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BRIEF NOTES 

Figure 1 shows the spectrum for a Duffing oscillator with 
g(x, v) = ax2'. As the excitation level increases the resonance 
frequency increases, and the width of the resonance peak also 
increases. This is in keeping with the result of Miles (1989). 
An increase in the response level causes an increase in the 
effective resonance frequency; a random response contains all 
amplitudes each with its effective resonance frequency and 
contributes to the broadening of the peak. 

Figure 2 shows the spectrum for a van der Pol oscillator 
with g(x, v) = ax3v and /3 = - a in Eq. (2). In the case of 
sinusoidal excitation with a frequency close to one, at low 
excitation levels, the response has components at the excitation 
frequency and at the entrained free-oscillation frequency of 
one. As the excitation amplitude is increased beyond a critical 
value the free-oscillation decays. Fig. 2 shows for the random 
case a large peak at a frequency v = 1 for small excitation 
levels. The peak broadens considerably and flattens as the 
excitation level is increased suggesting that the free-oscillation 
component is also partly quenched in the random case. 

Conclusion 
Some results have been obtained for the spectrum of the 

response of nonlinear oscillators to white noise excitation. The 
results are obtained as an extension of previous work by the 
authors (Liu and Davies, 1988, 1990a) and complement earlier 
work by Miles (1989) and Wen (1975, 1976). 

The work was supported by the Natural Sciences and En­
gineering Research Council of Canada. 
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Extension of Vlasov's Semi-membrane Theory to Rein­
forced Composite Shells 

V. Birman14 

Governing equations/or the statics and dynamics of reinforced 
composite shells are developed based on Vlasov's semi-mem­
brane shell theory. These equations have closed-form solutions 

"Engineering Education Center, University of Missouri-Rolla, St. Louis, MO 
63121. Mem. ASME. 
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illustrated for buckling and free vibration problems. The buck­
ling solution converges to the known result for unstiffened 
isotropic shells. 

Introduction 
Reinforced composite shells have been a subject of a number 

of analytical studies. Typically, these studies were based on 
Donnell-type theory of shells (Block, 1968;Bogdanovich, 1986; 
Birman, 1988,1990a, 1990b; Birman and Bert 1990). Donnell's 
shell theory is usually acceptable, if the axial or circumferential 
size of deformation waves is small. A comparison of Donnell, 
Morley, Love, and Sanders shell theories applied to unstiffened 
composite shells was performed by Bert and Reddy (1982). It 
was shown that Donnell-type theory yields results, which are 
in a good agreement with other theories if the radius-to-thick­
ness ratio exceeds 20. However, it is necessary to note that 
Donnell's shell theory is not appropriate for long shells. In 
addition, this theory has been used to develop closed-form 
solutions only for one type of boundary condition. 

Vlasov (1944) developed a theory for long isotropic cylin­
drical shells where stress couples Mx and Mxy and the transverse 
shear stress resultant Qx are negligible (here, x and y are axial 
and circumferential coordinates, respectively). 

In addition, the middle surface of the shell was assumed 
inextensible in the circumferential direction, i.e., ^ = 0 and 
in-surface shearing deformations were neglected (yxy = 0). 

The theory based on these assumptions is called Vlasov's 
semi-membrane shell theory. An example of application of this 
theory to stability problems of isotropic cylindrical shells sub­
ject to axial compression can be found in Vol'mir's monograph 
(1967). Note that Vlasov's semi-membrane theory is based on 
Love's first approximation shell theory whose particular case 
it represents. 

In this Note, Vlasov's theory is extended to long, reinforced 
composite cylindrical shells. Obviously, reinforcements should 
be light and closely spaced to justify the assumptions of the 
theory. 

Governing Equations 
Consider a symmetrically laminated cylindrical shell rein­

forced by axial and circumferential stiffeners. The strain-dis­
placement relationships used in Vlasov's semi-membrane theory 
are 

w w 
ey=v,y-^ = ° Ky = ~w,yy-^i 

v x 

Ixy = U,y + V,x = 0 Kxy = - W\xy - ^ (1) 

where all notations are standard and the radial deflection w 
is positive if directed to the center of curvature. The stresses 
in the shell and stiffeners can be calculated as functions of 
strains using Hookean relationships omitted for brevity. The 
axial stress resultant and the circumferential stress couple used 
in the analysis are 

Nx=Anex+^lS(y-ys)EsAs(ex + zsKx) 
S 

My = DUKX + D22Ky + 2 5 (x - xr)ErIorKy (2) 
r 

where An is the axial extensional stiffness of the shell, Dy are 
its bending stiffnesses, Ar and 4̂., are stiffener cross-sectional 
areas, xr and ys are coordinates of the stiffener centroids, Es 
and Er are the moduli of elasticity of the stiffeners, Ior is the 
moment of inertia of a ring stiffener about the shell middle 
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BRIEF NOTES 

surface, and zs is a distance between the middle surface and 
the centroid of an axial stiffener positive, if the stiffener is 
attached to the internal surface of the shell. 

