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Liapunov methods are used to give conditions ensuring that solutions of infinite 
delay equations are uniformly bounded and uniformly ultimately bounded with 
respect to unbounded (C,) initial function spaces; and the connection to proving 
existence of periodic solutions is examined. Several examples illustrate the applica- 
tion of these results, especially to integrodifferential equations. ‘fi, 1992 Academic 

Press. Inc. 

1. INTRODUCTION 

It is known that for a functional differential equation with infinite delay 
which is sufficiently well posed in a certain phase space, existence of a 
periodic solution follows directly if solutions are uniformly bounded 
and uniformly ultimately bounded with respect’to this phase space. The 
purpose of this paper is to develop conditions ensuring such boundedness 
properties for solutions of general infinite delay equations and techniques 
for applying these in the specific case of integrodifferential equations. 
Liapunov methods are used throughout. 

In order to construct a phase space, let C = S9( [ -h, 01, R”), where 
O<h<co, and let G=G’u(g,}, where go(r) z 1 for r E ( - co, 0] and 
Go= {g~%((--,O], 11, co)): g(O)=l, g decreasing, g(p)-+cc as 
r -+ -m 1. For a given g E G, define the phase space C, = (C, 1. Ig), where 
Ml, = SUP,.oM~M~)) < a. C, = (C, 11. II ) is the space of bounded 
continuous functions with the sup norm, [Id11 =su~~~<~<~ IQl(s)(, and for . . 
h=co, C,=C,. 

DEFINITION 1.1. For g, g” E G, g < g” if g(s) d g”(s) for s <O and 
lim N-g, [suPs~Ok(s)/g”b - N))l = O. 
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Remark 1.2. Note that g, < g for all ge Go, and that for gic Go, there 
exists gE Go with g < gi, i= 1, 2, for instance, g= (min(g,, g2))lj2. 
Moreover, for exponentially growing g, e.g., g(r) = e-‘, we can have g < g. 

We consider the functional differential equation 

x’(t) = F(t, xl), (DE) 

where x,(s) = x( t + s), -h d s < 0 and FE %?(I2 x C,, W) for a given g E G. 
Certain properties of solutions, such as existence, are needed for the 
theorems to follow. For the infinite delay case, the question of what condi- 
tions on the phase space and F ensure such properties is a complicated one 
and the reader is referred to [S, lo] for a discussion. Therefore, for brevity, 
only continuity is asked of F and the necessary properties of solutions are 
hypothesized explicitly in the theorems and then verified for examples to 
follow. 

DEFINITION 1.3. Solutions of (DE) 

(i) exist if for each (to, 4)~ [w x C,, there is an c1 >O and a con- 
tinuous function x: [to -h, to + a) + R”, denoted by x(t, to, 4) or x( to, b), 
such that x(t) satisfies (DE) on [to, to + a) and x,, = 4, 

(ii) are continuable if bounded if for each (to, 4) E R x C,, x(t,, 4) 
is defined on [to, co) unless there exists p > to such that 
lim I _ p- lx(t, to, 411 = cQ> 

(iii) areuniqueifforeach(to,~)EIWxCgandcl>O,x(t)andy(t)are 
solutions of (DE) on [to, to + c() with x,, = Y,~ = 4 implies x(t) 3 y(t), 

(iv) are continuous in 4 if for each (to, 4) E R x C, and E, fi > 0, there 
exists a 6 >O such that [$ EC,, I#--$1, < S] implies )x,,,+8(to,~)- 
xto+,dto, $)I, <E for any x(to, 4), x(to, $1 defined on [to, to + PI. 

(v) If solutions satisfy (i)-(iv) for some gEG, then (DE) is g-well 
posed. 

Since Liapunov methods are used throughout, we defined a Liapunov 
functional and its derivative along a solution of (DE). 

