
Missouri University of Science and Technology Missouri University of Science and Technology

Scholars' Mine Scholars' Mine

Computer Science Faculty Research & Creative
Works Computer Science

01 Jan 1989

A Definition Optimization Technique Used In A Code Translation A Definition Optimization Technique Used In A Code Translation

Algorithm Algorithm

David M. DeJean

George Winston Zobrist
Missouri University of Science and Technology

Follow this and additional works at: https://scholarsmine.mst.edu/comsci_facwork

 Part of the Computer Sciences Commons

Recommended Citation Recommended Citation
D. M. DeJean and G. W. Zobrist, "A Definition Optimization Technique Used In A Code Translation
Algorithm," Communications of the ACM, vol. 32, no. 1, pp. 94 - 105, Association for Computing Machinery
(ACM), Jan 1989.
The definitive version is available at https://doi.org/10.1145/63238.63245

This Article - Journal is brought to you for free and open access by Scholars' Mine. It has been accepted for
inclusion in Computer Science Faculty Research & Creative Works by an authorized administrator of Scholars'
Mine. This work is protected by U. S. Copyright Law. Unauthorized use including reproduction for redistribution
requires the permission of the copyright holder. For more information, please contact scholarsmine@mst.edu.

http://www.mst.edu/
http://www.mst.edu/
https://scholarsmine.mst.edu/
https://scholarsmine.mst.edu/comsci_facwork
https://scholarsmine.mst.edu/comsci_facwork
https://scholarsmine.mst.edu/comsci
https://scholarsmine.mst.edu/comsci_facwork?utm_source=scholarsmine.mst.edu%2Fcomsci_facwork%2F1342&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/142?utm_source=scholarsmine.mst.edu%2Fcomsci_facwork%2F1342&utm_medium=PDF&utm_campaign=PDFCoverPages
https://doi.org/10.1145/63238.63245
mailto:scholarsmine@mst.edu

COMPUTlNG PRACTICES

Edgar H. Sibley
Panel Editor

Data flow analysis is used to optimize variable definitions in a program that
translates microprocessor object code to a higher order language.

A DEFlRllTIoN OPTllWlZA~lOhl TECHNIQUE
USED IN A CODE TRANSLATION ALGOl?lTHlW

DAVID M. DEJEAN and GEORGE W. ZOBRIST

One of the goals of code optimization in a translator is
to reduce the code space needed for the translated code
that represents the original code. In developing meth-
ods for code optimization, the subject can be divided
into three interrelated areas:

(1) 1oc:al optimizations, those performed within a
straight-line block of code,

(2) loop optimizations, those performed on software
loops, and

(3) data flow analysis, the transmission of useful rela-
tionships from parts of the program to places where
the information can be used [l].

For th’e purpose of this article, data flow analysis is
used i:n an attempt to optimize variable definitions in a
translation program. An application of the analysis is
presemed in a program that translates microprocessor
object code to a higher order language, with flags as
the optimizing target typically inherent in any micro-
processor instruction set.

DATA FLOW ANALYSIS DEFINITIONS
Certain basic concepts and constructs must first be de-
fined. Data flow analysis begins by breaking the code
into basic blocks-sequences of consecutive statements
that may be entered only at the beginning-and when
entered, are executed in sequence without halt or pos-
sibility of branch (except at the end of the basic block).
Each basic block is terminated by a jump statement
(conditional or non-conditional), an exit statement, or
an input/output operation. Other blocks may be termi-
nated due to the next sequential statement being a
merge point of other basic blocks or the object of one or
more jump statements. Grouping these basic blocks and

0 1989 ACM 0001.0782/89/0100-0094 $1.50

94 Communications of the ACM

connecting them result in a data flow graph which
shows the possible data flow of the executing code.
A cluster of basic blocks, typically a procedure or small
program, can be called a control section, abb:reviated
CSECT, the first basic block called the initial block.
Each basic block in a flow graph is considered a node,
i.e., N(l), N(2), . . . , N(max). Figure 1 shows an example
of a data flow graph containing several loops and exit
points.

The terms node and basic block are interchangeable.
The term node is typically used when referring to a
data flow graph, and basic block is used when referenc-
ing the sequence of statements in the node. The imme-
diate predecessor of a node N(j) is any node directly
preceding node N(j) (i.e., there exists a path in the flow
graph from the predecessor N(p) directly to the node
N(j)). Predecessors of node N(j) are all nodes for which
there exists any path, whether through other nodes or
directly, to node N(j). An immediate successor of node
N(j) is any node directly following N(j) in the flow
graph, that is, there exists a direct path from N(j) to the
immediate successor N(s). Successors of N(j) are all
nodes for which there exists a path from N(j), through
other nodes or directly, to the successor N(s) [2]. An
exit node is any node that may conditionally or non-
conditionally exit from the flow graph or CSECT.

At this point, data flow relationships can b’e more
precisely defined. Every node consists of sequential
statements that either use or modify data items. A data
item is a variable that can be referenced or redefined in
an expression. If an expression modifies a data item, it
is called a data definition. Conversely, if an expression
references a data item, it is called a data use. A local
definition of a block is a definition within that block. If
a data definition is made available to a data use, then
the data definition is said to potentially affect the data

[away 1989 Volume 3.2 Number 1

http://crossmark.crossref.org/dialog/?doi=10.1145%2F63238.63245&domain=pdf&date_stamp=1989-01-01

Computing Practices

ri N(1)

N (4)

N (5)

EXIT

EXIT

FIGURE 1. Data Flow Graph Example

use. The obvious example below shows data definitions
and a data use:

X=Y

z=x*2

A = C/6

The data definition of X obviously affects the next
statement, but does not affect the last statement. The
term potentially is used since a data definition and a
data use may be in separate basic blocks where flow of
control is not yet known until the actual execution of
the code. Also, a data definition reaches a point if there
exists a path in the flow graph from the definition to
that point, such that no other definitions of the data
item appear on the path. A data definition is active or
live at a point if it reaches that point.

