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Victor Birman 
Engineering Education Center, 

University of Missouri-Rolla, 
St. Louis, MO 63121 

Mem. ASME 

Thermal Dynamic Problems of 
Reinforced Composite Cylinders 
Thermal dynamic problems of circular cylindrical composite shells reinforced in the 
axial and circumferential directions and subject to variations of temperature are 
considered. Nonlinear governing equations are formulated based on the extension 
of Donnell shell theory. These equations are used to determine the response of 
geometrically nonlinear and linear shells to a thermal loading represented by the 
Heaviside step function (thermal shock). The solution of the nonlinear problem 
obtained by the assumption that displacements are single-term functions of coor­
dinates is discussed. The analysis of the linear problem illustrates different types of 
response to thermal shock. The condition of thermally-induced buckling of shells 
is formulated. Numerical analysis results in conclusions regarding the behavior of 
shells subject to thermal shock if the temperature is uniformly distributed throughout 
the shell and stiffeners. 

Introduction 
Reinforced cylindrical shells represent one of the principal 

elements of aerospace and ship structures, pressure vessels, 
etc. Increasing application of composite materials in design 
makes investigation of static and dynamic behavior of com­
posite shells very important. Studies of reinforced composite 
cylindrical shells were published by Thielemann (1960), Block 
(1968), Bogdanovich and Koshkina (1983,1984), Bogdanovich 
(1986), and Birman (1988a,b, 1990). 

Composite shells used in practical applications are often 
subject to uniform or nonuniform thermal fields. The research 
of effects of temperature on response of isotropic structures 
has been pursued for a long time; see the book of Boley and 
Weiner (1962) which outlines the principle elements of this 
research and the paper of Tauchert (1986) concentrating on 
plated structures. The response of composite material struc­
tures subject to thermal effects has been also investigated. In 
particular, thermal problems of composite cylinders were con­
sidered by Birger (1971), Tauchert (1980), and Hyer and Cooper 
(1986). However, the behavior of reinforced composite shells 
in thermal fields has not been considered. 

In this paper geometrically nonlinear dynamic equations for 
reinforced circular cylindrical shells subject to nonuniform 
elevated temperature are formulated. These equations repre­
sent the generalization of the Donnell shell theory to composite 
material cylinders. The solution of geometrically nonlinear and 
linear problems of reinforced composite cylinders subject to 
instantaneous increase of temperature (thermal shock) is dis-
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cussed. A method of experimental prediction of the temper­
ature resulting in thermally-induced buckling is proposed. This 
method can be used for nondestructive evaluation of shells 
subject to thermal shock if the boundary conditions are not 
specified. The response of a graphite/epoxy shell is illustrated 
in numerical analysis which also elucidates the importance of 
ring stiffeners for prevention of thermally-induced buckling. 

Governing Equations 
Consider a cylindrical shell reinforced by axial and ring 

stiffeners as shown in Fig. 1. The shell is composed of many 
identical layers symmetrically arranged about its middle sur­
face. In this case the behavior of the real shell can be modeled 
by an equivalent orthotropic shell. The geometry of the shell 
is such that the Donnell-type theory is applicable. The stiffeners 
are supposed to work independently; i.e., axial stiffeners do 
not affect deformations of ring stiffeners and visa versa. Such 
an assumption is often used in the studies of reinforced shell 
structures. An example of a structure where this assumption 
is justified is a shell with riveted reinforcements in both axial 
and circumferential directions which are not connected to each 
other (Timashev, 1974). The torsional stiffness of the stiffeners 
is neglected according to the conclusion of Birman (1988b). 

The shell is subject to a nonuniform thermal field7(.x:, y, z, 
t), x and y being the axial and circumferential coordinates; z 

Fig. 1 Shell geometry. Internal stiffeners are indicated by broken lines; 
x, and ys are the coordinates of stiffeners. 
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is the radial coordinate positive in the inward direction and t 
time. The webs and the flanges of the stiffeners are supposed 
to be thin so that temperature is uniform in the thickness 
directions of the elements of each profile. 