DEFINITION 1.4. A Liapunov functional is a continuous scalar functional 
Y: R x C, + [0, co ), which for each (t, 4) E R’ x C, has a derivative along a 
solution x(t, 4) defined by 

V’(t, ~)=lim,,,+ 5 i J’(t + h, x,+/At, 4)) - Vt, 411. 
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Such a derivative is an upper right Dini derivative and discussion of its 
properties and conditions necessary to ensure its existence are found in 
[6, 111, respectively. Here, differentiability will be hypothesized for 
theorems and verified for examples. 

Let W={W:R+-+R + : W piecewise continuous, non-decreasing} and 
N=frl~~([W,R+):thereexista,L>OsuchthatS:+~~(~)ds>,afort~IW}, 
where a and L are said to belong to q. 

2. BOUNDEDNESS AND EXISTENCE OF PERIODIC SOLUTIONS 

The boundedness properties to be studied here are: 

DEFINITION 2.1. Solutions of (DE) are uniformly bounded in C,(g-UB) 
if for each B, > 0, there is a B, > 0 such that 

implies 

144 to, 411 <B, for t>t,. 

DEFINITION 2.2. Solutions of (DE) are uniformly ultimately bounded in 
C,( g-UUB) if there is a B > 0 and for each B, > 0, there is a T > 0 such 
that 

(to9 4) E ia x c, with 141, <B, 

implies 

I--$& to, 4) <B for tLto+T. 

In case g = g, or h < 00, we simply say UB and UUB. 

The following theorem, which may be found in [ 1,2], demonstrates the 
strong connection between such boundedness properties and existence of 
periodic solutions for (DE). 

THEOREM 2.3. Suppose there is a g E Go such that (DE) is g-well posed, 
F is completely continuous in R x C, and F(t + o, 4) = F(t, 4) for some 
o > 0. If, in addition, solutions of (DE) are g-UB, UUB, then there is a 
periodic solution with period o. 
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Therefore, under reasonable conditions on infinite delay FDEs, estab- 
lishing g-UB, UUB is tantamount to establishing existence of a periodic 
solution. 

Useful criteria exist for UB, UUB in ODES [2, 111, however, as Hale 
notes [7, p. 1393, analogous results are scarce for FDEs, particularly the 
infinite delay case. Some typical FDE results can be found in [2, 3, 71 for 
the finite delay case and [2, 51 for the infinite delay. Here, we will develop 
an idea introduced by Yoshizawa Cl 1, p. 2023 for finite delay: 

THEOREM 2.4. Suppose that h < ~0 and there exist a Liapunov functional 
V, functions Wi E %f and a constant U > 0 such that in Iw x Co 

0) Wl~(W6 W, 4)< Wl#WI)+ WlldlI)9 
(ii) V’(t, d)<O whenever /4(O)/ > U, 

(iii) W,(r) - Ul,(r) + co as r + co. 

Then solutions of (DE) are UB. 

Thus, boundedness properties of solutions can follow from 2.4(i), (ii) if 
W, dominates W3 on a neighborhood of infinity, a result which is also 
suggested for the h = co case in C, by the conditions for UB, UUB given 
in [S]. Using this idea, we will extend Theorem 2.4 to g-UB and g-UUB. 

3. BOUNDEDNESS RESULTS 

THEOREM 3.1. Suppose that for some g” E G, solutions of (DE) satisfy 
1.3(i), (ii) and there exist a Liapunov functional V, functions Wi E Yf, q EN, 
and constants U, r,,, /I > 0, A4 2 0 such that in [w x CgO 

(i) Wl(14(0)l) G V(4 4)G W2(14(0)l) + W3(141go)~ 
(ii) v(t, 4) G -v(t) W5(14(0)l I+ M 
(iii) W,(r)+03 as r-+cO and Sz’aW,(U)-ML>O, where a, L 

belong to q, 
(iv) W,(r)>p+ML+ W,(U)+ W,(r)for rar,. 

Then, whenever 6 2 0, solutions of (DE) are g-UB for any g E G with g < g”, 
and whenever S > 0, solutions of (DE) are g-UUB for any g E G with g < g”. 

Remark 3.2. W,(r)- W,(r) -P co as r -+ co suffices for 3.l(iv), and if 
W,(r) is unbounded, we can always choose U so that 6 > 0. 