GLOBAL DATA FLOW ANALYSIS AND
ALGORITHM
The common objective of this optimization is to elimi-
nate excessive or unnecessary definitions of variables
in a code segment. An obvious elimination of a data
definition can be performed where two data definitions
exist in a group of sequential statements without any

correlating use of the data between them. The first data
definition can be eliminated from the code regardless of
how the statement defines that data item.

When analyzing data definitions on a global basis for
an entire CSECT, the analysis becomes much more
complex. Manual analysis would require searching
through every possible path from each data use back to
every data definition. Algorithms exist that can be used
to optimize data definitions.

In order to determine the definitions that are to re-
main in the code, it would be extremely useful to know
which data definitions were active at the output of
each node and which definitions were active at the
input of each node. Given this information, a data defi-
nition can be labeled as required by data use provided
the data definitions are referencing the same data item
as the data use. For example, data definitions d8 and d8
are labeled as required for the data use in block 3 of the
flow graph in Figure 2. The other definitions obviously
can be discarded. The set of active definitions to the
output of block 1 is d2, d8; d4, d8, d6 for block 2, and
d7, d8 for block 3. The active set of definitions to the
input of block 3 is the union of all the predecessors’
active output data definitions. The set of active defini-
tions at the output of block 3 is formed by gathering all
the new data definitions in block 3 plus any active
input data definitions not redefined by any statement
in the block, plus the data definitions that redefine an
already existing data definition. The redefining of a
data item has killed any other previous active data defi-
nitions entering the block. For instance, the definition

BLOCK I BLOCK 2

1 d8, Z=X*Y 1

FIGURE 2. Sample Data Definitions and Data Uses

d7 in block 3 has killed definitions d2, da. The active
definitions at the output of block 3 include d8, d8, d6
simply because they appear at the input of block 3 and
are not redefined within the block. Since d7 is the
last definition for X before exiting block 3, it is active.
Finally, d8 is active because it is a new definition
within the block.

At this point, mathematical equations are needed to
express the relationship between active input and ac-
tive output definitions and to specify which definitions
are killed and which are generated within each block.
Bit arrays OUT, IN, GEN, and KILL shall be defined, and
equations shall be developed leading to an algorithm to

January 1989 Volume 32 Number 1 Communications of the ACM 95

Computing Practices

optimize the number of data definitions. The OUT ar-
ray can be defined as a group of N bit vectors, one bit
for every data definition in the CSECT, one vector
per basic block. Each bit set indicates that the data
definition is active at the output of that block. Grouping
the vectors together forms a two-dimensional array N
bits wide by M blocks long comprising the OUT array.
The OUT array for the previous example is defined as:

BLOCK dl dz d3 d4 d6 d6 d7 d8

OUT(BLK 1) = 0 1 1 0 0 0 0 0
OUT(BLK 2) = 0 0 0 1 1 1 0 0
OUT(BLK 3) = 0 0 1 0 1 1 1 1

The IN array is of the same structure but for each bit
set in the vector of a given block, it indicates an active
definition to the input of that indicated block. For ex-
ample:

BLOCK dl dz d3 d4 d6 d6 d7 d8

IN(BLK 1) = 0 0 0 0 0 0 0 0
IN(BLK 2) = 0 0 0 0 0 0 0 0
IN(BLK 3) = 0 1 1 1 1 1 0 0

The GLEN array, again the same structure, indicates
which definitions have been generated within the
block. The GEN array is:

BLOCK dl dz d3 d4 d6 d6 d7 d8

GEN(BLK 1) = 1 1 1 0 0 0 0 0
GEN(BLK 2) = 0 0 0 1 1 1 0 0
GEN(BLK 3) = 0 0 0 0 0 0 1 1

Finally, each block also has a vector of N bits associated
with it, one bit for every definition, indicating which
definitions outside of the block can be killed by defini-
tions of the same type within the block. Grouping these
from each block forms the KILL array. For example,
KILL is defined as:

BLOCK dl dz d3 d4 d6 d6 d7 d8

KILL(BLK 1) = 6 6 6 1 1 6 1 6
KII,L(BLK 2) = 1 1 1 6 6 6 1 6
KILL(BLK 3) = 6 1 6 1 6 6 6 6

Now an equation can be written describing all active
inputs to each block as being the union of all predeces-
sors’ active output list. Let IN(b) = UNION OUT(p),
where b is the block number and p is every predecessor
of block b [2]. Furthermore, the OUT array can be
found to be: OUT(b) = [IN(b) AND NOT KILL(b)] OR
GEN(b), the AND NOT and OR statements being logical
bit operations [2]. The first equation shows that a defi-
nition reaches the beginning of a block b only if it
reaches the end of one of its predecessors [l]. If a block
has no predecessors, then the IN vector is the empty
set.

The second equation states that a definition reaches
the end of block b only if either 1) the definition is in
IN(b) (i.e., the definition reaches the beginning of b and
is not killed by b), or 2) the definition is generated
within b (i.e., it appears in b and the data item is not
subsequently redefined within b) [l]. These equations

are known as the data flow equations relating INS and
OUTS and are the basis for what is commonly called
the Basic Reach Algorithm [Z]. The solution to these
equations is not unique, but there is a minimal solution
that will result in the minimum number of active data
definitions [l]. The method of reaching that solution is
by iterating through the equations block by ‘block until
there is no change in the arrays OUT and IN.