The strain-displacement relationships in Donnell's theory of 
geometrically nonlinear shells are assumed to be 

e° = u,r+l/2w,l 

e°v=v,y+l/2w,t—-

Ifxy Uyy+V,x+W, 
R 
•V/,y 

• w , v l ,= -2w,x 

ex ~~ ex + %Kx 

€y=6y + ZKy 

-ixy=yxy + ZKx (1) 

" ex-onT^\ 
| ey-a2T J 
Jfxy-a6Tjk 

(2) 

where ex, e°y, yxy denote strains in the middle surface, KX, ny, 
and Kxy are the changes of the middle surface curvature and 
twist, and ex, ey, yxy are strains at the distance z from the middle 
surface. Axial, circumferential, and radial displacements of 
the middle surface are denoted by u, v, and w, respectively, 
w being positive in the inward direction, and R is the radius 
of the middle surface. 

The linear thermoelastic orthotropic constitutive relations 
for the kth layer of the shell are 

"Qn Qu Qie 
Ql2 Q22 Q26 

_ 616 Q26 Qe6j 1 

where a, and a2 are the axial and circumferential stresses, a6 

is the shearing stress, and Qy are transformed reduced stiffness 
of the layer. The thermal expansion coefficients of the layer 
are related to the principal coefficients in the fiber and trans­
verse directions (aL, aT), and to the lamination angle 9k by 

a, = aL cos26k + aT s'm28k 

a2 = a / S i n ^ + aT cos20,t 
a6 = (aL-aT)sm6kcosdk. (3) 

If the shell is manufactured from an orthotopic material with 
the fiber direction parallel to the x-axis, a, = aL, a2 = aT, a6 = 0 
in equation (2). The stresses in the stiffeners obtained by the 
assumption that the stiffeners in the axial and circumferential 
directions do not affect each other directly are: 

o\ = Es(ex-asT) 
&-2 = Er{ey-arT) (4) 

where Es and Er are the moduli of elasticity of the axial (s) 
and ring (r) stiffener materials in the respective stiffener length 
directions, as and ar are the corresponding thermal expansion 
coefficients. 

The stress resultants and stress couples can be obtained by 
integration of the stresses given by equation (2) and (4) with 
respect to the thickness (radial) coordinate: 

TV, = AneJ + AueyO-NS+J^Siy-yJEsAAex + Vx) 

N2 = Al2ex+A22e
yo-N^+^5(x-xr)EAr(ey + ^y) 

N6 = A66yXy°-NZ 

M, = DnKx + DnKy-M\+^&{y-ys)Es{Afisix + hs^x) 
S 

M2 = DX2Kx + D22Ky-M2
T+^b{x-xr)Er{Afire°y + IorKy) 

M6 = D66Kxy-Ml (5) 

In equations (5), <5(. . .) is the Dirac delta function, ys and xr 

are the coordinates of the axial and ring stiffeners, respectively, 
Ay and Dy are extensional and bending stiffnesses of the shell, 
zs and zr are the distances from the centroids of the corre­
sponding stiffeners to the middle surface positive for inside 

reinforcement, As and Ar are the cross-sectional areas of the 
respective stiffeners, and Ios, Ior are their moments of inertia 
with respect to the middle surface. The thermal terms in equa­
tion (5) are: 

Ni -t 1 _ \_h/2(Qn<xi + Qnot2 + Qi6<X6)Tciz 

+ U6<> - ys)Esas\^s(z) T^z 
s 

{A/2 

_h/2(Qn<*X + Q22<*2 + Q26<X6)TdZ 

+ ^8{x-xr)Erar\zl3r(z)T^z 
s 

{A/2 
^ / 2 (e i6«i + 626^2 + Q66<x6)Tdz 

JA/2 
_„/2(£?nai + Qna2 + Qi&a6)Tzdz 

+ ]C6<> - ys)Esas \zps(z) Tszdz 
s 

{A/2 

_ V2(Gi2«i + 62202 + Q26a6)Tzdz 

+ ^5(x-xr)Erar\zMz)Trzdz 
r 

J A/2 

_A/2(Gi6«i + Q26«2 + Q66a6)Tzdz 

where Ts and Tr denote temperature distributions in the stiff­
eners, fis(z), Pr(z) are the widths of the stiffeners, and h is the 
thickness of the shell. 