Remark 3.3. When g” = g,, the UUB conclusion of the theorem is 
vacuous, but when g” E Go, it asserts that solutions are g-UB, UUB for 
some g E Go, since by Remark 1.2, there is a g E Go with g < g”. Moreover, 
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if g” is exponentially growing, for instance, g”(r) =e-I, solutions are 
g”-UB, UUB since g” < g”. 

For the finite delay case, we obtain the following result. 

COROLLARY 3.4. Suppose that h < 00, solutions of (DE) satisfy 1.3(i), 
(ii) in Co, and there exist a Liapunov functional V, functions Wit w”‘, q E N 
and constants U, Y,,, fi>O, Mb0 such that in RX C,, 

(i) W,(I4(O)l)< V(t, b)< WAl&O)l)+ W3Ol4ll), 

(ii) V’(t, 9) d -v(t) W5(lW)l) + M 
(iii) W,(r)-+co as r-00 and 6zf~WW,(U)-ML>0, where c(, L 

belong to q, 

(iv) W,(r)>p+ML+ W,(U)+ W,(r)for r3r,. 

Then, solutions of (DE) are UB whenever 6 > 0 and UUB whenever 6 > 0. 

Proof: The proof of Theorem 3.1 suffices if we replace (4) by 
W,(B,) + W,(B,) - N,6 ~0, N, > h and note that (5) is always satisfied 
whenh<co. 1 

In applications, we often encounter a V’ which can be shown to be 
negative definite for suffkiently large jq5(0)1, but cannot be shown to satisfy 
(ii) of Theorem 3.1. For such cases, the following corollaries are useful. 

COROLLARY 3.5. Suppose that for some g” E G, solutions of (DE) satisfy 
1.3(i), (ii) and there exist a Liapunov functional V, functions W;E Y’K and 
constants U, rO, b > 0, M, 6 > 0 such that in R x C, 

6) Wl(14(0)l)~ V4 d)< W,(Iql(ON)+ WAk4, ), 

(ii) V’(t, 4) B M, and V’(t, 4) < -6 whenever l&O)\ b U, 

(iii) W,(r) -+ 00 as r + “3, 

(iv) W,(r)>B+ W,(U)+ W,(r) for rbr,. 

Then, the conclusions of Theorem 3.1 hold. 

ProoJ With the choices q(t)= 1, c1= L= fl/2M, W,(r)= (6 + M for 
r 2 U, 0 for 0 d r < U}, all conditions of Theorem 3.1 are satisfied. 1 

COROLLARY 3.6. Suppose that h < 00, solutions of (DE) satisfy 1.3(i), 
(ii) in Co, and there exist a Liapunov functional V, functions Wie bv^ and 
constants U, rO, fl> 0, M, 6 80 such that in R x C, 

(i) W,(kW)l)6 V(c 4) d WAW)l) + WA lldll 1, 
(ii) V’(t, 4) GM, and V’(t, q5) d -6 whenever Iq5(0)\ 2 U, 



526 ROGER H. HERING 

(iii) W,(r) + cc as r + 00, 

(iv) W,(r)>/?+ W,(U)+ W,(r)for rar,. 

Then, the conclusions of Coroliary 3.4 hold. 

Proof of Theorem 3.1. For the uniform boundedness, let 6 20 and fix 
gE G with g< g”. Since C, z CgO, /q51,0 < lq41g, 3.1(i) yields 

v4 4)< w*(I4(0)0+ WI!&). (1) 

Let B, > 0 be given, B, > U, B, > rO. Define P, = W,(B,) + W,(B,) and fix 
t,ElR and #ECU with 141g<<,. Denote x(t, to,+) by x(t) and F’(t,x,) by 
V(t). Suppose there is a t, > to with 

V(t,)=P,+ML+l and Us) < Ut1) for all SE [to, t1). (2) 

Since V’<M by 3.l(ii) and V(t,)gP, by (l), it must be that t,>t,+L. 
Suppose that Ix(s)! > U for all SE [tl -L, tl]. 