By estimating the IN array to be the empty set and
OUT to be equal to the GEN array, the following algo-
rithm can be realized:

BEGIN
FOR EACH BLOCK B DO BEGIN

/* initialize IN, OUT */
IN(B) = 0;
OUT(B) = GEN(B);

END;
CHANGE = TRUE;
WHLE CHANGE = TRUE DO BEGIN

/* loop until no change */
CHANGE = FALSE;
FOR EACH BLOCK B DO

/* one iteration al.1 blocks */
NEWIN = UNION OUT(B);

/‘” hold IN for now */
IF NEWIN () IN(B) THEN CHANGE =: TRUE;
IN(B) = NEWIN;
OUT(B) = IN(B) AND NOT(KILL(B)) OR GEN(B);

END;
END;

END; /* algorithm */

It can be proven that the algorithm does indeed con-
verge, and it converges in less than j iterations, where j
is the number of basic blocks. This is shown in a paper
by Kildall [3].

For the purpose of illustrating the algorithm, the fol-

BLOCK I

I 64: K=3
BLOCK 4

BLOCK 3 1 ’
65: J = 1

I 66: I = 5
I ---

BLOCK 5
1

d9: K= 15
dlO:J= 1

t
EXIT

FIGURE 3. Flow Graph for Example

96 Communications of the ACM Janua y 1989 Volume 32 Number 1

Computing Practices

lowing example is presented. Consider the flow graph
of Figure 3.

Initially, the GEN and K1I.L arrays must be formed.
All the arrays will contain ten bits associated with the
ten data definitions of the flow graph. GEN is easily
formed by observing which definitions are defined in
each block. Block 1 has data definitions dl, d2, and
therefore, will have a vector of GEN(l) = 1100000000.
The remaining GEN array is shown in Figure 4. Since
block 1 has data definitions of variables I and J, these
definitions may kill any other definitions in the CSECT
of I and J. These include definitions d3, d5, d6, da, and
dl0, and therefore:

KILL(l) = 0010110101

as shown in Figure 4.
After initializing IN(b) = empty set and OUT(b) =

GEN(b), the algorithm proceeds to pass 1. Block 1 has

GEN(B) KILL(B)

BLOCK 1 1100000000 0010110101
BLOCK 2 0011000000 1000011110
BLOCK 3 0000110000 1110000101
BLOCK 4 0000001100 1011010010
BLOCK 5 0000000011 0101101000

initial IN(B) initial OUT(B)

BLOCK 1 0000000000 1100000000
BLOCK 2 0000000000 0011000000
BLOCK 3 0000000000 0000110000
BLOCK 4 0000000000 0000001100
BLOCK 5 0000000000 0000000011

FIGURE 4. Gen, Kill, Initial In, and Initial Out Arrays

no predecessors, and therefore, IN(l) = 0000000000.
OUT(l) is formed by [IN(l) AND NOT KILL(l)] OR
GEN(l) = 1100000000. Block 3 has two predecessors,
and IN(3) = OUT(2) OR OUT(5) = (0111000011 AND
NOT(1110000101)) OR 0000110000 = 0001110000. As
shown in Figure 5, only three passes were required
before convergence of the IN and OUT arrays.

Given this information, a data use now has means of
determining directly which definitions potentially af-
fect the data use. Obviously, if a definition potentially
affects the data use, the data definition must not be
eliminated.

If a data use exists at the end of a block, the OUT
array can be used to determine which definitions are
required for the data use. Similarly, the IN array is
used when a data use appears at the beginning of a
block. For the previous example, if the variable K was
referenced at the end of block 3, definitions d4 and d6
must remain as shown by the K definitions in the vec-
tor OUT(3). Likewise, if the variable K was referenced
at the beginning of block 3, again definitions d4 and d6
must exist as represented by the definitions of K in the
vector IN(3).

A data use, however, may exist anywhere within a
group of sequential statements, not always at the begin-

ning or end of a basic block. This situation can be
rectified by flagging local definitions. In executing any
algorithm, a search through the code is required for all
data definitions and data uses. While searching through
each block, it would be a trivial detail to keep a record
of the last data definition within a block. Therefore,
when a data use is found, the last data definition of that
type can be flagged. If no such definition exists within
the block, then the IN vector, generated by the algo-
rithm, must be used to find active definitions.

APPLICATION OF ALGORITHM TO FLAG
DEFINITIONS
Marshall and Zobrist presented a method of trans-
lating microprocessor object code into a behaviorally-
equivalent, high-level language of PL/I for the purpose
of electronic system simulation [4]. For the actual
translation, groups of PL/I statements are substituted
for each assembly instruction. It was noticed, however,
that a large portion of the PL/I translation consisted of
statements relating to flags associated with the particu-
lar microprocessor involved. Flags, such as the parity,
zero, sign, carry, and auxiliary-carry in the INTEL 8085
microprocessor, are altered by many of the processors’
op-codes [5]. In fact, over fifty percent of the INTEL
8085 instruction set opcodes alter at least one flag [5].
Throughout a code translation, very few instances oc-
cur where a flag is referenced. An example of a flag

PASS 1 IN(B) OUT(B)

BLOCK 1
BLOCK 2
BLOCK 3
BLOCK 4
BLOCK 5

0000000000
1100000000
0111000011
0111000000
0101111110

1100000000
0111000000
0001110010
0100001100
0000010111

PASS 2 IN(B) OUT(B)