If the temperature is constant throughout the stiffener cross-
sections, the corresponding terms in equation (6) are simplified 
as follows: 

Y,Hy-ydEfit,\pjLz)Tjz-Yilxy-yzE>A*L>T> 
s s 

J^5(x - xr)Erar ]/ r(z)7>fe - £ « ( * - xryE^,arTr 

r r 

Y,?>(y-ys)Es<xs\zMz)Tj,dz- £ « (y-ys)EsFsasTs 

£ « ( * - xr)Erar }£&) Trzdz~ £ « (x - xr)ErFMrTr (7) 
i r 

where Fs and Fr are the first moments of the respective stiffeners 
about the shell middle surface. Note that the term JVf is equal 
to zero if temperature is independent on the z-coordinate. 

Equations of motion, in terms of stress resultants and stress 
couples, are 

(6) 

NllX + N6yy = 0 
N6tX+N2yy = 0 

N, 
Mt iXX + 2M6iXy + M2tyy— + (TV, wiX + N6w,y), 

+ (N6w,x+N2w ) = peqhw„ (8) 
where 

Peqh = ph + J^8 i.y-ys)pAs + ][J5 (x-xr)PrAr. (9) 

In equation (9), p, ps, and pr are the mass densities of the 
materials of the shell, axial, and ring stiffeners, respectively. 

The substitution of equations (5) and (6) into (8) and neglect 
of the in-surface inertias yield the following equations of mo­
tion in terms of displacements: 
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[An + ̂ 8(y-ys)EsAs]utXX + A66u>yy + (,Al2 + A66)v^xy 

S 

- A l2wiX/R - J^S (y - ys)EAszsw,XXx 
s 

+ \A 11 + E 5 ( > ~ ys)E*As] w,xWiXX 
s 

+ (Al2+A66)wiyw:Xy + A66w:Xw:yy=Nl X + Nly 

(Al2 + A66)uiXy+[A22+'Y}8(x-xr)ElAr]Vjy + A66vtXX 
r 

- [A22+^(x-xr)EAr]w,y/R-'£S(x-xr)ErAlzrw:yyy 

r r 

+ 1^22+ ^(X-XjErAAWjWj,, 

r 

+ (A 12+A66) wiXw:Xy + AMW^WJ = Nlj + Nlj 

- A , vvO T - 2(0,2 + 2066) w:Xxyy - D22w,ym 

+ X / 6 ^ -~ y^>Es i ^ A i u , ™ + ^ , x ^ i X X X 
S 

,xxxx ] + y,8(x- xr)Er{A^zr[viyyy 

r 

- Wj,y/R + W,yWiyyy+ W^y] 

-Iorw,yyyy) +An(uiX+ l/2\fx)/R 
+ [A22 + J^8(x- xr)E,Ar] (Vj - w/R + l/2w2

y)/R 
r 

- J}6(x-xr)ElAlzrwiy/R + ( ( H n + J^&iy-yJEsA,] 

r s 

(u<x+ 1/2 wfx) +An(Vj,- w/R+l/2\fy) 

- D 6 ( > -ys)EsA^swjXX }wiX + A66( Uj, + vtX + w^wjwj,} >x 

+ {An(uiX+l/2w2
x) + [A22 

+ Y,&(x-Xr)ErArUv,y- W/R + l/2w^,) 

expressed as single-term functions of the in-surface coordi­
nates: 

u = U{t)Mx,y) 
v = V(t)f2{x,y)-
w = W(t)Mx,y) (11) 

where fj(x, y) satisfy boundary and periodicity conditions. 
Then the substitution of equations (11) into (10) and the ap­
plication of the Galerkin procedure yield a set of nonlinear 
equations for the functions U(t), V(t), and W{t). The first 
two of these functions can be expressed in terms of W(t) from 
the first two equations of the set. Then the remaining equation, 
which corresponds to the last equation in equations (10), can 
be represented in terms of W{i) only: 