Equations of equilibrium or motion are obtained from Love's 
first-approximation shell theory: 

**x,x "i" **xy,y ~~ Qx 

Nxy,X + Nyiy--My,y = Qy 

M„ v+ R 
(3) 

where qx and qy are in-surface distributed loads and q is an 
outside pressure. 

The compatibility equation is 

R^ (4) 

Combining Eqs. (3) and (4) and using (2), one obtains the 
following differential equation: 

1 „ Es An 

- - QQMy + -^ QwtXXXX+ — d0 i2 """ I ,aa«or = ~RQQ (5) 

where 

9(3' 
+ 1 

x 
a = R 

_y_ 
R 

An =Au + X 8^y-ys)EAs 
s 

Es=^j&(y-ys)EsAszs 

Q = - Q,ffl - Qx,aa + QyS- (6) 

The substitution of My from (2) into (5) and the exclusion of 
the operator (d2/d/32 + 1) yield 

D22QQw+A2Qwiaa00 + EsRwiClaaaW+AnR
2w,aaaa = - R4Q,m 

where 

A>2=A>2+2su-x r)£ r/0, 

(7) 

(8) 

In a particular case of an isotropic shell, Eq. (7) reduces to 
that presented by Vol'mir (1967). 

Note that the present theory is applicable in the case of light, 
closely spaced stiffeners. This justifies the application of the 
smeared stiffeners technique. Therefore, 

Hy-ys) = i/is 

8(x-xr) = l/lr 

where 4 and lr are the spacings of the corresponding stiffeners. 

Buckling Problem. If the shell is subject to an axial loading 
Nu q = -Af,w i r o qy = -JVi»,„, and qx = 0. Substituting 
these expressions into Q given by (6) and using (1), one obtains 

Q = - ^ 2 (W„«-W,ttaft3). (9) 

Suppose that 

w=Wsin n/3, (10) 

n being an integer. Then (7) yields an ordinary differential 
equation for W: 

(AnR
2-EsRn2)Waaaa + n2l(l-n2)n2Dn 

+ («2+ l)N1R
2]W,aa + D22n\l-n2)2W=0. (11) 

The integral of (11) includes four constants of integration. If 

the ends of the shell are clamped, i.e., w = w a = 0, the 
substitution of the integral of (11) into the boundary conditions 
and the nonzero requirement for constants of integration yield 
the buckling equation. Another type of boundary condition 
can be formulated, if the shell is supported by equally spaced 
elastic bulkheads. Then for each span of the shell the boundary 
conditions are wiQr = 0, w{L, 0) = ±gQx(L, 0) where g is a 
bulkhead radial compliance and Q*is the transverse shear stress 
resultant. Notably, although Qx, Mx, and Mxy were neglected 
to develop the governing equation, in reality they exist, al­
though negligible compared to Qy and My. Therefore, Qx can 
be expressed in terms of w using Eqs. (1) and 

Qx=Mx<x+MxyJ, 

Mx = DUKx + DnKy+ 2 8(y-ys)Es(Aszsex + 

Mxy = D66Kxy 

u= [/sin «/3 U= -

v = V cos «j3 K x = - 2Rn WiX. (12) 

The expression for the twisting stress couple can be extended 
to include torsional stiffnesses of reinforcements without sig­
nificant complication of the analysis. 

If the ends are simply supported and unrestricted against 
axial movements (Nx = 0), 

mirR 
W=fsin \a X = - (13) 

where m is an integer satisfies the boundary conditions. Critical 
loads obtained from (11) are 

Nx„= 
(AnR

2-EsRn2)\4 + n4(n2-l)Dl2K
z + n4(n2-l)2D22 

n2(n2+\)R2\2 

(14) 

The buckling load corresponding to a chosen value of n is 
obtained from (14) where X = X obtained by minimization of 
Nicr with respect to X. If the shell is unstif fened and the material 
is isotropic, these results converge to the solution obtained by 
Vol'mir (1967). 

Vibration Problem. In this problem, q = -pw,„, qx = 
-puitt, and qy = -pf ,« , p being the mass per unit area 

P = P + ^]8{y-ys)psAs+^]5(x-xr)prAr. (15) 
s r 

In (15), p is the mass per unit area of the unstiffened shell 
and ps, pr are mass densities of stiffener materials. Using 

w=Wei0"smnP, (16) 

and smeared stiffeners technique, one obtains a dynamic coun­
terpart of (11): 

(A~! ,i?2 - EsRn2) W,aaaa + [Dnn\\ -n2)+ pRW] W,aa 

+ [D22n\l -n2)2-pR4n2(n2 + l),u>2] W= 0. (17) 

If the shell is simply supported and (13) can be used, the 
corresponding squared frequency is 

2_(AnR
2-EsRn2)\'i + n4(n2-l)Dl2k

2 + n'i{n2-\)2D22 

" pR4[h2 + n2(n2+\)] 
(18) 

The integral of (17) can also be subject to other boundary 
conditions discussed above yielding the frequency equation for 
these cases. 

