
Missouri University of Science and Technology Missouri University of Science and Technology 

Scholars' Mine Scholars' Mine 

Computer Science Faculty Research & Creative 
Works Computer Science 

01 Jan 1989 

A Definition Optimization Technique Used In A Code Translation A Definition Optimization Technique Used In A Code Translation 

Algorithm Algorithm 

David M. DeJean 

George Winston Zobrist 
Missouri University of Science and Technology 

Follow this and additional works at: https://scholarsmine.mst.edu/comsci_facwork 

 Part of the Computer Sciences Commons 

Recommended Citation Recommended Citation 
D. M. DeJean and G. W. Zobrist, "A Definition Optimization Technique Used In A Code Translation 
Algorithm," Communications of the ACM, vol. 32, no. 1, pp. 94 - 105, Association for Computing Machinery 
(ACM), Jan 1989. 
The definitive version is available at https://doi.org/10.1145/63238.63245 

This Article - Journal is brought to you for free and open access by Scholars' Mine. It has been accepted for 
inclusion in Computer Science Faculty Research & Creative Works by an authorized administrator of Scholars' 
Mine. This work is protected by U. S. Copyright Law. Unauthorized use including reproduction for redistribution 
requires the permission of the copyright holder. For more information, please contact scholarsmine@mst.edu. 

http://www.mst.edu/
http://www.mst.edu/
https://scholarsmine.mst.edu/
https://scholarsmine.mst.edu/comsci_facwork
https://scholarsmine.mst.edu/comsci_facwork
https://scholarsmine.mst.edu/comsci
https://scholarsmine.mst.edu/comsci_facwork?utm_source=scholarsmine.mst.edu%2Fcomsci_facwork%2F1342&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/142?utm_source=scholarsmine.mst.edu%2Fcomsci_facwork%2F1342&utm_medium=PDF&utm_campaign=PDFCoverPages
https://doi.org/10.1145/63238.63245
mailto:scholarsmine@mst.edu


COMPUTlNG PRACTICES 

Edgar H. Sibley 
Panel Editor 

Data flow analysis is used to optimize variable definitions in a program that 
translates microprocessor object code to a higher order language. 

A DEFlRllTIoN OPTllWlZA~lOhl TECHNIQUE 
USED IN A CODE TRANSLATION ALGOl?lTHlW 

DAVID M. DEJEAN and GEORGE W. ZOBRIST 

One of the goals of code optimization in a translator is 
to reduce the code space needed for the translated code 
that represents the original code. In developing meth- 
ods for code optimization, the subject can be divided 
into three interrelated areas: 

(1) 1oc:al optimizations, those performed within a 
straight-line block of code, 

(2) loop optimizations, those performed on software 
loops, and 

(3) data flow analysis, the transmission of useful rela- 
tionships from parts of the program to places where 
the information can be used [l]. 

For th’e purpose of this article, data flow analysis is 
used i:n an attempt to optimize variable definitions in a 
translation program. An application of the analysis is 
presemed in a program that translates microprocessor 
object code to a higher order language, with flags as 
the optimizing target typically inherent in any micro- 
processor instruction set. 

DATA FLOW ANALYSIS DEFINITIONS 
Certain basic concepts and constructs must first be de- 
fined. Data flow analysis begins by breaking the code 
into basic blocks-sequences of consecutive statements 
that may be entered only at the beginning-and when 
entered, are executed in sequence without halt or pos- 
sibility of branch (except at the end of the basic block). 
Each basic block is terminated by a jump statement 
(conditional or non-conditional), an exit statement, or 
an input/output operation. Other blocks may be termi- 
nated due to the next sequential statement being a 
merge point of other basic blocks or the object of one or 
more jump statements. Grouping these basic blocks and 

0 1989 ACM 0001.0782/89/0100-0094 $1.50 

94 Communications of the ACM 

connecting them result in a data flow graph which 
shows the possible data flow of the executing code. 
A cluster of basic blocks, typically a procedure or small 
program, can be called a control section, abb:reviated 
CSECT, the first basic block called the initial block. 
Each basic block in a flow graph is considered a node, 
i.e., N(l), N(2), . . . , N(max). Figure 1 shows an example 
of a data flow graph containing several loops and exit 
points. 

The terms node and basic block are interchangeable. 
The term node is typically used when referring to a 
data flow graph, and basic block is used when referenc- 
ing the sequence of statements in the node. The imme- 
diate predecessor of a node N(j) is any node directly 
preceding node N(j) (i.e., there exists a path in the flow 
graph from the predecessor N(p) directly to the node 
N(j)). Predecessors of node N(j) are all nodes for which 
there exists any path, whether through other nodes or 
directly, to node N(j). An immediate successor of node 
N(j) is any node directly following N(j) in the flow 
graph, that is, there exists a direct path from N(j) to the 
immediate successor N(s). Successors of N(j) are all 
nodes for which there exists a path from N(j), through 
other nodes or directly, to the successor N(s) [2]. An 
exit node is any node that may conditionally or non- 
conditionally exit from the flow graph or CSECT. 

At this point, data flow relationships can b’e more 
precisely defined. Every node consists of sequential 
statements that either use or modify data items. A data 
item is a variable that can be referenced or redefined in 
an expression. If an expression modifies a data item, it 
is called a data definition. Conversely, if an expression 
references a data item, it is called a data use. A local 
definition of a block is a definition within that block. If 
a data definition is made available to a data use, then 
the data definition is said to potentially affect the data 
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FIGURE 1. Data Flow Graph Example 

use. The obvious example below shows data definitions 
and a data use: 

X=Y 

z=x*2 

A = C/6 

The data definition of X obviously affects the next 
statement, but does not affect the last statement. The 
term potentially is used since a data definition and a 
data use may be in separate basic blocks where flow of 
control is not yet known until the actual execution of 
the code. Also, a data definition reaches a point if there 
exists a path in the flow graph from the definition to 
that point, such that no other definitions of the data 
item appear on the path. A data definition is active or 
live at a point if it reaches that point. 