Witt + (pi + {i\Tx)W+(52W
2 + (l,Wi + (S0Tx = 0, (12) 

where /3, and j3| are coefficients and Tx is a characteristic of 
the thermal field. An example of the coefficients in equation 
(12) is shown in the Appendix. As follows from equation (12), 
the shell may exhibit two types of behavior. If /31 + /3{7,

1>0 
the shell will oscillate periodically while if j81 + /3}7'1<0 the 
behavior is aperiodic, and is referred to as a thermal instability 
phenomenon. 

In the following the analysis is concerned with limited var­
iations of temperature so that the resulting motion is oscilla­
tory. The exact solution of equation (12) can be sought in 
terms of elliptic integrals and functions similar to the approach 
used in the problems of free vibrations of perfect and imperfect 
bars (Woinowsky-Krieger, 1950; Burgreen, 1950; Elishakoff 
et al., 1985; Birman 1986). However, note that in these ref­
erences the solution was simplified for the case where /32 = 0. 

Multiplication of equation (12) by dW and the subsequent 
integration yield 

W/=-tfl + 0\T1)W
l 

-2/3P2W*- l/2/33W*-2$QT\ + C (13) 

where C is a constant found from the condition that Wit = 0 
at W= Wmali. Then substituting the value of C into equation 
(13), separating variables and integrating, one obtains 

t-t. A dW 

V(0, + jSjr,) (i - w2) +2AWmax(i - w3) + i /2ft< a x( i - w*) + 2(/30/^max)r,(i - w) 
(14) 

_ Ylb(X-Xr)EAj.rWyy}W,y},y=Mlxx + 2Mlx 

r 

+ Mlyy + N2
T/R+(N{wiX 

+ Nlwty)>x + (N%wyX + Nlwjj + peqh w,„. 

where 

(10) 

As follows from equations (10), the shell will experience 
radial deflections when subject to a nonuniform temperature 
even if other loads are absent. This conclusion applies to both 
linear and nonlinear problems. Even if the distribution of 
temperature is uniform, the shell will bend in the radial di­
rection; this follows from the presence of the term JVf/R on 
the right side of the last equation (10). 

Thermal Shock-Geometrically Nonlinear Problem 
If the temperature increases very rapidly so that the thermal 

ramp occurs over a small time compared to the fundamental 
period of the structure, it is convenient to treat these temper­
ature increases as instantaneous. Consider the case where the 
temperature is represented by the Heaviside step function, i.e., 
it increases to a certain level and remains constant after that. 
Shells subject to such thermal fields may experience dynamic 
deformations. Suppose that displacements u, v, and w can be 

W=W/Wm3Xand WQ=W(ta). (15) 

The right side of equation (14) can often be represented as a 
tabulated elliptic integral. Then W can be found as an elliptic 
function of time. The value Wmsx should be specified using 
the initial conditions. 

Note that the scenario discussed previously involves la­
borious transformations. Moreover, the value of Wmm is nec­
essary for evaluation of the integral in equation (14). However, 
in the solution just described, Wmax can be specified only after 
W(t) has already been determined. Hence, the solution must 
be iterative. 

Therefore, an approximate solution of equation (12) may 
be quite attractive. For example, the difference between the 
exact solution for the frequencies of free vibration of imperfect 
elastic bars and a timewise, two-term Galerkin approximation 
was shown to be less than 5 percent (Elishakoff et al. 1985). 
The approach similar to that used by Elishakoff et al. (1985) 
is used in this paper. Assuming 

W=W0+Wicosut (16) 
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and applying the Galerkin procedure to equation (12), one 
obtains 

-w2Wl + U3l+0l
,Tl)W1 + W2WoWi 

+ 303 W0
2 W{ + 3/4/33 H î3 = 0 

(0, + 01 r , ) Wa + 02 W0
2 + 03 Wi + 1 /202 ^ 2 

+ 3/203W0W,2 +$0^ = 0. . (17) 

Equations (17) include three unknowns: W0, Wx and o>. If 
the shell is at rest at the instant of thermal shock, 

W(0) = 0 W,,(0) = 0. (18) 

The substitution of equation (16) in the first equation (18) 
yields W0= - Wx, the second condition (18) is identically sat­
isfied. Then the relationship between Wx and 7\ as well as the 
corresponding frequency of oscillations can be determined from 
equation (17). 