BLOCK 1
BLOCK 2
BLOCK 3
BLOCK 4
BLOCK 5

0000000000
1100000000
0111010111
0111000000
0101111110

1100000000
0111000000
0001110010
0100001100
0000010111

PASS 3 IN(B) OUT(B)

BLOCK 1
BLOCK 2
BLOCK 3
BLOCK 4
BLOCK 5

0000000000
1100000000
0111010111
0111000000
0101111110

1100000000
0111000000
0001110010
0100001100
0000010111

FIGURE 5. Three Passes of the Algorithm

reference, or flag use, would be a jump on zero condi-
tion instruction. The op-code preceding the conditional
jump might be a subtract instruction defining all
five flags in the INTEL 8085 microprocessor. The PL/I
statements defining the other four flags, in this in-
stance, are excessive and unnecessary and could be
eliminated from the PL/I translation. The optimization
and determination of which flag definitions to discard
or retain is the function of this article.

]anuary 1989 Volume 32 Number I Communications of the ACM 97

Computing Practices

The Basic Reach Algorithm has many applications
for optimizing any type of variable. Consequently, this
algorithm can easily be adapted to work well in opti-
mizing the flag definitions in the code translation pro-
gram. All the essential elements are already deter-
mined by the translation program to execute the algo-
rithm. At one point in the translation program, a
CSEC:T has been divided into basic blocks, and a PL/I
structured information block, as shown in Figure 6,
called the critical array, has been formed containing val-
uable information for the optimizing program. The
NODE and JUMP-NODE fields are the successor nodes
in the data flow graph. NODE is the unconditional
jump or exit to the next successor node, and the JUMP-
NODE is the successor node that would follow if a
jump condition is true.

instruction, or defines a flag, such as a subtract instruc-
tion which defines most common flags. Some instruc-
tions, depending on the microprocessor, both define
and use a flag.

The flag optimization program was written as a pro-
cedure whereby the code translation program could
call the optimization procedure as an option to the
user. The code translation program was also modified
to review the flag defined field of the assembly list in
order to determine whether a flag definition. is to be
translated. Initially, before the optimization procedure
is called, all flag definitions will have the flag defined
field set on, indicating that a flag definition must be
translated.

The other vital information field is the EXIT-NODE
bit indicating a possible exit point from the entire
CSECT. Because the code translation program operates
on one CSECT at a time, a problem exists in determin-
ing whether or not a flag definition in one CSECT po-
tentially affects data uses in other CSECTs. This prob-
lem is alleviated by translating all active flag definitions
at the output of all exit nodes. Now all flag definitions
that can possibly reach a data use in another CSECT
are tmnslated.

The flag optimization procedure, when called, will
process the given information and set off any flag defi-
nitions not required by the translation code. If the user
chooses not to optimize, the procedure is not called and
all flag definitions are translated. Conversely, if the pro-
cedure is called, only those flag definitions not set off
by the optimization procedure will be translated.

THE OPTIMIZATION PROGRAM
The optimization program is subdivided into five sepa-
rate procedures. The main control is illustrated below:

Another information block associated with each as- FOR THIS CSECT DO
sembly code instruction is the assembly list, as shown 1) CALL PROCESS-DATA
in Figure 7. This list contains labels, the op-codes, op- 2) CALL ALGORITHM
erands, and other information. For implementation of 3) CALL FORM-RESULTS
the Basic Reach Algorithm, the assembly list must be 4) CALL UPDATE-DATA
appen.ded with fields that describe whether an instruc- 5) CALL FREE-BLOCKS
tion requires a flag definition, such as a jump carry END OPTIMIZATION;

DCL 1 GRIT-ARRAY(2000) EXTERNAL,
2 LBEL CHAR(8),
2 ADR CHAR(8),
2 NODE--INFO,

3 JUMP-LBEL CHAR(8),
3 JUMP-ADR CHAR(8))

/* CRITICAL PT. ARRllY */
/* LABEL FIELD */
/* ADDRESS FIELD */

/t TARG. LABEL OF J1JMP *t/
/* TARG. ADR. OF JUMP t/

3 JUMP-NODE
3 NODE
3 COND-DELAY
3 DELAY
3 EXE-LINES

2 NODE-TYPE,
3 SQ
3 EX
3 EC
3 JU
3 JC

2 EXIT-NODE
2 COND-TYPE-NODE
2 IO-CRITPT
2 LAST-NODE
2 BLOCK-LIST-HEAD

FIXED BIN(15),
FIXED BIN(15),
FIXED BIN(lS),
FIXED BIN(15),
FIXED BIN(15),

BIT(l),
BIT(l),
BIT(l) t
BIT(l) t
BIT(l),
BIT(l),
BIT(l),
BIT(l),
BIT(l),
B’ET(l),

TARGET NODE OF J1JMP t/
NON-JUMP TARGET */
COND. DELAY OF GRIT. *:/
DELAY OF CRIT. B:LOCK*/
NO. OF EXE. LINES *:/

SEQ. BLOCK PRIMITIVES/
EXIT BLOCK PRIMITIVES/
COND. EXIT BLOCK */
UNCOND. JUMP BLOCK t/
COND. JUMP BLOCK */
CSECT EXIT BOOLEAN t/
COND. CRIT. BOOLEAN *:/
I/O GRIT. POINT */
LAST CRIT. NODE *c/
PTR. TO ASSEM-LIST *:/