By 3.l(ii), (iii), we have [::-L v’(s)ds< -W,(U)s::_,?(s)ds+ML~ 
-aW,( U) + ML = -6 < 0, and V(t,) < V( tl - L), a contradiction of (2). 
Thus, there exists S,,E [t, - L, tI] with Ix(sO)l d U; moreover, V(t,)< 
V(Q) + ML. Suppose that Ix,,,lg > B,. Since sup,, I0-s,,( Ix(s,, + s)I/g(s)) = 
sup,.o(lx(to+s)l/g(to-so+s)) d sup,.o(lx(to+s)l/g(s)) = MI, 6 B,, 
then lx,l, = sup,,-,,,,o(lx(~o+~)l/g(~)) G ~~~~~~~~~~~~ Ix(s~+s)l = 

sup t,,isGs,, I-WI and lx& < Ix(s,)l for some st E [to, so]. Using (1) and 
(21, W,(lx(s,)O d WI) G V(t,) G Us,) + ML G ML + ~z(l-4so)l) 
+ W3(jx,Jg) < ML + W,(U) + W, (Ix(s,)l), which by 3.l(iv) implies 
(x,,Jg < Ix(s,)l < r. < B,, a contradiction. So, it must be that (xJg < B, and 
V(tl) < V(s,) + ML < ML + W,(U) + W,(B,) d P, + ML, a contradiction 
of (2). Then, there is no t as in (2). Moreover, V(t,) < P,, so combining 
these gives that W,((x(t)()< V(t)< P, + ML+ 1 for any t 3 to. Using 
3.l(iii), let B, > 0 be such that W,(r) > P, + ML + 1 for r > B,. For this 
B2 > 0, which depends only on B,, we have Ix(t)/ <B, for t > to. Then 
solutions are g-UB. 

Note from 1.3(ii) that for any g ,< g” and (to, 4) E R x C,, the solution 
x(t,, 4) exists on [to, cc) since it remains bounded. 