Then equation (22) yields 

W„ + (l + \lNl
T)W=- X2JV,T. (24) 

The solution of equation (24) subject to zero initial condition 

W= l + \ ^ T (cosVl+XiiV/r - 1). (25) 

The validity of this solution is limited to the values of TV*,7" 
which satisfy the inequality 1 + \iNl

T>0. The convenience of 
equation (25) is that it enables us to determine the amplitude 
of motion as a function of a dimensionless thermal load N^ 
and two nondimensional parameters which can be easily eval­
uated in particular cases. For example, if the ends of the shell 
are simply supported so that 

w = l,Wmn(t)sm—sm—, (26) 

Thermal Shock-Geometrically Linear Problem 

If displacements remain small so that nonlinear effects can 
be neglected, the equation of motion equation (12) is reduced 
to 

W,» + (l31+01
17'1)»'+0o7'1 = O 

with the obvious solution 

(19) 

W=Asinoit + Bcosut - -
0i + 0 i1?-, 

where J = A / 0 1 + 0 1
1 7 ,

1 . 
Initial conditions (18) yield 

A=0,B = - A,r, 

(20) 

(21) 
"/3, + 0 / r , 

Note that 0! is proportional to the linear buckling load of the 
shell subject to axial compression, say 0! =Ncr)p, where Ncr is 
the buckling load and \p is a coefficient. Then introducing a 
nondimensional time parameter T SO that (. . .)ytl = (. . .),7Tco0

2 

where coo = V 0 i is the natural frequency of the shell at the 
room temperature, one obtains from equation (19): 

W„ + W=- (22) 

where W= W/h. 
Equation (22) includes only nondimensional parameters. De 

note 

where X! and X2 are coefficients and Nl
T=Nl

T/Ncr. 

^^ = X2NJ (23) 

and the thermal field is uniform, i.e., T(x, y, z)=Tr= TS=T, 

N,' 
PeghP0Ti= — 

N,-

where 

Then 

L = -
R 

«2 = 

(27) 

(28) 

X,= - 1 + 
( - ) 
\m-Kj 

rh. 

n2
TL 

Kl~ (m-wfh 
(29) 

where h=—. 

Note that the relationship W{NX
T) can be obtained even 

without specifying the in-surface boundary conditions. The 
change of the response from steady-state oscillations to a 
periodic motion, which can be conveniently called thermally-
induced buckling, occurs if 

1 
N,'>-

n ( - ) 
\mir / 

(30) 

n2 

Therefore, even if in-surface boundary conditions are not 
known but the axial buckling load the corresponding buckling 
mode shape are determined from experiments, the value of 
temperature corresponding to thermal buckling can be cal-

Table 1 
shells 

Type 
of 

Reinforcement 

S t i f f e n e r s 
in both 

d i r e c t i o n s 

Ring 
S t i f f ene r s 

Axial 
S t i f f ene r s 

Unstiffened 
s h e l l 

Critical temperatures and nondimensional buckling 

T h e r m a l l y i n d u c e d b u c k l i n g 

C r i t i c a l t e m p e r a t u r e 
T'K 

2110 

1152 

60 

56 

Mode 
m 

1 

12 

1 

1 

s h a p e 
n 

2 

3 

4 

4 

loads of 

B u c k l i n g due t o a x i a l l o a d i n g 

C r i t i c a l l o a d 
| N „ / E t h | 

0 . 4 1 

6 . 9 5 x l 0 " z 

6 . 0 1 x l 0 ~ z 

4 . 6 0 x l 0 " 2 

Mode 
m 

3 

12 

1 

1 1 

s h a p e 
n 

3 

3 

4 

2 
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Table 2 Comparison of the amplitudes of harmonics of oscillations of 
the shell reinforced in both directions 1100 W„Jhl\ r=100 K 

r-l 

2 

3 

4 

5 

2 

50.30 

15.38 

7.09 

3.55 

2.02 

3 

16 .51 

13.69 

8.00 

4 .59 

2.36 

4 

5.87 

5.24 

4 . 4 1 

2 .94 

1.92 

n 

5 

2.36 

' 2 . 3 7 ' 

