in the analysis of real-potential 
processes such as photon emission and absorption, can be easily extended to complex 
potential processes. In the case of Penning and associative ionization in the He*(23S) + 
He*(23S) system, where autoionization is nearly loo%, the stationary-phase results 
were brought into impressive numerical agreement with quantum mechanical calcula- 
tions, through use of an approximate complex phase, simple J W K B  centrifugal-barrier 
penetration factors, and uniform J W K B  amplitudes. The imaginary part of the entrance- 
channel wavefunction had a large effect on the energy spectra of the ejected electrons. 
The analytic form of the stationary-phase expressions associated with the complex 
potential give much insight and clarity to the analysis of the sources of structure in 
the spectra, particularly rapid and slow oscillations. It was shown how angular-momenta 
phase averaging and a large imaginary width both tend to wash out rapid oscillations. 
However, in subthermal collisions, the effect of rapid oscillations may still be discerned 
as shoulders in the primary rainbow peaks of spectra, for moderate imaginary widths. 
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