FIGURE 6. Critical Array Information Block

99 Communications of the ACh4 January 2989 Volume 32 Number 1

Compufing Practices

DCL 1 ASSM--LIST
3 ASSEM-TYPE,
; EQU
3 CSECT
3 COMMENT
3 EXE
3 CRITPT
2 ASSEM-FIELD,

3 ADR
3 OPCODE
3 BYTE2
3 BYTE3
3 LBEL
3 MNEMONIC
3 OP(9)
3 JMPADR
3 MOP(9)

2 PSW-FIELD(8))
3 REQUIRED
3 DEFINED

2 NEXT-LTNE-PT
2 JUMP-EXIT-PT

EXTERNAL,

BIT(l),
BIT(l),
BIT(l),
BIT(l),
BIT(l),

CHAR(8),
CHAR(2),
CHAR(2))
CHAR(2),
CHAR(8),
CHAR(4),
CHAR(20),
CHAR(8),
CHAR(8),

FIXED BIN(15),
FIXED BIN(15),
FIXED BIN(15))
BIT(1);

/* /*
;r
:: / * /*
:: /*
;z /* /* /* /* /*
:: /* /*

FIGURE 7. Assembly List Information Block

The following is a brief summary for each procedure: UPDATE-DATA

PROCESS-DATA

Information from ASSEM-LIST and GRIT-ARRAY in
the translation program is collected, forming the arrays
required for the Basic Reach Algorithm. In a scan of
ASSEM-LIST, for each flag definition found, a data
block is allocated in memory storing the type of flag, its
location in the assembly listing, GEN, KILL, OUT, and
IN bit vectors, and a pointer to the next flag definition
block creating a linked list.

The ASSEM-LIST file now is updated with the new
list of flag definitions to be translated. ASSEM-LIST is
first cleared of all the flag definitions and then replaced
with the new list created in FORM-RESULTS.

FREE-BLOCKS

All data blocks allocated for each flag definition are
freed to the operating system. This allows memory to
be freed for the next time the optimization procedure is
called.

ALGORITHM SAMPLE OUTPUT

The actual algorithm is executed utilizing the arrays
generated in PROCESS-DATA, resulting in minimized
OUT and IN arrays.

FORM-RESULTS

A sample CSECT for an INTEL 8085 microprocessor
was run with the flag optimization activated, and the
following figures show the results. Figure 8 displays the
flag defined/required status prior to executing the opti-
mization procedure. Figure 9 contains a data flow graph
showing exit nodes and flow information drawn from
GRIT-ARRAY for the CSECT. Finally, the results are
shown in Figure 10, a display of the flag defined/re-
quired status. An asterisk is placed by those flag defini-
tions that were set off by the optimization so one can
verify that the flag definitions were not needed in the
translation.

The assembly list is again scanned, looking for flag
uses that require a flag definition. The location of the
flag use in a block determines if either OUT or IN is
needed to find all flag definitions reaching the flag use.
In some cases, neither is used when a definition resides
in the same block as the flag use and the flag use is not
the last statement of the block. Another special case
occurs when the last statement of a block contains both
a flag definition and a flag use of the same flag. The
OUT array cannot be used in this case since the flag
definition in that statement cannot be used to satisfy its
own flag use.

LTST OF ASM.LINES *:/
CATEGORIZE ASM.LINE k,'
EQU DIRECTIVE */
CSECT DIRECTTVE *:/
COMMENT LINE */
EXECUTABLE LINE */
USER CRIT POINT */
ASM. LINE FIELDS */
ADDRESS FIELD */
OPCODE FIELD */
2ND BYTE OF OBJ CODES/
3RD BYTE OF OBJ CODE*/
LABEL FIELD */
MNEMONIC FIELD */
CHAR. OPERANDS *:/
JUMP DEST. ADDRESS t/
MODTFIED OPERAND 1 */
PSW FLAGS(8 MAX.) */
PSW FLAG REQUIRED f/
PSW FLAG DEFINED *t/
LINK TO NEXT LINE *:/
EXTERNAL EXIT */

SUMMARY
A procedure for optimizing flag definitions has been
presented with application to an object code translation
program. The overall result of calling the procedure is
that several flag definitions are eliminated from the

January 1989 Volume 32 Number 1 Communications of the ACM 99

Computing Practices

BLOCK 1 ASSEM
1AOEAOFF:JMP

:NST
*+1tTi

ZERO
N

SIGN
N

PARITY
N

CARRY
N

AUX-CARRY
E;

BLOCK 2 ASSEM INST
PUSH PSW
PUSH B
PUSH D
PUSH H
XRA A
STA PAOOWORK
LX1 H,IKBTKBD
SHLD PAOAWORK
LX1 H,ICOTICO
SHLD PAOACALV