2 .05 

1.67 

1.19 

6 

1.16 

1.14 

1.09 

0.92 

0.75 

7 

0.62 

0 .63 

0 .60 

0 .55 

0.46 

Table 3 Comparison of the amplitudes of harmonics of oscillations of 
the shell reinforced in both directions 1100 WmJh\; 7=200 K 

1 

2 

3 

4 

5 

2 

105.86 

30.04 

14.44 

7 .01 

4 .09 

3 

31.97 

28.38 

15.56 

9.38 

4 .65 

n 

4 

11.98 

10.27 

9 .01 

5.77 

3.89 

5 

4 .66 

4 .80 

4 .04 

3.39 

2.34 

6 

2.35 

2.36 

2.20 

1.82 

1.51 

7 

1.23 

1.27 

1.20 

1.12 

0.92 

culated. Similar conclusions can be obtained using nonde­
structive vibration testing with the critical load related to the 

natural frequency by Ncr = —. 

Numerical Analysis 
The calculations were performed for a simply-supported 

multilayered cylindrical shell symmetrically laminated about 
the middle surface with the angle ±30 deg. Both the shell and 
the stiffeners were manufactured from graphite/epoxy AS/ 
3501 which has the following properties at room temperature 
(Tsai and Hahn, 1980): 

£L=138 GPa, ET= 8.96 GPa, GLT=1A GPa, eL7-=0.30, 
at. = 0.18 /un/m/K, aT= 22.50 /wn/m/K. 

It is well known that mechanical properties are functions of 
temperature. In the problem of thermal shock, temperature 
increases very rapidly and remains constant thereafter. In the 
following examples all properties have been taken as indicated 
previously. This is justified if the temperature increase is mo­
derate and the thermal field is uniform as was assumed in the 
numerical analysis. 

The geometry of the shell was L = 2 m, R = 0.5 m, h = 0.01 
m, the internal reinforcements in both directions were 0.05-m 
high and 0.01-m wide with the spacing 0.1 m (the spacing of 
the axial reinforcements should be 0.1013 m to provide 31 
stiffeners). The fiber directions coincided with the axes of the 
corresponding stiffeners. 

Critical temperatures corresponding to thermally-induced 
buckling, i.e., to the change of dynamic response character of 
the shell were calculated for the shells whose axial buckling • 
loads have been determined in the previous paper (Birman, 
1988b). The results of calculations are summarized in Table 
1. As follows from this table the mode shape of thermally-
induced buckling does not necessarily coincide with the mode 
shape of buckling due to axial loading, although they can be 
close. The presence of ring stiffeners appears to have a very 
significant effect on the response to the thermal shock. The 
shells, even reinforced in the axial direction, experience ther-

200 T K 

Fig. 2 increase of the amplitudes of harmonics of oscillations of the 
shell reinforced in both directions with temperature. The numbers m 
and n are shown at the corresponding curves. 

Fig. 3 Increase of the amplitude of the dominant harmonic of oscil­
lations of the shell reinforced in the axial direction only with temperature 

Fig. 4 Nondimensional critical thermal loads of reinforced shells; 
n2

r=0.1 

Fig. 5 
n /=1 .0 

0 2 4 L 
Nondimensional critical thermal loads of reinforced shells; 

mally-induced buckling at very small elevations of tempera­
ture. On the contrary, ring-reinforced shells exhibit stable 
oscillatory response'at very high temperatures. Note that ther­
mally-induced buckling does not necessarily mean failure of 
the shell. However, it results in large deflections and the re­
sponse has to be analyzed using nonlinear theory. 