GLOBAL DATA FLOW ANALYSIS AND 
ALGORITHM 
The common objective of this optimization is to elimi- 
nate excessive or unnecessary definitions of variables 
in a code segment. An obvious elimination of a data 
definition can be performed where two data definitions 
exist in a group of sequential statements without any 

correlating use of the data between them. The first data 
definition can be eliminated from the code regardless of 
how the statement defines that data item. 

When analyzing data definitions on a global basis for 
an entire CSECT, the analysis becomes much more 
complex. Manual analysis would require searching 
through every possible path from each data use back to 
every data definition. Algorithms exist that can be used 
to optimize data definitions. 

In order to determine the definitions that are to re- 
main in the code, it would be extremely useful to know 
which data definitions were active at the output of 
each node and which definitions were active at the 
input of each node. Given this information, a data defi- 
nition can be labeled as required by data use provided 
the data definitions are referencing the same data item 
as the data use. For example, data definitions d8 and d8 
are labeled as required for the data use in block 3 of the 
flow graph in Figure 2. The other definitions obviously 
can be discarded. The set of active definitions to the 
output of block 1 is d2, d8; d4, d8, d6 for block 2, and 
d7, d8 for block 3. The active set of definitions to the 
input of block 3 is the union of all the predecessors’ 
active output data definitions. The set of active defini- 
tions at the output of block 3 is formed by gathering all 
the new data definitions in block 3 plus any active 
input data definitions not redefined by any statement 
in the block, plus the data definitions that redefine an 
already existing data definition. The redefining of a 
data item has killed any other previous active data defi- 
nitions entering the block. For instance, the definition 

BLOCK I BLOCK 2 

1 d8, Z=X*Y 1 

FIGURE 2. Sample Data Definitions and Data Uses 

d7 in block 3 has killed definitions d2, da. The active 
definitions at the output of block 3 include d8, d8, d6 
simply because they appear at the input of block 3 and 
are not redefined within the block. Since d7 is the 
last definition for X before exiting block 3, it is active. 
Finally, d8 is active because it is a new definition 
within the block. 

At this point, mathematical equations are needed to 
express the relationship between active input and ac- 
tive output definitions and to specify which definitions 
are killed and which are generated within each block. 
Bit arrays OUT, IN, GEN, and KILL shall be defined, and 
equations shall be developed leading to an algorithm to 
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optimize the number of data definitions. The OUT ar- 
ray can be defined as a group of N bit vectors, one bit 
for every data definition in the CSECT, one vector 
per basic block. Each bit set indicates that the data 
definition is active at the output of that block. Grouping 
the vectors together forms a two-dimensional array N 
bits wide by M blocks long comprising the OUT array. 
The OUT array for the previous example is defined as: 

BLOCK dl dz d3 d4 d6 d6 d7 d8 

OUT(BLK 1) = 0 1 1 0 0 0 0 0 
OUT(BLK 2) = 0 0 0 1 1 1 0 0 
OUT(BLK 3) = 0 0 1 0 1 1 1 1 

The IN array is of the same structure but for each bit 
set in the vector of a given block, it indicates an active 
definition to the input of that indicated block. For ex- 
ample: 

BLOCK dl dz d3 d4 d6 d6 d7 d8 

IN(BLK 1) = 0 0 0 0 0 0 0 0 
IN(BLK 2) = 0 0 0 0 0 0 0 0 
IN(BLK 3) = 0 1 1 1 1 1 0 0 

The GLEN array, again the same structure, indicates 
which definitions have been generated within the 
block. The GEN array is: 

BLOCK dl dz d3 d4 d6 d6 d7 d8 

GEN(BLK 1) = 1 1 1 0 0 0 0 0 
GEN(BLK 2) = 0 0 0 1 1 1 0 0 
GEN(BLK 3) = 0 0 0 0 0 0 1 1 

Finally, each block also has a vector of N bits associated 
with it, one bit for every definition, indicating which 
definitions outside of the block can be killed by defini- 
tions of the same type within the block. Grouping these 
from each block forms the KILL array. For example, 
KILL is defined as: 

BLOCK dl dz d3 d4 d6 d6 d7 d8 

KILL(BLK 1) = 6 6 6 1 1 6 1 6 
KII,L(BLK 2) = 1 1 1 6 6 6 1 6 
KILL(BLK 3) = 6 1 6 1 6 6 6 6 

Now an equation can be written describing all active 
inputs to each block as being the union of all predeces- 
sors’ active output list. Let IN(b) = UNION OUT(p), 
where b is the block number and p is every predecessor 
of block b [2]. Furthermore, the OUT array can be 
found to be: OUT(b) = [IN(b) AND NOT KILL(b)] OR 
GEN(b), the AND NOT and OR statements being logical 
bit operations [2]. The first equation shows that a defi- 
nition reaches the beginning of a block b only if it 
reaches the end of one of its predecessors [l]. If a block 
has no predecessors, then the IN vector is the empty 
set. 

The second equation states that a definition reaches 
the end of block b only if either 1) the definition is in 
IN(b) (i.e., the definition reaches the beginning of b and 
is not killed by b), or 2) the definition is generated 
within b (i.e., it appears in b and the data item is not 
subsequently redefined within b) [l]. These equations 

are known as the data flow equations relating INS and 
OUTS and are the basis for what is commonly called 
the Basic Reach Algorithm [Z]. The solution to these 
equations is not unique, but there is a minimal solution 
that will result in the minimum number of active data 
definitions [l]. The method of reaching that solution is 
by iterating through the equations block by ‘block until 
there is no change in the arrays OUT and IN. 