For the uniform ultimate boundedness, let 6 > 0, g” E Go and fix g E G 
with g < g”. Let B3 > 0 be given. Solutions are g-UB, so there is a B, > 0 
(B, > B,) for which [to E R, 4 E C,, 141, < BJ implies that lx@, to, d)I <II, 
for alls~so, and thus that for any t2 to, lxIlg = max(sup,..-,((x(t+s)(/ 
g(s), suPk-,,,,o (Ix(t + ~W&)) 1 = max{sws.o(lx(to + s)l/s(s + to - t)), 
~~~roc~~l~I~~~~l/~~~- t))I < maxIIxr,l,, sup,~...,(B,/g(s-tt))} G&. 
Then from (l), 

[to E R, 4 E C,, 141, < B3] implies V(t) < W,(B,) + W,(B,) for t 2 to. (3) 
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Choose Ni E N to satisfy 

which is possible since g” E Go and g < g”. Fix t,E R and q5 E C, with 
Iq51, Q B, and let PO = W,(U) + W,(ro). 

LEMMA. If there is a t > to + N, L + N1 for which V(t) > PO + ML, then 
thereisa t,E[t-NIL-N1,t]for which V(t,)>V(t)+j. 

Proof of Lemma. Suppose that Ix(s)1 > U for all SE [t-N, L, t]. Then 
L,L V’(s)ds< -W,(U)j:-,,,q(s)ds + MN,L 6 -W,(U)N,a + 
MN,L = -N16, and by (3) and (4), V(t)< V(r- N,L) - N,6 d W,(B,) 
+ W,(B,) - N,6 < 0, a contradiction. Thus, there is an s E [t-N, L, r] 
with Ix(s)/ Q U. Let so be the largest such, so that for some 
j E (0, . ..) N,-1) we have s,~[t-(j+l)L,t-jL] and jx(s)l>U for all 
SE [t- jL, t]. Then St0 V’(s) ds = j:;j’ V’(s) ds + S:-jL V’(s) ds < 
M[t-jL-so] - W,(U) {:-jLn(s)ds + jLM 6 ML - jS < ML, and 
by the hypothesis on t, W,(U) + W,(r,) + ML < V(t) d V(s,) + ML 
< WA(x(so)() + W3([~,~go) + ML, which implies that (x,,(,~ > ro. Then 
since to - so f -N, and (4) imply that 

sup I-e0 + s)l = max Ixbo + $11 
a< -!v, g”(s) 250 g”(s) ’ l”- ~,~,~ 

i 
Ix(to+s)l 

=max ::!hto-so+s)~ ,o<,ys:.y 

i 
I&)l 4 

dmax f:fg”(s-N,)‘g”(-Nl) 1 

kg(s) B, 
;~$&“(s-Nl)‘g”(-N,) 

we must have that 

lx&” = wo + s)l 
-N::!,o g”(s) 

~ 
SUP Ix(s)l. 

so-N,$s.sso 

Thus, there exists t, such that 

tl E Cso - N, > sol and lxs,lg g lx(t,)l. (5) 
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Note that V(t,)< V(t)+p implies that @‘,((x(t,)l)~ V(t,)< V(t)+P< 
J’(s,) + ML + p G W~(lx(s,)l) + W,(lx,l,~) + ML + B Q /? + ML 
+ H’*(V) + W,((x(t,)l), which by 3.l(iv) and (5) implies that j~,j,~,< 
lx(t1)l < ro, a contradiction. Then, V(t,) > V(r) + B and moreover, 
t,E[t-NIL-N,, t-J. 1 

To finish the proof of the theorem, suppose there is a t with 

t>to+Nz[N,L+N,] and V(t)>P,+ML. (6) 

Invoking the lemma N2 times gives a t,, 3 t, with V(tN7) > P, + ML + 
N#, which implies by (3) and (4) that P, + ML < k(t,) - NzB < 
W,(B,) + W,(B,) - NJ < 0, a contradiction. Then there is no t as in (6), 
and with T= N2(N1 L + N,), we have that W,( Ix(t)l) < V(t) < PO + ML for 
t> to+ T. Let Bz=-0 be such that W,(r)> P,+ ML for raB. Then, 
Ix(t)/ -=z B for t 2 to + T. By the construction, B is independent of B,, to, 4, 
and T depends only on B,. Thus, solutions are g-UUB. i 

4. APPLICATIONS 

In order to use Theorem 3.1 together with Theorem 2.3 to prove exist- 
ence of periodic solutions, we must find some g E Go for which (DE) and 
its solutions satisfy all the conditions there. Since, in applications, no g 
would be specified by the functional form of the FDE given, the required 
