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Prediction Intervals Based on Partial Observations for Some 
Discrete Distributions 

Lee J. Bain 

Jagdish K. Patel 
University of Missouri, Rolla 

University of Missouri, Rolla 
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Negative-hypergeometric, Poisson, Negative-binomial, Sufficient 
statistic 

Reader Aids - 
General Purpose: Widen state of art 
Special math needed for explanations: Statistics 
Special math needed for results: Same 
Results useful to: Practicing statisticians 

Summary & Conclusions - Prediction limits of the following 
type are considered for the binomial, hypergeometric, and negative- 
binomial distributions. For the binomial distribution, suppose X, 
successes have occured in the first r trials, and based on this par- 
tial information it is desired to predict the total number of suc- 
cesses X, (r < s), which will have occurred by trial s. Similar 
results are considered for the Poisson and negative-binomial 
distributions. The results are expressed in terms of well known 
distributions which have been tabulated, but it is quite tedious to 
carry out the procedures based on available tables. Normal (Gaus- 
sian) approximations are provided which makes these methods con- 
venient to apply. 

1 .  INTRODUCTION 

Patel & Samaranayake [6] obtained small sample 
simultaneous conservative prediction intervals for binomial, 
Poisson, hypergeometric, and negative-binomial distributions. 
These intervals used an observation X from a past sample to 
predict observations yi(i = 1,2, ... k) from k future s- 
independent samples from the same population. These were ob- 
tained using a procedure that connected the prediction interval 
problem to that which arises in the ranking and selection of 
statistical populations. This made it possible to use known tables 
from the literature to obtain prediction factors for these intervals. 

For continuous distributions, a standard method to con- 
struct prediction intervals is to use appropriate pivotal-quantities 
[q. This is not possible for discrete distributions since such 
pivotal-quantities are not available. As a result not much work 
on prediction has been done for discrete distributions. 

This paper considers prediction intervals of the following 
type for binomial, Poisson, and negative-binomial distributions. 
Consider a process which generates a sequence of outcomes, 
and let X,  be the observed total of all outcomes at stage r. Us- 
ing this partial information, we would like to predict the future 
cumulative total X, of all outcomes at stage s ( r  < s) . In the 
binomial case, if we are planning to conduct s trials, then X,  

& X, are the total number of successes observed by trials r & 
s, respectively. For the Poisson case, if we are planning to 
observe the process during the time interval [O,s], then X, & 
X, are the number of events observed during the time intervals 
[O,r] & [OJ], respectively. For the negative-binomial case, if 
we are planning a sequence of trials to observe success s, then 
X ,  & X, are the total number of trials needed to observe suc- 
cesses r & s, respectively. In these cases r.v.’s X ,  & (X, - 
X,) statistically independent, although r.v.’s X ,  & X, are not. 

Prediction intervals for discrete distributions are useful in 
many applications. For example, in life testing and reliability 
studies, consider a complex piece of equipment which is 
observed continuously, and the total number of breakdowns per 
week is recorded. Suppose by week r = 40, there are X ,  = 
6 breakdowns of the equipment. Using this partial information, 
we want to know the total number XI, of all breakdowns 
which will have occured by week s = 100. 

Or, in the negative binomial setting, we wish to have a 
prediction interval on the time, in weeks, that will be achieved 
before breakdown 12 occurs. That is how many trouble-free 
weeks will occur before non-trouble-free week 12 occurs. 
Large-sample approximations are derived in sections 3-5. 

Notation 

binf(xPJN) 
N! . le p ’ (  1 - p ) N - i ,  for x=O,l, ..., N 

i = O  
X 

poif(x;p) exp(-p)pi/i!, for x=0,1,2, ... 
i = O  

S! 
, for max ( 0 , t - s + r )  s x s m i n ( t , r )  

t ! ( s - t ) !  

X ( i - l ) !  
nbif ( x ; p , k )  pk(  1 - p ) i - k ,  

i = k  
( k -  l ) !  ( i - k ) !  

for x = k , k +  l , . .  

X ( i - l ) !  
nhyf (x ; t  - 1,s - 1,r) c i=r  ( r - l ) ! ( i - r ) !  

( t -  l ) !  I (t-i- l ) !  
( s - r - l ) ! ( t - i - s + r ) !  ( s - l ) ! ( t - s ) !  ’ 

for x = r ,  r + l ,  ..., t -s+r 
observed total of all outcomes at stage r X,=X 
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X, = T future total of all outcomes at stage s ( r < s) 
Fxlr(x) Pr{X 5 xlT = t} 
1 - a Pr {a random interval based on X, contains the future 

observation X,} 
F(x;O) Cdf of X ,  
z, lower 6 quantile of the standard s-normal distribution. 