By estimating the IN array to be the empty set and 
OUT to be equal to the GEN array, the following algo- 
rithm can be realized: 

BEGIN 
FOR EACH BLOCK B DO BEGIN 

/* initialize IN, OUT */ 
IN(B) = 0; 
OUT(B) = GEN(B); 

END; 
CHANGE = TRUE; 
WHLE CHANGE = TRUE DO BEGIN 

/* loop until no change */ 
CHANGE = FALSE; 
FOR EACH BLOCK B DO 

/* one iteration al.1 blocks */ 
NEWIN = UNION OUT(B); 

/‘” hold IN for now */ 
IF NEWIN ( ) IN(B) THEN CHANGE =: TRUE; 
IN(B) = NEWIN; 
OUT(B) = IN(B) AND NOT(KILL(B)) OR GEN(B); 

END; 
END; 

END; /* algorithm */ 

It can be proven that the algorithm does indeed con- 
verge, and it converges in less than j iterations, where j 
is the number of basic blocks. This is shown in a paper 
by Kildall [3]. 

For the purpose of illustrating the algorithm, the fol- 

BLOCK I 

I 64: K=3 
BLOCK 4 

BLOCK 3 1 ’ 
65: J = 1 

I 66: I = 5 
I --- 

BLOCK 5 
1 

d9: K= 15 
dlO:J= 1 

t 
EXIT 

FIGURE 3. Flow Graph for Example 
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lowing example is presented. Consider the flow graph 
of Figure 3. 

Initially, the GEN and K1I.L arrays must be formed. 
All the arrays will contain ten bits associated with the 
ten data definitions of the flow graph. GEN is easily 
formed by observing which definitions are defined in 
each block. Block 1 has data definitions dl, d2, and 
therefore, will have a vector of GEN(l) = 1100000000. 
The remaining GEN array is shown in Figure 4. Since 
block 1 has data definitions of variables I and J, these 
definitions may kill any other definitions in the CSECT 
of I and J. These include definitions d3, d5, d6, da, and 
dl0, and therefore: 

KILL(l) = 0010110101 

as shown in Figure 4. 
After initializing IN(b) = empty set and OUT(b) = 

GEN(b), the algorithm proceeds to pass 1. Block 1 has 

GEN(B) KILL(B) 

BLOCK 1 1100000000 0010110101 
BLOCK 2 0011000000 1000011110 
BLOCK 3 0000110000 1110000101 
BLOCK 4 0000001100 1011010010 
BLOCK 5 0000000011 0101101000 

initial IN(B) initial OUT(B) 

BLOCK 1 0000000000 1100000000 
BLOCK 2 0000000000 0011000000 
BLOCK 3 0000000000 0000110000 
BLOCK 4 0000000000 0000001100 
BLOCK 5 0000000000 0000000011 

FIGURE 4. Gen, Kill, Initial In, and Initial Out Arrays 

no predecessors, and therefore, IN(l) = 0000000000. 
OUT(l) is formed by [IN(l) AND NOT KILL(l)] OR 
GEN(l) = 1100000000. Block 3 has two predecessors, 
and IN(3) = OUT(2) OR OUT(5) = (0111000011 AND 
NOT(1110000101)) OR 0000110000 = 0001110000. As 
shown in Figure 5, only three passes were required 
before convergence of the IN and OUT arrays. 

Given this information, a data use now has means of 
determining directly which definitions potentially af- 
fect the data use. Obviously, if a definition potentially 
affects the data use, the data definition must not be 
eliminated. 

If a data use exists at the end of a block, the OUT 
array can be used to determine which definitions are 
required for the data use. Similarly, the IN array is 
used when a data use appears at the beginning of a 
block. For the previous example, if the variable K was 
referenced at the end of block 3, definitions d4 and d6 
must remain as shown by the K definitions in the vec- 
tor OUT(3). Likewise, if the variable K was referenced 
at the beginning of block 3, again definitions d4 and d6 
must exist as represented by the definitions of K in the 
vector IN(3). 

A data use, however, may exist anywhere within a 
group of sequential statements, not always at the begin- 

ning or end of a basic block. This situation can be 
rectified by flagging local definitions. In executing any 
algorithm, a search through the code is required for all 
data definitions and data uses. While searching through 
each block, it would be a trivial detail to keep a record 
of the last data definition within a block. Therefore, 
when a data use is found, the last data definition of that 
type can be flagged. If no such definition exists within 
the block, then the IN vector, generated by the algo- 
rithm, must be used to find active definitions. 

APPLICATION OF ALGORITHM TO FLAG 
DEFINITIONS 
Marshall and Zobrist presented a method of trans- 
lating microprocessor object code into a behaviorally- 
equivalent, high-level language of PL/I for the purpose 
of electronic system simulation [4]. For the actual 
translation, groups of PL/I statements are substituted 
for each assembly instruction. It was noticed, however, 
that a large portion of the PL/I translation consisted of 
statements relating to flags associated with the particu- 
lar microprocessor involved. Flags, such as the parity, 
zero, sign, carry, and auxiliary-carry in the INTEL 8085 
microprocessor, are altered by many of the processors’ 
op-codes [5]. In fact, over fifty percent of the INTEL 
8085 instruction set opcodes alter at least one flag [5]. 
Throughout a code translation, very few instances oc- 
cur where a flag is referenced. An example of a flag 

PASS 1 IN(B) OUT(B) 