The results obtained for high temperatures are unreliable 
since the properties of material will be different at such tem­
peratures. However, the conclusion that can be drawn from 
Table 1, i.e., that the shells will exhibit steady-state oscillations 
even if the temperature "jumps" to several hundred degrees, 
is very important. 
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The comparison of the amplitudes of harmonics in the series 
(26) representing radial oscillations of the shell is given in 
Tables 2 and 3 for different temperatures. The comparison of 
these two tables illustrates that the same harmonics remain 
dominant at various temperatures. The increase of the am­
plitudes of these harmonics with temperature is shown in Fig. 
2. The rapid increase of the amplitude of the dominant har­
monic is shown in Fig. 3 for the axially-reinforced shell. Fi­
nally, variations of the nondimensional critical thermal load 
with the ratio L-L/R are shown in Figs. 4 and 5. These figures 
illustrate that the ratio of the thermal term N,T corresponding 
to thermally-induced buckling to the critical axial load asso­
ciated with the same mode shape decreases for longer shells. 

Conclusions 
The analysis presented in the paper illustrates that an ele­

vated temperature results in bending deflections of reinforced 
circular cylindrical shells manufactured from composite ma­
terials. Naturally, this conclusion remains valid for isotropic 
shells as well. If a shell is subject to an instantaneous increase 
of temperature (thermal shock) it can exhibit steady-state os­
cillations. However, if the temperature exceeds a certain critical 
level, associated with thermally-induced buckling, the char­
acter of response changes and the deflections can increase 
dramatically. 

Shells reinforced in the circumferential direction have much 
higher temperature corresponding to thermally-induced buckl­
ing than shells without such reinforcements. On the contrary, 
axial stiffening does not show a significant effect on the ther­
mally-induced buckling temperature. However, it should be 
emphasized that the conclusions regarding relative effective­
ness of stiffeners were obtained for a particular material and 
boundary conditions; shells manufactured from other com­
posites may behave differently. The mode shape of thermally-
induced buckling does not always coincide with the mode shape 
of buckling due to axial loading. However, in the examples 
considered here these mode shapes were remarkably similar 
for reinforced shells. The thermally-induced buckling of shells 
subjected to uniform temperature can be predicted based on 
the static buckling loads in axial compression and/or the nat­
ural frequencies. 
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A P P E N D I X 

Coefficients of Equation (12) 

The substitution of equations (11) into equations (10) and 
Galerkin procedure yield a set of three algebraic equations for 
U(t), V(t), and W(t). These equations can be represented in 
a nondimensional form: 

aiU+a2V+a3W+a4W
2 = nlTl 

biU+b2V+b3W+b4W
2 = n2Tl 

CiW+CiU+CiV+C^ + Csr^ + CsUW+C-jVW 

= n3tl + n4WTl + pWJT (Al) 

where . _ 
[U,V,W) = [U(t),V(t),W(t))/h. (A2) 

Tx is a dimensionless characteristic of the thermal field, 
7\ = aTj0 , where a is an arbitrary thermal expansion coefficient 
and T° is temperature. A nondimensional time scale r is in­
troduced by 

r = wt, (A3) 

co being a normalizing frequency which can be chosen arbi­
trarily. Accordingly, 

P = 
feq" (A4) 

where £ is a reference modulus of elasticity. 
The values of U and V can be evaluated from the first two 

equations (Al). The substitution of these values into the third 
equation (Al) yields a nondimensional version of equation 
(12): 

Wt„ + (fix + Pi
lTl)W+ j32W

2+p3W' + /So^i = 0 (A5) 

where 
p/30 = n3-(c2s3 + c3s6) 
P§\= -(Ci+CiSi+C^) 

P&\ = n4-(.C^53 + CTS6) 

pj_2 = - ( C 1 , J 2 + C3S'5 + C4 + CeSi-r-C7S4) 

p/33 = - ( C ^ 2 + CTSS + C5). (A6) 

In equation (A6) 