Other, standard notation is given in “Information for Readers 
& Authors” at the rear of each issue. 
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2. METHOD 

Upper and lower prediction limits for X, are obtained by 
considering the conditional distribution of X, given X,, to 
eliminate the unknown parameter, and then solving implicitly 
for the limits, as is done in the general method of constructing 
s confidence intervals when pivotal quantities are not available 
[l]. This approach is analogous to one discussed by 
Faulkenberry [2] which he applied to the Poisson distribution, 
where he considers the conditional distribution of the future 
variable, given a s-sufficient statistic. The present form pro- 
vided a more direct solution, and a more direct derivation of 
large-sample results. For convenience, let X, = X, X, - X,. = 
Y, X, = T = X + Y. Let Tbe a complete s sufficient statistic 
for 0. The following conditional probability 

with functions hl and h2 to be selected later, does not depend 
on 8.  We rewrite this conditional probability as 

For a given t ,  suppose h2 ( t )  is an increasing function of 
t ,  so that 

Although these prediction limits are determined from the 
conditional distribution of X given T = t, as usual, they are 
also unconditionally ( 1  - a )  level limits as well; 

= ET{Pr{hl(t) c X c h2( t ) IT  = t } }  

= q ( 1 - a )  = 1 - a ,  

3. BINOMIAL DISTRIBUTION 

For 1 I r < s, let X, & X, be two binomial r.v.’s with 
Cdf s binf(x;p,r) and binf(x+y;p,s), respectively. Then it 
follows from the s-independence of the Bernoulli trials 
associated with this distribution that the r.v. (X, - X,) is s- 
independent of the r.v. X, and has Cdf binf(y;p,s-r). The 
statistic X, is known to be s-complete and s-sufficient for p. We 
first consider the following known result. 

Pr{X=xJT=t} = Pr{X=x, T=t}/Pr{T=t} 

= Pr{X=x, Y=t-x}/Pr{T=tJ 

- ( l ) p ” (  1 - p ) ‘ - x ( ; I ; ) p ‘ - x (  1 - p ) s - r - t + x  
- 

(;)P‘(l 

which is a hypergeometric distribution. Then by the method in 
section 2, tL(a l )  and tU(a2) are solutions o f t  obtained from: 

and let tt ( al )  be the solution of h2 ( tL ( al))  = xo, where xo is 
the observed value of X. Then the computed value, tL ( a l )  I 
t iff xo 5 h2 ( t )  . Thus a ( 1 - a1 ) lower prediction interval 
[tL(al) ,  001 for X, is obtained by setting h2 (t)  = xo in (3) and 
solving for t = rL (a l ) .  

Similarly, for a given t ,  suppose h, ( t )  is an increasing 
function o f t  so that 

and let tu(x) be the solution of h1 (tu( a2)  ) = xo. Then the 
computedtU(a2) 2 tiffxo t hl ( t ) .  Thusa ( l - a 2 )  upper 
prediction interval [O, tu(a2)] for X, is obtained by setting 
h , ( t )  = xo in (4) and then solving it for t = tU(az). 

If a1 + a2 = a, a (1 -a )  2-sided prediction interval for 
X, is obtained as [tL ( a ,  ) , tu( a2 ) I  by setting hl ( t)  = xo and 
h2(t)  = xo in (3) & (4), respectively and then solving them 
for t .  

respectively. Extensive tables of the Cdf are available in [4]. 
In their notation, N =  s, n = t ,  k = r, and x =xo. In some cases 
it is necessary to use symmetry properties of the hypergeometric 
distribution [4:pp 4-51. These tables cover the distribution for 
N = 1 (1)49,50( 10)100 and IOOO. The values for N = 1000 
are given only for n = 500. Some values for N = 
100( 100)2000 are also given. 

Use of these tables can be quite tedious. Of course exact 
solutions can be obtained with the aid of a computer as well, 
but the following s-normal approximation provides a simple con- 
venient solution which is adequate even for small samples. The 
larger sample size is the most important anyway, since by the 
nature of prediction limits it is usually not possible to obtain 
tight bounds based on few data, even though an efficient method 
is used. However, knowledge that a wide range of possible out- 
comes can reasonably occur, is, in itself, useful. 