C, space must somehow be produced. Using the following lemma, which 
extends a result in [4], we will illustrate how this can be done for a class 
of integrodifferential equations. 

LEMMA 4.1. Let WE %‘( R’ +, IF&? + ) be increasing and unbounded and for 
Q=(t, s): ---co <s< t< co, let CEQ?(Q, !R+) satisfy suptjIco C(t,s)ds= 
J< cx). Then 

(i) for each E > 0, there exists g E Go such that 

I 
sup C(t,s) W(g(s-t))ds< W(l)J+&, 

I --co 

if and on/y if 
(ii) lim,, co [sup, J-L-; C(t, s) ds] = 0. 

Proof (t) Fix E>O. Find y>O with e-‘<E/W(l)J and using (ii), 
define a sequence (rj}z such that rO=O, rj>O forj>O, rj+ 00 asj-t co, 
and supt {?z C(t, s) ds<J/(e’+2Y)j!, j= 1, 2, . . . . Define g* by g*(r) = 
W-‘[W(l)[l+y]j] for rE(-rj+,,ri], j=O, l,.... We can construct a 
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gEG” with g(r)<g*(r) for r<O, and for this g, s~p,~\~ C(t, s) 
Wds - t)l ds G cJ%, supt s::;,, C(t,s) W(l)[l + y]‘ds 6 W(1)J + 

C;” WV)Cl +Yl’/e ‘+2yj!)J < W(l)J+9. 

(a) see C91. I 

Let~={CE~(52,1W+):sup,S’,C(t,s)ds=J<co,lim.,, [sup,l’:f 
C( t, s) ds] = 0}, where J is said to belong to C, and let X” be the n x n 
matrices C(t, S) with (C( E X. 

Remark 4.2. X, for instance, contains any continuous, non-negative 
kernel which satisfies C(t + o, s + o) = C(t, s) for some o > 0 and is 
L’( - co, 0] in s uniformly for 2 E [ -0, 01; in particular, any continuous 
L’[O, GO) convolution kernel has 1 Cl E X. 

Let -%q = { WEGtqR+, R+): increasing, unbounded, Wab) < 
W(a) W(b)), P= {~EV(IW, IV): 3M>O~~p(t)( <A4 for t~Rj, where in 
the examples to follow, A4 will denote the bound of an element of P, 
Q= (qE?&,(lW”, KY): there exists WEAL with Iq(x)l < W(lxl)}, and 
H = Wo( Iw x R”, W), where W. denotes the continuous functions locally 
Lipschitz in x. P, and H, denote the elements which are periodic in t with 
period o and X, denotes elements with C( t + o, s + IS) = C( t, s). 

Then consider the following integrodifferential system 

x’(t)=h(t,x(t))+~r C(t> $1 q(x(s)) ds + p(t), (DE)’ 
--r 

where ~EH, Cc%?, qEQ, andpEP. 

LEMMA 4.3. There is a g, E Go for which solutions of (DE)’ satisfy 
1.3(i)-(iii) and F(t, 4) is completely continuous in (w x C,,. Moreover, if 
hEHo,> PEP,, C E XL and solutions are g,-UB, UUB for some g, E Go, 
then there is an o-periodic solution. 

Proof The first statement is proved in [9]. For gE Go with g <gi 
i= 1, 2, (DE) is g-well posed [9], and Theorem 2.3 applies. 1 

The following examples illustrate the use of the above results. 

EXAMPLE 4.4. Consider the scalar equation 

x’(t) = -x”(t) + 1’ C(t, s) xm(s) ds + p(t), (DE)’ 
-02 

where [CIEK, PEP, (sgnx)x”>O for x#O, m&l and n>2. Let 
D(t, s) = jy IC(u, s)l du and suppose that DE X, sup, D(t, t) = JI < co, and 
J,, J, belong to D, ) Cl, respectively. .If, in addition, either m < (n + 1)/2 or 
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{m=(n+1)/2, J,<2, J, < 2/(n + l)}, then solutions of (DE)’ are g-UB, 
UUB for some gE Go. Moreover, if (C( E Xa, p E P,, then (DE)’ has an 
o-periodic solution. 

Proof. For E: 0 <E < 1, define the Liapunov functional 