BLOCK 1 
BLOCK 2 
BLOCK 3 
BLOCK 4 
BLOCK 5 

0000000000 
1100000000 
0111000011 
0111000000 
0101111110 

1100000000 
0111000000 
0001110010 
0100001100 
0000010111 

PASS 2 IN(B) OUT(B) 

BLOCK 1 
BLOCK 2 
BLOCK 3 
BLOCK 4 
BLOCK 5 

0000000000 
1100000000 
0111010111 
0111000000 
0101111110 

1100000000 
0111000000 
0001110010 
0100001100 
0000010111 

PASS 3 IN(B) OUT(B) 

BLOCK 1 
BLOCK 2 
BLOCK 3 
BLOCK 4 
BLOCK 5 

0000000000 
1100000000 
0111010111 
0111000000 
0101111110 

1100000000 
0111000000 
0001110010 
0100001100 
0000010111 

FIGURE 5. Three Passes of the Algorithm 

reference, or flag use, would be a jump on zero condi- 
tion instruction. The op-code preceding the conditional 
jump might be a subtract instruction defining all 
five flags in the INTEL 8085 microprocessor. The PL/I 
statements defining the other four flags, in this in- 
stance, are excessive and unnecessary and could be 
eliminated from the PL/I translation. The optimization 
and determination of which flag definitions to discard 
or retain is the function of this article. 
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The Basic Reach Algorithm has many applications 
for optimizing any type of variable. Consequently, this 
algorithm can easily be adapted to work well in opti- 
mizing the flag definitions in the code translation pro- 
gram. All the essential elements are already deter- 
mined by the translation program to execute the algo- 
rithm. At one point in the translation program, a 
CSEC:T has been divided into basic blocks, and a PL/I 
structured information block, as shown in Figure 6, 
called the critical array, has been formed containing val- 
uable information for the optimizing program. The 
NODE and JUMP-NODE fields are the successor nodes 
in the data flow graph. NODE is the unconditional 
jump or exit to the next successor node, and the JUMP- 
NODE is the successor node that would follow if a 
jump condition is true. 

instruction, or defines a flag, such as a subtract instruc- 
tion which defines most common flags. Some instruc- 
tions, depending on the microprocessor, both define 
and use a flag. 

The flag optimization program was written as a pro- 
cedure whereby the code translation program could 
call the optimization procedure as an option to the 
user. The code translation program was also modified 
to review the flag defined field of the assembly list in 
order to determine whether a flag definition. is to be 
translated. Initially, before the optimization procedure 
is called, all flag definitions will have the flag defined 
field set on, indicating that a flag definition must be 
translated. 

The other vital information field is the EXIT-NODE 
bit indicating a possible exit point from the entire 
CSECT. Because the code translation program operates 
on one CSECT at a time, a problem exists in determin- 
ing whether or not a flag definition in one CSECT po- 
tentially affects data uses in other CSECTs. This prob- 
lem is alleviated by translating all active flag definitions 
at the output of all exit nodes. Now all flag definitions 
that can possibly reach a data use in another CSECT 
are tmnslated. 

The flag optimization procedure, when called, will 
process the given information and set off any flag defi- 
nitions not required by the translation code. If the user 
chooses not to optimize, the procedure is not called and 
all flag definitions are translated. Conversely, if the pro- 
cedure is called, only those flag definitions not set off 
by the optimization procedure will be translated. 

THE OPTIMIZATION PROGRAM 
The optimization program is subdivided into five sepa- 
rate procedures. The main control is illustrated below: 

Another information block associated with each as- FOR THIS CSECT DO 
sembly code instruction is the assembly list, as shown 1) CALL PROCESS-DATA 
in Figure 7. This list contains labels, the op-codes, op- 2) CALL ALGORITHM 
erands, and other information. For implementation of 3) CALL FORM-RESULTS 
the Basic Reach Algorithm, the assembly list must be 4) CALL UPDATE-DATA 
appen.ded with fields that describe whether an instruc- 5) CALL FREE-BLOCKS 
tion requires a flag definition, such as a jump carry END OPTIMIZATION; 

DCL 1 GRIT-ARRAY(2000) EXTERNAL, 
2 LBEL CHAR(8), 
2 ADR CHAR(8), 
2 NODE--INFO, 

3 JUMP-LBEL CHAR(8), 
3 JUMP-ADR CHAR( 8)) 

/* CRITICAL PT. ARRllY */ 
/* LABEL FIELD */ 
/* ADDRESS FIELD */ 

/t TARG. LABEL OF J1JMP *t/ 
/* TARG. ADR. OF JUMP t/ 

3 JUMP-NODE 
3 NODE 
3 COND-DELAY 
3 DELAY 
3 EXE-LINES 

2 NODE-TYPE, 
3 SQ 
3 EX 
3 EC 
3 JU 
3 JC 

2 EXIT-NODE 
2 COND-TYPE-NODE 
2 IO-CRITPT 
2 LAST-NODE 
2 BLOCK-LIST-HEAD 

FIXED BIN(15), 
FIXED BIN(15), 
FIXED BIN(lS), 
FIXED BIN(15), 
FIXED BIN(15), 

BIT(l), 
BIT(l), 
BIT(l) t 
BIT(l) t 
BIT(l), 
BIT(l), 
BIT(l), 
BIT(l), 
BIT(l), 
B’ET(l), 

TARGET NODE OF J1JMP t/ 
NON-JUMP TARGET */ 
COND. DELAY OF GRIT. *:/ 
DELAY OF CRIT. B:LOCK*/ 
NO. OF EXE. LINES *:/ 

SEQ. BLOCK PRIMITIVES/ 
EXIT BLOCK PRIMITIVES/ 
COND. EXIT BLOCK */ 
UNCOND. JUMP BLOCK t/ 
COND. JUMP BLOCK */ 
CSECT EXIT BOOLEAN t/ 
COND. CRIT. BOOLEAN *:/ 
I/O GRIT. POINT */ 
LAST CRIT. NODE *c/ 
PTR. TO ASSEM-LIST *:/ 