ZERO
R
N
N
N
N
N
N
N
N
N

SIGN
R
N
N
N
N
N
N
N
N
N

PARITY
R
N
N
N
N
N
N
N
N
N

CARRY
R
N
N
N
N
N
N
N
N
N

AUX-CARRY
R
N
N
N
K
N
N
hi
hi
hi

BLOCK 3 ASSEM INST
LBTBWHLl:LHLD PAOACALV

MOV A,M
CPI X'FF'
JZ LBTEWHLI

ZERO
N
N
D
R

SIGN
N
N
D
N

PARITY
N
N
D
N

CARRY
N
N
D
N

AUX-.CARRY
N
hi
C'
N

BLOCK 4

BLOCK 5

B;LOCK 6

BILOCK 7

BLOCK 8

ASSEM INST
LHLD PAOACALV
MOV B,M
INX H
MOV C,M
INX H
MOV D,M
LHLD PAOAWORK
MOV A,B
CMP M
JNZ LBTENIFS

ZERO
N
N
N
N
N
N
N
N
D
R

SIGN
N
N
N
N
N
N
N
N
D
N

PARITY
N
N
N
N
N
N
N
N
D
N

CARRY
N
N
N
N
N
N
N
N
D
N

AUX-CARRY
N
N
N
N
N
ri
li
h'
D'
N

ASSEM INST
INX H
MOV A,C
CMP M
JNZ LBTENIFS

ZERO
N
N
D
R

SIGN
N
N
D
N

PARITY
N
N
D
N

CARRY
N
N
D
N

AUX--CARRY
N
N
II
N

ASSEM INST
INX H
MOV A,D
CMP M
JNZ LBTENIFS

ZERO
N
N
D
R

SIGN
N
N
D
N

PARITY
N
N
D
N

CARRY
N
N
D
N

AUX-CARRY
N
N
D
N

ASSEM
INX
INX
MOV
RLC
JC

INST
H
H
A,M

ZERO
N
N
N
N
N

SIGN
N
N
N
N
N

PARITY
N
N
N
N
N

CARRY
N
N
N
D
R

AUX--CARRY
N
N
N
N
N LSTELSE5

ASSEM INST
MVI A,X'09'
STA PAOOWORK
MVI C,X'OZ'
JMP LSTENDF8

ZERO
N
N
N
N

SIGN
N
N
N
N

PARITY
N
N
N
N

CARRY
N
N
N
N

AUX-CARRY
El
N
N
N

FIGURE 8. Assembly List for CSECT Before Optimization

January 1989 Volume 32 Number 1 100 CommtwGcations of the ACM

BLOCK 9 ASSEM INST
LSTELSE5:RLC

JC LSTELSE7

BLOCK 10 ASSEM INST
MVI A,X'OB'
STA PAOOWORK
MVI C,X'O3'
JMP LSTENDF8

BLOCK 11 ASSEM INST
LSTELSE7:MVI A,X'OF'

STA PAOOWORK
MVI C,X'O5'

BLOCK 12 ASSEM INST
LSTENDF8:INX H

SHLD PAOAWRKA
LHLD PAOACALV
INX H
INX H
INX H
SHLD PAOACALA
MOV A,C
MOV B,M
INX H
MOV C,M
LHLD PAOAWRKA

BLOCK 13 ASSEM INST
LBTADDUM:MOV D,M

INX H
MOV E,M
MOV H,B
MOV L,C
DAD D
XCHG
LHLD FUDGEFAC
DAD D
XCHG
LHLD PAOAWRKA
MOV M,D
INX H
MOV M,E
INX H
SHLD PAOAWRKA
DCR A
JNZ LBTADDUM

BLOCK 14 ASSEM INST
LHLD PAOOWORK
XCHG
LHLD PAOAWORK
DAD D
SHLD PAOAWORK

ZERO SIGN
N N
N N

ZERO SIGN
N N
N N
N N
N N

ZERO SIGN
N N
N N
N N

ZERO SIGN
N N
N N
N N
N N
N N
N N
N N
N N
N N
N N
N N
N N

ZERO SIGN
N N
N N
N N
N N
N N
N N
N N
N N
N N
N N
N N
N N
N N
N N
N N
N N
D D
R N

ZERO SIGN
N N
N N
N N
N N
N N

PARITY
N
N

PARITY
N
N
N
N

PARITY
N
N
N

PARITY
N
N
N
N
N
N
N
N
N
N
N
N

PARITY
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
D
N

PARITY CARRY
N N
N N
N N
N D
N N

CARRY
D
R

CARRY AUX-CARRY
N N
N N
N N
N N

CARRY
N
N
N

CARRY
N
N
N
N
N
N
N
N
N
N
N
N

CARRY
N
N
N
N
N
D
N
N
D
N
N
N
N
N
N
N
N
N

Computing Practices

AUX-CARRY
N
N

AUX-CARRY
N
N
N

AUX-CARRY
N
N
N
N
N
N
N
N
N
N
N
N

AUX-CARRY
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
D
N

AUX-CARRY
N
N
N
N
N

FIGURE 8. Continued

Ianuary 1989 Volume 32 Number 1 Communications of the ACM 101

Computing Practices

BLOCK 15 ASSEM INST ZERO SIGN
LBTENIF9:LHLD PAOACALV N N

LX1 D,5 N N
DAD D N N
SHLD PAOACALV N N
JMP LBTBWHLl N N

BLOCK 16 ASSEM INST ZERO SIGN
LBTEWHL1:POP H N N

POP D N N
POP B N N
POP PSW D D
RET N N

FIGURE 0. Continued

PARITY
N
N
N
N
N

PARITY
N
N
N
D
N

CARRY
N
N
D
N
N

CARRY
N
N
N
D
N

AUX-CARRY
N
N
N
N
N

AUX-CARRY
N
N
N
D
N

N (7)

/I I t I
N (8) t 1

c EXIT

N 15)

1

N (6)

?-

I a N(13)