V(t, 4) = -&~(o),n+~+~o jm IC(u, s+ t)l Iqqs)12”duds. -cc I 
Using Lemma4.1, find goEGo such that S’_,o(t,s)[g”(s-t)]2mds< 
J2+&,, where E, is to be specified later. Then, {?a J,” jC(u, s + t)) 
kWl*“d~ ds = f’-a, Wt, s)I&- t)12@’ cfs < sups<, [l&s- t)(/g”(s- t)12” 
lYm D(t,s)[g0(s-t)]2mds ,< (J2+~,)Jq4~?, and 

-$ MO)l n+“< V(t, 4) < -$ I~(O)l”+“+(J,+&~)l~l~~. (7) 

In the notation of Corollary 3.5, W,(r) = (2/(n + E)) r”+’ and W,(r) = 
(Jz + Ed) r2”‘. Differentiating along solutions yields 

V’(t, x,)< -21x(t)12”++’ +2 1’ IC(t, $)I 
-0s 

x {;[l~(s)I*~+ I~(t)l~~+~~-~]) ds 

+2fkf(x(t)(“+“-‘+D(t, t)[x(t)l2” 

- 
s ’ ICC& $11 lW12m 4 --m 

and 

V’(t)< -21x(t)12”+E-1+J3(x(t)(2n+2E-2 

+2MI~(t)l”+~-’ + J1 )~(t))~~. (8) 

Forthem<(n+1)/2case, take&r=1 ands>Owith2m-n<.s<l.Then 
n+c>2m and 

W,(r) - U’,(r) + co. (9) 

Since the negative term in (8) is of highest power, there exist 6, U, M’ > 0 
such that 

V’(t, 4) GM’ and V’(t, 4) < -6 whenever )qQO)l> U. (10) 

For the m=(n+1)/2 case, take .s=l and ~~:0<~~<2/(n+l)-J,. 
A calculation shows that (9) and (10) still hold. Then by (7), (9), (lo), 
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and Lemma 4.3, the conditions of Corollary 3.5 are satisfied and solutions 
are g-UB, UUB for some g E Go. The existence of an o-periodic solution 
when p E P,, (Cl E &, now follows from Lemma 4.3. 1 

EXAMPLE 4.5. The conclusions of Example 4.4 can be shown to hold 
also for the linear n = m = 1 case using 

where J,,J,< 1. 

EXAMPLE 4.6. Consider the pair of scalar equations 

x’(t) = x(t)[a - bx(t) - q(t)] + p,(t) 

y’(t) = y(t) -d+ j’ CCC s) f(x(s)) ds + ~z(t). 
- m 1 

(DE)’ 

This is the Lotka-Volterra predator-prey model and is of current interest 
in mathematical biology. It is known that with the condition,s below, solu- 
tions starting in the positive quadrant remain there. Therefore, to conline 
our attention to the region of physical interest, we consider only those 
initial functions in C, which map into the positive quadrant in R*. Suppose 
that C E XW and the pi E P,, are positive valued. Define D( t, S) as in Exam- 
ple 4.4 and suppose DE X, J, belongs to D, sup, D(t, t) = J, < a, 
a, h, c, d> 0, 

-ia+ l+: Md~‘-~<O, fidgfzJI, and -h+j?dzf-~<O. I 1 
If, in addition, either 

fg Y&, f(r) < r, f Lipschitz and y -+ cc as r--+03, (11) 

or f(r) = In( 1 + r) and (12) 

then solutions of (DE)’ are g-UB, UUB for some ge Go, and there is an 
o-periodic solution which is not identically constant if the pi are not. 

Proof: For the system z’ = F( t, z!), where z = (x, y), differentiating the 
Liapunov functional 

~(t,x,~~)=ln(x+l)+~ln(y+l)+%j~ jz IC(u,s)lf(x(s))duds 
x‘ I 
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along solutions yields V’(t, x, y) < (x/(x + l))[a - yx - cy + fi] - 
(uy/(y + 1)) + M( 1 + u/d), and with U = max(2,2(2a + jI)/min(y, c)} 
M’=a+j?+M[l +a/d], 

V’(t, 4) < M’ and V’ft, 4) 6 -6 for @(O)i > U. 

In case (11) holds, find g” E Go such that sup, SL m D( t, S) f( g”(s - t)) ds < 
f( 1) J, + 1. Then, proceeding as in the last example yields 

min 
( ) 

fy 1 W + MW 

< Ut, 4)~ 1 +f Ml+ M(O)l)+~(f(l) J2+ l)f(lil,o)l 