FIGURE 6. Critical Array Information Block 
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DCL 1 ASSM--LIST 
3 ASSEM-TYPE, 
; EQU 
3 CSECT 
3 COMMENT 
3 EXE 
3 CRITPT 
2 ASSEM-FIELD, 

3 ADR 
3 OPCODE 
3 BYTE2 
3 BYTE3 
3 LBEL 
3 MNEMONIC 
3 OP(9) 
3 JMPADR 
3 MOP(9) 

2 PSW-FIELD( 8)) 
3 REQUIRED 
3 DEFINED 

2 NEXT-LTNE-PT 
2 JUMP-EXIT-PT 

EXTERNAL, 

BIT(l), 
BIT(l), 
BIT(l), 
BIT(l), 
BIT(l), 

CHAR(8), 
CHAR(2), 
CHAR( 2)) 
CHAR(2), 
CHAR(8), 
CHAR(4), 
CHAR(20), 
CHAR(8), 
CHAR(8), 

FIXED BIN(15), 
FIXED BIN(15), 
FIXED BIN( 15)) 
BIT( 1); 

/* /* 
;r 
:: / * /* 
:: /* 
;z /* /* /* /* /* 
:: /* /* 

FIGURE 7. Assembly List Information Block 

The following is a brief summary for each procedure: UPDATE-DATA 

PROCESS-DATA 

Information from ASSEM-LIST and GRIT-ARRAY in 
the translation program is collected, forming the arrays 
required for the Basic Reach Algorithm. In a scan of 
ASSEM-LIST, for each flag definition found, a data 
block is allocated in memory storing the type of flag, its 
location in the assembly listing, GEN, KILL, OUT, and 
IN bit vectors, and a pointer to the next flag definition 
block creating a linked list. 

The ASSEM-LIST file now is updated with the new 
list of flag definitions to be translated. ASSEM-LIST is 
first cleared of all the flag definitions and then replaced 
with the new list created in FORM-RESULTS. 

FREE-BLOCKS 

All data blocks allocated for each flag definition are 
freed to the operating system. This allows memory to 
be freed for the next time the optimization procedure is 
called. 

ALGORITHM SAMPLE OUTPUT 

The actual algorithm is executed utilizing the arrays 
generated in PROCESS-DATA, resulting in minimized 
OUT and IN arrays. 

FORM-RESULTS 

A sample CSECT for an INTEL 8085 microprocessor 
was run with the flag optimization activated, and the 
following figures show the results. Figure 8 displays the 
flag defined/required status prior to executing the opti- 
mization procedure. Figure 9 contains a data flow graph 
showing exit nodes and flow information drawn from 
GRIT-ARRAY for the CSECT. Finally, the results are 
shown in Figure 10, a display of the flag defined/re- 
quired status. An asterisk is placed by those flag defini- 
tions that were set off by the optimization so one can 
verify that the flag definitions were not needed in the 
translation. 

The assembly list is again scanned, looking for flag 
uses that require a flag definition. The location of the 
flag use in a block determines if either OUT or IN is 
needed to find all flag definitions reaching the flag use. 
In some cases, neither is used when a definition resides 
in the same block as the flag use and the flag use is not 
the last statement of the block. Another special case 
occurs when the last statement of a block contains both 
a flag definition and a flag use of the same flag. The 
OUT array cannot be used in this case since the flag 
definition in that statement cannot be used to satisfy its 
own flag use. 

LTST OF ASM.LINES *:/ 
CATEGORIZE ASM.LINE k,' 
EQU DIRECTIVE */ 
CSECT DIRECTTVE *:/ 
COMMENT LINE */ 
EXECUTABLE LINE */ 
USER CRIT POINT */ 
ASM. LINE FIELDS */ 
ADDRESS FIELD */ 
OPCODE FIELD */ 
2ND BYTE OF OBJ CODES/ 
3RD BYTE OF OBJ CODE*/ 
LABEL FIELD */ 
MNEMONIC FIELD */ 
CHAR. OPERANDS *:/ 
JUMP DEST. ADDRESS t/ 
MODTFIED OPERAND 1 */ 
PSW FLAGS(8 MAX.) */ 
PSW FLAG REQUIRED f/ 
PSW FLAG DEFINED *t/ 
LINK TO NEXT LINE *:/ 
EXTERNAL EXIT */ 

SUMMARY 
A procedure for optimizing flag definitions has been 
presented with application to an object code translation 
program. The overall result of calling the procedure is 
that several flag definitions are eliminated from the 
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BLOCK 1 ASSEM 
1AOEAOFF:JMP 

:NST 
*+1tTi 

ZERO 
N 

SIGN 
N 

PARITY 
N 

CARRY 
N 

AUX-CARRY 
E; 

BLOCK 2 ASSEM INST 
PUSH PSW 
PUSH B 
PUSH D 
PUSH H 
XRA A 
STA PAOOWORK 
LX1 H,IKBTKBD 
SHLD PAOAWORK 
LX1 H,ICOTICO 
SHLD PAOACALV 