FIGURE 9. Data Flow Graph for Application

102 Communications of the ACM \anuary 1989 Volume 3.2 Number 1

Computing Practices

CARRY
N

AUX-CARRY
N

CARRY AUX-CARRY
R R
N N
N N
N N
N N
N N
N N
N N
N N
N N

CARRY
N
N
Nt
N

AUX-CARRY
N
N
NS
N

CARRY
N
N
N
N
N
N
N
N
Nf
N

AUX-CARRY
N
N
N
N
N
N
N
N
NS
N

CARRY
N
N
Nt
N

AUX-CARRY
N
N
Nf
N

CARRY
N
N
Nf
N

AUX-CARRY
N
N
NJ:
N

PARITY CARRY
N l N
N N
N N
N D
N R

AUX-CARRY
N
N
N
N
N

CARRY
N
N
N
N

AUX-CARRY
N
N
N
N

BLOCK 1 ASSEM
1AOEAOFF:JMP

INST
*+16

ZERO
N

SIGN
N

PARITY
N

BLOCK 2 ASSEM INST
PUSH PSW
PUSH B
PUSH D
PUSH H
XRA A
STA PAOOWORK
LX1 H,IKBTKBD
SHLD PAOAWORK
LX1 H,ICOTICO
SHLD PAOACALV

ZERO
R
N
N
N
N
N
N
N
N
N

SIGN
R
N
N
N
N
N
N
N
N
N

PARITY
R
N
N
N
N
N
N
N
N
N

BLOCK 3 ASSEM INST
LBTBWHL1:LHLD PAOACALV

ZERO
N
N
D
R

SIGN
N
N
N*
N

PARITY
N
N
NS
N

MOV
CPI
JZ

A,M
X'FF'
LBTEWHLl

ASSEM INST
LHLD PAOACALV
MOV B,M
INX H
MOV C,M
INX H
MOV D,M
LHLD PAOAWORK
MOV A,B
CMP M
JNZ LBTENIFS

BLOCK 4

BLOCK 5

BLOCK 6

BLOCK 7

BLOCK 8

ZERO
N
N
N
N
N
N
N
N
D
R

SIGN
N
N
N
N
N
N
N
N
N*
N

PARITY
N
N
N
N
N
N
N
N
NS
N

ASSEM INST
INX H
MOV A,C
CMP M
JNZ LBTENIFS

ZERO
N
N
D
R

SIGN
N
N
NS
N

PARITY
N
N
NS
N

ASSEM INST
INX H
MOV A,D
CMP M
JNZ LBTENIFS

ZERO
N
N
D
R

SIGN
N
N
NS
N

PARITY
N
N
Nf
N

ASSEM
INX
INX
MOV
RLC
JC

INST
H
H
A,M

ZERO
N
N
N
N
N

SIGN
N
N
N
N
N LSTELSE5

ASSEM
MVI
STA
MVI

INST
A,X'OS'
PAOOWORK
c, X'OZ
LSTENDF8

ZERO
N
N
N
N

SIGN
N
N
N
N

PARITY
N
N
N
N

FIGURE 10. Assembly List for CSECT After Optimization

Ianuaty 1989 Volume 32 Number 1 Communications of the ACM 103

Computing Practices

BLOCK 9 ASSEM
LSTELSE5:RLC

JC

INST ZERO
N
N

SIGN
N
N

PARITY
N
N

CARRY
D
R

AUX-CARRY
N
N LSTELSE?

BLOCK 10 ASSEM INST
MVI A,X'OB'
STA PAOOWORK
MVI C,X'O3'
JMP LSTENDF8

ZERO
N
N
N
N

SIGN
N
N
N
N

PARITY
N
N
N
N

CARRY
N
N
N
N

AUX-CARRY
N
N
N
N

BLOCK 11 ASSEM INST
LSTELSE7:MVI A,X'OF'

STA PAOOWORK
MVI C,X'O5'

ZERO
N
N
N

SIGN
N
N
N

PARITY
N
N
N

CARRY
N
N
N

AIJX-CARRY
N
N
N

BLOCK 12 ASSEM INST
LSTENDF8:INX H

SHLD PAOAWRKA
LHLD PAOACALV
INX H
INX H
INX H
SHLD PAOACALA
MOV A,C
MOV B,M
INX H
MOV C,M
LHLD PAOAWRKA

ZERO
N
N
N
N
N
N
N
N
N
N
N
N

SIGN
N
N
N
N
N
N
N
N
N
N
N
N

PARITY
N
N
N
N
N
N
N
N
N
N
N
N

CARRY
N
N
N
N
N
N
N
N
N
N
N
N

AUX-CARRY
N
N
El
N
N
N
N
N
N
N
N
N

BLOCK 13 ASSEM
LBTADDUM:MOV

INX
MOV
MOV
MOV
DAD
XCHG
LHLD
DAD
XCHG
LHLD
MOV
INX
MOV
INX
SHLD
DCR
JNZ

INST
D,M
H
E,M
H,B
L,C
D

ZERO
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
D
R

SIGN
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
NS
N

PARITY
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
N
NS
N

CARRY
N
N
N
N
N
NS
N
N
Nf
N
N
N
N
N
N
N
N
N

AUX-CARRY
PI
N
N
N
N
N
N
N
N
El
N
N
El
N
N
N
Nt
N

FUDGEFAC
D

PAOAWRKA
M,D
H
M,E
H
PAOAWRKA
A
LBTADDUM

BLOCK 14 ASSEM
LHLD
XCHG
LHLD
DAD
SHLD

INST
PAOOWORK

ZERO
N
N
N
N
N

SIGN
N
N
N
N
N

PARITY
N
N
N
N
N

CARRY
N
N
N
NS
N

AUX.-CARRY
N
N
N
N
N

PAOAWORK
D
PAOAWORK

FIGURE 10. Continued

104 Communications of the ACM January 1989 Volume 32 Number 1

Computing Practices

BLOCK 15 ASSEM INST
LBTENIFS: LHLD PAOACALV

LX1 D,5
DAD D
SHLD PAOACALV
JMP LBTBWHL 1

BLOCK 16 ASSEM INST
LBTEWHLl: POP H

POP D
POP B
POP PSW
RET

ZERO SIGN
N N
N N
N N
N N
N N

ZERO SIGN
N N
N N
N N
D D
N N

FIGURE 10.

translation code. In the application presented, over fifty
percent, twenty-three of forty INTEL 8085 flag defini-
tions were eliminated from the translation. The optimi-
zation procedure is versatile in that it can be used for
optimizing flag definitions of any microprocessor and
has been utilized in the INTEL 8051 and INTEL 8086.
Since.the procedure only modifies already existing data
fields, its execution is used only if the optimization is
desired.