( > 

and for W,(r)=min((u/d), l)ln(l +Y), W,(r)=(a/d)[f(l) J2+ I]f(r), we 
have W,(r) - W,(r) -P cc as r --f co. In case (12) holds, let g” E Go be such 
that 

f 

I 
sup D(t, s) ln(1 + g”(s - t)) ds -c (In 2) J2 + 1. 

r -m 

Then 

(44 j’ Ott, s) f(x(s)) ds 
--m 

a f 
<dj- D(t, s) ln 

[ 
1 + W)l ds 

cc l+g”(s-t) 1 

D(t, s) In( 1 + g”(s - t)) ds 
cc 

<zsupln 
i 

1 + b(t)1 r 
r<r 1 + g”(s - t) --oo 

D(t,S)ds+%[J21n2+1] 

and 

min 
( > 

%, 1 Ml + li(O)l) 

GV(t,q5)< l+z ln(l+~~(0)~)+~[J21n2+11 
( > 

+3J2 141 + k&L 
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so that W,(r) = (1 + a/d) ln(1 + r) + (a/d)[Jz In 2 + l] and 
W,(r) - W,(r) = [min(a/d, 1) -(a/d) J,]r -+ cc as r---t co. Then in both 
cases, the conditions of Corollary 3.5 are satisfied and Lemma 4.3 gives an 
w-periodic solution which, by inspection is not constant if the pi are 
not. 1 

EXAMPLE 4.7. Consider the scalar equation 

x’(t)= -u(t)x(t)+b(t)x(t-r(t))+p(t), (DE)’ 

where PEP, ac%(R, R+), ~EW(R, R), re%?‘(R, R+), O<r(t)<t and 

r(t) -+ co as t+ co. Suppose that there is a df%?l(R, IW+) such that 
s; d(s)ds=L,<co and for tell& lb(t)/ <d(t), d’(t)<O, 

lb(t)1 -&(l -r’(t))d(r(t))<O and 
1 

u(t)-fgef q(t)lEN. 
1 

Then solutions of (DE)’ are g-UB, UUB for some g E Go. 

Proof: Since dg L’[O, co), then d(t -s)eX and there is a g”EGo with 
supI j: no d(t -3) g”(s - I) ds < 3L1/2. For the Liapunov functional 
Vh 4) = MO)1 + (WA) j’& 4 -s) I&N 4 we have MO)l < Ut, 4) G 
I#(O)l + $IdlRO and W,(r) - W,(r) = a r -+ 00 as r + co. Along solutions 

V’(t, x,)G - -r’(t))d(r(t)) 
I 

Ix(t-r(t))J+(1/2L,)j~-,.c,,d’(t-s)lx(s)Jds+M, so that V’(t,p+)< 
-q(t) I&O)1 + M. Then Theorem 3.1 applies. m 

EXAMPLE 4.8. Consider the scalar finite delay equation 

x’(t) = -a(t) x(t) + b,(t) I:, b&s) x(s) ds 

+ b(t) x(t - A) + p(t), 

where h < co, a E U(R, R + ), b E %‘( R, R), p E P. Suppose that 

(DE)’ 
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and 

sup 
I 

&(u)l du j*Yhh Ibl(S)l ds] + jr 
r-h 

1~3b)l ds} = Y < 1. 

Then solutions’ of (DE)’ are UB, UUB. If in addition a, bi, p are 
w-periodic, then there is an w-periodic solution. 

Proof. For the Liapunov functional 

v(l, 4) = MO)1 + j” j” IMu + t)l Ib,(u + I- s)l I+(u)1 du ds 
-h s 

+ jy , MS + t)l Id(s)I 4 

we have Id(O Vc 4) d IqV)l + Y 11~11, so that W,(r) - f+‘,(r) = (1 -Y) 

r -+ co as r -+ 03. Moreover, 

I/‘(4 x,) 6 -Ix(t)1 a(t)- Ih( i”” Ih(s)I ds- IW)l f 1 
+ [Ih( -M~-~Ml lx(f--h)l +M 

so that V’(t, 4) d --q(t) I&O)1 + A4. Then, Corollary 3.4 applies. The exist- 
ence of the periodic solution follows from observing that for finite delay, 
Theorem 2.3 also applies in case the initial function space is Co [2]. a 

Remark 4.9. The following are concrete instances of Examples 4.4, 4.7, 
4.8, respectively: 

x’(t)= -Ji(t)+;sj 00 (1 +I:(s)),dms t 

x’(t)= -Zx(t)+ 
sin t 

2(1 + tJ3 
x( t/2) + sin t, (14) 

x’(t)= -;x(I)+ij(;, I 
1 

sinslx(s)ds+;ix(r-1)tsint. (15) 

Then, (13), (14) have solutions g-UB, UUB, for some gE Go, (15) has 
solutions UB, UUB, and (13) and (15) have 2x-periodic solutions. 
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