Concluding Remarks 
Important conclusions can be obtained from (14) and (18). 

Ring stiffeners always increase buckling loads and natural fre-
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BRIEF NOTES 

quencies of semi-membrane cylindrical shells. Axial stiffeners 
have the same effect in all practically important situations. 

Limitations of the semi-membrane theory, i.e., shell and 
stiffener geometries and material characteristics appropriate 
for its application can be established by comparison of results 
(14), (18) with available solutions. It would be preferable to 
use Love's first-approximation theory for the comparison, since 
Vlasov's theory represents its particular case. An extensive 
parametric analysis necessary to formulate these limitation 
exceeds the scope of this Note. 

Vlasov's semi-membrane theory of isotropic shells represents 
a particular case of the. theory developed here. The advantage 
of the present theory is that it can be used to obtain closed-
form solutions for various boundary condition which are not 
available using other theories of shells. 
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Stability of Flow Between Two Rotating Cylinders in 
the Presence of a Constant Heat Flux at the Outer Cyl­
inder and Radial Temperature Gradient: Narrow Gap 
Problem 

M. A. Ali15, H. S. Takhar16, and V. M. Soundalgekar17 

Introduction 
The study of the effects of constant heat flux at the inner 

cylinder on the stability of flow of a viscous incompressible 
fluid between two rotating concentric cylinders was presented 
by Takhar et al. (1988) in the case of a narrow gap. Instead 
of constant heat flux at the inner cylinder, if there is a constant 
heat flux at the outer cylinder, how is the stability of flow 
affected? This question is studied in this paper. All the earlier 
references on this topic are referred in Takhar et al. (1988). 

"Department of Mathematics, Bahrain University, Bahrain. 
"Department of Engineering, Manchester University, Manchester M13 9P1, 

UK. 
"Brindavan Society, Thane 400601, India. Mem. ASME. 
Manuscript received by the ASME Applied Mechanics Division, Mar. 10, 

1989; final revision, March 7, 1991. 

Mathematical Analysis For a three-dimensional, axisym­
metric, and incompressible viscous flow, and neglecting viscous 
dissipative heat, the steady state solutions can be shown to be 

u=w = 0, V-
. B 

--Ar+ — 
r 

Q2Rz~ A = 
\t\Ry I\{I\2 ("I — " 2 / 

Rl-R\ 
B 

R\-R\ 

e=T- T ^ l n ^ 
1 K R{ 

(1) 

where Ru R2 are the radii of the inner and the outer cylinders, 
respectively. For the velocity field, the usual no-slip boundary 
conditions are assumed and for the temperature field. For 
constant heat flux at the outer cylinder and the inner cylinder 
at temperature Tu the boundary conditions are assumed as 
follows: 

dT a 
T= Tx at r=Ri and — = $ at r=R2. 

dr K (2) 

Here, (w, v, w) are the velocity components in the (/•, 6, z) 
directions, AT is the thermal conductivity, and q is the constant 
heat flux at the outer cylinder. 

Following the usual procedure for deriving the differential 
equations for the marginal state of stability, we can show that 
these differential equations are as follows for a narrow gap: 

(D2 - c??u = - fl2Ta[g(x)i; + N>(g(x))26] (3) 

(Lr2-a1)v = u (4) 

(D2-cr2)6 = u (5) 

with following boundary conditions: 

u=Du=V=6 = 0atx = 0 

u = Du=V=D6 = 0atx=l. (6) 

The nondimensional quantities are defined as follows: 

d 
d=R2 

• ' • • ' - ^ • " - n 

a = \d, /t = 02/Qi, g ( * ) = l - ( l 

2A_}_ 

Qx Pr 
Pr = , - / * ,« = — 2 « , » = 7 r ~ 

lAd* 

jX)X 

qR2) 

T a = -
4yiG1d

4 

, Ra = 

PrQ?d« ( ^ ] « 

n 
Pia(qR2/K)Q2 _ R a 

4A Ta' 

Here, Ra is the Rayleigh number, Ta is the Taylor number, 
Pr is the Prandtl number, and N is the ratio of Ra and Ta. 
The only difference between the present set of Eqs. (3)-(6) and 
those of Eqs. (12)-(15) of Takhar et al. (1988) is that the sign 
of TV in Eq. (3) is positive in the present case and here the 
boundary conditions on 6 are interchanged. Thus, we have a 
two-point boundary value problem defined by Eqs. (3)-(5) with 
boundary conditions (6) for determining the eigenvalues ac, 
Tac for given values of p and N. Here, ac, Tac are the critical 
values of the wave number a and the Taylor number Ta. Tac 

helps us determine the speeds of the two cylinders in relative 
motion at which the transition in the fluid-flow takes place 
from its initial state to its final unstable state with the corre­
sponding ac which then determines the spacing of the vortices 
in the axial direction. 

Results and Discussion These values of ac and Tac are listed 
in Table 1 and in order to get the physical insight into the 
problem, we show the variation of Tac in Figs. 1-2. To compare 
the effect of constant heat flux at the outer cylinder, CHF0, 
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