ZERO 
R 
N 
N 
N 
N 
N 
N 
N 
N 
N 

SIGN 
R 
N 
N 
N 
N 
N 
N 
N 
N 
N 

PARITY 
R 
N 
N 
N 
N 
N 
N 
N 
N 
N 

CARRY 
R 
N 
N 
N 
N 
N 
N 
N 
N 
N 

AUX-CARRY 
R 
N 
N 
N 
K 
N 
N 
hi 
hi 
hi 

BLOCK 3 ASSEM INST 
LBTBWHLl:LHLD PAOACALV 

MOV A,M 
CPI X'FF' 
JZ LBTEWHLI 

ZERO 
N 
N 
D 
R 

SIGN 
N 
N 
D 
N 

PARITY 
N 
N 
D 
N 

CARRY 
N 
N 
D 
N 

AUX-.CARRY 
N 
hi 
C' 
N 

BLOCK 4 

BLOCK 5 

B;LOCK 6 

BILOCK 7 

BLOCK 8 

ASSEM INST 
LHLD PAOACALV 
MOV B,M 
INX H 
MOV C,M 
INX H 
MOV D,M 
LHLD PAOAWORK 
MOV A,B 
CMP M 
JNZ LBTENIFS 

ZERO 
N 
N 
N 
N 
N 
N 
N 
N 
D 
R 

SIGN 
N 
N 
N 
N 
N 
N 
N 
N 
D 
N 

PARITY 
N 
N 
N 
N 
N 
N 
N 
N 
D 
N 

CARRY 
N 
N 
N 
N 
N 
N 
N 
N 
D 
N 

AUX-CARRY 
N 
N 
N 
N 
N 
ri 
li 
h' 
D' 
N 

ASSEM INST 
INX H 
MOV A,C 
CMP M 
JNZ LBTENIFS 

ZERO 
N 
N 
D 
R 

SIGN 
N 
N 
D 
N 

PARITY 
N 
N 
D 
N 

CARRY 
N 
N 
D 
N 

AUX--CARRY 
N 
N 
II 
N 

ASSEM INST 
INX H 
MOV A,D 
CMP M 
JNZ LBTENIFS 

ZERO 
N 
N 
D 
R 

SIGN 
N 
N 
D 
N 

PARITY 
N 
N 
D 
N 

CARRY 
N 
N 
D 
N 

AUX-CARRY 
N 
N 
D 
N 

ASSEM 
INX 
INX 
MOV 
RLC 
JC 

INST 
H 
H 
A,M 

ZERO 
N 
N 
N 
N 
N 

SIGN 
N 
N 
N 
N 
N 

PARITY 
N 
N 
N 
N 
N 

CARRY 
N 
N 
N 
D 
R 

AUX--CARRY 
N 
N 
N 
N 
N LSTELSE5 

ASSEM INST 
MVI A,X'09' 
STA PAOOWORK 
MVI C,X'OZ' 
JMP LSTENDF8 

ZERO 
N 
N 
N 
N 

SIGN 
N 
N 
N 
N 

PARITY 
N 
N 
N 
N 

CARRY 
N 
N 
N 
N 

AUX-CARRY 
El 
N 
N 
N 

FIGURE 8. Assembly List for CSECT Before Optimization 
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BLOCK 9 ASSEM INST 
LSTELSE5:RLC 

JC LSTELSE7 

BLOCK 10 ASSEM INST 
MVI A,X'OB' 
STA PAOOWORK 
MVI C,X'O3' 
JMP LSTENDF8 

BLOCK 11 ASSEM INST 
LSTELSE7:MVI A,X'OF' 

STA PAOOWORK 
MVI C,X'O5' 

BLOCK 12 ASSEM INST 
LSTENDF8:INX H 

SHLD PAOAWRKA 
LHLD PAOACALV 
INX H 
INX H 
INX H 
SHLD PAOACALA 
MOV A,C 
MOV B,M 
INX H 
MOV C,M 
LHLD PAOAWRKA 

BLOCK 13 ASSEM INST 
LBTADDUM:MOV D,M 

INX H 
MOV E,M 
MOV H,B 
MOV L,C 
DAD D 
XCHG 
LHLD FUDGEFAC 
DAD D 
XCHG 
LHLD PAOAWRKA 
MOV M,D 
INX H 
MOV M,E 
INX H 
SHLD PAOAWRKA 
DCR A 
JNZ LBTADDUM 

BLOCK 14 ASSEM INST 
LHLD PAOOWORK 
XCHG 
LHLD PAOAWORK 
DAD D 
SHLD PAOAWORK 

ZERO SIGN 
N N 
N N 

ZERO SIGN 
N N 
N N 
N N 
N N 

ZERO SIGN 
N N 
N N 
N N 

ZERO SIGN 
N N 
N N 
N N 
N N 
N N 
N N 
N N 
N N 
N N 
N N 
N N 
N N 

ZERO SIGN 
N N 
N N 
N N 
N N 
N N 
N N 
N N 
N N 
N N 
N N 
N N 
N N 
N N 
N N 
N N 
N N 
D D 
R N 

ZERO SIGN 
N N 
N N 
N N 
N N 
N N 

PARITY 
N 
N 

PARITY 
N 
N 
N 
N 

PARITY 
N 
N 
N 

PARITY 
N 
N 
N 
N 
N 
N 
N 
N 
N 
N 
N 
N 

PARITY 
N 
N 
N 
N 
N 
N 
N 
N 
N 
N 
N 
N 
N 
N 
N 
N 
D 
N 

PARITY CARRY 
N N 
N N 
N N 
N D 
N N 

CARRY 
D 
R 

CARRY AUX-CARRY 
N N 
N N 
N N 
N N 

CARRY 
N 
N 
N 

CARRY 
N 
N 
N 
N 
N 
N 
N 
N 
N 
N 
N 
N 

CARRY 
N 
N 
N 
N 
N 
D 
N 
N 
D 
N 
N 
N 
N 
N 
N 
N 
N 
N 

Computing Practices 

AUX-CARRY 
N 
N 

AUX-CARRY 
N 
N 
N 

AUX-CARRY 
N 
N 
N 
N 
N 
N 
N 
N 
N 
N 
N 
N 

AUX-CARRY 
N 
N 
N 
N 
N 
N 
N 
N 
N 
N 
N 
N 
N 
N 
N 
N 
D 
N 

AUX-CARRY 
N 
N 
N 
N 
N 

FIGURE 8. Continued 
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Computing Practices 