The approximate prediction limits tL ( al )  and tu( a2) us- 
ing the s-normal approximation are obtained as follows. For 
large r-value, consider: 
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pr{Xr 5 h2(t)- 1) 

= l-a1 (9) 
h,(t)-l-E(X,) + 1/2 

E{X,J = t ( r / s ) ,  

Var{X,} = tr(s-r)(s-t)/[s2(s-1)I. 

To solve for tL(al) we consider: 

t r ( s -r )  ( s - t )  . (10) 
sqs-  1)  h2(t) - 112 - t ( r / s )  = zl-=, 

Set X, = h2 ( t )  and square both sides of (10). 

(2-4v+sw1) - 4 2 w :  + 4x6w1(r-x4) 

2(v2 + w1). tL(&l) = (1 1) 

v = ( r / s ) ,  w1 = zt-,, v(1-v) / ( s - l ) ,  xo' = xo -95 

In an analagous way - 

For example, suppose for a total random sample of size 
s = 500, r= 100 devices are tested and xo = 5 are unacceptable. 
A 90% prediction interval is desired for the total number of 
unacceptable devices, x,, in the lot of 500. In this case 

( 1.645)2 (0.2) (0.8)/499=0.4338, and (11) and (12) give: 
( Y ~ = ( Y ~ = O . O ~ ,  V =  0.2, Xd =4.5, Xd'Z5.5,  W1S=W2S=500 

[rL(0.05), tu(0.05)] = [11.47, 49.481 = [11,49]. 

The prediction interval for Y, the number of unacceptable items 
in the remaining s - r = 400 items, is: 

The true probability that an item is unacceptable, p ,  is 
unknown, and that is taken into account in the above predic- 
tion intervals. To illustrate the effect due top being unknown, 
if p is known with p = 5 / 100 = 0.05, then a 90 % prediction in- 
terval for x, is [17,33], since 

Pr{17sXss33} = binf(33; 0.05, 500) 

- binf(l6; .05, 500) = 0.955-0.034 = 0.921. 

(The conservative level, 0.921, is obtained due to the 
discreteness of the variables). 

Similarly, if $ =0.05, is obtained based on the first 100, 
and then a prediction interval is computed for the number of 
unacceptable in the next 400, using p =0.05 as if it were a 
known value, one obtains the prediction interval [13,27], since 

binf(27; 0.05, 400) - binf(l2; 0.05, 400) 

= 0.952-0.036 = 0.916. 

For p unknown, the proper prediction interval in this case is 
[6,45], as shown in (13). 

Of course, the loss due to not knowing p is reduced if more 
data are available. Suppose xo = 20 is observed from a sample 
of r= 400, and a prediction interval is desired for the total, X,, 
of unacceptable items in s = 500 items. In this case (1 1) and 
(12) give the 90% prediction interval [tL, tu] = [20.7,30.0] = 
[21,301, and [ y ~ , y ~ l  = [1,101. 

If p = 0.05 had been considered known in this case the cor- 
responding prediction interval for the number of unacceptable 
devices in the last 100 items becomes [2,9], where 
binf(9;0.05,100) -bid( 1,0.05,100) = 0.972 - 0.037 = 0.935. 

The prediction limits above were computed using the s- 
normal approximation. If the hypergeometric cumulative is used 
directly, (7) & (8), the same prediction interval, [11,49], is ob- 
tained, since 

hypgf(5;500,49,100) = 0.046, hypgf(4;500,11,100) = 0.952 

For the prediction interval [21,30], the exact probability 
level is 

hypf( 19;5OO,21,400) - hypf(20;500,30,400) 

= 0.946 - 0.055 = 0.891 

4. POISSON DISTRIBUTION 

For O < r < s ,  let X, & X, be two Poisson r.v.'s which 
count the number of events occuring in time periods [O,r] and 
[OJ], respectively. It follows from the s-independence proper- 
ty of the process associated with this distribution that the r.v. 
(X,-X,) is s-independent of the r.v. X, and its Cdf is 
poif ( y; (s  - r )  A ) .  The statistic X, is known to be s-complete 
and s-sufficient for A. We first consider the following result. 

Pr{X=xJT=t} = Pr{X=x, T=t}/Pr{T=t} 

= Pr{X=x, Y=t-x}/Pr{T=t} 

= (;)(+)' (1-:) t - x  = binm(x;r/s,t). 