«i = (b3a2-b2a3)/s s2 = (a2b4-a4b2)/s 
s3 = (b2nx-a2n2)/s s4 = (a3bi-aib3)/s 
s5 = (fl4h,-a164)A s6 = (ain2-bin{)/s 
s = axb2-a2bv (A7) 
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The coefficients of equation (12) can be expressed in terms of 
the coefficients of equation (A5) as follows: 

Po = l30o>2h 

j82 = j32«2/A 
P3 = p3u

2/h2. (A8) 

a} = 2(mirha)
3ha\J^ EsAszs sin2 

S 

16 
«4 

9mmv' 
j[-2(mTrha)

3Au 

+ mn\ihJ,\2(Al2-A66)\f(m)An) 

^(m,ha)^EsAss^n-fAm) 

Particular Case: Thermal Shock of a Plate Reinforced 
in One Direction 

Consider a simply-supported plate reinforced in the x-di-
rection. The tangential movements of the edges are restricted 
but the in-plane displacements in the directions normal to the 
edges are permitted. Therefore, the boundary conditions are: 

x = 0, x = a: w=v = Ml=Nl=0 
y = 0,y = b: w = u = M2 = N2 = 0 (A9) 

where a and b are the lengths of the edges in the x and y 
directions, respectively. 

The thermal field is represented by 

T(x, y, 0 = 7V>(0s in— sin ^ (A10) 
a b 

m and n being integers. 
Thermal terms corresponding to the thermal field equation 

(A 10) can be written as 

«, = mrh, 

n2 = mrha\ 

- T 

"Eh 
- T 

Eh 

c, = -[(mirha)'
iDu + 2(mirha)

2(nirhah)2(Dl2 + 2D66) 

+ (mrha\)
4D22] - 2 £ (mxh^EJ^ s i n 2 ^ 

S 

c2 = {rmrha^E^Zsh^sm2^ 
S 

c3 = 0 

c4 = 0 

{TV/, N2
T, N6

T, M, r , M2
T, M6

T] 7", 

= [wi , n2 , n6 , mi, m2', m6 ')sin sin —— 
a b 

where hx
T, h2

T, 

(All) 

, are coefficients which can be easily eval­
uated using equation (6). 

Boundary conditions (A9) can be satisfied if the displace­
ments are given by 

m-KX . niry 
u = U(t)cos sin —— 

a b 
. m-irx niry 

v = K(0sin cos —— 
a b 

r v . rn-wx . niry 
w = W(t) sin —— sin——. 

b b 
(A12) 

The substitution of equations (All) and (A 12) into the equa­
tions of motion (10), the Galerkin procedure, and some trans­
formations yield the equation (A5). The coefficients in 
equations of the set of equations (Al) used to evaluate ^ and 

a, = -{m-whaY Au + 
\m) 

- 2{m^:ha)
2hak^EsA^m2,^ 

a2 = -mrn^hfHAn + Ate) 

c5 = - ^ (nncha)
4Au + l- (mirha)

2(nirha\)
2 ( 4 f + ^6 6 ) 

+ ^(nvhak)'iA22 

32(mirha)
3
 r -

C6 = n 2 [^11 + 9mnir 

--{mirhafhaK^EsAs s in 2^y 
S 

,h„\ 
- l (m^f-^^EAs sin3'-^ f(m 

WTT 

32(mrh, 
c7 = 

«3 = - (mirha) 

32 
n4 = -—(mirh, 

lj^~ [An + ( ^ ) (Al2-A66)lf(m)An) 

ihiT /n\\2 m2
r 

E~h2 + \m) ~E~i?_ 

«/ M \ 2 «2 
Eh \m) Ei 

Am)f(n). (A13) 

The coefficients b, can be obtained from a, by the following 
rotation of symbols: 

m&n, An-A22, J} = 0, ha~ha\, ha\-ha. 

Additional notation used in equation (A13) is: 

\ = a/b 
Ay = Ay/Eh Dij^i/Eh3 

ha = h/a 
Es = Es/E As=As/h

2 

Zs = zs/h IOs = I0s/bh3 

(0 if /' = even 
/(») = 1 if/ = odd. (A 14) 
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