BLOCK 15 ASSEM INST ZERO SIGN 
LBTENIF9:LHLD PAOACALV N N 

LX1 D,5 N N 
DAD D N N 
SHLD PAOACALV N N 
JMP LBTBWHLl N N 

BLOCK 16 ASSEM INST ZERO SIGN 
LBTEWHL1:POP H N N 

POP D N N 
POP B N N 
POP PSW D D 
RET N N 

FIGURE 0. Continued 

PARITY 
N 
N 
N 
N 
N 

PARITY 
N 
N 
N 
D 
N 

CARRY 
N 
N 
D 
N 
N 

CARRY 
N 
N 
N 
D 
N 

AUX-CARRY 
N 
N 
N 
N 
N 

AUX-CARRY 
N 
N 
N 
D 
N 

N (7) 

/I I t I 
N (8) t 1 

c EXIT 

N 15) 

1 

N (6) 

?- 

I a N(13) 

FIGURE 9. Data Flow Graph for Application 
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Computing Practices 

CARRY 
N 

AUX-CARRY 
N 

CARRY AUX-CARRY 
R R 
N N 
N N 
N N 
N N 
N N 
N N 
N N 
N N 
N N 

CARRY 
N 
N 
Nt 
N 

AUX-CARRY 
N 
N 
NS 
N 

CARRY 
N 
N 
N 
N 
N 
N 
N 
N 
Nf 
N 

AUX-CARRY 
N 
N 
N 
N 
N 
N 
N 
N 
NS 
N 

CARRY 
N 
N 
Nt 
N 

AUX-CARRY 
N 
N 
Nf 
N 

CARRY 
N 
N 
Nf 
N 

AUX-CARRY 
N 
N 
NJ: 
N 

PARITY CARRY 
N l N 
N N 
N N 
N D 
N R 

AUX-CARRY 
N 
N 
N 
N 
N 

CARRY 
N 
N 
N 
N 

AUX-CARRY 
N 
N 
N 
N 

BLOCK 1 ASSEM 
1AOEAOFF:JMP 

INST 
*+16 

ZERO 
N 

SIGN 
N 

PARITY 
N 

BLOCK 2 ASSEM INST 
PUSH PSW 
PUSH B 
PUSH D 
PUSH H 
XRA A 
STA PAOOWORK 
LX1 H,IKBTKBD 
SHLD PAOAWORK 
LX1 H,ICOTICO 
SHLD PAOACALV 

ZERO 
R 
N 
N 
N 
N 
N 
N 
N 
N 
N 

SIGN 
R 
N 
N 
N 
N 
N 
N 
N 
N 
N 

PARITY 
R 
N 
N 
N 
N 
N 
N 
N 
N 
N 

BLOCK 3 ASSEM INST 
LBTBWHL1:LHLD PAOACALV 

ZERO 
N 
N 
D 
R 

SIGN 
N 
N 
N* 
N 

PARITY 
N 
N 
NS 
N 

MOV 
CPI 
JZ 

A,M 
X'FF' 
LBTEWHLl 

ASSEM INST 
LHLD PAOACALV 
MOV B,M 
INX H 
MOV C,M 
INX H 
MOV D,M 
LHLD PAOAWORK 
MOV A,B 
CMP M 
JNZ LBTENIFS 

BLOCK 4 

BLOCK 5 

BLOCK 6 

BLOCK 7 

BLOCK 8 

ZERO 
N 
N 
N 
N 
N 
N 
N 
N 
D 
R 

SIGN 
N 
N 
N 
N 
N 
N 
N 
N 
N* 
N 

PARITY 
N 
N 
N 
N 
N 
N 
N 
N 
NS 
N 

ASSEM INST 
INX H 
MOV A,C 
CMP M 
JNZ LBTENIFS 

ZERO 
N 
N 
D 
R 

SIGN 
N 
N 
NS 
N 

PARITY 
N 
N 
NS 
N 

ASSEM INST 
INX H 
MOV A,D 
CMP M 
JNZ LBTENIFS 

ZERO 
N 
N 
D 
R 

SIGN 
N 
N 
NS 
N 

PARITY 
N 
N 
Nf 
N 

ASSEM 
INX 
INX 
MOV 
RLC 
JC 

INST 
H 
H 
A,M 

ZERO 
N 
N 
N 
N 
N 

SIGN 
N 
N 
N 
N 
N LSTELSE5 

ASSEM 
MVI 
STA 
MVI 

INST 
A,X'OS' 
PAOOWORK 
c, X'OZ 
LSTENDF8 

ZERO 
N 
N 
N 
N 

SIGN 
N 
N 
N 
N 

PARITY 
N 
N 
N 
N 

FIGURE 10. Assembly List for CSECT After Optimization 
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Computing Practices 

BLOCK 9 ASSEM 
LSTELSE5:RLC 

JC 

INST ZERO 
N 
N 

SIGN 
N 
N 

PARITY 
N 
N 

CARRY 
D 
R 

AUX-CARRY 
N 
N LSTELSE? 