A possible topic for future study in the area of opti-
mization of data definitions is an optimization on a
more global basis, where data definitions that are active
upon exit of a CSECT are optimized. Several CSECTs
may be grouped together to form nodes whereby the
Basic Reach Algorithm can be executed again.

This technique can be used for general code optimi-
zation. Through the use of the Basic Reach Algorithm,
one can determine if a variable is defined at a point in
a program, but never used. One can then remove these
variables from the code, thereby resulting in a more
compact code package. It can also be used to determine
whether a variable that has been used at a particular
point has been defined somewhere in a path arriving at
that point.

This technique has also been used to achieve opti-
mization beyond local transformations in automated
logic design [7, 81. Global data flow analysis has
achieved the screening of logic for possible redundan-
cies, correction of timing problems by moving late in-
puts forward, and remedial effects of poor specification
that may result in a test specification too early in the
functions description.

A generalization of this algorithm would be: to any
system that can be represented by a directed flow graph
with the notion of determining whether some property
that is to be used at a node has been defined previ-
ously; or determining whether a property has been de-
fined and if it reaches any use of that property. This
would allow for both determination of system proper-
ties that are undefined, and system optimization.

Acknowledgment. Partial support for this paper was
from IBM, Lexington, KY grant number 200-614.

PARITY CARRY
N N
N N
N N*
N N
N N

PARITY
N
N
N
D
N

CARRY
N
N
N
D
N

AUX-CARRY
N
N
N
N
N

AIJX-CARRY
N
N
N
D
N

Continued

REFERENCES
1. Aho, A.V., and Ullman, J.O. Principles of Compiler Design. Addison-

Wesley, Reading, Mass., 1979.
2. Allen, F.E., and Cocke, J. A program data flow analysis procedure.

Commun. ACM 19, 3 (Mar. 1976). 137-145.
3. Intel Corp. Znfel 8080/8085 Assembly Language Programming User’s

Manual. Man. 9800940. Intel Corp., Santa Clara, Calif., 1979.
4. Kildall. GA. A unified approach to global program optimization. In

Conference Record of ACM Symposium on Principles of Programming
Languages (Boston, Mass., Oct. l-3). ACM, New York, 1973.
pp. 194-206.

5. Marshall, W.K., Zobrist, G.W., Bach, W., and Richardson. A. A func-
tional mapping for a microprocessor system simulation. In Proceed-
ings of the 1985 IEEE Microprocessor Forum (Atlantic City, N.J..
Apr. 2-4). IEEE, Piscataway. N.J., 1985, pp. 37-39.

6. Trevillyan, L. An overview of logic synthesis systems. In Proceedings
of the 24th ACM/IEEE Design Automation Conference (Miami Beach,
Fla., June 29-July 1). IEEE, Piscataway, N.J., 1967. pp. 166-172.

7. Trevillyan, L., Joyner, W.. and Berman, L. Global flow analysis in
automated logic design. IEEE Trans. Comput. c-35, 1 Uan. 1986),
77-81.

8. Zobrist, G.W., and Smith. B. A functional mapping for a microcon-
troller simulation. In Proceedings of the IEEE Work Sration Technology
Atrd Systems Conference (Atlantic City, N.J.. Mar. 17-20). IEEE,
Piscataway, N.J., 1986, pp. 37-39.

CR Categories and Subject Descriptors: B.S.2 [Register-Transfer-
Level Implementation]: Design Aids-optimizarion, simulafion; D.3.4
[Programming Languages]: Processors-compilers, opfimizafion, franslafor
writing systems and compiler generators: 1.6.1 [Simulation and Modeling]:
Simulation Theory-model classificafion

General Terms: Algorithms, Design, Languages
Additional Key Words and Phrases: Basic reach algorithm, global

data flow analysis

ABOUT THE AUTHORS:

DAVID M. DEJEAN studied at the University of Evansville,
Indiana, and did graduate work at the University of Missouri at
Rolla-St. Louis extension. He is an automatic test equipment
designer at McDonnell Douglas Aircraft. Author’s present ad-
dress: 12423 Bernie, Maryland Heights, MO 63043.

GEORGE W. ZOBRIST is a professor of computer science at
the University of Missouri-Rolla, Rolla, Missouri, where his
current interests are in computer aided engineering and de-
sign, software engineering tools, and simulation techniques.
Author’s present address: Department of Computer Science,
University of Missouri-Rolla, Rolla, MO 65401.

Permission to copy without fee all or part of this material is granted
provided that the copies are not made or distributed for direct commer-
cial advantage. the ACM copyright notice and the title of the publication
and its date appear. and notice is given that copying is by permission of
the Association for Computing Machinery. To copy otherwise, or to
republish, requires a fee and/or specific permission.

January 2989 Volume 32 Number 1 Communications of the ACM 105

	A Definition Optimization Technique Used In A Code Translation Algorithm
	Recommended Citation

	A definition optimization technique used in a code translation algorithm