By the method discussed in (3) & (4). tL(ayl) and tU(a2) would 
be solutions of t obtained from: 
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binf(xo- l;r/s,t) = 1 -al (14) respectively. Inverse hypergeometric probabilities can be ob- 
tained from hypergeometric probabilities by using: 

nhyf(x; t - l , s - l , r )  = 1-hypf(r-1; t-l,x,s-1). (21) 
respectively. Binomial distribution tables are widely available, 
and convenient approximate prediction limits, tL(al) & tu( 4 ,  
using a s-normal approximation are obtained, as in the binomial 
case, with E{Xr} = t ( r / s ) ,  and Var{Xr} = t ( r / s )  ( 1  -r/s). 

Suppose in a fatigue testing experiment, a component is 
replaced when it fails, and the experiment continues. Suppose 
xo = 5 failures were observed during r = 100 stress cycles (or 
weeks, months, etc), and a 90% prediction interval is desired 
for the total number of failures, X,, which will have occurred 
after s=500 stress cycles. We havexd =4.5, $ =5.5, v=0.2, 

The exact probability level for the prediction interval 
[11,51], from (15) and (16) is binf(4;0.2,11) -binf(5;0.2,51) 

w1= ~2 =2.165, and [tL,tu] =[11.4,51 .O] z [11,51]. 

= 0.950-0.042 = 0.908. 

5. NEGATIVE-BINOMIAL 

For 1 ~ r < s ,  let X ,  &Xs be two negative-binomial r.v.'s 
which count the number of trials needed to obtain successes r 
& s, respectively. It follows from the s-independence of the 
trials, that the r.v. ( X s - X r )  is s-independent of the r.v. X, and 
has Cdf, nbif(y;p,s-r). The statistic X, is known to be s- 
complete and s-sufficient for p. We first consider the follow- 
ing result. 

Pr{X=nlT=t} = P r { X = x ,  T=t} /  Pr{ i"= t }  

= Pr(X=x, Y = t - x } / P r { T = t }  

Because of (21), no new tables are needed. 
The approximate prediction limits tL(al) and tu(a2) using 

the s-normal approximation for large r are obtained as in 
previous cases with E{X,} = t ( r / s ) ,  and Var{X,} = 
r t ( t - s )  ( s - r ) / [ s 2 ( s +  I)]. 

We illustrate these prediction intervals with the following 
example (with some changes) from [7]. Suppose a machine pro- 
duces parts which are 100% inspected. It is of interest to find 
the number of parts which need to be inspected to find noncon- 
forming unit 8 in the inspection program. This is when the pro- 
cess is halted and a maintenance person is called in to reset the 
machine. Now suppose 11 parts were inspected by the time non- 
conforming part 4 was obtained and that we are interested in 
predicting X,. Here r=4 ,  s=8 ,  x o = l l .  Let ( Y ~ = ( Y z = O . O ~ .  
We solve nhyf(l0; t-1,7,4) = 1-hypf(3; t-1,10,7) = 
1-0.035 L 0.95 for t = t L ( O . 0 5 )  = 15 using (19) and (21) and 
solve nhyf(l1; t -1 ,7 ,4)= 1-hypf(3; t-1,11,7) = 
1 - 0.9504 s 0.05 for t = tu( 0.50) = 46 using (20) and (21). 
Thus a 90% 2-sided equal-tail prediction interval for X,, based 
on Xr= 11, is [15,46]. The actual prediction probability is 

For the approximate limits, we use (22) and (23) and 
calculate v = (4/8) =0.50, x i  = 10.5, x{ = 11.5, wl=w2 
= (1.645)' (0.5) (0.5)/9 = 0.0752 to obtain 

(0.9650 - 0.0496) = .9 154. 

9.899 - 4.570 
0.350 

tL(0.50) = 15.22 

10.898 + 5.128 * ( s - r - l ) P  t-x-1 s - r ( 1 -p ) ' -x - s+r  
tL(0.50) = 45.79 

- (;I;)pr(l -p ) I - - ,  - 
(:-:)P"(' -PI'-, 0.350 

x-1 t-x-1 t - 1  
= ( r -  1) (s -r- l M S  - 1)g (18) So an approximate 90% 2-sided equal-tail prediction interval 

for X,, based on X ,  = 11 is [15,46]. 
which is an inverse (negative) hypergeometric distribution [3]. 
Let nhyf(x; Z-1,s-1,r) denote its Cdf. Then, tL(al)  and 
tU(a2) are solutions of t obtained from: REFERENCES 

nhyf(x0-1; t - l , s - l , r )  = 1-a1 

nhyf(x0; t-l1S-l1r) = a 2 ,  
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