BLOCK 10 ASSEM INST 
MVI A,X'OB' 
STA PAOOWORK 
MVI C,X'O3' 
JMP LSTENDF8 

ZERO 
N 
N 
N 
N 

SIGN 
N 
N 
N 
N 

PARITY 
N 
N 
N 
N 

CARRY 
N 
N 
N 
N 

AUX-CARRY 
N 
N 
N 
N 

BLOCK 11 ASSEM INST 
LSTELSE7:MVI A,X'OF' 

STA PAOOWORK 
MVI C,X'O5' 

ZERO 
N 
N 
N 

SIGN 
N 
N 
N 

PARITY 
N 
N 
N 

CARRY 
N 
N 
N 

AIJX-CARRY 
N 
N 
N 

BLOCK 12 ASSEM INST 
LSTENDF8:INX H 

SHLD PAOAWRKA 
LHLD PAOACALV 
INX H 
INX H 
INX H 
SHLD PAOACALA 
MOV A,C 
MOV B,M 
INX H 
MOV C,M 
LHLD PAOAWRKA 

ZERO 
N 
N 
N 
N 
N 
N 
N 
N 
N 
N 
N 
N 

SIGN 
N 
N 
N 
N 
N 
N 
N 
N 
N 
N 
N 
N 

PARITY 
N 
N 
N 
N 
N 
N 
N 
N 
N 
N 
N 
N 

CARRY 
N 
N 
N 
N 
N 
N 
N 
N 
N 
N 
N 
N 

AUX-CARRY 
N 
N 
El 
N 
N 
N 
N 
N 
N 
N 
N 
N 

BLOCK 13 ASSEM 
LBTADDUM:MOV 

INX 
MOV 
MOV 
MOV 
DAD 
XCHG 
LHLD 
DAD 
XCHG 
LHLD 
MOV 
INX 
MOV 
INX 
SHLD 
DCR 
JNZ 

INST 
D,M 
H 
E,M 
H,B 
L,C 
D 

ZERO 
N 
N 
N 
N 
N 
N 
N 
N 
N 
N 
N 
N 
N 
N 
N 
N 
D 
R 

SIGN 
N 
N 
N 
N 
N 
N 
N 
N 
N 
N 
N 
N 
N 
N 
N 
N 
NS 
N 

PARITY 
N 
N 
N 
N 
N 
N 
N 
N 
N 
N 
N 
N 
N 
N 
N 
N 
NS 
N 

CARRY 
N 
N 
N 
N 
N 
NS 
N 
N 
Nf 
N 
N 
N 
N 
N 
N 
N 
N 
N 

AUX-CARRY 
PI 
N 
N 
N 
N 
N 
N 
N 
N 
El 
N 
N 
El 
N 
N 
N 
Nt 
N 

FUDGEFAC 
D 

PAOAWRKA 
M,D 
H 
M,E 
H 
PAOAWRKA 
A 
LBTADDUM 

BLOCK 14 ASSEM 
LHLD 
XCHG 
LHLD 
DAD 
SHLD 

INST 
PAOOWORK 

ZERO 
N 
N 
N 
N 
N 

SIGN 
N 
N 
N 
N 
N 

PARITY 
N 
N 
N 
N 
N 

CARRY 
N 
N 
N 
NS 
N 

AUX.-CARRY 
N 
N 
N 
N 
N 

PAOAWORK 
D 
PAOAWORK 

FIGURE 10. Continued 
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Computing Practices 

BLOCK 15 ASSEM INST 
LBTENIFS: LHLD PAOACALV 

LX1 D,5 
DAD D 
SHLD PAOACALV 
JMP LBTBWHL 1 

BLOCK 16 ASSEM INST 
LBTEWHLl: POP H 

POP D 
POP B 
POP PSW 
RET 

ZERO SIGN 
N N 
N N 
N N 
N N 
N N 

ZERO SIGN 
N N 
N N 
N N 
D D 
N N 

FIGURE 10. 

translation code. In the application presented, over fifty 
percent, twenty-three of forty INTEL 8085 flag defini- 
tions were eliminated from the translation. The optimi- 
zation procedure is versatile in that it can be used for 
optimizing flag definitions of any microprocessor and 
has been utilized in the INTEL 8051 and INTEL 8086. 
Since.the procedure only modifies already existing data 
fields, its execution is used only if the optimization is 
desired. 

A possible topic for future study in the area of opti- 
mization of data definitions is an optimization on a 
more global basis, where data definitions that are active 
upon exit of a CSECT are optimized. Several CSECTs 
may be grouped together to form nodes whereby the 
Basic Reach Algorithm can be executed again. 

This technique can be used for general code optimi- 
zation. Through the use of the Basic Reach Algorithm, 
one can determine if a variable is defined at a point in 
a program, but never used. One can then remove these 
variables from the code, thereby resulting in a more 
compact code package. It can also be used to determine 
whether a variable that has been used at a particular 
point has been defined somewhere in a path arriving at 
that point. 

This technique has also been used to achieve opti- 
mization beyond local transformations in automated 
logic design [7, 81. Global data flow analysis has 
achieved the screening of logic for possible redundan- 
cies, correction of timing problems by moving late in- 
puts forward, and remedial effects of poor specification 
that may result in a test specification too early in the 
functions description. 

A generalization of this algorithm would be: to any 
system that can be represented by a directed flow graph 
with the notion of determining whether some property 
that is to be used at a node has been defined previ- 
ously; or determining whether a property has been de- 
fined and if it reaches any use of that property. This 
would allow for both determination of system proper- 
ties that are undefined, and system optimization. 

Acknowledgment. Partial support for this paper was 
from IBM, Lexington, KY grant number 200-614. 

PARITY CARRY 
N N 
N N 
N N* 
N N 
N N 

PARITY 
N 
N 
N 
D 
N 

CARRY 
N 
N 
N 
D 
N 

AUX-CARRY 
N 
N 
N 
N 
N 

AIJX-CARRY 
N 
N 
N 
D 
N 

Continued 
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